core.c revision 6de5fc9cf7de334912de4cfd2d06eb2d744d2afe
1/* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13#include <linux/module.h> 14#include <linux/init.h> 15#include <linux/interrupt.h> 16#include <linux/completion.h> 17#include <linux/device.h> 18#include <linux/delay.h> 19#include <linux/pagemap.h> 20#include <linux/err.h> 21#include <linux/leds.h> 22#include <linux/scatterlist.h> 23#include <linux/log2.h> 24#include <linux/regulator/consumer.h> 25#include <linux/pm_runtime.h> 26#include <linux/suspend.h> 27#include <linux/fault-inject.h> 28#include <linux/random.h> 29 30#include <linux/mmc/card.h> 31#include <linux/mmc/host.h> 32#include <linux/mmc/mmc.h> 33#include <linux/mmc/sd.h> 34 35#include "core.h" 36#include "bus.h" 37#include "host.h" 38#include "sdio_bus.h" 39 40#include "mmc_ops.h" 41#include "sd_ops.h" 42#include "sdio_ops.h" 43 44static struct workqueue_struct *workqueue; 45 46/* 47 * Enabling software CRCs on the data blocks can be a significant (30%) 48 * performance cost, and for other reasons may not always be desired. 49 * So we allow it it to be disabled. 50 */ 51int use_spi_crc = 1; 52module_param(use_spi_crc, bool, 0); 53 54/* 55 * We normally treat cards as removed during suspend if they are not 56 * known to be on a non-removable bus, to avoid the risk of writing 57 * back data to a different card after resume. Allow this to be 58 * overridden if necessary. 59 */ 60#ifdef CONFIG_MMC_UNSAFE_RESUME 61int mmc_assume_removable; 62#else 63int mmc_assume_removable = 1; 64#endif 65EXPORT_SYMBOL(mmc_assume_removable); 66module_param_named(removable, mmc_assume_removable, bool, 0644); 67MODULE_PARM_DESC( 68 removable, 69 "MMC/SD cards are removable and may be removed during suspend"); 70 71/* 72 * Internal function. Schedule delayed work in the MMC work queue. 73 */ 74static int mmc_schedule_delayed_work(struct delayed_work *work, 75 unsigned long delay) 76{ 77 return queue_delayed_work(workqueue, work, delay); 78} 79 80/* 81 * Internal function. Flush all scheduled work from the MMC work queue. 82 */ 83static void mmc_flush_scheduled_work(void) 84{ 85 flush_workqueue(workqueue); 86} 87 88#ifdef CONFIG_FAIL_MMC_REQUEST 89 90/* 91 * Internal function. Inject random data errors. 92 * If mmc_data is NULL no errors are injected. 93 */ 94static void mmc_should_fail_request(struct mmc_host *host, 95 struct mmc_request *mrq) 96{ 97 struct mmc_command *cmd = mrq->cmd; 98 struct mmc_data *data = mrq->data; 99 static const int data_errors[] = { 100 -ETIMEDOUT, 101 -EILSEQ, 102 -EIO, 103 }; 104 105 if (!data) 106 return; 107 108 if (cmd->error || data->error || 109 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 110 return; 111 112 data->error = data_errors[random32() % ARRAY_SIZE(data_errors)]; 113 data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9; 114} 115 116#else /* CONFIG_FAIL_MMC_REQUEST */ 117 118static inline void mmc_should_fail_request(struct mmc_host *host, 119 struct mmc_request *mrq) 120{ 121} 122 123#endif /* CONFIG_FAIL_MMC_REQUEST */ 124 125/** 126 * mmc_request_done - finish processing an MMC request 127 * @host: MMC host which completed request 128 * @mrq: MMC request which request 129 * 130 * MMC drivers should call this function when they have completed 131 * their processing of a request. 132 */ 133void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 134{ 135 struct mmc_command *cmd = mrq->cmd; 136 int err = cmd->error; 137 138 if (err && cmd->retries && mmc_host_is_spi(host)) { 139 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 140 cmd->retries = 0; 141 } 142 143 if (err && cmd->retries) { 144 /* 145 * Request starter must handle retries - see 146 * mmc_wait_for_req_done(). 147 */ 148 if (mrq->done) 149 mrq->done(mrq); 150 } else { 151 mmc_should_fail_request(host, mrq); 152 153 led_trigger_event(host->led, LED_OFF); 154 155 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 156 mmc_hostname(host), cmd->opcode, err, 157 cmd->resp[0], cmd->resp[1], 158 cmd->resp[2], cmd->resp[3]); 159 160 if (mrq->data) { 161 pr_debug("%s: %d bytes transferred: %d\n", 162 mmc_hostname(host), 163 mrq->data->bytes_xfered, mrq->data->error); 164 } 165 166 if (mrq->stop) { 167 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 168 mmc_hostname(host), mrq->stop->opcode, 169 mrq->stop->error, 170 mrq->stop->resp[0], mrq->stop->resp[1], 171 mrq->stop->resp[2], mrq->stop->resp[3]); 172 } 173 174 if (mrq->done) 175 mrq->done(mrq); 176 177 mmc_host_clk_release(host); 178 } 179} 180 181EXPORT_SYMBOL(mmc_request_done); 182 183static void 184mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 185{ 186#ifdef CONFIG_MMC_DEBUG 187 unsigned int i, sz; 188 struct scatterlist *sg; 189#endif 190 191 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 192 mmc_hostname(host), mrq->cmd->opcode, 193 mrq->cmd->arg, mrq->cmd->flags); 194 195 if (mrq->data) { 196 pr_debug("%s: blksz %d blocks %d flags %08x " 197 "tsac %d ms nsac %d\n", 198 mmc_hostname(host), mrq->data->blksz, 199 mrq->data->blocks, mrq->data->flags, 200 mrq->data->timeout_ns / 1000000, 201 mrq->data->timeout_clks); 202 } 203 204 if (mrq->stop) { 205 pr_debug("%s: CMD%u arg %08x flags %08x\n", 206 mmc_hostname(host), mrq->stop->opcode, 207 mrq->stop->arg, mrq->stop->flags); 208 } 209 210 WARN_ON(!host->claimed); 211 212 mrq->cmd->error = 0; 213 mrq->cmd->mrq = mrq; 214 if (mrq->data) { 215 BUG_ON(mrq->data->blksz > host->max_blk_size); 216 BUG_ON(mrq->data->blocks > host->max_blk_count); 217 BUG_ON(mrq->data->blocks * mrq->data->blksz > 218 host->max_req_size); 219 220#ifdef CONFIG_MMC_DEBUG 221 sz = 0; 222 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 223 sz += sg->length; 224 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); 225#endif 226 227 mrq->cmd->data = mrq->data; 228 mrq->data->error = 0; 229 mrq->data->mrq = mrq; 230 if (mrq->stop) { 231 mrq->data->stop = mrq->stop; 232 mrq->stop->error = 0; 233 mrq->stop->mrq = mrq; 234 } 235 } 236 mmc_host_clk_hold(host); 237 led_trigger_event(host->led, LED_FULL); 238 host->ops->request(host, mrq); 239} 240 241static void mmc_wait_done(struct mmc_request *mrq) 242{ 243 complete(&mrq->completion); 244} 245 246static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 247{ 248 init_completion(&mrq->completion); 249 mrq->done = mmc_wait_done; 250 mmc_start_request(host, mrq); 251} 252 253static void mmc_wait_for_req_done(struct mmc_host *host, 254 struct mmc_request *mrq) 255{ 256 struct mmc_command *cmd; 257 258 while (1) { 259 wait_for_completion(&mrq->completion); 260 261 cmd = mrq->cmd; 262 if (!cmd->error || !cmd->retries) 263 break; 264 265 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 266 mmc_hostname(host), cmd->opcode, cmd->error); 267 cmd->retries--; 268 cmd->error = 0; 269 host->ops->request(host, mrq); 270 } 271} 272 273/** 274 * mmc_pre_req - Prepare for a new request 275 * @host: MMC host to prepare command 276 * @mrq: MMC request to prepare for 277 * @is_first_req: true if there is no previous started request 278 * that may run in parellel to this call, otherwise false 279 * 280 * mmc_pre_req() is called in prior to mmc_start_req() to let 281 * host prepare for the new request. Preparation of a request may be 282 * performed while another request is running on the host. 283 */ 284static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, 285 bool is_first_req) 286{ 287 if (host->ops->pre_req) 288 host->ops->pre_req(host, mrq, is_first_req); 289} 290 291/** 292 * mmc_post_req - Post process a completed request 293 * @host: MMC host to post process command 294 * @mrq: MMC request to post process for 295 * @err: Error, if non zero, clean up any resources made in pre_req 296 * 297 * Let the host post process a completed request. Post processing of 298 * a request may be performed while another reuqest is running. 299 */ 300static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 301 int err) 302{ 303 if (host->ops->post_req) 304 host->ops->post_req(host, mrq, err); 305} 306 307/** 308 * mmc_start_req - start a non-blocking request 309 * @host: MMC host to start command 310 * @areq: async request to start 311 * @error: out parameter returns 0 for success, otherwise non zero 312 * 313 * Start a new MMC custom command request for a host. 314 * If there is on ongoing async request wait for completion 315 * of that request and start the new one and return. 