1/*
2 *  linux/drivers/mmc/core/core.c
3 *
4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/suspend.h>
27#include <linux/fault-inject.h>
28#include <linux/random.h>
29#include <linux/wakelock.h>
30
31#include <linux/mmc/card.h>
32#include <linux/mmc/host.h>
33#include <linux/mmc/mmc.h>
34#include <linux/mmc/sd.h>
35
36#include "core.h"
37#include "bus.h"
38#include "host.h"
39#include "sdio_bus.h"
40
41#include "mmc_ops.h"
42#include "sd_ops.h"
43#include "sdio_ops.h"
44
45static struct workqueue_struct *workqueue;
46
47/*
48 * Enabling software CRCs on the data blocks can be a significant (30%)
49 * performance cost, and for other reasons may not always be desired.
50 * So we allow it it to be disabled.
51 */
52bool use_spi_crc = 1;
53module_param(use_spi_crc, bool, 0);
54
55/*
56 * We normally treat cards as removed during suspend if they are not
57 * known to be on a non-removable bus, to avoid the risk of writing
58 * back data to a different card after resume.  Allow this to be
59 * overridden if necessary.
60 */
61#ifdef CONFIG_MMC_UNSAFE_RESUME
62bool mmc_assume_removable;
63#else
64bool mmc_assume_removable = 1;
65#endif
66EXPORT_SYMBOL(mmc_assume_removable);
67module_param_named(removable, mmc_assume_removable, bool, 0644);
68MODULE_PARM_DESC(
69	removable,
70	"MMC/SD cards are removable and may be removed during suspend");
71
72/*
73 * Internal function. Schedule delayed work in the MMC work queue.
74 */
75static int mmc_schedule_delayed_work(struct delayed_work *work,
76				     unsigned long delay)
77{
78	return queue_delayed_work(workqueue, work, delay);
79}
80
81/*
82 * Internal function. Flush all scheduled work from the MMC work queue.
83 */
84static void mmc_flush_scheduled_work(void)
85{
86	flush_workqueue(workqueue);
87}
88
89#ifdef CONFIG_FAIL_MMC_REQUEST
90
91/*
92 * Internal function. Inject random data errors.
93 * If mmc_data is NULL no errors are injected.
94 */
95static void mmc_should_fail_request(struct mmc_host *host,
96				    struct mmc_request *mrq)
97{
98	struct mmc_command *cmd = mrq->cmd;
99	struct mmc_data *data = mrq->data;
100	static const int data_errors[] = {
101		-ETIMEDOUT,
102		-EILSEQ,
103		-EIO,
104	};
105
106	if (!data)
107		return;
108
109	if (cmd->error || data->error ||
110	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
111		return;
112
113	data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
114	data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
115}
116
117#else /* CONFIG_FAIL_MMC_REQUEST */
118
119static inline void mmc_should_fail_request(struct mmc_host *host,
120					   struct mmc_request *mrq)
121{
122}
123
124#endif /* CONFIG_FAIL_MMC_REQUEST */
125
126/**
127 *	mmc_request_done - finish processing an MMC request
128 *	@host: MMC host which completed request
129 *	@mrq: MMC request which request
130 *
131 *	MMC drivers should call this function when they have completed
132 *	their processing of a request.
133 */
134void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
135{
136	struct mmc_command *cmd = mrq->cmd;
137	int err = cmd->error;
138
139	if (err && cmd->retries && mmc_host_is_spi(host)) {
140		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
141			cmd->retries = 0;
142	}
143
144	if (err && cmd->retries && !mmc_card_removed(host->card)) {
145		/*
146		 * Request starter must handle retries - see
147		 * mmc_wait_for_req_done().
148		 */
149		if (mrq->done)
150			mrq->done(mrq);
151	} else {
152		mmc_should_fail_request(host, mrq);
153
154		led_trigger_event(host->led, LED_OFF);
155
156		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
157			mmc_hostname(host), cmd->opcode, err,
158			cmd->resp[0], cmd->resp[1],
159			cmd->resp[2], cmd->resp[3]);
160
161		if (mrq->data) {
162			pr_debug("%s:     %d bytes transferred: %d\n",
163				mmc_hostname(host),
164				mrq->data->bytes_xfered, mrq->data->error);
165		}
166
167		if (mrq->stop) {
168			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
169				mmc_hostname(host), mrq->stop->opcode,
170				mrq->stop->error,
171				mrq->stop->resp[0], mrq->stop->resp[1],
172				mrq->stop->resp[2], mrq->stop->resp[3]);
173		}
174
175		if (mrq->done)
176			mrq->done(mrq);
177
178		mmc_host_clk_release(host);
179	}
180}
181
182EXPORT_SYMBOL(mmc_request_done);
183
184static void
185mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
186{
187#ifdef CONFIG_MMC_DEBUG
188	unsigned int i, sz;
189	struct scatterlist *sg;
190#endif
191
192	if (mrq->sbc) {
193		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
194			 mmc_hostname(host), mrq->sbc->opcode,
195			 mrq->sbc->arg, mrq->sbc->flags);
196	}
197
198	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
199		 mmc_hostname(host), mrq->cmd->opcode,
200		 mrq->cmd->arg, mrq->cmd->flags);
201
202	if (mrq->data) {
203		pr_debug("%s:     blksz %d blocks %d flags %08x "
204			"tsac %d ms nsac %d\n",
205			mmc_hostname(host), mrq->data->blksz,
206			mrq->data->blocks, mrq->data->flags,
207			mrq->data->timeout_ns / 1000000,
208			mrq->data->timeout_clks);
209	}
210
211	if (mrq->stop) {
212		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
213			 mmc_hostname(host), mrq->stop->opcode,
214			 mrq->stop->arg, mrq->stop->flags);
215	}
216
217	WARN_ON(!host->claimed);
218
219	mrq->cmd->error = 0;
220	mrq->cmd->mrq = mrq;
221	if (mrq->data) {
222		BUG_ON(mrq->data->blksz > host->max_blk_size);
223		BUG_ON(mrq->data->blocks > host->max_blk_count);
224		BUG_ON(mrq->data->blocks * mrq->data->blksz >
225			host->max_req_size);
226
227#ifdef CONFIG_MMC_DEBUG
228		sz = 0;
229		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
230			sz += sg->length;
231		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
232#endif
233
234		mrq->cmd->data = mrq->data;
235		mrq->data->error = 0;
236		mrq->data->mrq = mrq;
237		if (mrq->stop) {
238			mrq->data->stop = mrq->stop;
239			mrq->stop->error = 0;
240			mrq->stop->mrq = mrq;
241		}
242	}
243	mmc_host_clk_hold(host);
244	led_trigger_event(host->led, LED_FULL);
245	host->ops->request(host, mrq);
246}
247
248static void mmc_wait_done(struct mmc_request *mrq)
249{
250	complete(&mrq->completion);
251}
252
253static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
254{
255	init_completion(&mrq->completion);
256	mrq->done = mmc_wait_done;
257	if (mmc_card_removed(host->card)) {
258		mrq->cmd->error = -ENOMEDIUM;
259		complete(&mrq->completion);
260		return -ENOMEDIUM;
261	}
262	mmc_start_request(host, mrq);
263	return 0;
264}
265
266static void mmc_wait_for_req_done(struct mmc_host *host,
267				  struct mmc_request *mrq)
268{
269	struct mmc_command *cmd;
270
271	while (1) {
272		wait_for_completion(&mrq->completion);
273
274		cmd = mrq->cmd;
275		if (!cmd->error || !cmd->retries ||
276		    mmc_card_removed(host->card))
277			break;
278
279		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
280			 mmc_hostname(host), cmd->opcode, cmd->error);
281		cmd->retries--;
282		cmd->error = 0;
283		host->ops->request(host, mrq);
284	}
285}
286
287/**
288 *	mmc_pre_req - Prepare for a new request
289 *	@host: MMC host to prepare command
290 *	@mrq: MMC request to prepare for
291 *	@is_first_req: true if there is no previous started request
292 *                     that may run in parellel to this call, otherwise false
293 *
294 *	mmc_pre_req() is called in prior to mmc_start_req() to let
295 *	host prepare for the new request. Preparation of a request may be
296 *	performed while another request is running on the host.
297 */
298static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
299		 bool is_first_req)
300{
301	if (host->ops->pre_req) {
302		mmc_host_clk_hold(host);
303		host->ops->pre_req(host, mrq, is_first_req);
304		mmc_host_clk_release(host);
305	}
306}
307
308/**
309 *	mmc_post_req - Post process a completed request
310 *	@host: MMC host to post process command
311 *	@mrq: MMC request to post process for
312 *	@err: Error, if non zero, clean up any resources made in pre_req
313 *
314 *	Let the host post process a completed request. Post processing of
315 *	a request may be performed while another reuqest is running.
316 */
317static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
318			 int err)
319{
320	if (host->ops->post_req) {
321		mmc_host_clk_hold(host);
322		host->ops->post_req(host, mrq, err);
323		mmc_host_clk_release(host);
324	}
325}
326
327/**
328 *	mmc_start_req - start a non-blocking request
329 *	@host: MMC host to start command
330 *	@areq: async request to start
331 *	@error: out parameter returns 0 for success, otherwise non zero
332 *
333 *	Start a new MMC custom command request for a host.
334 *	If there is on ongoing async request wait for completion
335 *	of that request and start the new one and return.
336 *	Does not wait for the new request to complete.
337 *
338 *      Returns the completed request, NULL in case of none completed.
