1/*
2 * CARMA DATA-FPGA Access Driver
3 *
4 * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
10 */
11
12/*
13 * FPGA Memory Dump Format
14 *
15 * FPGA #0 control registers (32 x 32-bit words)
16 * FPGA #1 control registers (32 x 32-bit words)
17 * FPGA #2 control registers (32 x 32-bit words)
18 * FPGA #3 control registers (32 x 32-bit words)
19 * SYSFPGA control registers (32 x 32-bit words)
20 * FPGA #0 correlation array (NUM_CORL0 correlation blocks)
21 * FPGA #1 correlation array (NUM_CORL1 correlation blocks)
22 * FPGA #2 correlation array (NUM_CORL2 correlation blocks)
23 * FPGA #3 correlation array (NUM_CORL3 correlation blocks)
24 *
25 * Each correlation array consists of:
26 *
27 * Correlation Data      (2 x NUM_LAGSn x 32-bit words)
28 * Pipeline Metadata     (2 x NUM_METAn x 32-bit words)
29 * Quantization Counters (2 x NUM_QCNTn x 32-bit words)
30 *
31 * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
32 * the FPGA configuration registers. They do not change once the FPGA's
33 * have been programmed, they only change on re-programming.
34 */
35
36/*
37 * Basic Description:
38 *
39 * This driver is used to capture correlation spectra off of the four data
40 * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
41 * this driver supports dynamic enable/disable of capture while the device
42 * remains open.
43 *
44 * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
45 * capture rate, all buffers are pre-allocated to avoid any potentially long
46 * running memory allocations while capturing.
47 *
48 * There are two lists and one pointer which are used to keep track of the
49 * different states of data buffers.
50 *
51 * 1) free list
52 * This list holds all empty data buffers which are ready to receive data.
53 *
54 * 2) inflight pointer
55 * This pointer holds the currently inflight data buffer. This buffer is having
56 * data copied into it by the DMA engine.
57 *
58 * 3) used list
59 * This list holds data buffers which have been filled, and are waiting to be
60 * read by userspace.
61 *
62 * All buffers start life on the free list, then move successively to the
63 * inflight pointer, and then to the used list. After they have been read by
64 * userspace, they are moved back to the free list. The cycle repeats as long
65 * as necessary.
66 *
67 * It should be noted that all buffers are mapped and ready for DMA when they
68 * are on any of the three lists. They are only unmapped when they are in the
69 * process of being read by userspace.
70 */
71
72/*
73 * Notes on the IRQ masking scheme:
74 *
75 * The IRQ masking scheme here is different than most other hardware. The only
76 * way for the DATA-FPGAs to detect if the kernel has taken too long to copy
77 * the data is if the status registers are not cleared before the next
78 * correlation data dump is ready.
79 *
80 * The interrupt line is connected to the status registers, such that when they
81 * are cleared, the interrupt is de-asserted. Therein lies our problem. We need
82 * to schedule a long-running DMA operation and return from the interrupt
83 * handler quickly, but we cannot clear the status registers.
84 *
85 * To handle this, the system controller FPGA has the capability to connect the
86 * interrupt line to a user-controlled GPIO pin. This pin is driven high
87 * (unasserted) and left that way. To mask the interrupt, we change the
88 * interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
89 */
90
91#include <linux/of_platform.h>
92#include <linux/dma-mapping.h>
93#include <linux/miscdevice.h>
94#include <linux/interrupt.h>
95#include <linux/dmaengine.h>
96#include <linux/seq_file.h>
97#include <linux/highmem.h>
98#include <linux/debugfs.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/poll.h>
102#include <linux/init.h>
103#include <linux/slab.h>
104#include <linux/kref.h>
105#include <linux/io.h>
106
107#include <media/videobuf-dma-sg.h>
108
109/* system controller registers */
110#define SYS_IRQ_SOURCE_CTL	0x24
111#define SYS_IRQ_OUTPUT_EN	0x28
112#define SYS_IRQ_OUTPUT_DATA	0x2C
113#define SYS_IRQ_INPUT_DATA	0x30
114#define SYS_FPGA_CONFIG_STATUS	0x44
115
116/* GPIO IRQ line assignment */
117#define IRQ_CORL_DONE		0x10
118
119/* FPGA registers */
120#define MMAP_REG_VERSION	0x00
121#define MMAP_REG_CORL_CONF1	0x08
122#define MMAP_REG_CORL_CONF2	0x0C
123#define MMAP_REG_STATUS		0x48
124
125#define SYS_FPGA_BLOCK		0xF0000000
126
127#define DATA_FPGA_START		0x400000
128#define DATA_FPGA_SIZE		0x80000
129
130static const char drv_name[] = "carma-fpga";
131
132#define NUM_FPGA	4
133
134#define MIN_DATA_BUFS	8
135#define MAX_DATA_BUFS	64
136
137struct fpga_info {
138	unsigned int num_lag_ram;
139	unsigned int blk_size;
140};
141
142struct data_buf {
143	struct list_head entry;
144	struct videobuf_dmabuf vb;
145	size_t size;
146};
147
148struct fpga_device {
149	/* character device */
150	struct miscdevice miscdev;
151	struct device *dev;
152	struct mutex mutex;
153
154	/* reference count */
155	struct kref ref;
156
157	/* FPGA registers and information */
158	struct fpga_info info[NUM_FPGA];
159	void __iomem *regs;
160	int irq;
161
162	/* FPGA Physical Address/Size Information */
163	resource_size_t phys_addr;
164	size_t phys_size;
165
166	/* DMA structures */
167	struct sg_table corl_table;
168	unsigned int corl_nents;
169	struct dma_chan *chan;
170
171	/* Protection for all members below */
172	spinlock_t lock;
173
174	/* Device enable/disable flag */
175	bool enabled;
176
177	/* Correlation data buffers */
178	wait_queue_head_t wait;
179	struct list_head free;
180	struct list_head used;
181	struct data_buf *inflight;
182
183	/* Information about data buffers */
184	unsigned int num_dropped;
185	unsigned int num_buffers;
186	size_t bufsize;
187	struct dentry *dbg_entry;
188};
189
190struct fpga_reader {
191	struct fpga_device *priv;
192	struct data_buf *buf;
193	off_t buf_start;
194};
195
196static void fpga_device_release(struct kref *ref)
197{
198	struct fpga_device *priv = container_of(ref, struct fpga_device, ref);
199
200	/* the last reader has exited, cleanup the last bits */
201	mutex_destroy(&priv->mutex);
202	kfree(priv);
203}
204
205/*
206 * Data Buffer Allocation Helpers
207 */
208
209/**
210 * data_free_buffer() - free a single data buffer and all allocated memory
211 * @buf: the buffer to free
212 *
213 * This will free all of the pages allocated to the given data buffer, and
214 * then free the structure itself
215 */
216static void data_free_buffer(struct data_buf *buf)
217{
218	/* It is ok to free a NULL buffer */
219	if (!buf)
220		return;
221
222	/* free all memory */
223	videobuf_dma_free(&buf->vb);
224	kfree(buf);
225}
226
227/**
228 * data_alloc_buffer() - allocate and fill a data buffer with pages
229 * @bytes: the number of bytes required
230 *
231 * This allocates all space needed for a data buffer. It must be mapped before
232 * use in a DMA transaction using videobuf_dma_map().