316 * Does not wait for the new request to complete. 317 * 318 * Returns the completed request, NULL in case of none completed. 319 * Wait for the an ongoing request (previoulsy started) to complete and 320 * return the completed request. If there is no ongoing request, NULL 321 * is returned without waiting. NULL is not an error condition. 322 */ 323struct mmc_async_req *mmc_start_req(struct mmc_host *host, 324 struct mmc_async_req *areq, int *error) 325{ 326 int err = 0; 327 struct mmc_async_req *data = host->areq; 328 329 /* Prepare a new request */ 330 if (areq) 331 mmc_pre_req(host, areq->mrq, !host->areq); 332 333 if (host->areq) { 334 mmc_wait_for_req_done(host, host->areq->mrq); 335 err = host->areq->err_check(host->card, host->areq); 336 if (err) { 337 /* post process the completed failed request */ 338 mmc_post_req(host, host->areq->mrq, 0); 339 if (areq) 340 /* 341 * Cancel the new prepared request, because 342 * it can't run until the failed 343 * request has been properly handled. 344 */ 345 mmc_post_req(host, areq->mrq, -EINVAL); 346 347 host->areq = NULL; 348 goto out; 349 } 350 } 351 352 if (areq) 353 __mmc_start_req(host, areq->mrq); 354 355 if (host->areq) 356 mmc_post_req(host, host->areq->mrq, 0); 357 358 host->areq = areq; 359 out: 360 if (error) 361 *error = err; 362 return data; 363} 364EXPORT_SYMBOL(mmc_start_req); 365 366/** 367 * mmc_wait_for_req - start a request and wait for completion 368 * @host: MMC host to start command 369 * @mrq: MMC request to start 370 * 371 * Start a new MMC custom command request for a host, and wait 372 * for the command to complete. Does not attempt to parse the 373 * response. 374 */ 375void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 376{ 377 __mmc_start_req(host, mrq); 378 mmc_wait_for_req_done(host, mrq); 379} 380EXPORT_SYMBOL(mmc_wait_for_req); 381 382/** 383 * mmc_interrupt_hpi - Issue for High priority Interrupt 384 * @card: the MMC card associated with the HPI transfer 385 * 386 * Issued High Priority Interrupt, and check for card status 387 * util out-of prg-state. 388 */ 389int mmc_interrupt_hpi(struct mmc_card *card) 390{ 391 int err; 392 u32 status; 393 394 BUG_ON(!card); 395 396 if (!card->ext_csd.hpi_en) { 397 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 398 return 1; 399 } 400 401 mmc_claim_host(card->host); 402 err = mmc_send_status(card, &status); 403 if (err) { 404 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 405 goto out; 406 } 407 408 /* 409 * If the card status is in PRG-state, we can send the HPI command. 410 */ 411 if (R1_CURRENT_STATE(status) == R1_STATE_PRG) { 412 do { 413 /* 414 * We don't know when the HPI command will finish 415 * processing, so we need to resend HPI until out 416 * of prg-state, and keep checking the card status 417 * with SEND_STATUS. If a timeout error occurs when 418 * sending the HPI command, we are already out of 419 * prg-state. 420 */ 421 err = mmc_send_hpi_cmd(card, &status); 422 if (err) 423 pr_debug("%s: abort HPI (%d error)\n", 424 mmc_hostname(card->host), err); 425 426 err = mmc_send_status(card, &status); 427 if (err) 428 break; 429 } while (R1_CURRENT_STATE(status) == R1_STATE_PRG); 430 } else 431 pr_debug("%s: Left prg-state\n", mmc_hostname(card->host)); 432 433out: 434 mmc_release_host(card->host); 435 return err; 436} 437EXPORT_SYMBOL(mmc_interrupt_hpi); 438 439/** 440 * mmc_wait_for_cmd - start a command and wait for completion 441 * @host: MMC host to start command 442 * @cmd: MMC command to start 443 * @retries: maximum number of retries 444 * 445 * Start a new MMC command for a host, and wait for the command 446 * to complete. Return any error that occurred while the command 447 * was executing. Do not attempt to parse the response. 448 */ 449int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 450{ 451 struct mmc_request mrq = {NULL}; 452 453 WARN_ON(!host->claimed); 454 455 memset(cmd->resp, 0, sizeof(cmd->resp)); 456 cmd->retries = retries; 457 458 mrq.cmd = cmd; 459 cmd->data = NULL; 460 461 mmc_wait_for_req(host, &mrq); 462 463 return cmd->error; 464} 465 466EXPORT_SYMBOL(mmc_wait_for_cmd); 467 468/** 469 * mmc_set_data_timeout - set the timeout for a data command 470 * @data: data phase for command 471 * @card: the MMC card associated with the data transfer 472 * 473 * Computes the data timeout parameters according to the 474 * correct algorithm given the card type. 475 */ 476void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 477{ 478 unsigned int mult; 479 480 /* 481 * SDIO cards only define an upper 1 s limit on access. 482 */ 483 if (mmc_card_sdio(card)) { 484 data->timeout_ns = 1000000000; 485 data->timeout_clks = 0; 486 return; 487 } 488 489 /* 490 * SD cards use a 100 multiplier rather than 10 491 */ 492 mult = mmc_card_sd(card) ? 100 : 10; 493 494 /* 495 * Scale up the multiplier (and therefore the timeout) by 496 * the r2w factor for writes. 497 */ 498 if (data->flags & MMC_DATA_WRITE) 499 mult <<= card->csd.r2w_factor; 500 501 data->timeout_ns = card->csd.tacc_ns * mult; 502 data->timeout_clks = card->csd.tacc_clks * mult; 503 504 /* 505 * SD cards also have an upper limit on the timeout. 506 */ 507 if (mmc_card_sd(card)) { 508 unsigned int timeout_us, limit_us; 509 510 timeout_us = data->timeout_ns / 1000; 511 if (mmc_host_clk_rate(card->host)) 512 timeout_us += data->timeout_clks * 1000 / 513 (mmc_host_clk_rate(card->host) / 1000); 514 515 if (data->flags & MMC_DATA_WRITE) 516 /* 517 * The limit is really 250 ms, but that is 518 * insufficient for some crappy cards. 519 */ 520 limit_us = 300000; 521 else 522 limit_us = 100000; 523 524 /* 525 * SDHC cards always use these fixed values. 526 */ 527 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 528 data->timeout_ns = limit_us * 1000; 529 data->timeout_clks = 0; 530 } 531 } 532 533 /* 534 * Some cards require longer data read timeout than indicated in CSD. 535 * Address this by setting the read timeout to a "reasonably high" 536 * value. For the cards tested, 300ms has proven enough. If necessary, 537 * this value can be increased if other problematic cards require this. 538 */ 539 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 540 data->timeout_ns = 300000000; 541 data->timeout_clks = 0; 542 } 543 544 /* 545 * Some cards need very high timeouts if driven in SPI mode. 546 * The worst observed timeout was 900ms after writing a 547 * continuous stream of data until the internal logic 548 * overflowed. 549 */ 550 if (mmc_host_is_spi(card->host)) { 551 if (data->flags & MMC_DATA_WRITE) { 552 if (data->timeout_ns < 1000000000) 553 data->timeout_ns = 1000000000; /* 1s */ 554 } else { 555 if (data->timeout_ns < 100000000) 556 data->timeout_ns = 100000000; /* 100ms */ 557 } 558 } 559} 560EXPORT_SYMBOL(mmc_set_data_timeout); 561 562/** 563 * mmc_align_data_size - pads a transfer size to a more optimal value 564 * @card: the MMC card associated with the data transfer 565 * @sz: original transfer size 566 * 567 * Pads the original data size with a number of extra bytes in 568 * order to avoid controller bugs and/or performance hits 569 * (e.g. some controllers revert to PIO for certain sizes). 570 * 571 * Returns the improved size, which might be unmodified. 572 * 573 * Note that this function is only relevant when issuing a 574 * single scatter gather entry. 575 */ 576unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 577{ 578 /* 579 * FIXME: We don't have a system for the controller to tell 580 * the core about its problems yet, so for now we just 32-bit 581 * align the size. 582 */ 583 sz = ((sz + 3) / 4) * 4; 584 585 return sz; 586} 587EXPORT_SYMBOL(mmc_align_data_size); 588 589/** 590 * mmc_host_enable - enable a host. 591 * @host: mmc host to enable 592 * 593 * Hosts that support power saving can use the 'enable' and 'disable' 594 * methods to exit and enter power saving states. For more information 595 * see comments for struct mmc_host_ops. 596 */ 597int mmc_host_enable(struct mmc_host *host) 598{ 599 if (!