1/*
2 * SN Platform GRU Driver
3 *
4 *              FAULT HANDLER FOR GRU DETECTED TLB MISSES
5 *
6 * This file contains code that handles TLB misses within the GRU.
7 * These misses are reported either via interrupts or user polling of
8 * the user CB.
9 *
10 *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
11 *
12 *  This program is free software; you can redistribute it and/or modify
13 *  it under the terms of the GNU General Public License as published by
14 *  the Free Software Foundation; either version 2 of the License, or
15 *  (at your option) any later version.
16 *
17 *  This program is distributed in the hope that it will be useful,
18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20 *  GNU General Public License for more details.
21 *
22 *  You should have received a copy of the GNU General Public License
23 *  along with this program; if not, write to the Free Software
24 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
25 */
26
27#include <linux/kernel.h>
28#include <linux/errno.h>
29#include <linux/spinlock.h>
30#include <linux/mm.h>
31#include <linux/hugetlb.h>
32#include <linux/device.h>
33#include <linux/io.h>
34#include <linux/uaccess.h>
35#include <linux/security.h>
36#include <linux/prefetch.h>
37#include <asm/pgtable.h>
38#include "gru.h"
39#include "grutables.h"
40#include "grulib.h"
41#include "gru_instructions.h"
42#include <asm/uv/uv_hub.h>
43
44/* Return codes for vtop functions */
45#define VTOP_SUCCESS               0
46#define VTOP_INVALID               -1
47#define VTOP_RETRY                 -2
48
49
50/*
51 * Test if a physical address is a valid GRU GSEG address
52 */
53static inline int is_gru_paddr(unsigned long paddr)
54{
55	return paddr >= gru_start_paddr && paddr < gru_end_paddr;
56}
57
58/*
59 * Find the vma of a GRU segment. Caller must hold mmap_sem.
60 */
61struct vm_area_struct *gru_find_vma(unsigned long vaddr)
62{
63	struct vm_area_struct *vma;
64
65	vma = find_vma(current->mm, vaddr);
66	if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops)
67		return vma;
68	return NULL;
69}
70
71/*
72 * Find and lock the gts that contains the specified user vaddr.
73 *
74 * Returns:
75 * 	- *gts with the mmap_sem locked for read and the GTS locked.
76 *	- NULL if vaddr invalid OR is not a valid GSEG vaddr.
77 */
78
79static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
80{
81	struct mm_struct *mm = current->mm;
82	struct vm_area_struct *vma;
83	struct gru_thread_state *gts = NULL;
84
85	down_read(&mm->mmap_sem);
86	vma = gru_find_vma(vaddr);
87	if (vma)
88		gts = gru_find_thread_state(vma, TSID(vaddr, vma));
89	if (gts)
90		mutex_lock(&gts->ts_ctxlock);
91	else
92		up_read(&mm->mmap_sem);
93	return gts;
94}
95
96static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
97{
98	struct mm_struct *mm = current->mm;
99	struct vm_area_struct *vma;
100	struct gru_thread_state *gts = ERR_PTR(-EINVAL);
101
102	down_write(&mm->mmap_sem);
103	vma = gru_find_vma(vaddr);
104	if (!vma)
105		goto err;
106
107	gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
108	if (IS_ERR(gts))
109		goto err;
110	mutex_lock(&gts->ts_ctxlock);
111	downgrade_write(&mm->mmap_sem);
112	return gts;
113
114err:
115	up_write(&mm->mmap_sem);
116	return gts;
117}
118
119/*
120 * Unlock a GTS that was previously locked with gru_find_lock_gts().
121 */
122static void gru_unlock_gts(struct gru_thread_state *gts)
123{
124	mutex_unlock(&gts->ts_ctxlock);
125	up_read(&current->mm->mmap_sem);
126}
127
128/*
129 * Set a CB.istatus to active using a user virtual address. This must be done
130 * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
131 * If the line is evicted, the status may be lost. The in-cache update
132 * is necessary to prevent the user from seeing a stale cb.istatus that will
133 * change as soon as the TFH restart is complete. Races may cause an
134 * occasional failure to clear the cb.istatus, but that is ok.