339 *	Wait for the an ongoing request (previoulsy started) to complete and
340 *	return the completed request. If there is no ongoing request, NULL
341 *	is returned without waiting. NULL is not an error condition.
342 */
343struct mmc_async_req *mmc_start_req(struct mmc_host *host,
344				    struct mmc_async_req *areq, int *error)
345{
346	int err = 0;
347	int start_err = 0;
348	struct mmc_async_req *data = host->areq;
349
350	/* Prepare a new request */
351	if (areq)
352		mmc_pre_req(host, areq->mrq, !host->areq);
353
354	if (host->areq) {
355		mmc_wait_for_req_done(host, host->areq->mrq);
356		err = host->areq->err_check(host->card, host->areq);
357	}
358
359	if (!err && areq)
360		start_err = __mmc_start_req(host, areq->mrq);
361
362	if (host->areq)
363		mmc_post_req(host, host->areq->mrq, 0);
364
365	 /* Cancel a prepared request if it was not started. */
366	if ((err || start_err) && areq)
367			mmc_post_req(host, areq->mrq, -EINVAL);
368
369	if (err)
370		host->areq = NULL;
371	else
372		host->areq = areq;
373
374	if (error)
375		*error = err;
376	return data;
377}
378EXPORT_SYMBOL(mmc_start_req);
379
380/**
381 *	mmc_wait_for_req - start a request and wait for completion
382 *	@host: MMC host to start command
383 *	@mrq: MMC request to start
384 *
385 *	Start a new MMC custom command request for a host, and wait
386 *	for the command to complete. Does not attempt to parse the
387 *	response.
388 */
389void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
390{
391	__mmc_start_req(host, mrq);
392	mmc_wait_for_req_done(host, mrq);
393}
394EXPORT_SYMBOL(mmc_wait_for_req);
395
396/**
397 *	mmc_interrupt_hpi - Issue for High priority Interrupt
398 *	@card: the MMC card associated with the HPI transfer
399 *
400 *	Issued High Priority Interrupt, and check for card status
401 *	util out-of prg-state.
402 */
403int mmc_interrupt_hpi(struct mmc_card *card)
404{
405	int err;
406	u32 status;
407
408	BUG_ON(!card);
409
410	if (!card->ext_csd.hpi_en) {
411		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
412		return 1;
413	}
414
415	mmc_claim_host(card->host);
416	err = mmc_send_status(card, &status);
417	if (err) {
418		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
419		goto out;
420	}
421
422	/*
423	 * If the card status is in PRG-state, we can send the HPI command.
424	 */
425	if (R1_CURRENT_STATE(status) == R1_STATE_PRG) {
426		do {
427			/*
428			 * We don't know when the HPI command will finish
429			 * processing, so we need to resend HPI until out
430			 * of prg-state, and keep checking the card status
431			 * with SEND_STATUS.  If a timeout error occurs when
432			 * sending the HPI command, we are already out of
433			 * prg-state.
434			 */
435			err = mmc_send_hpi_cmd(card, &status);
436			if (err)
437				pr_debug("%s: abort HPI (%d error)\n",
438					 mmc_hostname(card->host), err);
439
440			err = mmc_send_status(card, &status);
441			if (err)
442				break;
443		} while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
444	} else
445		pr_debug("%s: Left prg-state\n", mmc_hostname(card->host));
446
447out:
448	mmc_release_host(card->host);
449	return err;
450}
451EXPORT_SYMBOL(mmc_interrupt_hpi);
452
453/**
454 *	mmc_wait_for_cmd - start a command and wait for completion
455 *	@host: MMC host to start command
456 *	@cmd: MMC command to start
457 *	@retries: maximum number of retries
458 *
459 *	Start a new MMC command for a host, and wait for the command
460 *	to complete.  Return any error that occurred while the command
461 *	was executing.  Do not attempt to parse the response.
462 */
463int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
464{
465	struct mmc_request mrq = {NULL};
466
467	WARN_ON(!host->claimed);
468
469	memset(cmd->resp, 0, sizeof(cmd->resp));
470	cmd->retries = retries;
471
472	mrq.cmd = cmd;
473	cmd->data = NULL;
474
475	mmc_wait_for_req(host, &mrq);
476
477	return cmd->error;
478}
479
480EXPORT_SYMBOL(mmc_wait_for_cmd);
481
482/**
483 *	mmc_set_data_timeout - set the timeout for a data command
484 *	@data: data phase for command
485 *	@card: the MMC card associated with the data transfer
486 *
487 *	Computes the data timeout parameters according to the
488 *	correct algorithm given the card type.
489 */
490void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
491{
492	unsigned int mult;
493
494	/*
495	 * SDIO cards only define an upper 1 s limit on access.
496	 */
497	if (mmc_card_sdio(card)) {
498		data->timeout_ns = 1000000000;
499		data->timeout_clks = 0;
500		return;
501	}
502
503	/*
504	 * SD cards use a 100 multiplier rather than 10
505	 */
506	mult = mmc_card_sd(card) ? 100 : 10;
507
508	/*
509	 * Scale up the multiplier (and therefore the timeout) by
510	 * the r2w factor for writes.
511	 */
512	if (data->flags & MMC_DATA_WRITE)
513		mult <<= card->csd.r2w_factor;
514
515	data->timeout_ns = card->csd.tacc_ns * mult;
516	data->timeout_clks = card->csd.tacc_clks * mult;
517
518	/*
519	 * SD cards also have an upper limit on the timeout.
520	 */
521	if (mmc_card_sd(card)) {
522		unsigned int timeout_us, limit_us;
523
524		timeout_us = data->timeout_ns / 1000;
525		if (mmc_host_clk_rate(card->host))
526			timeout_us += data->timeout_clks * 1000 /
527				(mmc_host_clk_rate(card->host) / 1000);
528
529		if (data->flags & MMC_DATA_WRITE)
530			/*
531			 * The MMC spec "It is strongly recommended
532			 * for hosts to implement more than 500ms
533			 * timeout value even if the card indicates
534			 * the 250ms maximum busy length."  Even the
535			 * previous value of 300ms is known to be
536			 * insufficient for some cards.
537			 */
538			limit_us = 3000000;
539		else
540			limit_us = 100000;
541
542		/*
543		 * SDHC cards always use these fixed values.
544		 */
545		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
546			data->timeout_ns = limit_us * 1000;
547			data->timeout_clks = 0;
548		}
549	}
550
551	/*
552	 * Some cards require longer data read timeout than indicated in CSD.
553	 * Address this by setting the read timeout to a "reasonably high"
554	 * value. For the cards tested, 300ms has proven enough. If necessary,
555	 * this value can be increased if other problematic cards require this.
556	 */
557	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
558		data->timeout_ns = 300000000;
559		data->timeout_clks = 0;
560	}
561
562	/*
563	 * Some cards need very high timeouts if driven in SPI mode.
564	 * The worst observed timeout was 900ms after writing a
565	 * continuous stream of data until the internal logic
566	 * overflowed.
567	 */
568	if (mmc_host_is_spi(card->host)) {
569		if (data->flags & MMC_DATA_WRITE) {
570			if (data->timeout_ns < 1000000000)
571				data->timeout_ns = 1000000000;	/* 1s */
572		} else {
573			if (data->timeout_ns < 100000000)
574				data->timeout_ns =  100000000;	/* 100ms */
575		}
576	}
577}
578EXPORT_SYMBOL(mmc_set_data_timeout);
579
580/**
581 *	mmc_align_data_size - pads a transfer size to a more optimal value
582 *	@card: the MMC card associated with the data transfer
583 *	@sz: original transfer size
584 *
585 *	Pads the original data size with a number of extra bytes in
586 *	order to avoid controller bugs and/or performance hits
587 *	(e.g. some controllers revert to PIO for certain sizes).
588 *
589 *	Returns the improved size, which might be unmodified.
590 *
591 *	Note that this function is only relevant when issuing a
592 *	single scatter gather entry.
593 */
594unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
595{
596	/*
597	 * FIXME: We don't have a system for the controller to tell
598	 * the core about its problems yet, so for now we just 32-bit
599	 * align the size.
600	 */
601	sz = ((sz + 3) / 4) * 4;
602
603	return sz;
604}
605EXPORT_SYMBOL(mmc_align_data_size);
606
607/**
608 *	__mmc_claim_host - exclusively claim a host
609 *	@host: mmc host to claim
610 *	@abort: whether or not the operation should be aborted
611 *
612 *	Claim a host for a set of operations.  If @abort is non null and
613 *	dereference a non-zero value then this will return prematurely with
614 *	that non-zero value without acquiring the lock.  Returns zero
615 *	with the lock held otherwise.
616 */
617int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
618{
619	DECLARE_WAITQUEUE(wait, current);
620	unsigned long flags;
621	int stop;
622
623	might_sleep();
624
625	add_wait_queue(&host->wq, &wait);
626	spin_lock_irqsave(&host->lock, flags);
627	while (1) {
628		set_current_state(TASK_UNINTERRUPTIBLE);
629		stop = abort ? atomic_read(abort) : 0;
630		if (stop || !host->claimed || host->claimer == current)
631			break;
632		spin_unlock_irqrestore(&host->lock, flags);
633		schedule();
634		spin_lock_irqsave(&host->lock, flags);
635	}
636	set_current_state(TASK_RUNNING);
637	if (!stop) {
638		host->claimed = 1;
639		host->claimer = current;
640		host->claim_cnt += 1;
641	} else
642		wake_up(&host->wq);
643	spin_unlock_irqrestore(&host->lock, flags);
644	remove_wait_queue(&host->wq, &wait);
645	if (host->ops->enable && !stop && host->claim_cnt == 1)
646		host->ops->enable(host);
647	return stop;
648}
649
650EXPORT_SYMBOL(__mmc_claim_host);
651
652/**
653 *	mmc_try_claim_host - try exclusively to claim a host
654 *	@host: mmc host to claim
655 *
656 *	Returns %1 if the host is claimed, %0 otherwise.