233 *
234 * Returns NULL on failure
235 */
236static struct data_buf *data_alloc_buffer(const size_t bytes)
237{
238	unsigned int nr_pages;
239	struct data_buf *buf;
240	int ret;
241
242	/* calculate the number of pages necessary */
243	nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
244
245	/* allocate the buffer structure */
246	buf = kzalloc(sizeof(*buf), GFP_KERNEL);
247	if (!buf)
248		goto out_return;
249
250	/* initialize internal fields */
251	INIT_LIST_HEAD(&buf->entry);
252	buf->size = bytes;
253
254	/* allocate the videobuf */
255	videobuf_dma_init(&buf->vb);
256	ret = videobuf_dma_init_kernel(&buf->vb, DMA_FROM_DEVICE, nr_pages);
257	if (ret)
258		goto out_free_buf;
259
260	return buf;
261
262out_free_buf:
263	kfree(buf);
264out_return:
265	return NULL;
266}
267
268/**
269 * data_free_buffers() - free all allocated buffers
270 * @priv: the driver's private data structure
271 *
272 * Free all buffers allocated by the driver (except those currently in the
273 * process of being read by userspace).
274 *
275 * LOCKING: must hold dev->mutex
276 * CONTEXT: user
277 */
278static void data_free_buffers(struct fpga_device *priv)
279{
280	struct data_buf *buf, *tmp;
281
282	/* the device should be stopped, no DMA in progress */
283	BUG_ON(priv->inflight != NULL);
284
285	list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
286		list_del_init(&buf->entry);
287		videobuf_dma_unmap(priv->dev, &buf->vb);
288		data_free_buffer(buf);
289	}
290
291	list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
292		list_del_init(&buf->entry);
293		videobuf_dma_unmap(priv->dev, &buf->vb);
294		data_free_buffer(buf);
295	}
296
297	priv->num_buffers = 0;
298	priv->bufsize = 0;
299}
300
301/**
302 * data_alloc_buffers() - allocate 1 seconds worth of data buffers
303 * @priv: the driver's private data structure
304 *
305 * Allocate enough buffers for a whole second worth of data
306 *
307 * This routine will attempt to degrade nicely by succeeding even if a full
308 * second worth of data buffers could not be allocated, as long as a minimum
309 * number were allocated. In this case, it will print a message to the kernel
310 * log.
311 *
312 * The device must not be modifying any lists when this is called.
313 *
314 * CONTEXT: user
315 * LOCKING: must hold dev->mutex
316 *
317 * Returns 0 on success, -ERRNO otherwise
318 */
319static int data_alloc_buffers(struct fpga_device *priv)
320{
321	struct data_buf *buf;
322	int i, ret;
323
324	for (i = 0; i < MAX_DATA_BUFS; i++) {
325
326		/* allocate a buffer */
327		buf = data_alloc_buffer(priv->bufsize);
328		if (!buf)
329			break;
330
331		/* map it for DMA */
332		ret = videobuf_dma_map(priv->dev, &buf->vb);
333		if (ret) {
334			data_free_buffer(buf);
335			break;
336		}
337
338		/* add it to the list of free buffers */
339		list_add_tail(&buf->entry, &priv->free);
340		priv->num_buffers++;
341	}
342
343	/* Make sure we allocated the minimum required number of buffers */
344	if (priv->num_buffers < MIN_DATA_BUFS) {
345		dev_err(priv->dev, "Unable to allocate enough data buffers\n");
346		data_free_buffers(priv);
347		return -ENOMEM;
348	}
349
350	/* Warn if we are running in a degraded state, but do not fail */
351	if (priv->num_buffers < MAX_DATA_BUFS) {
352		dev_warn(priv->dev,
353			 "Unable to allocate %d buffers, using %d buffers instead\n",
354			 MAX_DATA_BUFS, i);
355	}
356
357	return 0;
358}
359
360/*
361 * DMA Operations Helpers
362 */
363
364/**
365 * fpga_start_addr() - get the physical address a DATA-FPGA
366 * @priv: the driver's private data structure
367 * @fpga: the DATA-FPGA number (zero based)
368 */
369static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
370{
371	return priv->phys_addr + 0x400000 + (0x80000 * fpga);
372}
373
374/**
375 * fpga_block_addr() - get the physical address of a correlation data block
376 * @priv: the driver's private data structure
377 * @fpga: the DATA-FPGA number (zero based)
378 * @blknum: the correlation block number (zero based)
379 */
380static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
381				  unsigned int blknum)
382{
383	return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
384}
385
386#define REG_BLOCK_SIZE	(32 * 4)
387
388/**
389 * data_setup_corl_table() - create the scatterlist for correlation dumps
390 * @priv: the driver's private data structure
391 *
392 * Create the scatterlist for transferring a correlation dump from the
393 * DATA FPGAs. This structure will be reused for each buffer than needs
394 * to be filled with correlation data.