135 */
136static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk)
137{
138	if (cbk) {
139		cbk->istatus = CBS_ACTIVE;
140	}
141}
142
143/*
144 * Read & clear a TFM
145 *
146 * The GRU has an array of fault maps. A map is private to a cpu
147 * Only one cpu will be accessing a cpu's fault map.
148 *
149 * This function scans the cpu-private fault map & clears all bits that
150 * are set. The function returns a bitmap that indicates the bits that
151 * were cleared. Note that sense the maps may be updated asynchronously by
152 * the GRU, atomic operations must be used to clear bits.
153 */
154static void get_clear_fault_map(struct gru_state *gru,
155				struct gru_tlb_fault_map *imap,
156				struct gru_tlb_fault_map *dmap)
157{
158	unsigned long i, k;
159	struct gru_tlb_fault_map *tfm;
160
161	tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id());
162	prefetchw(tfm);		/* Helps on hardware, required for emulator */
163	for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
164		k = tfm->fault_bits[i];
165		if (k)
166			k = xchg(&tfm->fault_bits[i], 0UL);
167		imap->fault_bits[i] = k;
168		k = tfm->done_bits[i];
169		if (k)
170			k = xchg(&tfm->done_bits[i], 0UL);
171		dmap->fault_bits[i] = k;
172	}
173
174	/*
175	 * Not functionally required but helps performance. (Required
176	 * on emulator)
177	 */
178	gru_flush_cache(tfm);
179}
180
181/*
182 * Atomic (interrupt context) & non-atomic (user context) functions to
183 * convert a vaddr into a physical address. The size of the page
184 * is returned in pageshift.
185 * 	returns:
186 * 		  0 - successful
187 * 		< 0 - error code
188 * 		  1 - (atomic only) try again in non-atomic context
189 */
190static int non_atomic_pte_lookup(struct vm_area_struct *vma,
191				 unsigned long vaddr, int write,
192				 unsigned long *paddr, int *pageshift)
193{
194	struct page *page;
195
196#ifdef CONFIG_HUGETLB_PAGE
197	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
198#else
199	*pageshift = PAGE_SHIFT;
200#endif
201	if (get_user_pages
202	    (current, current->mm, vaddr, 1, write, 0, &page, NULL) <= 0)
203		return -EFAULT;
204	*paddr = page_to_phys(page);
205	put_page(page);
206	return 0;
207}
208
209/*
210 * atomic_pte_lookup
211 *
212 * Convert a user virtual address to a physical address
213 * Only supports Intel large pages (2MB only) on x86_64.
214 *	ZZZ - hugepage support is incomplete
215 *
216 * NOTE: mmap_sem is already held on entry to this function. This
217 * guarantees existence of the page tables.
218 */
219static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
220	int write, unsigned long *paddr, int *pageshift)
221{
222	pgd_t *pgdp;
223	pmd_t *pmdp;
224	pud_t *pudp;
225	pte_t pte;
226
227	pgdp = pgd_offset(vma->vm_mm, vaddr);
228	if (unlikely(pgd_none(*pgdp)))
229		goto err;
230
231	pudp = pud_offset(pgdp, vaddr);
232	if (unlikely(pud_none(*pudp)))
233		goto err;
234
235	pmdp = pmd_offset(pudp, vaddr);
236	if (unlikely(pmd_none(*pmdp)))
237		goto err;
238#ifdef CONFIG_X86_64
239	if (unlikely(pmd_large(*pmdp)))
240		pte = *(pte_t *) pmdp;
241	else
242#endif
243		pte = *pte_offset_kernel(pmdp, vaddr);
244
245	if (unlikely(!pte_present(pte) ||
246		     (write && (!pte_write(pte) || !pte_dirty(pte)))))
247		return 1;
248
249	*paddr = pte_pfn(pte) << PAGE_SHIFT;
250#ifdef CONFIG_HUGETLB_PAGE
251	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
252#else
253	*pageshift = PAGE_SHIFT;
254#endif
255	return 0;
256
257err:
258	return 1;
259}
260
261static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr,
262		    int write, int atomic, unsigned long *gpa, int *pageshift)
263{
264	struct mm_struct *mm = gts->ts_mm;
265	struct vm_area_struct *vma;
266	unsigned long paddr;
267	int ret, ps;
268
269	vma = find_vma(mm, vaddr);
270	if (!vma)
271		goto inval;
272
273	/*
274	 * Atomic lookup is faster & usually works even if called in non-atomic
275	 * context.