(host->caps & MMC_CAP_DISABLE)) 600 return 0; 601 602 if (host->en_dis_recurs) 603 return 0; 604 605 if (host->nesting_cnt++) 606 return 0; 607 608 cancel_delayed_work_sync(&host->disable); 609 610 if (host->enabled) 611 return 0; 612 613 if (host->ops->enable) { 614 int err; 615 616 host->en_dis_recurs = 1; 617 err = host->ops->enable(host); 618 host->en_dis_recurs = 0; 619 620 if (err) { 621 pr_debug("%s: enable error %d\n", 622 mmc_hostname(host), err); 623 return err; 624 } 625 } 626 host->enabled = 1; 627 return 0; 628} 629EXPORT_SYMBOL(mmc_host_enable); 630 631static int mmc_host_do_disable(struct mmc_host *host, int lazy) 632{ 633 if (host->ops->disable) { 634 int err; 635 636 host->en_dis_recurs = 1; 637 err = host->ops->disable(host, lazy); 638 host->en_dis_recurs = 0; 639 640 if (err < 0) { 641 pr_debug("%s: disable error %d\n", 642 mmc_hostname(host), err); 643 return err; 644 } 645 if (err > 0) { 646 unsigned long delay = msecs_to_jiffies(err); 647 648 mmc_schedule_delayed_work(&host->disable, delay); 649 } 650 } 651 host->enabled = 0; 652 return 0; 653} 654 655/** 656 * mmc_host_disable - disable a host. 657 * @host: mmc host to disable 658 * 659 * Hosts that support power saving can use the 'enable' and 'disable' 660 * methods to exit and enter power saving states. For more information 661 * see comments for struct mmc_host_ops. 662 */ 663int mmc_host_disable(struct mmc_host *host) 664{ 665 int err; 666 667 if (!(host->caps & MMC_CAP_DISABLE)) 668 return 0; 669 670 if (host->en_dis_recurs) 671 return 0; 672 673 if (--host->nesting_cnt) 674 return 0; 675 676 if (!host->enabled) 677 return 0; 678 679 err = mmc_host_do_disable(host, 0); 680 return err; 681} 682EXPORT_SYMBOL(mmc_host_disable); 683 684/** 685 * __mmc_claim_host - exclusively claim a host 686 * @host: mmc host to claim 687 * @abort: whether or not the operation should be aborted 688 * 689 * Claim a host for a set of operations. If @abort is non null and 690 * dereference a non-zero value then this will return prematurely with 691 * that non-zero value without acquiring the lock. Returns zero 692 * with the lock held otherwise. 693 */ 694int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 695{ 696 DECLARE_WAITQUEUE(wait, current); 697 unsigned long flags; 698 int stop; 699 700 might_sleep(); 701 702 add_wait_queue(&host->wq, &wait); 703 spin_lock_irqsave(&host->lock, flags); 704 while (1) { 705 set_current_state(TASK_UNINTERRUPTIBLE); 706 stop = abort ? atomic_read(abort) : 0; 707 if (stop || !host->claimed || host->claimer == current) 708 break; 709 spin_unlock_irqrestore(&host->lock, flags); 710 schedule(); 711 spin_lock_irqsave(&host->lock, flags); 712 } 713 set_current_state(TASK_RUNNING); 714 if (!stop) { 715 host->claimed = 1; 716 host->claimer = current; 717 host->claim_cnt += 1; 718 } else 719 wake_up(&host->wq); 720 spin_unlock_irqrestore(&host->lock, flags); 721 remove_wait_queue(&host->wq, &wait); 722 if (!stop) 723 mmc_host_enable(host); 724 return stop; 725} 726 727EXPORT_SYMBOL(__mmc_claim_host); 728 729/** 730 * mmc_try_claim_host - try exclusively to claim a host 731 * @host: mmc host to claim 732 * 733 * Returns %1 if the host is claimed, %0 otherwise. 734 */ 735int mmc_try_claim_host(struct mmc_host *host) 736{ 737 int claimed_host = 0; 738 unsigned long flags; 739 740 spin_lock_irqsave(&host->lock, flags); 741 if (!host->claimed || host->claimer == current) { 742 host->claimed = 1; 743 host->claimer = current; 744 host->claim_cnt += 1; 745 claimed_host = 1; 746 } 747 spin_unlock_irqrestore(&host->lock, flags); 748 return claimed_host; 749} 750EXPORT_SYMBOL(mmc_try_claim_host); 751 752/** 753 * mmc_do_release_host - release a claimed host 754 * @host: mmc host to release 755 * 756 * If you successfully claimed a host, this function will 757 * release it again. 758 */ 759void mmc_do_release_host(struct mmc_host *host) 760{ 761 unsigned long flags; 762 763 spin_lock_irqsave(&host->lock, flags); 764 if (--host->claim_cnt) { 765 /* Release for nested claim */ 766 spin_unlock_irqrestore(&host->lock, flags); 767 } else { 768 host->claimed = 0; 769 host->claimer = NULL; 770 spin_unlock_irqrestore(&host->lock, flags); 771 wake_up(&host->wq); 772 } 773} 774EXPORT_SYMBOL(mmc_do_release_host); 775 776void mmc_host_deeper_disable(struct work_struct *work) 777{ 778 struct mmc_host *host = 779 container_of(work, struct mmc_host, disable.work); 780 781 /* If the host is claimed then we do not want to disable it anymore */ 782 if (!mmc_try_claim_host(host)) 783 return; 784 mmc_host_do_disable(host, 1); 785 mmc_do_release_host(host); 786} 787 788/** 789 * mmc_host_lazy_disable - lazily disable a host. 790 * @host: mmc host to disable 791 * 792 * Hosts that support power saving can use the 'enable' and 'disable' 793 * methods to exit and enter power saving states. For more information 794 * see comments for struct mmc_host_ops. 795 */ 796int mmc_host_lazy_disable(struct mmc_host *host) 797{ 798 if (!(host->caps & MMC_CAP_DISABLE)) 799 return 0; 800 801 if (host->en_dis_recurs) 802 return 0; 803 804 if (--host->nesting_cnt) 805 return 0; 806 807 if (!host->enabled) 808 return 0; 809 810 if (host->disable_delay) { 811 mmc_schedule_delayed_work(&host->disable, 812 msecs_to_jiffies(host->disable_delay)); 813 return 0; 814 } else 815 return mmc_host_do_disable(host, 1); 816} 817EXPORT_SYMBOL(mmc_host_lazy_disable); 818 819/** 820 * mmc_release_host - release a host 821 * @host: mmc host to release 822 * 823 * Release a MMC host, allowing others to claim the host 824 * for their operations. 825 */ 826void mmc_release_host(struct mmc_host *host) 827{ 828 WARN_ON(!host->claimed); 829 830 mmc_host_lazy_disable(host); 831 832 mmc_do_release_host(host); 833} 834 835EXPORT_SYMBOL(mmc_release_host); 836 837/* 838 * Internal function that does the actual ios call to the host driver, 839 * optionally printing some debug output. 840 */ 841static inline void mmc_set_ios(struct mmc_host *host) 842{ 843 struct mmc_ios *ios = &host->ios; 844 845 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 846 "width %u timing %u\n", 847 mmc_hostname(host), ios->clock, ios->bus_mode, 848 ios->power_mode, ios->chip_select, ios->vdd, 849 ios->bus_width, ios->timing); 850 851 if (ios->clock > 0) 852 mmc_set_ungated(host); 853 host->ops->set_ios(host, ios); 854} 855 856/* 857 * Control chip select pin on a host. 858 */ 859void mmc_set_chip_select(struct mmc_host *host, int mode) 860{ 861 mmc_host_clk_hold(host); 862 host->ios.chip_select = mode; 863 mmc_set_ios(host); 864 mmc_host_clk_release(host); 865} 866 867/* 868 * Sets the host clock to the highest possible frequency that 869 * is below "hz". 870 */ 871static void __mmc_set_clock(struct mmc_host *host, unsigned int hz) 872{ 873 WARN_ON(hz < host->f_min); 874 875 if (hz > host->f_max) 876 hz = host->f_max; 877 878 host->ios.clock = hz; 879 mmc_set_ios(host); 880} 881 882void mmc_set_clock(struct mmc_host *host, unsigned int hz) 883{ 884 mmc_host_clk_hold(host); 885 __mmc_set_clock(host, hz); 886 mmc_host_clk_release(host); 887} 888 889#ifdef CONFIG_MMC_CLKGATE 890/* 891 * This gates the clock by setting it to 0 Hz. 892 */ 893void mmc_gate_clock(struct mmc_host *host) 894{ 895 unsigned long flags; 896 897 spin_lock_irqsave(&host->clk_lock, flags); 898 host->clk_old = host->ios.clock; 899 host->ios.clock = 0; 900 host->clk_gated = true; 901 spin_unlock_irqrestore(&host->clk_lock, flags); 902 mmc_set_ios(host); 903} 904 905/* 906 * This restores the clock from gating by using the cached 907 * clock value. 908 */ 909void mmc_ungate_clock(struct mmc_host *host) 910{ 911 /* 912 * We should previously have gated the clock, so the clock shall 913 * be 0 here! The clock may however be 0 during initialization, 914 * when some request operations are performed before setting 915 * the frequency. When ungate is requested in that situation 916 * we just ignore the call. 917 */ 918 if (host->clk_old) { 919 BUG_ON(host->ios.clock); 920 /* This call will also set host->clk_gated to false */ 921 __mmc_set_clock(host, host->clk_old); 922 } 923} 924 925void mmc_set_ungated(struct mmc_host *host) 926{ 927 unsigned long flags; 928 929 /* 930 * We've been given a new frequency while the clock is gated, 931 * so make sure we regard this as ungating it. 932 */ 933 spin_lock_irqsave(&host->clk_lock, flags); 934 host->clk_gated = false; 935 spin_unlock_irqrestore(&host->clk_lock, flags); 936} 937 938#else 939void mmc_set_ungated(struct mmc_host *host) 940{ 941} 942#endif 943 944/* 945 * Change the bus mode (open drain/push-pull) of a host. 946 */ 947void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 948{ 949 mmc_host_clk_hold(host); 950 host->ios.bus_mode = mode; 951 mmc_set_ios(host); 952 mmc_host_clk_release(host); 953} 954 955/* 956 * Change data bus width of a host. 957 */ 958void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 959{ 960 mmc_host_clk_hold(host); 961 host->ios.bus_width = width; 962 mmc_set_ios(host); 963 mmc_host_clk_release(host); 964} 965 966/** 967 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 968 * @vdd: voltage (mV) 969 * @low_bits: prefer low bits in boundary cases 970 * 971 * This function returns the OCR bit number according to the provided @vdd 972 * value. If conversion is not possible a negative errno value returned. 