657 */
658int mmc_try_claim_host(struct mmc_host *host)
659{
660	int claimed_host = 0;
661	unsigned long flags;
662
663	spin_lock_irqsave(&host->lock, flags);
664	if (!host->claimed || host->claimer == current) {
665		host->claimed = 1;
666		host->claimer = current;
667		host->claim_cnt += 1;
668		claimed_host = 1;
669	}
670	spin_unlock_irqrestore(&host->lock, flags);
671	if (host->ops->enable && claimed_host && host->claim_cnt == 1)
672		host->ops->enable(host);
673	return claimed_host;
674}
675EXPORT_SYMBOL(mmc_try_claim_host);
676
677/**
678 *	mmc_release_host - release a host
679 *	@host: mmc host to release
680 *
681 *	Release a MMC host, allowing others to claim the host
682 *	for their operations.
683 */
684void mmc_release_host(struct mmc_host *host)
685{
686	unsigned long flags;
687
688	WARN_ON(!host->claimed);
689
690	if (host->ops->disable && host->claim_cnt == 1)
691		host->ops->disable(host);
692
693	spin_lock_irqsave(&host->lock, flags);
694	if (--host->claim_cnt) {
695		/* Release for nested claim */
696		spin_unlock_irqrestore(&host->lock, flags);
697	} else {
698		host->claimed = 0;
699		host->claimer = NULL;
700		spin_unlock_irqrestore(&host->lock, flags);
701		wake_up(&host->wq);
702	}
703}
704EXPORT_SYMBOL(mmc_release_host);
705
706/*
707 * Internal function that does the actual ios call to the host driver,
708 * optionally printing some debug output.
709 */
710static inline void mmc_set_ios(struct mmc_host *host)
711{
712	struct mmc_ios *ios = &host->ios;
713
714	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
715		"width %u timing %u\n",
716		 mmc_hostname(host), ios->clock, ios->bus_mode,
717		 ios->power_mode, ios->chip_select, ios->vdd,
718		 ios->bus_width, ios->timing);
719
720	if (ios->clock > 0)
721		mmc_set_ungated(host);
722	host->ops->set_ios(host, ios);
723}
724
725/*
726 * Control chip select pin on a host.
727 */
728void mmc_set_chip_select(struct mmc_host *host, int mode)
729{
730	mmc_host_clk_hold(host);
731	host->ios.chip_select = mode;
732	mmc_set_ios(host);
733	mmc_host_clk_release(host);
734}
735
736/*
737 * Sets the host clock to the highest possible frequency that
738 * is below "hz".
739 */
740static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
741{
742	WARN_ON(hz < host->f_min);
743
744	if (hz > host->f_max)
745		hz = host->f_max;
746
747	host->ios.clock = hz;
748	mmc_set_ios(host);
749}
750
751void mmc_set_clock(struct mmc_host *host, unsigned int hz)
752{
753	mmc_host_clk_hold(host);
754	__mmc_set_clock(host, hz);
755	mmc_host_clk_release(host);
756}
757
758#ifdef CONFIG_MMC_CLKGATE
759/*
760 * This gates the clock by setting it to 0 Hz.
761 */
762void mmc_gate_clock(struct mmc_host *host)
763{
764	unsigned long flags;
765
766	spin_lock_irqsave(&host->clk_lock, flags);
767	host->clk_old = host->ios.clock;
768	host->ios.clock = 0;
769	host->clk_gated = true;
770	spin_unlock_irqrestore(&host->clk_lock, flags);
771	mmc_set_ios(host);
772}
773
774/*
775 * This restores the clock from gating by using the cached
776 * clock value.
777 */
778void mmc_ungate_clock(struct mmc_host *host)
779{
780	/*
781	 * We should previously have gated the clock, so the clock shall
782	 * be 0 here! The clock may however be 0 during initialization,
783	 * when some request operations are performed before setting
784	 * the frequency. When ungate is requested in that situation
785	 * we just ignore the call.
786	 */
787	if (host->clk_old) {
788		BUG_ON(host->ios.clock);
789		/* This call will also set host->clk_gated to false */
790		__mmc_set_clock(host, host->clk_old);
791	}
792}
793
794void mmc_set_ungated(struct mmc_host *host)
795{
796	unsigned long flags;
797
798	/*
799	 * We've been given a new frequency while the clock is gated,
800	 * so make sure we regard this as ungating it.
801	 */
802	spin_lock_irqsave(&host->clk_lock, flags);
803	host->clk_gated = false;
804	spin_unlock_irqrestore(&host->clk_lock, flags);
805}
806
807#else
808void mmc_set_ungated(struct mmc_host *host)
809{
810}
811#endif
812
813/*
814 * Change the bus mode (open drain/push-pull) of a host.
815 */
816void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
817{
818	mmc_host_clk_hold(host);
819	host->ios.bus_mode = mode;
820	mmc_set_ios(host);
821	mmc_host_clk_release(host);
822}
823
824/*
825 * Change data bus width of a host.
826 */
827void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
828{
829	mmc_host_clk_hold(host);
830	host->ios.bus_width = width;
831	mmc_set_ios(host);
832	mmc_host_clk_release(host);
833}
834
835/**
836 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
837 * @vdd:	voltage (mV)
838 * @low_bits:	prefer low bits in boundary cases
839 *
840 * This function returns the OCR bit number according to the provided @vdd
841 * value. If conversion is not possible a negative errno value returned.
842 *
843 * Depending on the @low_bits flag the function prefers low or high OCR bits
844 * on boundary voltages. For example,
845 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
846 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
847 *
848 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
849 */
850static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
851{
852	const int max_bit = ilog2(MMC_VDD_35_36);
853	int bit;
854
855	if (vdd < 1650 || vdd > 3600)
856		return -EINVAL;
857
858	if (vdd >= 1650 && vdd <= 1950)
859		return ilog2(MMC_VDD_165_195);
860
861	if (low_bits)
862		vdd -= 1;
863
864	/* Base 2000 mV, step 100 mV, bit's base 8. */
865	bit = (vdd - 2000) / 100 + 8;
866	if (bit > max_bit)
867		return max_bit;
868	return bit;
869}
870
871/**
872 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
873 * @vdd_min:	minimum voltage value (mV)
874 * @vdd_max:	maximum voltage value (mV)
875 *
876 * This function returns the OCR mask bits according to the provided @vdd_min
877 * and @vdd_max values. If conversion is not possible the function returns 0.
878 *
879 * Notes wrt boundary cases:
880 * This function sets the OCR bits for all boundary voltages, for example
881 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
882 * MMC_VDD_34_35 mask.
883 */
884u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
885{
886	u32 mask = 0;
887
888	if (vdd_max < vdd_min)
889		return 0;
890
891	/* Prefer high bits for the boundary vdd_max values. */
892	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
893	if (vdd_max < 0)
894		return 0;
895
896	/* Prefer low bits for the boundary vdd_min values. */
897	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
898	if (vdd_min < 0)
899		return 0;
900
901	/* Fill the mask, from max bit to min bit. */
902	while (vdd_max >= vdd_min)
903		mask |= 1 << vdd_max--;
904
905	return mask;
906}
907EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
908
909#ifdef CONFIG_REGULATOR
910
911/**
912 * mmc_regulator_get_ocrmask - return mask of supported voltages
913 * @supply: regulator to use
914 *
915 * This returns either a negative errno, or a mask of voltages that
916 * can be provided to MMC/SD/SDIO devices using the specified voltage
917 * regulator.  This would normally be called before registering the
918 * MMC host adapter.
919 */
920int mmc_regulator_get_ocrmask(struct regulator *supply)
921{
922	int			result = 0;
923	int			count;
924	int			i;
925
926	count = regulator_count_voltages(supply);
927	if (count < 0)
928		return count;
929
930	for (i = 0; i < count; i++) {
931		int		vdd_uV;
932		int		vdd_mV;
933
934		vdd_uV = regulator_list_voltage(supply, i);
935		if (vdd_uV <= 0)
936			continue;
937
938		vdd_mV = vdd_uV / 1000;
939		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
940	}
941
942	return result;
943}
944EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
945
946/**
947 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
948 * @mmc: the host to regulate
949 * @supply: regulator to use
950 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
951 *
952 * Returns zero on success, else negative errno.
953 *
954 * MMC host drivers may use this to enable or disable a regulator using
955 * a particular supply voltage.  This would normally be called from the
956 * set_ios() method.
957 */
958int mmc_regulator_set_ocr(struct mmc_host *mmc,
959			struct regulator *supply,
960			unsigned short vdd_bit)
961{
962	int			result = 0;
963	int			min_uV, max_uV;
964
965	if (vdd_bit) {
966		int		tmp;
967		int		voltage;
968
969		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
970		 * bits this regulator doesn't quite support ... don't
971		 * be too picky, most cards and regulators are OK with
972		 * a 0.1V range goof (it's a small error percentage).