395 *
396 * Returns 0 on success, -ERRNO otherwise
397 */
398static int data_setup_corl_table(struct fpga_device *priv)
399{
400	struct sg_table *table = &priv->corl_table;
401	struct scatterlist *sg;
402	struct fpga_info *info;
403	int i, j, ret;
404
405	/* Calculate the number of entries needed */
406	priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
407	for (i = 0; i < NUM_FPGA; i++)
408		priv->corl_nents += priv->info[i].num_lag_ram;
409
410	/* Allocate the scatterlist table */
411	ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
412	if (ret) {
413		dev_err(priv->dev, "unable to allocate DMA table\n");
414		return ret;
415	}
416
417	/* Add the DATA FPGA registers to the scatterlist */
418	sg = table->sgl;
419	for (i = 0; i < NUM_FPGA; i++) {
420		sg_dma_address(sg) = fpga_start_addr(priv, i);
421		sg_dma_len(sg) = REG_BLOCK_SIZE;
422		sg = sg_next(sg);
423	}
424
425	/* Add the SYS-FPGA registers to the scatterlist */
426	sg_dma_address(sg) = SYS_FPGA_BLOCK;
427	sg_dma_len(sg) = REG_BLOCK_SIZE;
428	sg = sg_next(sg);
429
430	/* Add the FPGA correlation data blocks to the scatterlist */
431	for (i = 0; i < NUM_FPGA; i++) {
432		info = &priv->info[i];
433		for (j = 0; j < info->num_lag_ram; j++) {
434			sg_dma_address(sg) = fpga_block_addr(priv, i, j);
435			sg_dma_len(sg) = info->blk_size;
436			sg = sg_next(sg);
437		}
438	}
439
440	/*
441	 * All physical addresses and lengths are present in the structure
442	 * now. It can be reused for every FPGA DATA interrupt
443	 */
444	return 0;
445}
446
447/*
448 * FPGA Register Access Helpers
449 */
450
451static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
452			   unsigned int reg, u32 val)
453{
454	const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
455	iowrite32be(val, priv->regs + fpga_start + reg);
456}
457
458static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
459			 unsigned int reg)
460{
461	const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
462	return ioread32be(priv->regs + fpga_start + reg);
463}
464
465/**
466 * data_calculate_bufsize() - calculate the data buffer size required
467 * @priv: the driver's private data structure
468 *
469 * Calculate the total buffer size needed to hold a single block
470 * of correlation data
471 *
472 * CONTEXT: user
473 *
474 * Returns 0 on success, -ERRNO otherwise
475 */
476static int data_calculate_bufsize(struct fpga_device *priv)
477{
478	u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
479	u32 conf1, conf2, version;
480	u32 num_lag_ram, blk_size;
481	int i;
482
483	/* Each buffer starts with the 5 FPGA register areas */
484	priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
485
486	/* Read and store the configuration data for each FPGA */
487	for (i = 0; i < NUM_FPGA; i++) {
488		version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
489		conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
490		conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
491
492		/* minor version 2 and later */
493		if ((version & 0x000000FF) >= 2) {
494			num_corl = (conf1 & 0x000000F0) >> 4;
495			num_pack = (conf1 & 0x00000F00) >> 8;
496			num_lags = (conf1 & 0x00FFF000) >> 12;
497			num_meta = (conf1 & 0x7F000000) >> 24;
498			num_qcnt = (conf2 & 0x00000FFF) >> 0;
499		} else {
500			num_corl = (conf1 & 0x000000F0) >> 4;
501			num_pack = 1; /* implied */
502			num_lags = (conf1 & 0x000FFF00) >> 8;
503			num_meta = (conf1 & 0x7FF00000) >> 20;
504			num_qcnt = (conf2 & 0x00000FFF) >> 0;
505		}
506
507		num_lag_ram = (num_corl + num_pack - 1) / num_pack;
508		blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
509
510		priv->info[i].num_lag_ram = num_lag_ram;
511		priv->info[i].blk_size = blk_size;
512		priv->bufsize += num_lag_ram * blk_size;
513
514		dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
515		dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
516		dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
517		dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
518		dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
519		dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
520	}
521
522	dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
523	return 0;
524}
525
526/*
527 * Interrupt Handling
528 */
529
530/**
531 * data_disable_interrupts() - stop the device from generating interrupts
532 * @priv: the driver's private data structure
533 *
534 * Hide interrupts by switching to GPIO interrupt source
535 *
536 * LOCKING: must hold dev->lock
537 */
538static void data_disable_interrupts(struct fpga_device *priv)
539{
540	/* hide the interrupt by switching the IRQ driver to GPIO */
541	iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
542}
543
544/**
545 * data_enable_interrupts() - allow the device to generate interrupts
546 * @priv: the driver's private data structure
547 *
548 * Unhide interrupts by switching to the FPGA interrupt source. At the
549 * same time, clear the DATA-FPGA status registers.