973 * 974 * Depending on the @low_bits flag the function prefers low or high OCR bits 975 * on boundary voltages. For example, 976 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 977 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 978 * 979 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 980 */ 981static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 982{ 983 const int max_bit = ilog2(MMC_VDD_35_36); 984 int bit; 985 986 if (vdd < 1650 || vdd > 3600) 987 return -EINVAL; 988 989 if (vdd >= 1650 && vdd <= 1950) 990 return ilog2(MMC_VDD_165_195); 991 992 if (low_bits) 993 vdd -= 1; 994 995 /* Base 2000 mV, step 100 mV, bit's base 8. */ 996 bit = (vdd - 2000) / 100 + 8; 997 if (bit > max_bit) 998 return max_bit; 999 return bit; 1000} 1001 1002/** 1003 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1004 * @vdd_min: minimum voltage value (mV) 1005 * @vdd_max: maximum voltage value (mV) 1006 * 1007 * This function returns the OCR mask bits according to the provided @vdd_min 1008 * and @vdd_max values. If conversion is not possible the function returns 0. 1009 * 1010 * Notes wrt boundary cases: 1011 * This function sets the OCR bits for all boundary voltages, for example 1012 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1013 * MMC_VDD_34_35 mask. 1014 */ 1015u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1016{ 1017 u32 mask = 0; 1018 1019 if (vdd_max < vdd_min) 1020 return 0; 1021 1022 /* Prefer high bits for the boundary vdd_max values. */ 1023 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1024 if (vdd_max < 0) 1025 return 0; 1026 1027 /* Prefer low bits for the boundary vdd_min values. */ 1028 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1029 if (vdd_min < 0) 1030 return 0; 1031 1032 /* Fill the mask, from max bit to min bit. */ 1033 while (vdd_max >= vdd_min) 1034 mask |= 1 << vdd_max--; 1035 1036 return mask; 1037} 1038EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1039 1040#ifdef CONFIG_REGULATOR 1041 1042/** 1043 * mmc_regulator_get_ocrmask - return mask of supported voltages 1044 * @supply: regulator to use 1045 * 1046 * This returns either a negative errno, or a mask of voltages that 1047 * can be provided to MMC/SD/SDIO devices using the specified voltage 1048 * regulator. This would normally be called before registering the 1049 * MMC host adapter. 1050 */ 1051int mmc_regulator_get_ocrmask(struct regulator *supply) 1052{ 1053 int result = 0; 1054 int count; 1055 int i; 1056 1057 count = regulator_count_voltages(supply); 1058 if (count < 0) 1059 return count; 1060 1061 for (i = 0; i < count; i++) { 1062 int vdd_uV; 1063 int vdd_mV; 1064 1065 vdd_uV = regulator_list_voltage(supply, i); 1066 if (vdd_uV <= 0) 1067 continue; 1068 1069 vdd_mV = vdd_uV / 1000; 1070 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1071 } 1072 1073 return result; 1074} 1075EXPORT_SYMBOL(mmc_regulator_get_ocrmask); 1076 1077/** 1078 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1079 * @mmc: the host to regulate 1080 * @supply: regulator to use 1081 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1082 * 1083 * Returns zero on success, else negative errno. 1084 * 1085 * MMC host drivers may use this to enable or disable a regulator using 1086 * a particular supply voltage. This would normally be called from the 1087 * set_ios() method. 1088 */ 1089int mmc_regulator_set_ocr(struct mmc_host *mmc, 1090 struct regulator *supply, 1091 unsigned short vdd_bit) 1092{ 1093 int result = 0; 1094 int min_uV, max_uV; 1095 1096 if (vdd_bit) { 1097 int tmp; 1098 int voltage; 1099 1100 /* REVISIT mmc_vddrange_to_ocrmask() may have set some 1101 * bits this regulator doesn't quite support ... don't 1102 * be too picky, most cards and regulators are OK with 1103 * a 0.1V range goof (it's a small error percentage). 1104 */ 1105 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1106 if (tmp == 0) { 1107 min_uV = 1650 * 1000; 1108 max_uV = 1950 * 1000; 1109 } else { 1110 min_uV = 1900 * 1000 + tmp * 100 * 1000; 1111 max_uV = min_uV + 100 * 1000; 1112 } 1113 1114 /* avoid needless changes to this voltage; the regulator 1115 * might not allow this operation 1116 */ 1117 voltage = regulator_get_voltage(supply); 1118 if (voltage < 0) 1119 result = voltage; 1120 else if (voltage < min_uV || voltage > max_uV) 1121 result = regulator_set_voltage(supply, min_uV, max_uV); 1122 else 1123 result = 0; 1124 1125 if (result == 0 && !mmc->regulator_enabled) { 1126 result = regulator_enable(supply); 1127 if (!result) 1128 mmc->regulator_enabled = true; 1129 } 1130 } else if (mmc->regulator_enabled) { 1131 result = regulator_disable(supply); 1132 if (result == 0) 1133 mmc->regulator_enabled = false; 1134 } 1135 1136 if (result) 1137 dev_err(mmc_dev(mmc), 1138 "could not set regulator OCR (%d)\n", result); 1139 return result; 1140} 1141EXPORT_SYMBOL(mmc_regulator_set_ocr); 1142 1143#endif /* CONFIG_REGULATOR */ 1144 1145/* 1146 * Mask off any voltages we don't support and select 1147 * the lowest voltage 1148 */ 1149u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1150{ 1151 int bit; 1152 1153 ocr &= host->ocr_avail; 1154 1155 bit = ffs(ocr); 1156 if (bit) { 1157 bit -= 1; 1158 1159 ocr &= 3 << bit; 1160 1161 mmc_host_clk_hold(host); 1162 host->ios.vdd = bit; 1163 mmc_set_ios(host); 1164 mmc_host_clk_release(host); 1165 } else { 1166 pr_warning("%s: host doesn't support card's voltages\n", 1167 mmc_hostname(host)); 1168 ocr = 0; 1169 } 1170 1171 return ocr; 1172} 1173 1174int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11) 1175{ 1176 struct mmc_command cmd = {0}; 1177 int err = 0; 1178 1179 BUG_ON(!host); 1180 1181 /* 1182 * Send CMD11 only if the request is to switch the card to 1183 * 1.8V signalling. 1184 */ 1185 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) { 1186 cmd.opcode = SD_SWITCH_VOLTAGE; 1187 cmd.arg = 0; 1188 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1189 1190 err = mmc_wait_for_cmd(host, &cmd, 0); 1191 if (err) 1192 return err; 1193 1194 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1195 return -EIO; 1196 } 1197 1198 host->ios.signal_voltage = signal_voltage; 1199 1200 if (host->ops->start_signal_voltage_switch) 1201 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1202 1203 return err; 1204} 1205 1206/* 1207 * Select timing parameters for host. 1208 */ 1209void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1210{ 1211 mmc_host_clk_hold(host); 1212 host->ios.timing = timing; 1213 mmc_set_ios(host); 1214 mmc_host_clk_release(host); 1215} 1216 1217/* 1218 * Select appropriate driver type for host. 1219 */ 1220void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1221{ 1222 mmc_host_clk_hold(host); 1223 host->ios.drv_type = drv_type; 1224 mmc_set_ios(host); 1225 mmc_host_clk_release(host); 1226} 1227 1228/* 1229 * Apply power to the MMC stack. This is a two-stage process. 1230 * First, we enable power to the card without the clock running. 1231 * We then wait a bit for the power to stabilise. Finally, 1232 * enable the bus drivers and clock to the card. 1233 * 1234 * We must _NOT_ enable the clock prior to power stablising. 1235 * 1236 * If a host does all the power sequencing itself, ignore the 1237 * initial MMC_POWER_UP stage. 