973		 */
974		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
975		if (tmp == 0) {
976			min_uV = 1650 * 1000;
977			max_uV = 1950 * 1000;
978		} else {
979			min_uV = 1900 * 1000 + tmp * 100 * 1000;
980			max_uV = min_uV + 100 * 1000;
981		}
982
983		/* avoid needless changes to this voltage; the regulator
984		 * might not allow this operation
985		 */
986		voltage = regulator_get_voltage(supply);
987
988		if (mmc->caps2 & MMC_CAP2_BROKEN_VOLTAGE)
989			min_uV = max_uV = voltage;
990
991		if (voltage < 0)
992			result = voltage;
993		else if (voltage < min_uV || voltage > max_uV)
994			result = regulator_set_voltage(supply, min_uV, max_uV);
995		else
996			result = 0;
997
998		if (result == 0 && !mmc->regulator_enabled) {
999			result = regulator_enable(supply);
1000			if (!result)
1001				mmc->regulator_enabled = true;
1002		}
1003	} else if (mmc->regulator_enabled) {
1004		result = regulator_disable(supply);
1005		if (result == 0)
1006			mmc->regulator_enabled = false;
1007	}
1008
1009	if (result)
1010		dev_err(mmc_dev(mmc),
1011			"could not set regulator OCR (%d)\n", result);
1012	return result;
1013}
1014EXPORT_SYMBOL(mmc_regulator_set_ocr);
1015
1016#endif /* CONFIG_REGULATOR */
1017
1018/*
1019 * Mask off any voltages we don't support and select
1020 * the lowest voltage
1021 */
1022u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1023{
1024	int bit;
1025
1026	ocr &= host->ocr_avail;
1027
1028	bit = ffs(ocr);
1029	if (bit) {
1030		bit -= 1;
1031
1032		ocr &= 3 << bit;
1033
1034		mmc_host_clk_hold(host);
1035		host->ios.vdd = bit;
1036		mmc_set_ios(host);
1037		mmc_host_clk_release(host);
1038	} else {
1039		pr_warning("%s: host doesn't support card's voltages\n",
1040				mmc_hostname(host));
1041		ocr = 0;
1042	}
1043
1044	return ocr;
1045}
1046
1047int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1048{
1049	struct mmc_command cmd = {0};
1050	int err = 0;
1051
1052	BUG_ON(!host);
1053
1054	/*
1055	 * Send CMD11 only if the request is to switch the card to
1056	 * 1.8V signalling.
1057	 */
1058	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1059		cmd.opcode = SD_SWITCH_VOLTAGE;
1060		cmd.arg = 0;
1061		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1062
1063		err = mmc_wait_for_cmd(host, &cmd, 0);
1064		if (err)
1065			return err;
1066
1067		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1068			return -EIO;
1069	}
1070
1071	host->ios.signal_voltage = signal_voltage;
1072
1073	if (host->ops->start_signal_voltage_switch) {
1074		mmc_host_clk_hold(host);
1075		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1076		mmc_host_clk_release(host);
1077	}
1078
1079	return err;
1080}
1081
1082/*
1083 * Select timing parameters for host.
1084 */
1085void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1086{
1087	mmc_host_clk_hold(host);
1088	host->ios.timing = timing;
1089	mmc_set_ios(host);
1090	mmc_host_clk_release(host);
1091}
1092
1093/*
1094 * Select appropriate driver type for host.
1095 */
1096void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1097{
1098	mmc_host_clk_hold(host);
1099	host->ios.drv_type = drv_type;
1100	mmc_set_ios(host);
1101	mmc_host_clk_release(host);
1102}
1103
1104static void mmc_poweroff_notify(struct mmc_host *host)
1105{
1106	struct mmc_card *card;
1107	unsigned int timeout;
1108	unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION;
1109	int err = 0;
1110
1111	card = host->card;
1112	mmc_claim_host(host);
1113
1114	/*
1115	 * Send power notify command only if card
1116	 * is mmc and notify state is powered ON
1117	 */
1118	if (card && mmc_card_mmc(card) &&
1119	    (card->poweroff_notify_state == MMC_POWERED_ON)) {
1120
1121		if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
1122			notify_type = EXT_CSD_POWER_OFF_SHORT;
1123			timeout = card->ext_csd.generic_cmd6_time;
1124			card->poweroff_notify_state = MMC_POWEROFF_SHORT;
1125		} else {
1126			notify_type = EXT_CSD_POWER_OFF_LONG;
1127			timeout = card->ext_csd.power_off_longtime;
1128			card->poweroff_notify_state = MMC_POWEROFF_LONG;
1129		}
1130
1131		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1132				 EXT_CSD_POWER_OFF_NOTIFICATION,
1133				 notify_type, timeout);
1134
1135		if (err && err != -EBADMSG)
1136			pr_err("Device failed to respond within %d poweroff "
1137			       "time. Forcefully powering down the device\n",
1138			       timeout);
1139
1140		/* Set the card state to no notification after the poweroff */
1141		card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
1142	}
1143	mmc_release_host(host);
1144}
1145
1146/*
1147 * Apply power to the MMC stack.  This is a two-stage process.
1148 * First, we enable power to the card without the clock running.
1149 * We then wait a bit for the power to stabilise.  Finally,
1150 * enable the bus drivers and clock to the card.
1151 *
1152 * We must _NOT_ enable the clock prior to power stablising.
1153 *
1154 * If a host does all the power sequencing itself, ignore the
1155 * initial MMC_POWER_UP stage.
1156 */
1157static void mmc_power_up(struct mmc_host *host)
1158{
1159	int bit;
1160
1161	mmc_host_clk_hold(host);
1162
1163	/* If ocr is set, we use it */
1164	if (host->ocr)
1165		bit = ffs(host->ocr) - 1;
1166	else
1167		bit = fls(host->ocr_avail) - 1;
1168
1169	host->ios.vdd = bit;
1170	if (mmc_host_is_spi(host))
1171		host->ios.chip_select = MMC_CS_HIGH;
1172	else
1173		host->ios.chip_select = MMC_CS_DONTCARE;
1174	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1175	host->ios.power_mode = MMC_POWER_UP;
1176	host->ios.bus_width = MMC_BUS_WIDTH_1;
1177	host->ios.timing = MMC_TIMING_LEGACY;
1178	mmc_set_ios(host);
1179
1180	/*
1181	 * This delay should be sufficient to allow the power supply
1182	 * to reach the minimum voltage.
1183	 */
1184	mmc_delay(10);
1185
1186	host->ios.clock = host->f_init;
1187
1188	host->ios.power_mode = MMC_POWER_ON;
1189	mmc_set_ios(host);
1190
1191	/*
1192	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1193	 * time required to reach a stable voltage.
1194	 */
1195	mmc_delay(10);
1196
1197	mmc_host_clk_release(host);
1198}
1199
1200void mmc_power_off(struct mmc_host *host)
1201{
1202	int err = 0;
1203	mmc_host_clk_hold(host);
1204
1205	host->ios.clock = 0;
1206	host->ios.vdd = 0;
1207
1208	/*
1209	 * For eMMC 4.5 device send AWAKE command before
1210	 * POWER_OFF_NOTIFY command, because in sleep state
1211	 * eMMC 4.5 devices respond to only RESET and AWAKE cmd
1212	 */
1213	if (host->card && mmc_card_is_sleep(host->card) &&
1214	    host->bus_ops->resume) {
1215		err = host->bus_ops->resume(host);
1216
1217		if (!err)
1218			mmc_poweroff_notify(host);
1219		else
1220			pr_warning("%s: error %d during resume "
1221				   "(continue with poweroff sequence)\n",
1222				   mmc_hostname(host), err);
1223	}
1224
1225	/*
1226	 * Reset ocr mask to be the highest possible voltage supported for
1227	 * this mmc host. This value will be used at next power up.
1228	 */
1229	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1230
1231	if (!mmc_host_is_spi(host)) {
1232		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1233		host->ios.chip_select = MMC_CS_DONTCARE;
1234	}
1235	host->ios.power_mode = MMC_POWER_OFF;
1236	host->ios.bus_width = MMC_BUS_WIDTH_1;
1237	host->ios.timing = MMC_TIMING_LEGACY;
1238	mmc_set_ios(host);
1239
1240	/*
1241	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1242	 * XO-1.5, require a short delay after poweroff before the card
1243	 * can be successfully turned on again.
1244	 */
1245	mmc_delay(1);
1246
1247	mmc_host_clk_release(host);
1248}
1249
1250/*
1251 * Cleanup when the last reference to the bus operator is dropped.
1252 */
1253static void __mmc_release_bus(struct mmc_host *host)
1254{
1255	BUG_ON(!host);
1256	BUG_ON(host->bus_refs);
1257	BUG_ON(!host->bus_dead);
1258
1259	host->bus_ops = NULL;
1260}
1261
1262/*
1263 * Increase reference count of bus operator
1264 */
1265static inline void mmc_bus_get(struct mmc_host *host)
1266{
1267	unsigned long flags;
1268
1269	spin_lock_irqsave(&host->lock, flags);
1270	host->bus_refs++;
1271	spin_unlock_irqrestore(&host->lock, flags);
1272}
1273
1274/*
1275 * Decrease reference count of bus operator and free it if
1276 * it is the last reference.
