core.c revision 6de5fc9cf7de334912de4cfd2d06eb2d744d2afe
1/*
2 *  linux/drivers/mmc/core/core.c
3 *
4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/suspend.h>
27#include <linux/fault-inject.h>
28#include <linux/random.h>
29
30#include <linux/mmc/card.h>
31#include <linux/mmc/host.h>
32#include <linux/mmc/mmc.h>
33#include <linux/mmc/sd.h>
34
35#include "core.h"
36#include "bus.h"
37#include "host.h"
38#include "sdio_bus.h"
39
40#include "mmc_ops.h"
41#include "sd_ops.h"
42#include "sdio_ops.h"
43
44static struct workqueue_struct *workqueue;
45
46/*
47 * Enabling software CRCs on the data blocks can be a significant (30%)
48 * performance cost, and for other reasons may not always be desired.
49 * So we allow it it to be disabled.
50 */
51int use_spi_crc = 1;
52module_param(use_spi_crc, bool, 0);
53
54/*
55 * We normally treat cards as removed during suspend if they are not
56 * known to be on a non-removable bus, to avoid the risk of writing
57 * back data to a different card after resume.  Allow this to be
58 * overridden if necessary.
59 */
60#ifdef CONFIG_MMC_UNSAFE_RESUME
61int mmc_assume_removable;
62#else
63int mmc_assume_removable = 1;
64#endif
65EXPORT_SYMBOL(mmc_assume_removable);
66module_param_named(removable, mmc_assume_removable, bool, 0644);
67MODULE_PARM_DESC(
68	removable,
69	"MMC/SD cards are removable and may be removed during suspend");
70
71/*
72 * Internal function. Schedule delayed work in the MMC work queue.
73 */
74static int mmc_schedule_delayed_work(struct delayed_work *work,
75				     unsigned long delay)
76{
77	return queue_delayed_work(workqueue, work, delay);
78}
79
80/*
81 * Internal function. Flush all scheduled work from the MMC work queue.
82 */
83static void mmc_flush_scheduled_work(void)
84{
85	flush_workqueue(workqueue);
86}
87
88#ifdef CONFIG_FAIL_MMC_REQUEST
89
90/*
91 * Internal function. Inject random data errors.
92 * If mmc_data is NULL no errors are injected.
93 */
94static void mmc_should_fail_request(struct mmc_host *host,
95				    struct mmc_request *mrq)
96{
97	struct mmc_command *cmd = mrq->cmd;
98	struct mmc_data *data = mrq->data;
99	static const int data_errors[] = {
100		-ETIMEDOUT,
101		-EILSEQ,
102		-EIO,
103	};
104
105	if (!data)
106		return;
107
108	if (cmd->error || data->error ||
109	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
110		return;
111
112	data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
113	data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
114}
115
116#else /* CONFIG_FAIL_MMC_REQUEST */
117
118static inline void mmc_should_fail_request(struct mmc_host *host,
119					   struct mmc_request *mrq)
120{
121}
122
123#endif /* CONFIG_FAIL_MMC_REQUEST */
124
125/**
126 *	mmc_request_done - finish processing an MMC request
127 *	@host: MMC host which completed request
128 *	@mrq: MMC request which request
129 *
130 *	MMC drivers should call this function when they have completed
131 *	their processing of a request.
132 */
133void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
134{
135	struct mmc_command *cmd = mrq->cmd;
136	int err = cmd->error;
137
138	if (err && cmd->retries && mmc_host_is_spi(host)) {
139		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
140			cmd->retries = 0;
141	}
142
143	if (err && cmd->retries) {
144		/*
145		 * Request starter must handle retries - see
146		 * mmc_wait_for_req_done().