1238 */ 1239static void mmc_power_up(struct mmc_host *host) 1240{ 1241 int bit; 1242 1243 mmc_host_clk_hold(host); 1244 1245 /* If ocr is set, we use it */ 1246 if (host->ocr) 1247 bit = ffs(host->ocr) - 1; 1248 else 1249 bit = fls(host->ocr_avail) - 1; 1250 1251 host->ios.vdd = bit; 1252 if (mmc_host_is_spi(host)) 1253 host->ios.chip_select = MMC_CS_HIGH; 1254 else 1255 host->ios.chip_select = MMC_CS_DONTCARE; 1256 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1257 host->ios.power_mode = MMC_POWER_UP; 1258 host->ios.bus_width = MMC_BUS_WIDTH_1; 1259 host->ios.timing = MMC_TIMING_LEGACY; 1260 mmc_set_ios(host); 1261 1262 /* 1263 * This delay should be sufficient to allow the power supply 1264 * to reach the minimum voltage. 1265 */ 1266 mmc_delay(10); 1267 1268 host->ios.clock = host->f_init; 1269 1270 host->ios.power_mode = MMC_POWER_ON; 1271 mmc_set_ios(host); 1272 1273 /* 1274 * This delay must be at least 74 clock sizes, or 1 ms, or the 1275 * time required to reach a stable voltage. 1276 */ 1277 mmc_delay(10); 1278 1279 mmc_host_clk_release(host); 1280} 1281 1282void mmc_power_off(struct mmc_host *host) 1283{ 1284 struct mmc_card *card; 1285 unsigned int notify_type; 1286 unsigned int timeout; 1287 int err; 1288 1289 mmc_host_clk_hold(host); 1290 1291 card = host->card; 1292 host->ios.clock = 0; 1293 host->ios.vdd = 0; 1294 1295 if (card && mmc_card_mmc(card) && 1296 (card->poweroff_notify_state == MMC_POWERED_ON)) { 1297 1298 if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) { 1299 notify_type = EXT_CSD_POWER_OFF_SHORT; 1300 timeout = card->ext_csd.generic_cmd6_time; 1301 card->poweroff_notify_state = MMC_POWEROFF_SHORT; 1302 } else { 1303 notify_type = EXT_CSD_POWER_OFF_LONG; 1304 timeout = card->ext_csd.power_off_longtime; 1305 card->poweroff_notify_state = MMC_POWEROFF_LONG; 1306 } 1307 1308 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1309 EXT_CSD_POWER_OFF_NOTIFICATION, 1310 notify_type, timeout); 1311 1312 if (err && err != -EBADMSG) 1313 pr_err("Device failed to respond within %d poweroff " 1314 "time. Forcefully powering down the device\n", 1315 timeout); 1316 1317 /* Set the card state to no notification after the poweroff */ 1318 card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION; 1319 } 1320 1321 /* 1322 * Reset ocr mask to be the highest possible voltage supported for 1323 * this mmc host. This value will be used at next power up. 1324 */ 1325 host->ocr = 1 << (fls(host->ocr_avail) - 1); 1326 1327 if (!mmc_host_is_spi(host)) { 1328 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 1329 host->ios.chip_select = MMC_CS_DONTCARE; 1330 } 1331 host->ios.power_mode = MMC_POWER_OFF; 1332 host->ios.bus_width = MMC_BUS_WIDTH_1; 1333 host->ios.timing = MMC_TIMING_LEGACY; 1334 mmc_set_ios(host); 1335 1336 /* 1337 * Some configurations, such as the 802.11 SDIO card in the OLPC 1338 * XO-1.5, require a short delay after poweroff before the card 1339 * can be successfully turned on again. 1340 */ 1341 mmc_delay(1); 1342 1343 mmc_host_clk_release(host); 1344} 1345 1346/* 1347 * Cleanup when the last reference to the bus operator is dropped. 1348 */ 1349static void __mmc_release_bus(struct mmc_host *host) 1350{ 1351 BUG_ON(!host); 1352 BUG_ON(host->bus_refs); 1353 BUG_ON(!host->bus_dead); 1354 1355 host->bus_ops = NULL; 1356} 1357 1358/* 1359 * Increase reference count of bus operator 1360 */ 1361static inline void mmc_bus_get(struct mmc_host *host) 1362{ 1363 unsigned long flags; 1364 1365 spin_lock_irqsave(&host->lock, flags); 1366 host->bus_refs++; 1367 spin_unlock_irqrestore(&host->lock, flags); 1368} 1369 1370/* 1371 * Decrease reference count of bus operator and free it if 1372 * it is the last reference. 1373 */ 1374static inline void mmc_bus_put(struct mmc_host *host) 1375{ 1376 unsigned long flags; 1377 1378 spin_lock_irqsave(&host->lock, flags); 1379 host->bus_refs--; 1380 if ((host->bus_refs == 0) && host->bus_ops) 1381 __mmc_release_bus(host); 1382 spin_unlock_irqrestore(&host->lock, flags); 1383} 1384 1385/* 1386 * Assign a mmc bus handler to a host. Only one bus handler may control a 1387 * host at any given time. 1388 */ 1389void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1390{ 1391 unsigned long flags; 1392 1393 BUG_ON(!host); 1394 BUG_ON(!ops); 1395 1396 WARN_ON(!host->claimed); 1397 1398 spin_lock_irqsave(&host->lock, flags); 1399 1400 BUG_ON(host->bus_ops); 1401 BUG_ON(host->bus_refs); 1402 1403 host->bus_ops = ops; 1404 host->bus_refs = 1; 1405 host->bus_dead = 0; 1406 1407 spin_unlock_irqrestore(&host->lock, flags); 1408} 1409 1410/* 1411 * Remove the current bus handler from a host. 1412 */ 1413void mmc_detach_bus(struct mmc_host *host) 1414{ 1415 unsigned long flags; 1416 1417 BUG_ON(!host); 1418 1419 WARN_ON(!host->claimed); 1420 WARN_ON(!host->bus_ops); 1421 1422 spin_lock_irqsave(&host->lock, flags); 1423 1424 host->bus_dead = 1; 1425 1426 spin_unlock_irqrestore(&host->lock, flags); 1427 1428 mmc_bus_put(host); 1429} 1430 1431/** 1432 * mmc_detect_change - process change of state on a MMC socket 1433 * @host: host which changed state. 1434 * @delay: optional delay to wait before detection (jiffies) 1435 * 1436 * MMC drivers should call this when they detect a card has been 1437 * inserted or removed. The MMC layer will confirm that any 1438 * present card is still functional, and initialize any newly 1439 * inserted. 1440 */ 1441void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1442{ 1443#ifdef CONFIG_MMC_DEBUG 1444 unsigned long flags; 1445 spin_lock_irqsave(&host->lock, flags); 1446 WARN_ON(host->removed); 1447 spin_unlock_irqrestore(&host->lock, flags); 1448#endif 1449 1450 mmc_schedule_delayed_work(&host->detect, delay); 1451} 1452 1453EXPORT_SYMBOL(mmc_detect_change); 1454 1455void mmc_init_erase(struct mmc_card *card) 1456{ 1457 unsigned int sz; 1458 1459 if (is_power_of_2(card->erase_size)) 1460 card->erase_shift = ffs(card->erase_size) - 1; 1461 else 1462 card->erase_shift = 0; 1463 1464 /* 1465 * It is possible to erase an arbitrarily large area of an SD or MMC 1466 * card. That is not desirable because it can take a long time 1467 * (minutes) potentially delaying more important I/O, and also the 1468 * timeout calculations become increasingly hugely over-estimated. 1469 * Consequently, 'pref_erase' is defined as a guide to limit erases 1470 * to that size and alignment. 1471 * 1472 * For SD cards that define Allocation Unit size, limit erases to one 1473 * Allocation Unit at a time. For MMC cards that define High Capacity 1474 * Erase Size, whether it is switched on or not, limit to that size. 1475 * Otherwise just have a stab at a good value. For modern cards it 1476 * will end up being 4MiB. Note that if the value is too small, it 1477 * can end up taking longer to erase. 1478 */ 1479 if (mmc_card_sd(card) && card->ssr.au) { 1480 card->pref_erase = card->ssr.au; 1481 card->erase_shift = ffs(card->ssr.au) - 1; 1482 } else if (card->ext_csd.hc_erase_size) { 1483 card->pref_erase = card->ext_csd.hc_erase_size; 1484 } else { 1485 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1486 if (sz < 128) 1487 card->pref_erase = 512 * 1024 / 512; 1488 else if (sz < 512) 1489 card->pref_erase = 1024 * 1024 / 512; 1490 else if (sz < 1024) 1491 card->pref_erase = 2 * 1024 * 1024 / 512; 1492 else 1493 card->pref_erase = 4 * 1024 * 1024 / 512; 1494 if (card->pref_erase < card->erase_size) 1495 card->pref_erase = card->erase_size; 1496 else { 1497 sz = card->pref_erase % card->erase_size; 1498 if (sz) 1499 card->pref_erase += card->erase_size - sz; 1500 } 1501 } 1502} 1503 1504static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1505 unsigned int arg, unsigned int qty) 1506{ 1507 unsigned int erase_timeout; 1508 1509 if (card->ext_csd.erase_group_def & 1) { 1510 /* High Capacity Erase Group Size uses HC timeouts */ 1511 if (arg == MMC_TRIM_ARG) 1512 erase_timeout = card->ext_csd.trim_timeout; 1513 else 1514 erase_timeout = card->ext_csd.hc_erase_timeout; 1515 } else { 1516 /* CSD Erase Group Size uses write timeout */ 1517 unsigned int mult = (10 << card->csd.r2w_factor); 1518 unsigned int timeout_clks = card->csd.tacc_clks * mult; 1519 unsigned int timeout_us; 1520 1521 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 1522 if (card->csd.tacc_ns < 1000000) 1523 timeout_us = (card->csd.tacc_ns * mult) / 1000; 1524 else 1525 timeout_us = (card->csd.tacc_ns / 1000) * mult; 1526 1527 /* 1528 * ios.clock is only a target. The real clock rate might be 1529 * less but not that much less, so fudge it by multiplying by 2. 