276	 */
277	rmb();	/* Must/check ms_range_active before loading PTEs */
278	ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps);
279	if (ret) {
280		if (atomic)
281			goto upm;
282		if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps))
283			goto inval;
284	}
285	if (is_gru_paddr(paddr))
286		goto inval;
287	paddr = paddr & ~((1UL << ps) - 1);
288	*gpa = uv_soc_phys_ram_to_gpa(paddr);
289	*pageshift = ps;
290	return VTOP_SUCCESS;
291
292inval:
293	return VTOP_INVALID;
294upm:
295	return VTOP_RETRY;
296}
297
298
299/*
300 * Flush a CBE from cache. The CBE is clean in the cache. Dirty the
301 * CBE cacheline so that the line will be written back to home agent.
302 * Otherwise the line may be silently dropped. This has no impact
303 * except on performance.
304 */
305static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe)
306{
307	if (unlikely(cbe)) {
308		cbe->cbrexecstatus = 0;         /* make CL dirty */
309		gru_flush_cache(cbe);
310	}
311}
312
313/*
314 * Preload the TLB with entries that may be required. Currently, preloading
315 * is implemented only for BCOPY. Preload  <tlb_preload_count> pages OR to
316 * the end of the bcopy tranfer, whichever is smaller.
317 */
318static void gru_preload_tlb(struct gru_state *gru,
319			struct gru_thread_state *gts, int atomic,
320			unsigned long fault_vaddr, int asid, int write,
321			unsigned char tlb_preload_count,
322			struct gru_tlb_fault_handle *tfh,
323			struct gru_control_block_extended *cbe)
324{
325	unsigned long vaddr = 0, gpa;
326	int ret, pageshift;
327
328	if (cbe->opccpy != OP_BCOPY)
329		return;
330
331	if (fault_vaddr == cbe->cbe_baddr0)
332		vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1;
333	else if (fault_vaddr == cbe->cbe_baddr1)
334		vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1;
335
336	fault_vaddr &= PAGE_MASK;
337	vaddr &= PAGE_MASK;
338	vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE);
339
340	while (vaddr > fault_vaddr) {
341		ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
342		if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write,
343					  GRU_PAGESIZE(pageshift)))
344			return;
345		gru_dbg(grudev,
346			"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n",
347			atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh,
348			vaddr, asid, write, pageshift, gpa);
349		vaddr -= PAGE_SIZE;
350		STAT(tlb_preload_page);
351	}
352}
353
354/*
355 * Drop a TLB entry into the GRU. The fault is described by info in an TFH.
356 *	Input:
357 *		cb    Address of user CBR. Null if not running in user context
358 * 	Return:
359 * 		  0 = dropin, exception, or switch to UPM successful
360 * 		  1 = range invalidate active
361 * 		< 0 = error code
362 *
363 */
364static int gru_try_dropin(struct gru_state *gru,
365			  struct gru_thread_state *gts,
366			  struct gru_tlb_fault_handle *tfh,
367			  struct gru_instruction_bits *cbk)
368{
369	struct gru_control_block_extended *cbe = NULL;
370	unsigned char tlb_preload_count = gts->ts_tlb_preload_count;
371	int pageshift = 0, asid, write, ret, atomic = !cbk, indexway;
372	unsigned long gpa = 0, vaddr = 0;
373
374	/*
375	 * NOTE: The GRU contains magic hardware that eliminates races between
376	 * TLB invalidates and TLB dropins. If an invalidate occurs
377	 * in the window between reading the TFH and the subsequent TLB dropin,
378	 * the dropin is ignored. This eliminates the need for additional locks.