1277 */
1278static inline void mmc_bus_put(struct mmc_host *host)
1279{
1280	unsigned long flags;
1281
1282	spin_lock_irqsave(&host->lock, flags);
1283	host->bus_refs--;
1284	if ((host->bus_refs == 0) && host->bus_ops)
1285		__mmc_release_bus(host);
1286	spin_unlock_irqrestore(&host->lock, flags);
1287}
1288
1289int mmc_resume_bus(struct mmc_host *host)
1290{
1291	unsigned long flags;
1292
1293	if (!mmc_bus_needs_resume(host))
1294		return -EINVAL;
1295
1296	printk("%s: Starting deferred resume\n", mmc_hostname(host));
1297	spin_lock_irqsave(&host->lock, flags);
1298	host->bus_resume_flags &= ~MMC_BUSRESUME_NEEDS_RESUME;
1299	host->rescan_disable = 0;
1300	spin_unlock_irqrestore(&host->lock, flags);
1301
1302	mmc_bus_get(host);
1303	if (host->bus_ops && !host->bus_dead) {
1304		mmc_power_up(host);
1305		BUG_ON(!host->bus_ops->resume);
1306		host->bus_ops->resume(host);
1307	}
1308
1309	if (host->bus_ops->detect && !host->bus_dead)
1310		host->bus_ops->detect(host);
1311
1312	mmc_bus_put(host);
1313	printk("%s: Deferred resume completed\n", mmc_hostname(host));
1314	return 0;
1315}
1316
1317EXPORT_SYMBOL(mmc_resume_bus);
1318
1319/*
1320 * Assign a mmc bus handler to a host. Only one bus handler may control a
1321 * host at any given time.
1322 */
1323void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1324{
1325	unsigned long flags;
1326
1327	BUG_ON(!host);
1328	BUG_ON(!ops);
1329
1330	WARN_ON(!host->claimed);
1331
1332	spin_lock_irqsave(&host->lock, flags);
1333
1334	BUG_ON(host->bus_ops);
1335	BUG_ON(host->bus_refs);
1336
1337	host->bus_ops = ops;
1338	host->bus_refs = 1;
1339	host->bus_dead = 0;
1340
1341	spin_unlock_irqrestore(&host->lock, flags);
1342}
1343
1344/*
1345 * Remove the current bus handler from a host.
1346 */
1347void mmc_detach_bus(struct mmc_host *host)
1348{
1349	unsigned long flags;
1350
1351	BUG_ON(!host);
1352
1353	WARN_ON(!host->claimed);
1354	WARN_ON(!host->bus_ops);
1355
1356	spin_lock_irqsave(&host->lock, flags);
1357
1358	host->bus_dead = 1;
1359
1360	spin_unlock_irqrestore(&host->lock, flags);
1361
1362	mmc_bus_put(host);
1363}
1364
1365/**
1366 *	mmc_detect_change - process change of state on a MMC socket
1367 *	@host: host which changed state.
1368 *	@delay: optional delay to wait before detection (jiffies)
1369 *
1370 *	MMC drivers should call this when they detect a card has been
1371 *	inserted or removed. The MMC layer will confirm that any
1372 *	present card is still functional, and initialize any newly
1373 *	inserted.
1374 */
1375void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1376{
1377#ifdef CONFIG_MMC_DEBUG
1378	unsigned long flags;
1379	spin_lock_irqsave(&host->lock, flags);
1380	WARN_ON(host->removed);
1381	spin_unlock_irqrestore(&host->lock, flags);
1382#endif
1383	host->detect_change = 1;
1384
1385	wake_lock(&host->detect_wake_lock);
1386	mmc_schedule_delayed_work(&host->detect, delay);
1387}
1388
1389EXPORT_SYMBOL(mmc_detect_change);
1390
1391void mmc_init_erase(struct mmc_card *card)
1392{
1393	unsigned int sz;
1394
1395	if (is_power_of_2(card->erase_size))
1396		card->erase_shift = ffs(card->erase_size) - 1;
1397	else
1398		card->erase_shift = 0;
1399
1400	/*
1401	 * It is possible to erase an arbitrarily large area of an SD or MMC
1402	 * card.  That is not desirable because it can take a long time
1403	 * (minutes) potentially delaying more important I/O, and also the
1404	 * timeout calculations become increasingly hugely over-estimated.
1405	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1406	 * to that size and alignment.
1407	 *
1408	 * For SD cards that define Allocation Unit size, limit erases to one
1409	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1410	 * Erase Size, whether it is switched on or not, limit to that size.
1411	 * Otherwise just have a stab at a good value.  For modern cards it
1412	 * will end up being 4MiB.  Note that if the value is too small, it
1413	 * can end up taking longer to erase.
1414	 */
1415	if (mmc_card_sd(card) && card->ssr.au) {
1416		card->pref_erase = card->ssr.au;
1417		card->erase_shift = ffs(card->ssr.au) - 1;
1418	} else if (card->ext_csd.hc_erase_size) {
1419		card->pref_erase = card->ext_csd.hc_erase_size;
1420	} else {
1421		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1422		if (sz < 128)
1423			card->pref_erase = 512 * 1024 / 512;
1424		else if (sz < 512)
1425			card->pref_erase = 1024 * 1024 / 512;
1426		else if (sz < 1024)
1427			card->pref_erase = 2 * 1024 * 1024 / 512;
1428		else
1429			card->pref_erase = 4 * 1024 * 1024 / 512;
1430		if (card->pref_erase < card->erase_size)
1431			card->pref_erase = card->erase_size;
1432		else {
1433			sz = card->pref_erase % card->erase_size;
1434			if (sz)
1435				card->pref_erase += card->erase_size - sz;
1436		}
1437	}
1438}
1439
1440static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1441				          unsigned int arg, unsigned int qty)
1442{
1443	unsigned int erase_timeout;
1444
1445	if (arg == MMC_DISCARD_ARG ||
1446	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1447		erase_timeout = card->ext_csd.trim_timeout;
1448	} else if (card->ext_csd.erase_group_def & 1) {
1449		/* High Capacity Erase Group Size uses HC timeouts */
1450		if (arg == MMC_TRIM_ARG)
1451			erase_timeout = card->ext_csd.trim_timeout;
1452		else
1453			erase_timeout = card->ext_csd.hc_erase_timeout;
1454	} else {
1455		/* CSD Erase Group Size uses write timeout */
1456		unsigned int mult = (10 << card->csd.r2w_factor);
1457		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1458		unsigned int timeout_us;
1459
1460		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1461		if (card->csd.tacc_ns < 1000000)
1462			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1463		else
1464			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1465
1466		/*
1467		 * ios.clock is only a target.  The real clock rate might be
1468		 * less but not that much less, so fudge it by multiplying by 2.
1469		 */
1470		timeout_clks <<= 1;
1471		timeout_us += (timeout_clks * 1000) /
1472			      (mmc_host_clk_rate(card->host) / 1000);
1473
1474		erase_timeout = timeout_us / 1000;
1475
1476		/*
1477		 * Theoretically, the calculation could underflow so round up
1478		 * to 1ms in that case.
1479		 */
1480		if (!erase_timeout)
1481			erase_timeout = 1;
1482	}
1483
1484	/* Multiplier for secure operations */
1485	if (arg & MMC_SECURE_ARGS) {
1486		if (arg == MMC_SECURE_ERASE_ARG)
1487			erase_timeout *= card->ext_csd.sec_erase_mult;
1488		else
1489			erase_timeout *= card->ext_csd.sec_trim_mult;
1490	}
1491
1492	erase_timeout *= qty;
1493
1494	/*
1495	 * Ensure at least a 1 second timeout for SPI as per
1496	 * 'mmc_set_data_timeout()'
1497	 */
1498	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1499		erase_timeout = 1000;
1500
1501	return erase_timeout;
1502}
1503
1504static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1505					 unsigned int arg,
1506					 unsigned int qty)
1507{
1508	unsigned int erase_timeout;
1509
1510	if (card->ssr.erase_timeout) {
1511		/* Erase timeout specified in SD Status Register (SSR) */
1512		erase_timeout = card->ssr.erase_timeout * qty +
1513				card->ssr.erase_offset;
1514	} else {
1515		/*
1516		 * Erase timeout not specified in SD Status Register (SSR) so
1517		 * use 250ms per write block.
1518		 */
1519		erase_timeout = 250 * qty;
1520	}
1521
1522	/* Must not be less than 1 second */
1523	if (erase_timeout < 1000)
1524		erase_timeout = 1000;
1525
1526	return erase_timeout;
1527}
1528
1529static unsigned int mmc_erase_timeout(struct mmc_card *card,
1530				      unsigned int arg,
1531				      unsigned int qty)
1532{
1533	if (mmc_card_sd(card))
1534		return mmc_sd_erase_timeout(card, arg, qty);
1535	else
1536		return mmc_mmc_erase_timeout(card, arg, qty);
1537}
1538
1539static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1540			unsigned int to, unsigned int arg)
1541{
1542	struct mmc_command cmd = {0};
1543	unsigned int qty = 0;
1544	int err;
1545
1546	/*
1547	 * qty is used to calculate the erase timeout which depends on how many
1548	 * erase groups (or allocation units in SD terminology) are affected.
1549	 * We count erasing part of an erase group as one erase group.
1550	 * For SD, the allocation units are always a power of 2.  For MMC, the
1551	 * erase group size is almost certainly also power of 2, but it does not
1552	 * seem to insist on that in the JEDEC standard, so we fall back to
1553	 * division in that case.  SD may not specify an allocation unit size,
1554	 * in which case the timeout is based on the number of write blocks.
1555	 *
1556	 * Note that the timeout for secure trim 2 will only be correct if the
1557	 * number of erase groups specified is the same as the total of all
1558	 * preceding secure trim 1 commands.  Since the power may have been
1559	 * lost since the secure trim 1 commands occurred, it is generally
1560	 * impossible to calculate the secure trim 2 timeout correctly.