1530 */ 1531 timeout_clks <<= 1; 1532 timeout_us += (timeout_clks * 1000) / 1533 (mmc_host_clk_rate(card->host) / 1000); 1534 1535 erase_timeout = timeout_us / 1000; 1536 1537 /* 1538 * Theoretically, the calculation could underflow so round up 1539 * to 1ms in that case. 1540 */ 1541 if (!erase_timeout) 1542 erase_timeout = 1; 1543 } 1544 1545 /* Multiplier for secure operations */ 1546 if (arg & MMC_SECURE_ARGS) { 1547 if (arg == MMC_SECURE_ERASE_ARG) 1548 erase_timeout *= card->ext_csd.sec_erase_mult; 1549 else 1550 erase_timeout *= card->ext_csd.sec_trim_mult; 1551 } 1552 1553 erase_timeout *= qty; 1554 1555 /* 1556 * Ensure at least a 1 second timeout for SPI as per 1557 * 'mmc_set_data_timeout()' 1558 */ 1559 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1560 erase_timeout = 1000; 1561 1562 return erase_timeout; 1563} 1564 1565static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1566 unsigned int arg, 1567 unsigned int qty) 1568{ 1569 unsigned int erase_timeout; 1570 1571 if (card->ssr.erase_timeout) { 1572 /* Erase timeout specified in SD Status Register (SSR) */ 1573 erase_timeout = card->ssr.erase_timeout * qty + 1574 card->ssr.erase_offset; 1575 } else { 1576 /* 1577 * Erase timeout not specified in SD Status Register (SSR) so 1578 * use 250ms per write block. 1579 */ 1580 erase_timeout = 250 * qty; 1581 } 1582 1583 /* Must not be less than 1 second */ 1584 if (erase_timeout < 1000) 1585 erase_timeout = 1000; 1586 1587 return erase_timeout; 1588} 1589 1590static unsigned int mmc_erase_timeout(struct mmc_card *card, 1591 unsigned int arg, 1592 unsigned int qty) 1593{ 1594 if (mmc_card_sd(card)) 1595 return mmc_sd_erase_timeout(card, arg, qty); 1596 else 1597 return mmc_mmc_erase_timeout(card, arg, qty); 1598} 1599 1600static int mmc_do_erase(struct mmc_card *card, unsigned int from, 1601 unsigned int to, unsigned int arg) 1602{ 1603 struct mmc_command cmd = {0}; 1604 unsigned int qty = 0; 1605 int err; 1606 1607 /* 1608 * qty is used to calculate the erase timeout which depends on how many 1609 * erase groups (or allocation units in SD terminology) are affected. 1610 * We count erasing part of an erase group as one erase group. 1611 * For SD, the allocation units are always a power of 2. For MMC, the 1612 * erase group size is almost certainly also power of 2, but it does not 1613 * seem to insist on that in the JEDEC standard, so we fall back to 1614 * division in that case. SD may not specify an allocation unit size, 1615 * in which case the timeout is based on the number of write blocks. 1616 * 1617 * Note that the timeout for secure trim 2 will only be correct if the 1618 * number of erase groups specified is the same as the total of all 1619 * preceding secure trim 1 commands. Since the power may have been 1620 * lost since the secure trim 1 commands occurred, it is generally 1621 * impossible to calculate the secure trim 2 timeout correctly. 1622 */ 1623 if (card->erase_shift) 1624 qty += ((to >> card->erase_shift) - 1625 (from >> card->erase_shift)) + 1; 1626 else if (mmc_card_sd(card)) 1627 qty += to - from + 1; 1628 else 1629 qty += ((to / card->erase_size) - 1630 (from / card->erase_size)) + 1; 1631 1632 if (!mmc_card_blockaddr(card)) { 1633 from <<= 9; 1634 to <<= 9; 1635 } 1636 1637 if (mmc_card_sd(card)) 1638 cmd.opcode = SD_ERASE_WR_BLK_START; 1639 else 1640 cmd.opcode = MMC_ERASE_GROUP_START; 1641 cmd.arg = from; 1642 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1643 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1644 if (err) { 1645 pr_err("mmc_erase: group start error %d, " 1646 "status %#x\n", err, cmd.resp[0]); 1647 err = -EIO; 1648 goto out; 1649 } 1650 1651 memset(&cmd, 0, sizeof(struct mmc_command)); 1652 if (mmc_card_sd(card)) 1653 cmd.opcode = SD_ERASE_WR_BLK_END; 1654 else 1655 cmd.opcode = MMC_ERASE_GROUP_END; 1656 cmd.arg = to; 1657 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1658 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1659 if (err) { 1660 pr_err("mmc_erase: group end error %d, status %#x\n", 1661 err, cmd.resp[0]); 1662 err = -EIO; 1663 goto out; 1664 } 1665 1666 memset(&cmd, 0, sizeof(struct mmc_command)); 1667 cmd.opcode = MMC_ERASE; 1668 cmd.arg = arg; 1669 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1670 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty); 1671 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1672 if (err) { 1673 pr_err("mmc_erase: erase error %d, status %#x\n", 1674 err, cmd.resp[0]); 1675 err = -EIO; 1676 goto out; 1677 } 1678 1679 if (mmc_host_is_spi(card->host)) 1680 goto out; 1681 1682 do { 1683 memset(&cmd, 0, sizeof(struct mmc_command)); 1684 cmd.opcode = MMC_SEND_STATUS; 1685 cmd.arg = card->rca << 16; 1686 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1687 /* Do not retry else we can't see errors */ 1688 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1689 if (err || (cmd.resp[0] & 0xFDF92000)) { 1690 pr_err("error %d requesting status %#x\n", 1691 err, cmd.resp[0]); 1692 err = -EIO; 1693 goto out; 1694 } 1695 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 1696 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG); 1697out: 1698 return err; 1699} 1700 1701/** 1702 * mmc_erase - erase sectors. 1703 * @card: card to erase 1704 * @from: first sector to erase 1705 * @nr: number of sectors to erase 1706 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 1707 * 1708 * Caller must claim host before calling this function. 1709 */ 1710int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 1711 unsigned int arg) 1712{ 1713 unsigned int rem, to = from + nr; 1714 1715 if (!(card->host->caps & MMC_CAP_ERASE) || 1716 !(card->csd.cmdclass & CCC_ERASE)) 1717 return -EOPNOTSUPP; 1718 1719 if (!card->erase_size) 1720 return -EOPNOTSUPP; 1721 1722 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 1723 return -EOPNOTSUPP; 1724 1725 if ((arg & MMC_SECURE_ARGS) && 1726 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 1727 return -EOPNOTSUPP; 1728 1729 if ((arg & MMC_TRIM_ARGS) && 1730 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 1731 return -EOPNOTSUPP; 1732 1733 if (arg == MMC_SECURE_ERASE_ARG) { 1734 if (from % card->erase_size || nr % card->erase_size) 1735 return -EINVAL; 1736 } 1737 1738 if (arg == MMC_ERASE_ARG) { 1739 rem = from % card->erase_size; 1740 if (rem) { 1741 rem = card->erase_size - rem; 1742 from += rem; 1743 if (nr > rem) 1744 nr -= rem; 1745 else 1746 return 0; 1747 } 1748 rem = nr % card->erase_size; 1749 if (rem) 1750 nr -= rem; 1751 } 1752 1753 if (nr == 0) 1754 return 0; 1755 1756 to = from + nr; 1757 1758 if (to <= from) 1759 return -EINVAL; 1760 1761 /* 'from' and 'to' are inclusive */ 1762 to -= 1; 1763 1764 return mmc_do_erase(card, from, to, arg); 1765} 1766EXPORT_SYMBOL(mmc_erase); 1767 1768int mmc_can_erase(struct mmc_card *card) 1769{ 1770 if ((card->host->caps & MMC_CAP_ERASE) && 1771 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 1772 return 1; 1773 return 0; 1774} 1775EXPORT_SYMBOL(mmc_can_erase); 1776 1777int mmc_can_trim(struct mmc_card *card) 1778{ 1779 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) 1780 return 1; 1781 if (mmc_can_discard(card)) 1782 return 1; 1783 return 0; 1784} 1785EXPORT_SYMBOL(mmc_can_trim); 1786 1787int mmc_can_discard(struct mmc_card *card) 1788{ 1789 /* 1790 * As there's no way to detect the discard support bit at v4.5 1791 * use the s/w feature support filed. 