550 *
551 * LOCKING: must hold dev->lock
552 */
553static void data_enable_interrupts(struct fpga_device *priv)
554{
555	/* clear the actual FPGA corl_done interrupt */
556	fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
557	fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
558	fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
559	fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
560
561	/* flush the writes */
562	fpga_read_reg(priv, 0, MMAP_REG_STATUS);
563	fpga_read_reg(priv, 1, MMAP_REG_STATUS);
564	fpga_read_reg(priv, 2, MMAP_REG_STATUS);
565	fpga_read_reg(priv, 3, MMAP_REG_STATUS);
566
567	/* switch back to the external interrupt source */
568	iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
569}
570
571/**
572 * data_dma_cb() - DMAEngine callback for DMA completion
573 * @data: the driver's private data structure
574 *
575 * Complete a DMA transfer from the DATA-FPGA's
576 *
577 * This is called via the DMA callback mechanism, and will handle moving the
578 * completed DMA transaction to the used list, and then wake any processes
579 * waiting for new data
580 *
581 * CONTEXT: any, softirq expected
582 */
583static void data_dma_cb(void *data)
584{
585	struct fpga_device *priv = data;
586	unsigned long flags;
587
588	spin_lock_irqsave(&priv->lock, flags);
589
590	/* If there is no inflight buffer, we've got a bug */
591	BUG_ON(priv->inflight == NULL);
592
593	/* Move the inflight buffer onto the used list */
594	list_move_tail(&priv->inflight->entry, &priv->used);
595	priv->inflight = NULL;
596
597	/*
598	 * If data dumping is still enabled, then clear the FPGA
599	 * status registers and re-enable FPGA interrupts
600	 */
601	if (priv->enabled)
602		data_enable_interrupts(priv);
603
604	spin_unlock_irqrestore(&priv->lock, flags);
605
606	/*
607	 * We've changed both the inflight and used lists, so we need
608	 * to wake up any processes that are blocking for those events
609	 */
610	wake_up(&priv->wait);
611}
612
613/**
614 * data_submit_dma() - prepare and submit the required DMA to fill a buffer
615 * @priv: the driver's private data structure
616 * @buf: the data buffer
617 *
618 * Prepare and submit the necessary DMA transactions to fill a correlation
619 * data buffer.
620 *
621 * LOCKING: must hold dev->lock
622 * CONTEXT: hardirq only
623 *
624 * Returns 0 on success, -ERRNO otherwise
625 */
626static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
627{
628	struct scatterlist *dst_sg, *src_sg;
629	unsigned int dst_nents, src_nents;
630	struct dma_chan *chan = priv->chan;
631	struct dma_async_tx_descriptor *tx;
632	dma_cookie_t cookie;
633	dma_addr_t dst, src;
634
635	dst_sg = buf->vb.sglist;
636	dst_nents = buf->vb.sglen;
637
638	src_sg = priv->corl_table.sgl;
639	src_nents = priv->corl_nents;
640
641	/*
642	 * All buffers passed to this function should be ready and mapped
643	 * for DMA already. Therefore, we don't need to do anything except
644	 * submit it to the Freescale DMA Engine for processing
645	 */
646
647	/* setup the scatterlist to scatterlist transfer */
648	tx = chan->device->device_prep_dma_sg(chan,
649					      dst_sg, dst_nents,
650					      src_sg, src_nents,
651					      0);
652	if (!tx) {
653		dev_err(priv->dev, "unable to prep scatterlist DMA\n");
654		return -ENOMEM;
655	}
656
657	/* submit the transaction to the DMA controller */
658	cookie = tx->tx_submit(tx);
659	if (dma_submit_error(cookie)) {
660		dev_err(priv->dev, "unable to submit scatterlist DMA\n");
661		return -ENOMEM;
662	}
663
664	/* Prepare the re-read of the SYS-FPGA block */
665	dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
666	src = SYS_FPGA_BLOCK;
667	tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
668						  REG_BLOCK_SIZE,
669						  DMA_PREP_INTERRUPT);
670	if (!tx) {
671		dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
672		return -ENOMEM;
673	}
674
675	/* Setup the callback */
676	tx->callback = data_dma_cb;
677	tx->callback_param = priv;
678
679	/* submit the transaction to the DMA controller */
680	cookie = tx->tx_submit(tx);
681	if (dma_submit_error(cookie)) {
682		dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
683		return -ENOMEM;
684	}
685
686	return 0;
687}
688
689#define CORL_DONE	0x1
690#define CORL_ERR	0x2
691
692static irqreturn_t data_irq(int irq, void *dev_id)
693{
694	struct fpga_device *priv = dev_id;
695	bool submitted = false;
696	struct data_buf *buf;
697	u32 status;
698	int i;
699
700	/* detect spurious interrupts via FPGA status */
701	for (i = 0; i < 4; i++) {
702		status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
703		if (!(status & (CORL_DONE | CORL_ERR))) {
704			dev_err(priv->dev, "spurious irq detected (FPGA)\n");
705			return IRQ_NONE;
706		}
707	}
708
709	/* detect spurious interrupts via raw IRQ pin readback */
710	status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
711	if (status & IRQ_CORL_DONE) {
712		dev_err(priv->dev, "spurious irq detected (IRQ)\n");
713		return IRQ_NONE;
714	}
715
716	spin_lock(&priv->lock);
717
718	/*
719	 * This is an error case that should never happen.
720	 *
721	 * If this driver has a bug and manages to re-enable interrupts while
722	 * a DMA is in progress, then we will hit this statement and should
723	 * start paying attention immediately.