379	 */
380
381	/*
382	 * Prefetch the CBE if doing TLB preloading
383	 */
384	if (unlikely(tlb_preload_count)) {
385		cbe = gru_tfh_to_cbe(tfh);
386		prefetchw(cbe);
387	}
388
389	/*
390	 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
391	 * Might be a hardware race OR a stupid user. Ignore FMM because FMM
392	 * is a transient state.
393	 */
394	if (tfh->status != TFHSTATUS_EXCEPTION) {
395		gru_flush_cache(tfh);
396		sync_core();
397		if (tfh->status != TFHSTATUS_EXCEPTION)
398			goto failnoexception;
399		STAT(tfh_stale_on_fault);
400	}
401	if (tfh->state == TFHSTATE_IDLE)
402		goto failidle;
403	if (tfh->state == TFHSTATE_MISS_FMM && cbk)
404		goto failfmm;
405
406	write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
407	vaddr = tfh->missvaddr;
408	asid = tfh->missasid;
409	indexway = tfh->indexway;
410	if (asid == 0)
411		goto failnoasid;
412
413	rmb();	/* TFH must be cache resident before reading ms_range_active */
414
415	/*
416	 * TFH is cache resident - at least briefly. Fail the dropin
417	 * if a range invalidate is active.
418	 */
419	if (atomic_read(&gts->ts_gms->ms_range_active))
420		goto failactive;
421
422	ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
423	if (ret == VTOP_INVALID)
424		goto failinval;
425	if (ret == VTOP_RETRY)
426		goto failupm;
427
428	if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) {
429		gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift);
430		if (atomic || !gru_update_cch(gts)) {
431			gts->ts_force_cch_reload = 1;
432			goto failupm;
433		}
434	}
435
436	if (unlikely(cbe) && pageshift == PAGE_SHIFT) {
437		gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe);
438		gru_flush_cache_cbe(cbe);
439	}
440
441	gru_cb_set_istatus_active(cbk);
442	gts->ustats.tlbdropin++;
443	tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
444			  GRU_PAGESIZE(pageshift));
445	gru_dbg(grudev,
446		"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x,"
447		" rw %d, ps %d, gpa 0x%lx\n",
448		atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid,
449		indexway, write, pageshift, gpa);
450	STAT(tlb_dropin);
451	return 0;
452
453failnoasid:
454	/* No asid (delayed unload). */
455	STAT(tlb_dropin_fail_no_asid);
456	gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
457	if (!cbk)
458		tfh_user_polling_mode(tfh);
459	else
460		gru_flush_cache(tfh);
461	gru_flush_cache_cbe(cbe);
462	return -EAGAIN;
463
464failupm:
465	/* Atomic failure switch CBR to UPM */
466	tfh_user_polling_mode(tfh);
467	gru_flush_cache_cbe(cbe);
468	STAT(tlb_dropin_fail_upm);
469	gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
470	return 1;
471
472failfmm:
473	/* FMM state on UPM call */
474	gru_flush_cache(tfh);
475	gru_flush_cache_cbe(cbe);
476	STAT(tlb_dropin_fail_fmm);
477	gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
478	return 0;
479
480failnoexception:
481	/* TFH status did not show exception pending */
482	gru_flush_cache(tfh);
483	gru_flush_cache_cbe(cbe);
484	if (cbk)
485		gru_flush_cache(cbk);
486	STAT(tlb_dropin_fail_no_exception);
487	gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n",
488		tfh, tfh->status, tfh->state);
489	return 0;
490
491failidle:
492	/* TFH state was idle  - no miss pending */
493	gru_flush_cache(tfh);
494	gru_flush_cache_cbe(cbe);
495	if (cbk)
496		gru_flush_cache(cbk);
497	STAT(tlb_dropin_fail_idle);
498	gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
499	return 0;
500
501failinval:
502	/* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
503	tfh_exception(tfh);
504	gru_flush_cache_cbe(cbe);
505	STAT(tlb_dropin_fail_invalid);
506	gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
507	return -EFAULT;
508
509failactive:
510	/* Range invalidate active. Switch to UPM iff atomic */
511	if (!cbk)
512		tfh_user_polling_mode(tfh);
513	else
514		gru_flush_cache(tfh);
515	gru_flush_cache_cbe(cbe);
516	STAT(tlb_dropin_fail_range_active);
517	gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
518		tfh, vaddr);
519	return 1;
520}
521
522/*
523 * Process an external interrupt from the GRU. This interrupt is
524 * caused by a TLB miss.