1792 */ 1793 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 1794 return 1; 1795 return 0; 1796} 1797EXPORT_SYMBOL(mmc_can_discard); 1798 1799int mmc_can_sanitize(struct mmc_card *card) 1800{ 1801 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 1802 return 1; 1803 return 0; 1804} 1805EXPORT_SYMBOL(mmc_can_sanitize); 1806 1807int mmc_can_secure_erase_trim(struct mmc_card *card) 1808{ 1809 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) 1810 return 1; 1811 return 0; 1812} 1813EXPORT_SYMBOL(mmc_can_secure_erase_trim); 1814 1815int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 1816 unsigned int nr) 1817{ 1818 if (!card->erase_size) 1819 return 0; 1820 if (from % card->erase_size || nr % card->erase_size) 1821 return 0; 1822 return 1; 1823} 1824EXPORT_SYMBOL(mmc_erase_group_aligned); 1825 1826static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 1827 unsigned int arg) 1828{ 1829 struct mmc_host *host = card->host; 1830 unsigned int max_discard, x, y, qty = 0, max_qty, timeout; 1831 unsigned int last_timeout = 0; 1832 1833 if (card->erase_shift) 1834 max_qty = UINT_MAX >> card->erase_shift; 1835 else if (mmc_card_sd(card)) 1836 max_qty = UINT_MAX; 1837 else 1838 max_qty = UINT_MAX / card->erase_size; 1839 1840 /* Find the largest qty with an OK timeout */ 1841 do { 1842 y = 0; 1843 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 1844 timeout = mmc_erase_timeout(card, arg, qty + x); 1845 if (timeout > host->max_discard_to) 1846 break; 1847 if (timeout < last_timeout) 1848 break; 1849 last_timeout = timeout; 1850 y = x; 1851 } 1852 qty += y; 1853 } while (y); 1854 1855 if (!qty) 1856 return 0; 1857 1858 if (qty == 1) 1859 return 1; 1860 1861 /* Convert qty to sectors */ 1862 if (card->erase_shift) 1863 max_discard = --qty << card->erase_shift; 1864 else if (mmc_card_sd(card)) 1865 max_discard = qty; 1866 else 1867 max_discard = --qty * card->erase_size; 1868 1869 return max_discard; 1870} 1871 1872unsigned int mmc_calc_max_discard(struct mmc_card *card) 1873{ 1874 struct mmc_host *host = card->host; 1875 unsigned int max_discard, max_trim; 1876 1877 if (!host->max_discard_to) 1878 return UINT_MAX; 1879 1880 /* 1881 * Without erase_group_def set, MMC erase timeout depends on clock 1882 * frequence which can change. In that case, the best choice is 1883 * just the preferred erase size. 1884 */ 1885 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 1886 return card->pref_erase; 1887 1888 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 1889 if (mmc_can_trim(card)) { 1890 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 1891 if (max_trim < max_discard) 1892 max_discard = max_trim; 1893 } else if (max_discard < card->erase_size) { 1894 max_discard = 0; 1895 } 1896 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 1897 mmc_hostname(host), max_discard, host->max_discard_to); 1898 return max_discard; 1899} 1900EXPORT_SYMBOL(mmc_calc_max_discard); 1901 1902int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 1903{ 1904 struct mmc_command cmd = {0}; 1905 1906 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card)) 1907 return 0; 1908 1909 cmd.opcode = MMC_SET_BLOCKLEN; 1910 cmd.arg = blocklen; 1911 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1912 return mmc_wait_for_cmd(card->host, &cmd, 5); 1913} 1914EXPORT_SYMBOL(mmc_set_blocklen); 1915 1916static void mmc_hw_reset_for_init(struct mmc_host *host) 1917{ 1918 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 1919 return; 1920 mmc_host_clk_hold(host); 1921 host->ops->hw_reset(host); 1922 mmc_host_clk_release(host); 1923} 1924 1925int mmc_can_reset(struct mmc_card *card) 1926{ 1927 u8 rst_n_function; 1928 1929 if (!mmc_card_mmc(card)) 1930 return 0; 1931 rst_n_function = card->ext_csd.rst_n_function; 1932 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 1933 return 0; 1934 return 1; 1935} 1936EXPORT_SYMBOL(mmc_can_reset); 1937 1938static int mmc_do_hw_reset(struct mmc_host *host, int check) 1939{ 1940 struct mmc_card *card = host->card; 1941 1942 if (!host->bus_ops->power_restore) 1943 return -EOPNOTSUPP; 1944 1945 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 1946 return -EOPNOTSUPP; 1947 1948 if (!card) 1949 return -EINVAL; 1950 1951 if (!mmc_can_reset(card)) 1952 return -EOPNOTSUPP; 1953 1954 mmc_host_clk_hold(host); 1955 mmc_set_clock(host, host->f_init); 1956 1957 host->ops->hw_reset(host); 1958 1959 /* If the reset has happened, then a status command will fail */ 1960 if (check) { 1961 struct mmc_command cmd = {0}; 1962 int err; 1963 1964 cmd.opcode = MMC_SEND_STATUS; 1965 if (!mmc_host_is_spi(card->host)) 1966 cmd.arg = card->rca << 16; 1967 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; 1968 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1969 if (!err) { 1970 mmc_host_clk_release(host); 1971 return -ENOSYS; 1972 } 1973 } 1974 1975 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR); 1976 if (mmc_host_is_spi(host)) { 1977 host->ios.chip_select = MMC_CS_HIGH; 1978 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1979 } else { 1980 host->ios.chip_select = MMC_CS_DONTCARE; 1981 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 1982 } 1983 host->ios.bus_width = MMC_BUS_WIDTH_1; 1984 host->ios.timing = MMC_TIMING_LEGACY; 1985 mmc_set_ios(host); 1986 1987 mmc_host_clk_release(host); 1988 1989 return host->bus_ops->power_restore(host); 1990} 1991 1992int mmc_hw_reset(struct mmc_host *host) 1993{ 1994 return mmc_do_hw_reset(host, 0); 1995} 1996EXPORT_SYMBOL(mmc_hw_reset); 1997 1998int mmc_hw_reset_check(struct mmc_host *host) 1999{ 2000 return mmc_do_hw_reset(host, 1); 2001} 2002EXPORT_SYMBOL(mmc_hw_reset_check); 2003 2004static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2005{ 2006 host->f_init = freq; 2007 2008#ifdef CONFIG_MMC_DEBUG 2009 pr_info("%s: %s: trying to init card at %u Hz\n", 2010 mmc_hostname(host), __func__, host->f_init); 2011#endif 2012 mmc_power_up(host); 2013 2014 /* 2015 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2016 * do a hardware reset if possible. 2017 */ 2018 mmc_hw_reset_for_init(host); 2019 2020 /* 2021 * sdio_reset sends CMD52 to reset card. Since we do not know 2022 * if the card is being re-initialized, just send it. CMD52 2023 * should be ignored by SD/eMMC cards. 2024 */ 2025 sdio_reset(host); 2026 mmc_go_idle(host); 2027 2028 mmc_send_if_cond(host, host->ocr_avail); 2029 2030 /* Order's important: probe SDIO, then SD, then MMC */ 2031 if (!mmc_attach_sdio(host)) 2032 return 0; 2033 if (!mmc_attach_sd(host)) 2034 return 0; 2035 if (!mmc_attach_mmc(host)) 2036 return 0; 2037 2038 mmc_power_off(host); 2039 return -EIO; 2040} 2041 2042void mmc_rescan(struct work_struct *work) 2043{ 2044 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 2045 struct mmc_host *host = 2046 container_of(work, struct mmc_host, detect.work); 2047 int i; 2048 2049 if (host->rescan_disable) 2050 return; 2051 2052 mmc_bus_get(host); 2053 2054 /* 2055 * if there is a _removable_ card registered, check whether it is 2056 * still present 2057 */ 2058 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead 2059 && !(host->caps & MMC_CAP_NONREMOVABLE)) 2060 host->bus_ops->detect(host); 2061 2062 /* 2063 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2064 * the card is no longer present. 2065 */ 2066 mmc_bus_put(host); 2067 mmc_bus_get(host); 2068 2069 /* if there still is a card present, stop here */ 2070 if (host->bus_ops != NULL) { 2071 mmc_bus_put(host); 2072 goto out; 2073 } 2074 2075 /* 2076 * Only we can add a new handler, so it's safe to 2077 * release the lock here. 2078 */ 2079 mmc_bus_put(host); 2080 2081 if (host->ops->get_cd && host->ops->get_cd(host) == 0) 2082 goto out; 2083 2084 mmc_claim_host(host); 2085 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2086 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2087 break; 2088 if (freqs[i] <= host->f_min) 2089 break; 2090 } 2091 mmc_release_host(host); 2092 2093 out: 2094 if (host->caps & MMC_CAP_NEEDS_POLL) 2095 mmc_schedule_delayed_work(&host->detect, HZ); 2096} 2097 2098void mmc_start_host(struct mmc_host *host) 2099{ 2100 mmc_power_off(host); 2101 mmc_detect_change(host, 0); 2102} 2103 2104void mmc_stop_host(struct mmc_host *host) 2105{ 2106#ifdef CONFIG_MMC_DEBUG 2107 unsigned long flags; 2108 spin_lock_irqsave(&host->lock, flags); 2109 host->removed = 1; 2110 spin_unlock_irqrestore(&host->lock, flags); 2111#endif 2112 2113 if (host->caps & MMC_CAP_DISABLE) 2114 cancel_delayed_work(&host->disable); 2115 cancel_delayed_work_sync(&host->detect); 2116 mmc_flush_scheduled_work(); 2117 2118 /* clear pm flags now and let card drivers set them as needed */ 2119 host->pm_flags = 0; 2120 2121 mmc_bus_get(host); 2122 if (host->bus_ops && !host->bus_dead) { 2123 if (host->bus_ops->remove) 2124 host->bus_ops->remove(host); 2125 2126 mmc_claim_host(host); 2127 mmc_detach_bus(host); 2128 mmc_power_off(host); 2129 mmc_release_host(host); 2130 mmc_bus_put(host); 2131 return; 2132 } 2133 mmc_bus_put(host); 2134 2135 BUG_ON(host->card); 2136 2137 mmc_power_off(host); 2138} 2139 2140int mmc_power_save_host(struct mmc_host *host) 2141{ 2142 