724	 */
725	BUG_ON(priv->inflight != NULL);
726
727	/* hide the interrupt by switching the IRQ driver to GPIO */
728	data_disable_interrupts(priv);
729
730	/* If there are no free buffers, drop this data */
731	if (list_empty(&priv->free)) {
732		priv->num_dropped++;
733		goto out;
734	}
735
736	buf = list_first_entry(&priv->free, struct data_buf, entry);
737	list_del_init(&buf->entry);
738	BUG_ON(buf->size != priv->bufsize);
739
740	/* Submit a DMA transfer to get the correlation data */
741	if (data_submit_dma(priv, buf)) {
742		dev_err(priv->dev, "Unable to setup DMA transfer\n");
743		list_move_tail(&buf->entry, &priv->free);
744		goto out;
745	}
746
747	/* Save the buffer for the DMA callback */
748	priv->inflight = buf;
749	submitted = true;
750
751	/* Start the DMA Engine */
752	dma_async_memcpy_issue_pending(priv->chan);
753
754out:
755	/* If no DMA was submitted, re-enable interrupts */
756	if (!submitted)
757		data_enable_interrupts(priv);
758
759	spin_unlock(&priv->lock);
760	return IRQ_HANDLED;
761}
762
763/*
764 * Realtime Device Enable Helpers
765 */
766
767/**
768 * data_device_enable() - enable the device for buffered dumping
769 * @priv: the driver's private data structure
770 *
771 * Enable the device for buffered dumping. Allocates buffers and hooks up
772 * the interrupt handler. When this finishes, data will come pouring in.
773 *
774 * LOCKING: must hold dev->mutex
775 * CONTEXT: user context only
776 *
777 * Returns 0 on success, -ERRNO otherwise
778 */
779static int data_device_enable(struct fpga_device *priv)
780{
781	bool enabled;
782	u32 val;
783	int ret;
784
785	/* multiple enables are safe: they do nothing */
786	spin_lock_irq(&priv->lock);
787	enabled = priv->enabled;
788	spin_unlock_irq(&priv->lock);
789	if (enabled)
790		return 0;
791
792	/* check that the FPGAs are programmed */
793	val = ioread32be(priv->regs + SYS_FPGA_CONFIG_STATUS);
794	if (!(val & (1 << 18))) {
795		dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
796		return -ENODATA;
797	}
798
799	/* read the FPGAs to calculate the buffer size */
800	ret = data_calculate_bufsize(priv);
801	if (ret) {
802		dev_err(priv->dev, "unable to calculate buffer size\n");
803		goto out_error;
804	}
805
806	/* allocate the correlation data buffers */
807	ret = data_alloc_buffers(priv);
808	if (ret) {
809		dev_err(priv->dev, "unable to allocate buffers\n");
810		goto out_error;
811	}
812
813	/* setup the source scatterlist for dumping correlation data */
814	ret = data_setup_corl_table(priv);
815	if (ret) {
816		dev_err(priv->dev, "unable to setup correlation DMA table\n");
817		goto out_error;
818	}
819
820	/* prevent the FPGAs from generating interrupts */
821	data_disable_interrupts(priv);
822
823	/* hookup the irq handler */
824	ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
825	if (ret) {
826		dev_err(priv->dev, "unable to request IRQ handler\n");
827		goto out_error;
828	}
829
830	/* allow the DMA callback to re-enable FPGA interrupts */
831	spin_lock_irq(&priv->lock);
832	priv->enabled = true;
833	spin_unlock_irq(&priv->lock);
834
835	/* allow the FPGAs to generate interrupts */
836	data_enable_interrupts(priv);
837	return 0;
838
839out_error:
840	sg_free_table(&priv->corl_table);
841	priv->corl_nents = 0;
842
843	data_free_buffers(priv);
844	return ret;
845}
846
847/**
848 * data_device_disable() - disable the device for buffered dumping
849 * @priv: the driver's private data structure
850 *
851 * Disable the device for buffered dumping. Stops new DMA transactions from
852 * being generated, waits for all outstanding DMA to complete, and then frees
853 * all buffers.
854 *
855 * LOCKING: must hold dev->mutex
856 * CONTEXT: user only
857 *
858 * Returns 0 on success, -ERRNO otherwise
859 */
860static int data_device_disable(struct fpga_device *priv)
861{
862	spin_lock_irq(&priv->lock);
863
864	/* allow multiple disable */
865	if (!priv->enabled) {
866		spin_unlock_irq(&priv->lock);
867		return 0;
868	}
869
870	/*
871	 * Mark the device disabled
872	 *
873	 * This stops DMA callbacks from re-enabling interrupts
874	 */
875	priv->enabled = false;
876
877	/* prevent the FPGAs from generating interrupts */
878	data_disable_interrupts(priv);
879
880	/* wait until all ongoing DMA has finished */
881	while (priv->inflight != NULL) {
882		spin_unlock_irq(&priv->lock);
883		wait_event(priv->wait, priv->inflight == NULL);
884		spin_lock_irq(&priv->lock);
885	}
886
887	spin_unlock_irq(&priv->lock);
888
889	/* unhook the irq handler */
890	free_irq(priv->irq, priv);
891
892	/* free the correlation table */
893	sg_free_table(&priv->corl_table);
894	priv->corl_nents = 0;
895
896	/* free all buffers: the free and used lists are not being changed */
897	data_free_buffers(priv);
898	return 0;
899}
900
901/*
902 * DEBUGFS Interface
903 */
904#ifdef CONFIG_DEBUG_FS
905
906/*
907 * Count the number of entries in the given list
908 */
909static unsigned int list_num_entries(struct list_head *list)