525 * Note that this is the interrupt handler that is registered with linux
526 * interrupt handlers.
527 */
528static irqreturn_t gru_intr(int chiplet, int blade)
529{
530	struct gru_state *gru;
531	struct gru_tlb_fault_map imap, dmap;
532	struct gru_thread_state *gts;
533	struct gru_tlb_fault_handle *tfh = NULL;
534	struct completion *cmp;
535	int cbrnum, ctxnum;
536
537	STAT(intr);
538
539	gru = &gru_base[blade]->bs_grus[chiplet];
540	if (!gru) {
541		dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n",
542			raw_smp_processor_id(), chiplet);
543		return IRQ_NONE;
544	}
545	get_clear_fault_map(gru, &imap, &dmap);
546	gru_dbg(grudev,
547		"cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n",
548		smp_processor_id(), chiplet, gru->gs_gid,
549		imap.fault_bits[0], imap.fault_bits[1],
550		dmap.fault_bits[0], dmap.fault_bits[1]);
551
552	for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) {
553		STAT(intr_cbr);
554		cmp = gru->gs_blade->bs_async_wq;
555		if (cmp)
556			complete(cmp);
557		gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n",
558			gru->gs_gid, cbrnum, cmp ? cmp->done : -1);
559	}
560
561	for_each_cbr_in_tfm(cbrnum, imap.fault_bits) {
562		STAT(intr_tfh);
563		tfh = get_tfh_by_index(gru, cbrnum);
564		prefetchw(tfh);	/* Helps on hdw, required for emulator */
565
566		/*
567		 * When hardware sets a bit in the faultmap, it implicitly
568		 * locks the GRU context so that it cannot be unloaded.
569		 * The gts cannot change until a TFH start/writestart command
570		 * is issued.
571		 */
572		ctxnum = tfh->ctxnum;
573		gts = gru->gs_gts[ctxnum];
574
575		/* Spurious interrupts can cause this. Ignore. */
576		if (!gts) {
577			STAT(intr_spurious);
578			continue;
579		}
580
581		/*
582		 * This is running in interrupt context. Trylock the mmap_sem.
583		 * If it fails, retry the fault in user context.
584		 */
585		gts->ustats.fmm_tlbmiss++;
586		if (!gts->ts_force_cch_reload &&
587					down_read_trylock(&gts->ts_mm->mmap_sem)) {
588			gru_try_dropin(gru, gts, tfh, NULL);
589			up_read(&gts->ts_mm->mmap_sem);
590		} else {
591			tfh_user_polling_mode(tfh);
592			STAT(intr_mm_lock_failed);
593		}
594	}
595	return IRQ_HANDLED;
596}
597
598irqreturn_t gru0_intr(int irq, void *dev_id)
599{
600	return gru_intr(0, uv_numa_blade_id());
601}
602
603irqreturn_t gru1_intr(int irq, void *dev_id)
604{
605	return gru_intr(1, uv_numa_blade_id());
606}
607
608irqreturn_t gru_intr_mblade(int irq, void *dev_id)
609{
610	int blade;
611
612	for_each_possible_blade(blade) {
613		if (uv_blade_nr_possible_cpus(blade))
614			continue;
615		 gru_intr(0, blade);
616		 gru_intr(1, blade);
617	}
618	return IRQ_HANDLED;
619}
620
621
622static int gru_user_dropin(struct gru_thread_state *gts,
623			   struct gru_tlb_fault_handle *tfh,
624			   void *cb)
625{
626	struct gru_mm_struct *gms = gts->ts_gms;
627	int ret;
628
629	gts->ustats.upm_tlbmiss++;
630	while (1) {
631		wait_event(gms->ms_wait_queue,
632			   atomic_read(&gms->ms_range_active) == 0);
633		prefetchw(tfh);	/* Helps on hdw, required for emulator */
634		ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb);
635		if (ret <= 0)
636			return ret;
637		STAT(call_os_wait_queue);
638	}
639}
640
641/*
642 * This interface is called as a result of a user detecting a "call OS" bit
643 * in a user CB. Normally means that a TLB fault has occurred.