1561	 */
1562	if (card->erase_shift)
1563		qty += ((to >> card->erase_shift) -
1564			(from >> card->erase_shift)) + 1;
1565	else if (mmc_card_sd(card))
1566		qty += to - from + 1;
1567	else
1568		qty += ((to / card->erase_size) -
1569			(from / card->erase_size)) + 1;
1570
1571	if (!mmc_card_blockaddr(card)) {
1572		from <<= 9;
1573		to <<= 9;
1574	}
1575
1576	if (mmc_card_sd(card))
1577		cmd.opcode = SD_ERASE_WR_BLK_START;
1578	else
1579		cmd.opcode = MMC_ERASE_GROUP_START;
1580	cmd.arg = from;
1581	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1582	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1583	if (err) {
1584		pr_err("mmc_erase: group start error %d, "
1585		       "status %#x\n", err, cmd.resp[0]);
1586		err = -EIO;
1587		goto out;
1588	}
1589
1590	memset(&cmd, 0, sizeof(struct mmc_command));
1591	if (mmc_card_sd(card))
1592		cmd.opcode = SD_ERASE_WR_BLK_END;
1593	else
1594		cmd.opcode = MMC_ERASE_GROUP_END;
1595	cmd.arg = to;
1596	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1597	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1598	if (err) {
1599		pr_err("mmc_erase: group end error %d, status %#x\n",
1600		       err, cmd.resp[0]);
1601		err = -EIO;
1602		goto out;
1603	}
1604
1605	memset(&cmd, 0, sizeof(struct mmc_command));
1606	cmd.opcode = MMC_ERASE;
1607	cmd.arg = arg;
1608	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1609	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1610	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1611	if (err) {
1612		pr_err("mmc_erase: erase error %d, status %#x\n",
1613		       err, cmd.resp[0]);
1614		err = -EIO;
1615		goto out;
1616	}
1617
1618	if (mmc_host_is_spi(card->host))
1619		goto out;
1620
1621	do {
1622		memset(&cmd, 0, sizeof(struct mmc_command));
1623		cmd.opcode = MMC_SEND_STATUS;
1624		cmd.arg = card->rca << 16;
1625		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1626		/* Do not retry else we can't see errors */
1627		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1628		if (err || (cmd.resp[0] & 0xFDF92000)) {
1629			pr_err("error %d requesting status %#x\n",
1630				err, cmd.resp[0]);
1631			err = -EIO;
1632			goto out;
1633		}
1634	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1635		 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1636out:
1637	return err;
1638}
1639
1640/**
1641 * mmc_erase - erase sectors.
1642 * @card: card to erase
1643 * @from: first sector to erase
1644 * @nr: number of sectors to erase
1645 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1646 *
1647 * Caller must claim host before calling this function.
1648 */
1649int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1650	      unsigned int arg)
1651{
1652	unsigned int rem, to = from + nr;
1653
1654	if (!(card->host->caps & MMC_CAP_ERASE) ||
1655	    !(card->csd.cmdclass & CCC_ERASE))
1656		return -EOPNOTSUPP;
1657
1658	if (!card->erase_size)
1659		return -EOPNOTSUPP;
1660
1661	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1662		return -EOPNOTSUPP;
1663
1664	if ((arg & MMC_SECURE_ARGS) &&
1665	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1666		return -EOPNOTSUPP;
1667
1668	if ((arg & MMC_TRIM_ARGS) &&
1669	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1670		return -EOPNOTSUPP;
1671
1672	if (arg == MMC_SECURE_ERASE_ARG) {
1673		if (from % card->erase_size || nr % card->erase_size)
1674			return -EINVAL;
1675	}
1676
1677	if (arg == MMC_ERASE_ARG) {
1678		rem = from % card->erase_size;
1679		if (rem) {
1680			rem = card->erase_size - rem;
1681			from += rem;
1682			if (nr > rem)
1683				nr -= rem;
1684			else
1685				return 0;
1686		}
1687		rem = nr % card->erase_size;
1688		if (rem)
1689			nr -= rem;
1690	}
1691
1692	if (nr == 0)
1693		return 0;
1694
1695	to = from + nr;
1696
1697	if (to <= from)
1698		return -EINVAL;
1699
1700	/* 'from' and 'to' are inclusive */
1701	to -= 1;
1702
1703	return mmc_do_erase(card, from, to, arg);
1704}
1705EXPORT_SYMBOL(mmc_erase);
1706
1707int mmc_can_erase(struct mmc_card *card)
1708{
1709	if ((card->host->caps & MMC_CAP_ERASE) &&
1710	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1711		return 1;
1712	return 0;
1713}
1714EXPORT_SYMBOL(mmc_can_erase);
1715
1716int mmc_can_trim(struct mmc_card *card)
1717{
1718	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1719		return 1;
1720	return 0;
1721}
1722EXPORT_SYMBOL(mmc_can_trim);
1723
1724int mmc_can_discard(struct mmc_card *card)
1725{
1726	/*
1727	 * As there's no way to detect the discard support bit at v4.5
1728	 * use the s/w feature support filed.
1729	 */
1730	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1731		return 1;
1732	return 0;
1733}
1734EXPORT_SYMBOL(mmc_can_discard);
1735
1736int mmc_can_sanitize(struct mmc_card *card)
1737{
1738	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1739		return 0;
1740	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1741		return 1;
1742	return 0;
1743}
1744EXPORT_SYMBOL(mmc_can_sanitize);
1745
1746int mmc_can_secure_erase_trim(struct mmc_card *card)
1747{
1748	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1749		return 1;
1750	return 0;
1751}
1752EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1753
1754int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1755			    unsigned int nr)
1756{
1757	if (!card->erase_size)
1758		return 0;
1759	if (from % card->erase_size || nr % card->erase_size)
1760		return 0;
1761	return 1;
1762}
1763EXPORT_SYMBOL(mmc_erase_group_aligned);
1764
1765static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1766					    unsigned int arg)
1767{
1768	struct mmc_host *host = card->host;
1769	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1770	unsigned int last_timeout = 0;
1771
1772	if (card->erase_shift)
1773		max_qty = UINT_MAX >> card->erase_shift;
1774	else if (mmc_card_sd(card))
1775		max_qty = UINT_MAX;
1776	else
1777		max_qty = UINT_MAX / card->erase_size;
1778
1779	/* Find the largest qty with an OK timeout */
1780	do {
1781		y = 0;
1782		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1783			timeout = mmc_erase_timeout(card, arg, qty + x);
1784			if (timeout > host->max_discard_to)
1785				break;
1786			if (timeout < last_timeout)
1787				break;
1788			last_timeout = timeout;
1789			y = x;
1790		}
1791		qty += y;
1792	} while (y);
1793
1794	if (!qty)
1795		return 0;
1796
1797	if (qty == 1)
1798		return 1;
1799
1800	/* Convert qty to sectors */
1801	if (card->erase_shift)
1802		max_discard = --qty << card->erase_shift;
1803	else if (mmc_card_sd(card))
1804		max_discard = qty;
1805	else
1806		max_discard = --qty * card->erase_size;
1807
1808	return max_discard;
1809}
1810
1811unsigned int mmc_calc_max_discard(struct mmc_card *card)
1812{
1813	struct mmc_host *host = card->host;
1814	unsigned int max_discard, max_trim;
1815
1816	if (!host->max_discard_to)
1817		return UINT_MAX;
1818
1819	/*
1820	 * Without erase_group_def set, MMC erase timeout depends on clock
1821	 * frequence which can change.  In that case, the best choice is
1822	 * just the preferred erase size.