910{
911	struct list_head *entry;
912	unsigned int ret = 0;
913
914	list_for_each(entry, list)
915		ret++;
916
917	return ret;
918}
919
920static int data_debug_show(struct seq_file *f, void *offset)
921{
922	struct fpga_device *priv = f->private;
923
924	spin_lock_irq(&priv->lock);
925
926	seq_printf(f, "enabled: %d\n", priv->enabled);
927	seq_printf(f, "bufsize: %d\n", priv->bufsize);
928	seq_printf(f, "num_buffers: %d\n", priv->num_buffers);
929	seq_printf(f, "num_free: %d\n", list_num_entries(&priv->free));
930	seq_printf(f, "inflight: %d\n", priv->inflight != NULL);
931	seq_printf(f, "num_used: %d\n", list_num_entries(&priv->used));
932	seq_printf(f, "num_dropped: %d\n", priv->num_dropped);
933
934	spin_unlock_irq(&priv->lock);
935	return 0;
936}
937
938static int data_debug_open(struct inode *inode, struct file *file)
939{
940	return single_open(file, data_debug_show, inode->i_private);
941}
942
943static const struct file_operations data_debug_fops = {
944	.owner		= THIS_MODULE,
945	.open		= data_debug_open,
946	.read		= seq_read,
947	.llseek		= seq_lseek,
948	.release	= single_release,
949};
950
951static int data_debugfs_init(struct fpga_device *priv)
952{
953	priv->dbg_entry = debugfs_create_file(drv_name, S_IRUGO, NULL, priv,
954					      &data_debug_fops);
955	if (IS_ERR(priv->dbg_entry))
956		return PTR_ERR(priv->dbg_entry);
957
958	return 0;
959}
960
961static void data_debugfs_exit(struct fpga_device *priv)
962{
963	debugfs_remove(priv->dbg_entry);
964}
965
966#else
967
968static inline int data_debugfs_init(struct fpga_device *priv)
969{
970	return 0;
971}
972
973static inline void data_debugfs_exit(struct fpga_device *priv)
974{
975}
976
977#endif	/* CONFIG_DEBUG_FS */
978
979/*
980 * SYSFS Attributes
981 */
982
983static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
984			    char *buf)
985{
986	struct fpga_device *priv = dev_get_drvdata(dev);
987	int ret;
988
989	spin_lock_irq(&priv->lock);
990	ret = snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
991	spin_unlock_irq(&priv->lock);
992
993	return ret;
994}
995
996static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
997			   const char *buf, size_t count)
998{
999	struct fpga_device *priv = dev_get_drvdata(dev);
1000	unsigned long enable;
1001	int ret;
1002
1003	ret = strict_strtoul(buf, 0, &enable);
1004	if (ret) {
1005		dev_err(priv->dev, "unable to parse enable input\n");
1006		return -EINVAL;
1007	}
1008
1009	/* protect against concurrent enable/disable */
1010	ret = mutex_lock_interruptible(&priv->mutex);
1011	if (ret)
1012		return ret;
1013
1014	if (enable)
1015		ret = data_device_enable(priv);
1016	else
1017		ret = data_device_disable(priv);
1018
1019	if (ret) {
1020		dev_err(priv->dev, "device %s failed\n",
1021			enable ? "enable" : "disable");
1022		count = ret;
1023		goto out_unlock;
1024	}
1025
1026out_unlock:
1027	mutex_unlock(&priv->mutex);
1028	return count;
1029}
1030
1031static DEVICE_ATTR(enable, S_IWUSR | S_IRUGO, data_en_show, data_en_set);
1032
1033static struct attribute *data_sysfs_attrs[] = {
1034	&dev_attr_enable.attr,
1035	NULL,
1036};
1037
1038static const struct attribute_group rt_sysfs_attr_group = {
1039	.attrs = data_sysfs_attrs,
1040};
1041
1042/*
1043 * FPGA Realtime Data Character Device
1044 */
1045
1046static int data_open(struct inode *inode, struct file *filp)
1047{
1048	/*
1049	 * The miscdevice layer puts our struct miscdevice into the
1050	 * filp->private_data field. We use this to find our private
1051	 * data and then overwrite it with our own private structure.
1052	 */
1053	struct fpga_device *priv = container_of(filp->private_data,
1054						struct fpga_device, miscdev);
1055	struct fpga_reader *reader;
1056	int ret;
1057
1058	/* allocate private data */
1059	reader = kzalloc(sizeof(*reader), GFP_KERNEL);
1060	if (!reader)
1061		return -ENOMEM;
1062
1063	reader->priv = priv;
1064	reader->buf = NULL;
1065
1066	filp->private_data = reader;
1067	ret = nonseekable_open(inode, filp);
1068	if (ret) {
1069		dev_err(priv->dev, "nonseekable-open failed\n");
1070		kfree(reader);
1071		return ret;
1072	}
1073
1074	/*
1075	 * success, increase the reference count of the private data structure
1076	 * so that it doesn't disappear if the device is unbound
1077	 */
1078	kref_get(&priv->ref);
1079	return 0;
1080}
1081
1082static int data_release(struct inode *inode, struct file *filp)
1083{
1084	struct fpga_reader *reader = filp->private_data;
1085	struct fpga_device *priv = reader->priv;
1086
1087	/* free the per-reader structure */
1088	data_free_buffer(reader->buf);
1089	kfree(reader);
1090	filp->private_data = NULL;
1091
1092	/* decrement our reference count to the private data */
1093	kref_put(&priv->ref, fpga_device_release);
1094	return 0;
1095}
1096
1097static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
1098			 loff_t *f_pos)
1099{
1100	struct fpga_reader *reader = filp->private_data;
1101	struct fpga_device *priv = reader->priv;