int ret = 0; 2143 2144#ifdef CONFIG_MMC_DEBUG 2145 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2146#endif 2147 2148 mmc_bus_get(host); 2149 2150 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { 2151 mmc_bus_put(host); 2152 return -EINVAL; 2153 } 2154 2155 if (host->bus_ops->power_save) 2156 ret = host->bus_ops->power_save(host); 2157 2158 mmc_bus_put(host); 2159 2160 mmc_power_off(host); 2161 2162 return ret; 2163} 2164EXPORT_SYMBOL(mmc_power_save_host); 2165 2166int mmc_power_restore_host(struct mmc_host *host) 2167{ 2168 int ret; 2169 2170#ifdef CONFIG_MMC_DEBUG 2171 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2172#endif 2173 2174 mmc_bus_get(host); 2175 2176 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { 2177 mmc_bus_put(host); 2178 return -EINVAL; 2179 } 2180 2181 mmc_power_up(host); 2182 ret = host->bus_ops->power_restore(host); 2183 2184 mmc_bus_put(host); 2185 2186 return ret; 2187} 2188EXPORT_SYMBOL(mmc_power_restore_host); 2189 2190int mmc_card_awake(struct mmc_host *host) 2191{ 2192 int err = -ENOSYS; 2193 2194 mmc_bus_get(host); 2195 2196 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake) 2197 err = host->bus_ops->awake(host); 2198 2199 mmc_bus_put(host); 2200 2201 return err; 2202} 2203EXPORT_SYMBOL(mmc_card_awake); 2204 2205int mmc_card_sleep(struct mmc_host *host) 2206{ 2207 int err = -ENOSYS; 2208 2209 mmc_bus_get(host); 2210 2211 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake) 2212 err = host->bus_ops->sleep(host); 2213 2214 mmc_bus_put(host); 2215 2216 return err; 2217} 2218EXPORT_SYMBOL(mmc_card_sleep); 2219 2220int mmc_card_can_sleep(struct mmc_host *host) 2221{ 2222 struct mmc_card *card = host->card; 2223 2224 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3) 2225 return 1; 2226 return 0; 2227} 2228EXPORT_SYMBOL(mmc_card_can_sleep); 2229 2230/* 2231 * Flush the cache to the non-volatile storage. 2232 */ 2233int mmc_flush_cache(struct mmc_card *card) 2234{ 2235 struct mmc_host *host = card->host; 2236 int err = 0; 2237 2238 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL)) 2239 return err; 2240 2241 if (mmc_card_mmc(card) && 2242 (card->ext_csd.cache_size > 0) && 2243 (card->ext_csd.cache_ctrl & 1)) { 2244 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2245 EXT_CSD_FLUSH_CACHE, 1, 0); 2246 if (err) 2247 pr_err("%s: cache flush error %d\n", 2248 mmc_hostname(card->host), err); 2249 } 2250 2251 return err; 2252} 2253EXPORT_SYMBOL(mmc_flush_cache); 2254 2255/* 2256 * Turn the cache ON/OFF. 2257 * Turning the cache OFF shall trigger flushing of the data 2258 * to the non-volatile storage. 2259 */ 2260int mmc_cache_ctrl(struct mmc_host *host, u8 enable) 2261{ 2262 struct mmc_card *card = host->card; 2263 int err = 0; 2264 2265 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) || 2266 mmc_card_is_removable(host)) 2267 return err; 2268 2269 if (card && mmc_card_mmc(card) && 2270 (card->ext_csd.cache_size > 0)) { 2271 enable = !!enable; 2272 2273 if (card->ext_csd.cache_ctrl ^ enable) 2274 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2275 EXT_CSD_CACHE_CTRL, enable, 0); 2276 if (err) 2277 pr_err("%s: cache %s error %d\n", 2278 mmc_hostname(card->host), 2279 enable ? "on" : "off", 2280 err); 2281 else 2282 card->ext_csd.cache_ctrl = enable; 2283 } 2284 2285 return err; 2286} 2287EXPORT_SYMBOL(mmc_cache_ctrl); 2288 2289#ifdef CONFIG_PM 2290 2291/** 2292 * mmc_suspend_host - suspend a host 2293 * @host: mmc host 2294 */ 2295int mmc_suspend_host(struct mmc_host *host) 2296{ 2297 int err = 0; 2298 2299 if (host->caps & MMC_CAP_DISABLE) 2300 cancel_delayed_work(&host->disable); 2301 cancel_delayed_work(&host->detect); 2302 mmc_flush_scheduled_work(); 2303 err = mmc_cache_ctrl(host, 0); 2304 if (err) 2305 goto out; 2306 2307 mmc_bus_get(host); 2308 if (host->bus_ops && !host->bus_dead) { 2309 2310 /* 2311 * A long response time is not acceptable for device drivers 2312 * when doing suspend. Prevent mmc_claim_host in the suspend 2313 * sequence, to potentially wait "forever" by trying to 2314 * pre-claim the host. 2315 */ 2316 if (mmc_try_claim_host(host)) { 2317 if (host->bus_ops->suspend) 2318 err = host->bus_ops->suspend(host); 2319 if (err == -ENOSYS || !host->bus_ops->resume) { 2320 /* 2321 * We simply "remove" the card in this case. 2322 * It will be redetected on resume. 2323 */ 2324 if (host->bus_ops->remove) 2325 host->bus_ops->remove(host); 2326 mmc_claim_host(host); 2327 mmc_detach_bus(host); 2328 mmc_power_off(host); 2329 mmc_release_host(host); 2330 host->pm_flags = 0; 2331 err = 0; 2332 } 2333 mmc_do_release_host(host); 2334 } else { 2335 err = -EBUSY; 2336 } 2337 } 2338 mmc_bus_put(host); 2339 2340 if (!err && !mmc_card_keep_power(host)) 2341 mmc_power_off(host); 2342 2343out: 2344 return err; 2345} 2346 2347EXPORT_SYMBOL(mmc_suspend_host); 2348 2349/** 2350 * mmc_resume_host - resume a previously suspended host 2351 * @host: mmc host 2352 */ 2353int mmc_resume_host(struct mmc_host *host) 2354{ 2355 int err = 0; 2356 2357 mmc_bus_get(host); 2358 if (host->bus_ops && !host->bus_dead) { 2359 if (!mmc_card_keep_power(host)) { 2360 mmc_power_up(host); 2361 mmc_select_voltage(host, host->ocr); 2362 /* 2363 * Tell runtime PM core we just powered up the card, 2364 * since it still believes the card is powered off. 2365 * Note that currently runtime PM is only enabled 2366 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD 2367 */ 2368 if (mmc_card_sdio(host->card) && 2369 (host->caps & MMC_CAP_POWER_OFF_CARD)) { 2370 pm_runtime_disable(&host->card->dev); 2371 pm_runtime_set_active(&host->card->dev); 2372 pm_runtime_enable(&host->card->dev); 2373 } 2374 } 2375 BUG_ON(!host->bus_ops->resume); 2376 err = host->bus_ops->resume(host); 2377 if (err) { 2378 pr_warning("%s: error %d during resume " 2379 "(card was removed?)\n", 2380 mmc_hostname(host), err); 2381 err = 0; 2382 } 2383 } 2384 host->pm_flags &= ~MMC_PM_KEEP_POWER; 2385 mmc_bus_put(host); 2386 2387 return err; 2388} 2389EXPORT_SYMBOL(mmc_resume_host); 2390 2391/* Do the card removal on suspend if card is assumed removeable 2392 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2393 to sync the card. 2394*/ 2395int mmc_pm_notify(struct notifier_block *notify_block, 2396 unsigned long mode, void *unused) 2397{ 2398 struct mmc_host *host = container_of( 2399 notify_block, struct mmc_host, pm_notify); 2400 unsigned long flags; 2401 2402 2403 switch (mode) { 2404 case PM_HIBERNATION_PREPARE: 2405 case PM_SUSPEND_PREPARE: 2406 2407 spin_lock_irqsave(&host->lock, flags); 2408 host->rescan_disable = 1; 2409 host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT; 2410 spin_unlock_irqrestore(&host->lock, flags); 2411 cancel_delayed_work_sync(&host->detect); 2412 2413 if (!host->bus_ops || host->bus_ops->suspend) 2414 break; 2415 2416 mmc_claim_host(host); 2417 2418 if (host->bus_ops->remove) 2419 host->bus_ops->remove(host); 2420 2421 mmc_detach_bus(host); 2422 mmc_power_off(host); 2423 mmc_release_host(host); 2424 host->pm_flags = 0; 2425 break; 2426 2427 case PM_POST_SUSPEND: 2428 case PM_POST_HIBERNATION: 2429 case PM_POST_RESTORE: 2430 2431 spin_lock_irqsave(&host->lock, flags); 2432 host->rescan_disable = 0; 2433 host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG; 2434 spin_unlock_irqrestore(&host->lock, flags); 2435 mmc_detect_change(host, 0); 2436 2437 } 2438 2439 return 0; 2440} 2441#endif 2442 2443static int __init mmc_init(void) 2444{ 2445 int ret; 2446 2447 workqueue = alloc_ordered_workqueue("kmmcd", 0); 2448 if (!workqueue) 2449 return -ENOMEM; 2450 2451 ret = mmc_register_bus(); 2452 if (ret) 2453 goto destroy_workqueue; 2454 2455 ret = mmc_register_host_class(); 2456 if (ret) 2457 goto unregister_bus; 2458 2459 ret = sdio_register_bus(); 2460 if (ret) 2461 goto unregister_host_class; 2462 2463 return 0; 2464 2465unregister_host_class: 2466 mmc_unregister_host_class(); 2467unregister_bus: 2468 mmc_unregister_bus(); 2469destroy_workqueue: 2470 destroy_workqueue(workqueue); 2471 2472 return ret; 2473} 2474 2475static void __exit mmc_exit(void) 2476{ 2477 sdio_unregister_bus(); 2478 mmc_unregister_host_class(); 2479 mmc_unregister_bus(); 2480 destroy_workqueue(workqueue); 2481} 2482 2483subsys_initcall(mmc_init); 2484module_exit(mmc_exit); 2485 2486MODULE_LICENSE("GPL"); 2487