644 * 	cb - user virtual address of the CB
645 */
646int gru_handle_user_call_os(unsigned long cb)
647{
648	struct gru_tlb_fault_handle *tfh;
649	struct gru_thread_state *gts;
650	void *cbk;
651	int ucbnum, cbrnum, ret = -EINVAL;
652
653	STAT(call_os);
654
655	/* sanity check the cb pointer */
656	ucbnum = get_cb_number((void *)cb);
657	if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
658		return -EINVAL;
659
660	gts = gru_find_lock_gts(cb);
661	if (!gts)
662		return -EINVAL;
663	gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
664
665	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE)
666		goto exit;
667
668	gru_check_context_placement(gts);
669
670	/*
671	 * CCH may contain stale data if ts_force_cch_reload is set.
672	 */
673	if (gts->ts_gru && gts->ts_force_cch_reload) {
674		gts->ts_force_cch_reload = 0;
675		gru_update_cch(gts);
676	}
677
678	ret = -EAGAIN;
679	cbrnum = thread_cbr_number(gts, ucbnum);
680	if (gts->ts_gru) {
681		tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
682		cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr,
683				gts->ts_ctxnum, ucbnum);
684		ret = gru_user_dropin(gts, tfh, cbk);
685	}
686exit:
687	gru_unlock_gts(gts);
688	return ret;
689}
690
691/*
692 * Fetch the exception detail information for a CB that terminated with
693 * an exception.
694 */
695int gru_get_exception_detail(unsigned long arg)
696{
697	struct control_block_extended_exc_detail excdet;
698	struct gru_control_block_extended *cbe;
699	struct gru_thread_state *gts;
700	int ucbnum, cbrnum, ret;
701
702	STAT(user_exception);
703	if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
704		return -EFAULT;
705
706	gts = gru_find_lock_gts(excdet.cb);
707	if (!gts)
708		return -EINVAL;
709
710	gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
711	ucbnum = get_cb_number((void *)excdet.cb);
712	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
713		ret = -EINVAL;
714	} else if (gts->ts_gru) {
715		cbrnum = thread_cbr_number(gts, ucbnum);
716		cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
717		gru_flush_cache(cbe);	/* CBE not coherent */
718		sync_core();		/* make sure we are have current data */
719		excdet.opc = cbe->opccpy;
720		excdet.exopc = cbe->exopccpy;
721		excdet.ecause = cbe->ecause;
722		excdet.exceptdet0 = cbe->idef1upd;
723		excdet.exceptdet1 = cbe->idef3upd;
724		excdet.cbrstate = cbe->cbrstate;
725		excdet.cbrexecstatus = cbe->cbrexecstatus;
726		gru_flush_cache_cbe(cbe);
727		ret = 0;
728	} else {
729		ret = -EAGAIN;
730	}
731	gru_unlock_gts(gts);
732
733	gru_dbg(grudev,
734		"cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, "
735		"exdet0 0x%lx, exdet1 0x%x\n",
736		excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus,
737		excdet.ecause, excdet.exceptdet0, excdet.exceptdet1);
738	if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
739		ret = -EFAULT;
740	return ret;
741}
742
743/*
744 * User request to unload a context. Content is saved for possible reload.