1102	struct list_head *used = &priv->used;
1103	bool drop_buffer = false;
1104	struct data_buf *dbuf;
1105	size_t avail;
1106	void *data;
1107	int ret;
1108
1109	/* check if we already have a partial buffer */
1110	if (reader->buf) {
1111		dbuf = reader->buf;
1112		goto have_buffer;
1113	}
1114
1115	spin_lock_irq(&priv->lock);
1116
1117	/* Block until there is at least one buffer on the used list */
1118	while (list_empty(used)) {
1119		spin_unlock_irq(&priv->lock);
1120
1121		if (filp->f_flags & O_NONBLOCK)
1122			return -EAGAIN;
1123
1124		ret = wait_event_interruptible(priv->wait, !list_empty(used));
1125		if (ret)
1126			return ret;
1127
1128		spin_lock_irq(&priv->lock);
1129	}
1130
1131	/* Grab the first buffer off of the used list */
1132	dbuf = list_first_entry(used, struct data_buf, entry);
1133	list_del_init(&dbuf->entry);
1134
1135	spin_unlock_irq(&priv->lock);
1136
1137	/* Buffers are always mapped: unmap it */
1138	videobuf_dma_unmap(priv->dev, &dbuf->vb);
1139
1140	/* save the buffer for later */
1141	reader->buf = dbuf;
1142	reader->buf_start = 0;
1143
1144have_buffer:
1145	/* Get the number of bytes available */
1146	avail = dbuf->size - reader->buf_start;
1147	data = dbuf->vb.vaddr + reader->buf_start;
1148
1149	/* Get the number of bytes we can transfer */
1150	count = min(count, avail);
1151
1152	/* Copy the data to the userspace buffer */
1153	if (copy_to_user(ubuf, data, count))
1154		return -EFAULT;
1155
1156	/* Update the amount of available space */
1157	avail -= count;
1158
1159	/*
1160	 * If there is still some data available, save the buffer for the
1161	 * next userspace call to read() and return
1162	 */
1163	if (avail > 0) {
1164		reader->buf_start += count;
1165		reader->buf = dbuf;
1166		return count;
1167	}
1168
1169	/*
1170	 * Get the buffer ready to be reused for DMA
1171	 *
1172	 * If it fails, we pretend that the read never happed and return
1173	 * -EFAULT to userspace. The read will be retried.
1174	 */
1175	ret = videobuf_dma_map(priv->dev, &dbuf->vb);
1176	if (ret) {
1177		dev_err(priv->dev, "unable to remap buffer for DMA\n");
1178		return -EFAULT;
1179	}
1180
1181	/* Lock against concurrent enable/disable */
1182	spin_lock_irq(&priv->lock);
1183
1184	/* the reader is finished with this buffer */
1185	reader->buf = NULL;
1186
1187	/*
1188	 * One of two things has happened, the device is disabled, or the
1189	 * device has been reconfigured underneath us. In either case, we
1190	 * should just throw away the buffer.
1191	 *
1192	 * Lockdep complains if this is done under the spinlock, so we
1193	 * handle it during the unlock path.
1194	 */
1195	if (!priv->enabled || dbuf->size != priv->bufsize) {
1196		drop_buffer = true;
1197		goto out_unlock;
1198	}
1199
1200	/* The buffer is safe to reuse, so add it back to the free list */
1201	list_add_tail(&dbuf->entry, &priv->free);
1202
1203out_unlock:
1204	spin_unlock_irq(&priv->lock);
1205
1206	if (drop_buffer) {
1207		videobuf_dma_unmap(priv->dev, &dbuf->vb);
1208		data_free_buffer(dbuf);
1209	}
1210
1211	return count;
1212}
1213
1214static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
1215{
1216	struct fpga_reader *reader = filp->private_data;
1217	struct fpga_device *priv = reader->priv;
1218	unsigned int mask = 0;
1219
1220	poll_wait(filp, &priv->wait, tbl);
1221
1222	if (!list_empty(&priv->used))
1223		mask |= POLLIN | POLLRDNORM;
1224
1225	return mask;
1226}
1227
1228static int data_mmap(struct file *filp, struct vm_area_struct *vma)
1229{
1230	struct fpga_reader *reader = filp->private_data;
1231	struct fpga_device *priv = reader->priv;
1232	unsigned long offset, vsize, psize, addr;
1233
1234	/* VMA properties */
1235	offset = vma->vm_pgoff << PAGE_SHIFT;
1236	vsize = vma->vm_end - vma->vm_start;
1237	psize = priv->phys_size - offset;
1238	addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
1239
1240	/* Check against the FPGA region's physical memory size */
1241	if (vsize > psize) {
1242		dev_err(priv->dev, "requested mmap mapping too large\n");
1243		return -EINVAL;
1244	}
1245
1246	/* IO memory (stop cacheing) */
1247	vma->vm_flags |= VM_IO | VM_RESERVED;
1248	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1249
1250	return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
1251				  vma->vm_page_prot);
1252}
1253
1254static const struct file_operations data_fops = {
1255	.owner		= THIS_MODULE,
1256	.open		= data_open,
1257	.release	= data_release,
1258	.read		= data_read,
1259	.poll		= data_poll,
1260	.mmap		= data_mmap,
1261	.llseek		= no_llseek,
1262};
1263
1264/*
1265 * OpenFirmware Device Subsystem
1266 */
1267
1268static bool dma_filter(struct dma_chan *chan, void *data)
1269{
1270	/*
1271	 * DMA Channel #0 is used for the FPGA Programmer, so ignore it
1272	 *
1273	 * This probably won't survive an unload/load cycle of the Freescale
1274	 * DMAEngine driver, but that won't be a problem
1275	 */
1276	if (chan->chan_id == 0 && chan->device->dev_id == 0)