1823	 */
1824	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1825		return card->pref_erase;
1826
1827	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1828	if (mmc_can_trim(card)) {
1829		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1830		if (max_trim < max_discard)
1831			max_discard = max_trim;
1832	} else if (max_discard < card->erase_size) {
1833		max_discard = 0;
1834	}
1835	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1836		 mmc_hostname(host), max_discard, host->max_discard_to);
1837	return max_discard;
1838}
1839EXPORT_SYMBOL(mmc_calc_max_discard);
1840
1841int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1842{
1843	struct mmc_command cmd = {0};
1844
1845	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1846		return 0;
1847
1848	cmd.opcode = MMC_SET_BLOCKLEN;
1849	cmd.arg = blocklen;
1850	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1851	return mmc_wait_for_cmd(card->host, &cmd, 5);
1852}
1853EXPORT_SYMBOL(mmc_set_blocklen);
1854
1855static void mmc_hw_reset_for_init(struct mmc_host *host)
1856{
1857	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1858		return;
1859	mmc_host_clk_hold(host);
1860	host->ops->hw_reset(host);
1861	mmc_host_clk_release(host);
1862}
1863
1864int mmc_can_reset(struct mmc_card *card)
1865{
1866	u8 rst_n_function;
1867
1868	if (!mmc_card_mmc(card))
1869		return 0;
1870	rst_n_function = card->ext_csd.rst_n_function;
1871	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1872		return 0;
1873	return 1;
1874}
1875EXPORT_SYMBOL(mmc_can_reset);
1876
1877static int mmc_do_hw_reset(struct mmc_host *host, int check)
1878{
1879	struct mmc_card *card = host->card;
1880
1881	if (!host->bus_ops->power_restore)
1882		return -EOPNOTSUPP;
1883
1884	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1885		return -EOPNOTSUPP;
1886
1887	if (!card)
1888		return -EINVAL;
1889
1890	if (!mmc_can_reset(card))
1891		return -EOPNOTSUPP;
1892
1893	mmc_host_clk_hold(host);
1894	mmc_set_clock(host, host->f_init);
1895
1896	host->ops->hw_reset(host);
1897
1898	/* If the reset has happened, then a status command will fail */
1899	if (check) {
1900		struct mmc_command cmd = {0};
1901		int err;
1902
1903		cmd.opcode = MMC_SEND_STATUS;
1904		if (!mmc_host_is_spi(card->host))
1905			cmd.arg = card->rca << 16;
1906		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1907		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1908		if (!err) {
1909			mmc_host_clk_release(host);
1910			return -ENOSYS;
1911		}
1912	}
1913
1914	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
1915	if (mmc_host_is_spi(host)) {
1916		host->ios.chip_select = MMC_CS_HIGH;
1917		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1918	} else {
1919		host->ios.chip_select = MMC_CS_DONTCARE;
1920		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1921	}
1922	host->ios.bus_width = MMC_BUS_WIDTH_1;
1923	host->ios.timing = MMC_TIMING_LEGACY;
1924	mmc_set_ios(host);
1925
1926	mmc_host_clk_release(host);
1927
1928	return host->bus_ops->power_restore(host);
1929}
1930
1931int mmc_hw_reset(struct mmc_host *host)
1932{
1933	return mmc_do_hw_reset(host, 0);
1934}
1935EXPORT_SYMBOL(mmc_hw_reset);
1936
1937int mmc_hw_reset_check(struct mmc_host *host)
1938{
1939	return mmc_do_hw_reset(host, 1);
1940}
1941EXPORT_SYMBOL(mmc_hw_reset_check);
1942
1943static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1944{
1945	host->f_init = freq;
1946
1947#ifdef CONFIG_MMC_DEBUG
1948	pr_info("%s: %s: trying to init card at %u Hz\n",
1949		mmc_hostname(host), __func__, host->f_init);
1950#endif
1951	mmc_power_up(host);
1952
1953	/*
1954	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
1955	 * do a hardware reset if possible.
1956	 */
1957	mmc_hw_reset_for_init(host);
1958
1959	/* Initialization should be done at 3.3 V I/O voltage. */
1960	mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0);
1961
1962	/*
1963	 * sdio_reset sends CMD52 to reset card.  Since we do not know
1964	 * if the card is being re-initialized, just send it.  CMD52
1965	 * should be ignored by SD/eMMC cards.
1966	 */
1967	sdio_reset(host);
1968	mmc_go_idle(host);
1969
1970	mmc_send_if_cond(host, host->ocr_avail);
1971
1972	/* Order's important: probe SDIO, then SD, then MMC */
1973	if (!mmc_attach_sdio(host))
1974		return 0;
1975	if (!mmc_attach_sd(host))
1976		return 0;
1977	if (!mmc_attach_mmc(host))
1978		return 0;
1979
1980	mmc_power_off(host);
1981	return -EIO;
1982}
1983
1984int _mmc_detect_card_removed(struct mmc_host *host)
1985{
1986	int ret;
1987
1988	if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
1989		return 0;
1990
1991	if (!host->card || mmc_card_removed(host->card))
1992		return 1;
1993
1994	ret = host->bus_ops->alive(host);
1995	if (ret) {
1996		mmc_card_set_removed(host->card);
1997		pr_debug("%s: card remove detected\n", mmc_hostname(host));
1998	}
1999
2000	return ret;
2001}
2002
2003int mmc_detect_card_removed(struct mmc_host *host)
2004{
2005	struct mmc_card *card = host->card;
2006	int ret;
2007
2008	WARN_ON(!host->claimed);
2009
2010	if (!card)
2011		return 1;
2012
2013	ret = mmc_card_removed(card);
2014	/*
2015	 * The card will be considered unchanged unless we have been asked to
2016	 * detect a change or host requires polling to provide card detection.
2017	 */
2018	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
2019	    !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
2020		return ret;
2021
2022	host->detect_change = 0;
2023	if (!ret) {
2024		ret = _mmc_detect_card_removed(host);
2025		if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2026			/*
2027			 * Schedule a detect work as soon as possible to let a
2028			 * rescan handle the card removal.
2029			 */
2030			cancel_delayed_work(&host->detect);
2031			mmc_detect_change(host, 0);
2032		}
2033	}
2034
2035	return ret;
2036}
2037EXPORT_SYMBOL(mmc_detect_card_removed);
2038
2039void mmc_rescan(struct work_struct *work)
2040{
2041	static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
2042	struct mmc_host *host =
2043		container_of(work, struct mmc_host, detect.work);
2044	int i;
2045	bool extend_wakelock = false;
2046
2047	if (host->rescan_disable)
2048		return;
2049
2050	mmc_bus_get(host);
2051
2052	/*
2053	 * if there is a _removable_ card registered, check whether it is
2054	 * still present
2055	 */
2056	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2057	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2058		host->bus_ops->detect(host);
2059
2060	host->detect_change = 0;
2061
2062	/* If the card was removed the bus will be marked
2063	 * as dead - extend the wakelock so userspace
2064	 * can respond */
2065	if (host->bus_dead)
2066		extend_wakelock = 1;
2067
2068	/*
2069	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2070	 * the card is no longer present.
2071	 */
2072	mmc_bus_put(host);
2073	mmc_bus_get(host);
2074
2075	/* if there still is a card present, stop here */
2076	if (host->bus_ops != NULL) {
2077		mmc_bus_put(host);
2078		goto out;
2079	}
2080
2081	/*
2082	 * Only we can add a new handler, so it's safe to
2083	 * release the lock here.
2084	 */
2085	mmc_bus_put(host);
2086
2087	if (host->ops->get_cd && host->ops->get_cd(host) == 0)
2088		goto out;
2089
2090	mmc_claim_host(host);
2091	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2092		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) {
2093			extend_wakelock = true;
2094			break;
2095		}
2096		if (freqs[i] <= host->f_min)
2097			break;
2098	}
2099	mmc_release_host(host);
2100
2101 out:
2102	if (extend_wakelock)
2103		wake_lock_timeout(&host->detect_wake_lock, HZ / 2);
2104	else
2105		wake_unlock(&host->detect_wake_lock);
2106	if (host->caps & MMC_CAP_NEEDS_POLL) {
2107		wake_lock(&host->detect_wake_lock);
2108		mmc_schedule_delayed_work(&host->detect, HZ);
2109	}
2110}
2111
2112void mmc_start_host(struct mmc_host *host)
2113{
2114	mmc_power_off(host);
2115	mmc_detect_change(host, 0);
2116}
2117
2118void mmc_stop_host(struct mmc_host *host)
2119{
2120#ifdef CONFIG_MMC_DEBUG
2121	unsigned long flags;
2122	spin_lock_irqsave(&host->lock, flags);
2123	host->removed = 1;
2124	spin_unlock_irqrestore(&host->lock, flags);
2125#endif
2126
2127	if (cancel_delayed_work_sync(&host->detect))
2128		wake_unlock(&host->detect_wake_lock);
2129	mmc_flush_scheduled_work();
2130
2131	/* clear pm flags now and let card drivers set them as needed */
2132	host->pm_flags = 0;
2133
2134	mmc_bus_get(host);
2135	if (host->bus_ops && !host->bus_dead) {
2136		/* Calling bus_ops->remove() with a claimed host can deadlock */
2137		if (host->bus_ops->remove)
2138			host->bus_ops->remove(host);
2139
2140		mmc_claim_host(host);
2141		mmc_detach_bus(host);
2142		mmc_power_off(host);
2143		mmc_release_host(host);
2144		mmc_bus_put(host);
2145		return;
2146	}
2147	mmc_bus_put(host);
2148
2149	BUG_ON(host->card);
2150
2151	mmc_power_off(host);
2152}
2153
2154int mmc_power_save_host(struct mmc_host *host)
2155{
2156	int ret = 0;
2157
2158#ifdef CONFIG_MMC_DEBUG
2159	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2160#endif
2161
2162	mmc_bus_get(host);
2163
2164	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2165		mmc_bus_put(host);
2166		return -EINVAL;
2167	}
2168
2169	if (host->bus_ops->power_save)
2170		ret = host->bus_ops->power_save(host);
2171
2172	mmc_bus_put(host);
2173
2174	mmc_power_off(host);
2175
2176	return ret;
2177}
2178EXPORT_SYMBOL(mmc_power_save_host);
2179
2180int mmc_power_restore_host(struct mmc_host *host)
2181{
2182	int ret;
2183
2184#ifdef CONFIG_MMC_DEBUG
2185	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2186#endif
2187
2188	mmc_bus_get(host);
2189
2190	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2191		mmc_bus_put(host);
2192		return -EINVAL;
2193	}
2194
2195	mmc_power_up(host);
2196	ret = host->bus_ops->power_restore(host);
2197
2198	mmc_bus_put(host);
2199
2200	return ret;
2201}
2202EXPORT_SYMBOL(mmc_power_restore_host);
2203
2204int mmc_card_awake(struct mmc_host *host)
2205{
2206	int err = -ENOSYS;
2207
2208	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2209		return 0;
2210
2211	mmc_bus_get(host);
2212
2213	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2214		err = host->bus_ops->awake(host);
2215
2216	mmc_bus_put(host);
2217
2218	return err;
2219}
2220EXPORT_SYMBOL(mmc_card_awake);
2221
2222int mmc_card_sleep(struct mmc_host *host)
2223{
2224	int err = -ENOSYS;
2225
2226	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2227		return 0;
2228
2229	mmc_bus_get(host);
2230
2231	if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2232		err = host->bus_ops->sleep(host);
2233
2234	mmc_bus_put(host);
2235
2236	return err;
2237}
2238EXPORT_SYMBOL(mmc_card_sleep);
2239
2240int mmc_card_can_sleep(struct mmc_host *host)
2241{
2242	struct mmc_card *card = host->card;
2243
2244	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2245		return 1;
2246	return 0;
2247}
2248EXPORT_SYMBOL(mmc_card_can_sleep);
2249
2250/*
2251 * Flush the cache to the non-volatile storage.