745 */
746static int gru_unload_all_contexts(void)
747{
748	struct gru_thread_state *gts;
749	struct gru_state *gru;
750	int gid, ctxnum;
751
752	if (!capable(CAP_SYS_ADMIN))
753		return -EPERM;
754	foreach_gid(gid) {
755		gru = GID_TO_GRU(gid);
756		spin_lock(&gru->gs_lock);
757		for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) {
758			gts = gru->gs_gts[ctxnum];
759			if (gts && mutex_trylock(&gts->ts_ctxlock)) {
760				spin_unlock(&gru->gs_lock);
761				gru_unload_context(gts, 1);
762				mutex_unlock(&gts->ts_ctxlock);
763				spin_lock(&gru->gs_lock);
764			}
765		}
766		spin_unlock(&gru->gs_lock);
767	}
768	return 0;
769}
770
771int gru_user_unload_context(unsigned long arg)
772{
773	struct gru_thread_state *gts;
774	struct gru_unload_context_req req;
775
776	STAT(user_unload_context);
777	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
778		return -EFAULT;
779
780	gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
781
782	if (!req.gseg)
783		return gru_unload_all_contexts();
784
785	gts = gru_find_lock_gts(req.gseg);
786	if (!gts)
787		return -EINVAL;
788
789	if (gts->ts_gru)
790		gru_unload_context(gts, 1);
791	gru_unlock_gts(gts);
792
793	return 0;
794}
795
796/*
797 * User request to flush a range of virtual addresses from the GRU TLB
798 * (Mainly for testing).
799 */
800int gru_user_flush_tlb(unsigned long arg)
801{
802	struct gru_thread_state *gts;
803	struct gru_flush_tlb_req req;
804	struct gru_mm_struct *gms;
805
806	STAT(user_flush_tlb);
807	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
808		return -EFAULT;
809
810	gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
811		req.vaddr, req.len);
812
813	gts = gru_find_lock_gts(req.gseg);
814	if (!gts)
815		return -EINVAL;
816
817	gms = gts->ts_gms;
818	gru_unlock_gts(gts);
819	gru_flush_tlb_range(gms, req.vaddr, req.len);
820
821	return 0;
822}
823
824/*
825 * Fetch GSEG statisticss
826 */
827long gru_get_gseg_statistics(unsigned long arg)
828{
829	struct gru_thread_state *gts;
830	struct gru_get_gseg_statistics_req req;
831
832	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
833		return -EFAULT;
834
835	/*
836	 * The library creates arrays of contexts for threaded programs.
837	 * If no gts exists in the array, the context has never been used & all
838	 * statistics are implicitly 0.
839	 */
840	gts = gru_find_lock_gts(req.gseg);
841	if (gts) {
842		memcpy(&req.stats, &gts->ustats, sizeof(gts->ustats));
843		gru_unlock_gts(gts);
844	} else {
845		memset(&req.stats, 0, sizeof(gts->ustats));
846	}
847
848	if (copy_to_user((void __user *)arg, &req, sizeof(req)))
849		return -EFAULT;
850
851	return 0;
852}
853
854/*
855 * Register the current task as the user of the GSEG slice.
856 * Needed for TLB fault interrupt targeting.
857 */
858int gru_set_context_option(unsigned long arg)
859{
860	struct gru_thread_state *gts;
861	struct gru_set_context_option_req req;
862	int ret = 0;
863
864	STAT(set_context_option);
865	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
866		return -EFAULT;
867	gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1);
868
869	gts = gru_find_lock_gts(req.gseg);
870	if (!gts) {
871		gts = gru_alloc_locked_gts(req.gseg);
872		if (IS_ERR(gts))
873			return PTR_ERR(gts);
874	}
875
876	switch (req.op) {
877	case sco_blade_chiplet:
878		/* Select blade/chiplet for GRU context */
879		if (req.val1 < -1 || req.val1 >= GRU_MAX_BLADES || !gru_base[req.val1] ||
880		    req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB) {
881			ret = -EINVAL;
882		} else {
883			gts->ts_user_blade_id = req.val1;
884			gts->ts_user_chiplet_id = req.val0;
885			gru_check_context_placement(gts);
886		}
887		break;
888	case sco_gseg_owner:
889 		/* Register the current task as the GSEG owner */
890		gts->ts_tgid_owner = current->tgid;
891		break;
892	case sco_cch_req_slice:
893 		/* Set the CCH slice option */
894		gts->ts_cch_req_slice = req.val1 & 3;
895		break;
896	default:
897		ret = -EINVAL;
898	}
899	gru_unlock_gts(gts);
900
901	return ret;
902}
903