1277		return false;
1278
1279	return true;
1280}
1281
1282static int data_of_probe(struct platform_device *op)
1283{
1284	struct device_node *of_node = op->dev.of_node;
1285	struct device *this_device;
1286	struct fpga_device *priv;
1287	struct resource res;
1288	dma_cap_mask_t mask;
1289	int ret;
1290
1291	/* Allocate private data */
1292	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1293	if (!priv) {
1294		dev_err(&op->dev, "Unable to allocate device private data\n");
1295		ret = -ENOMEM;
1296		goto out_return;
1297	}
1298
1299	dev_set_drvdata(&op->dev, priv);
1300	priv->dev = &op->dev;
1301	kref_init(&priv->ref);
1302	mutex_init(&priv->mutex);
1303
1304	dev_set_drvdata(priv->dev, priv);
1305	spin_lock_init(&priv->lock);
1306	INIT_LIST_HEAD(&priv->free);
1307	INIT_LIST_HEAD(&priv->used);
1308	init_waitqueue_head(&priv->wait);
1309
1310	/* Setup the misc device */
1311	priv->miscdev.minor = MISC_DYNAMIC_MINOR;
1312	priv->miscdev.name = drv_name;
1313	priv->miscdev.fops = &data_fops;
1314
1315	/* Get the physical address of the FPGA registers */
1316	ret = of_address_to_resource(of_node, 0, &res);
1317	if (ret) {
1318		dev_err(&op->dev, "Unable to find FPGA physical address\n");
1319		ret = -ENODEV;
1320		goto out_free_priv;
1321	}
1322
1323	priv->phys_addr = res.start;
1324	priv->phys_size = resource_size(&res);
1325
1326	/* ioremap the registers for use */
1327	priv->regs = of_iomap(of_node, 0);
1328	if (!priv->regs) {
1329		dev_err(&op->dev, "Unable to ioremap registers\n");
1330		ret = -ENOMEM;
1331		goto out_free_priv;
1332	}
1333
1334	dma_cap_zero(mask);
1335	dma_cap_set(DMA_MEMCPY, mask);
1336	dma_cap_set(DMA_INTERRUPT, mask);
1337	dma_cap_set(DMA_SLAVE, mask);
1338	dma_cap_set(DMA_SG, mask);
1339
1340	/* Request a DMA channel */
1341	priv->chan = dma_request_channel(mask, dma_filter, NULL);
1342	if (!priv->chan) {
1343		dev_err(&op->dev, "Unable to request DMA channel\n");
1344		ret = -ENODEV;
1345		goto out_unmap_regs;
1346	}
1347
1348	/* Find the correct IRQ number */
1349	priv->irq = irq_of_parse_and_map(of_node, 0);
1350	if (priv->irq == NO_IRQ) {
1351		dev_err(&op->dev, "Unable to find IRQ line\n");
1352		ret = -ENODEV;
1353		goto out_release_dma;
1354	}
1355
1356	/* Drive the GPIO for FPGA IRQ high (no interrupt) */
1357	iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
1358
1359	/* Register the miscdevice */
1360	ret = misc_register(&priv->miscdev);
1361	if (ret) {
1362		dev_err(&op->dev, "Unable to register miscdevice\n");
1363		goto out_irq_dispose_mapping;
1364	}
1365
1366	/* Create the debugfs files */
1367	ret = data_debugfs_init(priv);
1368	if (ret) {
1369		dev_err(&op->dev, "Unable to create debugfs files\n");
1370		goto out_misc_deregister;
1371	}
1372
1373	/* Create the sysfs files */
1374	this_device = priv->miscdev.this_device;
1375	dev_set_drvdata(this_device, priv);
1376	ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
1377	if (ret) {
1378		dev_err(&op->dev, "Unable to create sysfs files\n");
1379		goto out_data_debugfs_exit;
1380	}
1381
1382	dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
1383	return 0;
1384
1385out_data_debugfs_exit:
1386	data_debugfs_exit(priv);
1387out_misc_deregister:
1388	misc_deregister(&priv->miscdev);
1389out_irq_dispose_mapping:
1390	irq_dispose_mapping(priv->irq);
1391out_release_dma:
1392	dma_release_channel(priv->chan);
1393out_unmap_regs:
1394	iounmap(priv->regs);
1395out_free_priv:
1396	kref_put(&priv->ref, fpga_device_release);
1397out_return:
1398	return ret;
1399}
1400
1401static int data_of_remove(struct platform_device *op)
1402{
1403	struct fpga_device *priv = dev_get_drvdata(&op->dev);
1404	struct device *this_device = priv->miscdev.this_device;
1405
1406	/* remove all sysfs files, now the device cannot be re-enabled */
1407	sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
1408
1409	/* remove all debugfs files */
1410	data_debugfs_exit(priv);
1411
1412	/* disable the device from generating data */
1413	data_device_disable(priv);
1414
1415	/* remove the character device to stop new readers from appearing */
1416	misc_deregister(&priv->miscdev);
1417
1418	/* cleanup everything not needed by readers */
1419	irq_dispose_mapping(priv->irq);
1420	dma_release_channel(priv->chan);
1421	iounmap(priv->regs);
1422
1423	/* release our reference */
1424	kref_put(&priv->ref, fpga_device_release);
1425	return 0;
1426}
1427
1428static struct of_device_id data_of_match[] = {
1429	{ .compatible = "carma,carma-fpga", },
1430	{},
1431};
1432
1433static struct platform_driver data_of_driver = {
1434	.probe		= data_of_probe,
1435	.remove		= data_of_remove,
1436	.driver		= {
1437		.name		= drv_name,
1438		.of_match_table	= data_of_match,
1439		.owner		= THIS_MODULE,
1440	},
1441};
1442
1443module_platform_driver(data_of_driver);
1444
1445MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
1446MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
1447MODULE_LICENSE("GPL");
1448