2252 */
2253int mmc_flush_cache(struct mmc_card *card)
2254{
2255	struct mmc_host *host = card->host;
2256	int err = 0;
2257
2258	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2259		return err;
2260
2261	if (mmc_card_mmc(card) &&
2262			(card->ext_csd.cache_size > 0) &&
2263			(card->ext_csd.cache_ctrl & 1)) {
2264		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2265				EXT_CSD_FLUSH_CACHE, 1, 0);
2266		if (err)
2267			pr_err("%s: cache flush error %d\n",
2268					mmc_hostname(card->host), err);
2269	}
2270
2271	return err;
2272}
2273EXPORT_SYMBOL(mmc_flush_cache);
2274
2275/*
2276 * Turn the cache ON/OFF.
2277 * Turning the cache OFF shall trigger flushing of the data
2278 * to the non-volatile storage.
2279 */
2280int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2281{
2282	struct mmc_card *card = host->card;
2283	unsigned int timeout;
2284	int err = 0;
2285
2286	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2287			mmc_card_is_removable(host))
2288		return err;
2289
2290	mmc_claim_host(host);
2291	if (card && mmc_card_mmc(card) &&
2292			(card->ext_csd.cache_size > 0)) {
2293		enable = !!enable;
2294
2295		if (card->ext_csd.cache_ctrl ^ enable) {
2296			timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2297			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2298					EXT_CSD_CACHE_CTRL, enable, timeout);
2299			if (err)
2300				pr_err("%s: cache %s error %d\n",
2301						mmc_hostname(card->host),
2302						enable ? "on" : "off",
2303						err);
2304			else
2305				card->ext_csd.cache_ctrl = enable;
2306		}
2307	}
2308	mmc_release_host(host);
2309
2310	return err;
2311}
2312EXPORT_SYMBOL(mmc_cache_ctrl);
2313
2314#ifdef CONFIG_PM
2315
2316/**
2317 *	mmc_suspend_host - suspend a host
2318 *	@host: mmc host
2319 */
2320int mmc_suspend_host(struct mmc_host *host)
2321{
2322	int err = 0;
2323
2324	if (mmc_bus_needs_resume(host))
2325		return 0;
2326
2327	if (cancel_delayed_work(&host->detect))
2328		wake_unlock(&host->detect_wake_lock);
2329	mmc_flush_scheduled_work();
2330
2331	err = mmc_cache_ctrl(host, 0);
2332	if (err)
2333		goto out;
2334
2335	mmc_bus_get(host);
2336	if (host->bus_ops && !host->bus_dead) {
2337
2338		if (host->bus_ops->suspend)
2339			err = host->bus_ops->suspend(host);
2340
2341		if (err == -ENOSYS || !host->bus_ops->resume) {
2342			/*
2343			 * We simply "remove" the card in this case.
2344			 * It will be redetected on resume.  (Calling
2345			 * bus_ops->remove() with a claimed host can
2346			 * deadlock.)
2347			 */
2348			if (host->bus_ops->remove)
2349				host->bus_ops->remove(host);
2350			mmc_claim_host(host);
2351			mmc_detach_bus(host);
2352			mmc_power_off(host);
2353			mmc_release_host(host);
2354			host->pm_flags = 0;
2355			err = 0;
2356		}
2357	}
2358	mmc_bus_put(host);
2359
2360	if (!err && !mmc_card_keep_power(host))
2361		mmc_power_off(host);
2362
2363out:
2364	return err;
2365}
2366
2367EXPORT_SYMBOL(mmc_suspend_host);
2368
2369/**
2370 *	mmc_resume_host - resume a previously suspended host
2371 *	@host: mmc host
2372 */
2373int mmc_resume_host(struct mmc_host *host)
2374{
2375	int err = 0;
2376
2377	mmc_bus_get(host);
2378	if (mmc_bus_manual_resume(host)) {
2379		host->bus_resume_flags |= MMC_BUSRESUME_NEEDS_RESUME;
2380		mmc_bus_put(host);
2381		return 0;
2382	}
2383
2384	if (host->bus_ops && !host->bus_dead) {
2385		if (!mmc_card_keep_power(host)) {
2386			mmc_power_up(host);
2387			mmc_select_voltage(host, host->ocr);
2388			/*
2389			 * Tell runtime PM core we just powered up the card,
2390			 * since it still believes the card is powered off.
2391			 * Note that currently runtime PM is only enabled
2392			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2393			 */
2394			if (mmc_card_sdio(host->card) &&
2395			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2396				pm_runtime_disable(&host->card->dev);
2397				pm_runtime_set_active(&host->card->dev);
2398				pm_runtime_enable(&host->card->dev);
2399			}
2400		}
2401		BUG_ON(!host->bus_ops->resume);
2402		err = host->bus_ops->resume(host);
2403		if (err) {
2404			pr_warning("%s: error %d during resume "
2405					    "(card was removed?)\n",
2406					    mmc_hostname(host), err);
2407			err = 0;
2408		}
2409	}
2410	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2411	mmc_bus_put(host);
2412
2413	return err;
2414}
2415EXPORT_SYMBOL(mmc_resume_host);
2416
2417/* Do the card removal on suspend if card is assumed removeable
2418 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2419   to sync the card.
2420*/
2421int mmc_pm_notify(struct notifier_block *notify_block,
2422					unsigned long mode, void *unused)
2423{
2424	struct mmc_host *host = container_of(
2425		notify_block, struct mmc_host, pm_notify);
2426	unsigned long flags;
2427
2428
2429	switch (mode) {
2430	case PM_HIBERNATION_PREPARE:
2431	case PM_SUSPEND_PREPARE:
2432
2433		spin_lock_irqsave(&host->lock, flags);
2434		if (mmc_bus_needs_resume(host)) {
2435			spin_unlock_irqrestore(&host->lock, flags);
2436			break;
2437		}
2438		host->rescan_disable = 1;
2439		host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
2440		spin_unlock_irqrestore(&host->lock, flags);
2441		if (cancel_delayed_work_sync(&host->detect))
2442			wake_unlock(&host->detect_wake_lock);
2443
2444		if (!host->bus_ops || host->bus_ops->suspend)
2445			break;
2446
2447		/* Calling bus_ops->remove() with a claimed host can deadlock */
2448		if (host->bus_ops->remove)
2449			host->bus_ops->remove(host);
2450
2451		mmc_claim_host(host);
2452		mmc_detach_bus(host);
2453		mmc_power_off(host);
2454		mmc_release_host(host);
2455		host->pm_flags = 0;
2456		break;
2457
2458	case PM_POST_SUSPEND:
2459	case PM_POST_HIBERNATION:
2460	case PM_POST_RESTORE:
2461
2462		spin_lock_irqsave(&host->lock, flags);
2463		if (mmc_bus_manual_resume(host)) {
2464			spin_unlock_irqrestore(&host->lock, flags);
2465			break;
2466		}
2467		host->rescan_disable = 0;
2468		host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
2469		spin_unlock_irqrestore(&host->lock, flags);
2470		mmc_detect_change(host, 0);
2471
2472	}
2473
2474	return 0;
2475}
2476#endif
2477
2478#ifdef CONFIG_MMC_EMBEDDED_SDIO
2479void mmc_set_embedded_sdio_data(struct mmc_host *host,
2480				struct sdio_cis *cis,
2481				struct sdio_cccr *cccr,
2482				struct sdio_embedded_func *funcs,
2483				int num_funcs)
2484{
2485	host->embedded_sdio_data.cis = cis;
2486	host->embedded_sdio_data.cccr = cccr;
2487	host->embedded_sdio_data.funcs = funcs;
2488	host->embedded_sdio_data.num_funcs = num_funcs;
2489}
2490
2491EXPORT_SYMBOL(mmc_set_embedded_sdio_data);
2492#endif
2493
2494static int __init mmc_init(void)
2495{
2496	int ret;
2497
2498	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2499	if (!workqueue)
2500		return -ENOMEM;
2501
2502	ret = mmc_register_bus();
2503	if (ret)
2504		goto destroy_workqueue;
2505
2506	ret = mmc_register_host_class();
2507	if (ret)
2508		goto unregister_bus;
2509
2510	ret = sdio_register_bus();
2511	if (ret)
2512		goto unregister_host_class;
2513
2514	return 0;
2515
2516unregister_host_class:
2517	mmc_unregister_host_class();
2518unregister_bus:
2519	mmc_unregister_bus();
2520destroy_workqueue:
2521	destroy_workqueue(workqueue);
2522
2523	return ret;
2524}
2525
2526static void __exit mmc_exit(void)
2527{
2528	sdio_unregister_bus();
2529	mmc_unregister_host_class();
2530	mmc_unregister_bus();
2531	destroy_workqueue(workqueue);
2532}
2533
2534subsys_initcall(mmc_init);
2535module_exit(mmc_exit);
2536
2537MODULE_LICENSE("GPL");
2538