147		 */
148		if (mrq->done)
149			mrq->done(mrq);
150	} else {
151		mmc_should_fail_request(host, mrq);
152
153		led_trigger_event(host->led, LED_OFF);
154
155		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
156			mmc_hostname(host), cmd->opcode, err,
157			cmd->resp[0], cmd->resp[1],
158			cmd->resp[2], cmd->resp[3]);
159
160		if (mrq->data) {
161			pr_debug("%s:     %d bytes transferred: %d\n",
162				mmc_hostname(host),
163				mrq->data->bytes_xfered, mrq->data->error);
164		}
165
166		if (mrq->stop) {
167			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
168				mmc_hostname(host), mrq->stop->opcode,
169				mrq->stop->error,
170				mrq->stop->resp[0], mrq->stop->resp[1],
171				mrq->stop->resp[2], mrq->stop->resp[3]);
172		}
173
174		if (mrq->done)
175			mrq->done(mrq);
176
177		mmc_host_clk_release(host);
178	}
179}
180
181EXPORT_SYMBOL(mmc_request_done);
182
183static void
184mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
185{
186#ifdef CONFIG_MMC_DEBUG
187	unsigned int i, sz;
188	struct scatterlist *sg;
189#endif
190
191	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
192		 mmc_hostname(host), mrq->cmd->opcode,
193		 mrq->cmd->arg, mrq->cmd->flags);
194
195	if (mrq->data) {
196		pr_debug("%s:     blksz %d blocks %d flags %08x "
197			"tsac %d ms nsac %d\n",
198			mmc_hostname(host), mrq->data->blksz,
199			mrq->data->blocks, mrq->data->flags,
200			mrq->data->timeout_ns / 1000000,
201			mrq->data->timeout_clks);
202	}
203
204	if (mrq->stop) {
205		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
206			 mmc_hostname(host), mrq->stop->opcode,
207			 mrq->stop->arg, mrq->stop->flags);
208	}
209
210	WARN_ON(!host->claimed);
211
212	mrq->cmd->error = 0;
213	mrq->cmd->mrq = mrq;
214	if (mrq->data) {
215		BUG_ON(mrq->data->blksz > host->max_blk_size);
216		BUG_ON(mrq->data->blocks > host->max_blk_count);
217		BUG_ON(mrq->data->blocks * mrq->data->blksz >
218			host->max_req_size);
219
220#ifdef CONFIG_MMC_DEBUG
221		sz = 0;
222		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
223			sz += sg->length;
224		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
225#endif
226
227		mrq->cmd->data = mrq->data;
228		mrq->data->error = 0;
229		mrq->data->mrq = mrq;
230		if (mrq->stop) {
231			mrq->data->stop = mrq->stop;
232			mrq->stop->error = 0;
233			mrq->stop->mrq = mrq;
234		}
235	}
236	mmc_host_clk_hold(host);
237	led_trigger_event(host->led, LED_FULL);
238	host->ops->request(host, mrq);
239}
240
241static void mmc_wait_done(struct mmc_request *mrq)
242{
243	complete(&mrq->completion);
244}
245
246static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
247{
248	init_completion(&mrq->completion);
249	mrq->done = mmc_wait_done;
250	mmc_start_request(host, mrq);
251}
252
253static void mmc_wait_for_req_done(struct mmc_host *host,
254				  struct mmc_request *mrq)
255{
256	struct mmc_command *cmd;
257
258	while (1) {
259		wait_for_completion(&mrq->completion);
260
261		cmd = mrq->cmd;
262		if (!cmd->error || !cmd->retries)
263			break;
264
265		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
266			 mmc_hostname(host), cmd->opcode, cmd->error);
267		cmd->retries--;
268		cmd->error = 0;
269		host->ops->request(host, mrq);
270	}
271}
272
273/**
274 *	mmc_pre_req - Prepare for a new request
275 *	@host: MMC host to prepare command
276 *	@mrq: MMC request to prepare for
277 *	@is_first_req: true if there is no previous started request
278 *                     that may run in parellel to this call, otherwise false
279 *
280 *	mmc_pre_req() is called in prior to mmc_start_req() to let
281 *	host prepare for the new request. Preparation of a request may be
282 *	performed while another request is running on the host.
283 */
284static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
285		 bool is_first_req)
286{
287	if (host->ops->pre_req)
288		host->ops->pre_req(host, mrq, is_first_req);
289}
290
291/**
292 *	mmc_post_req - Post process a completed request
293 *	@host: MMC host to post process command
294 *	@mrq: MMC request to post process for
295 *	@err: Error, if non zero, clean up any resources made in pre_req
296 *
297 *	Let the host post process a completed request. Post processing of
298 *	a request may be performed while another reuqest is running.
299 */
300static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
301			 int err)
302{
303	if (host->ops->post_req)
304		host->ops->post_req(host, mrq, err);
305}
306
307/**
308 *	mmc_start_req - start a non-blocking request
309 *	@host: MMC host to start command
310 *	@areq: async request to start
311 *	@error: out parameter returns 0 for success, otherwise non zero
312 *
313 *	Start a new MMC custom command request for a host.
314 *	If there is on ongoing async request wait for completion
315 *	of that request and start the new one and return.
316 *	Does not wait for the new request to complete.
317 *
318 *      Returns the completed request, NULL in case of none completed.
319 *	Wait for the an ongoing request (previoulsy started) to complete and
320 *	return the completed request. If there is no ongoing request, NULL
321 *	is returned without waiting. NULL is not an error condition.
322 */
323struct mmc_async_req *mmc_start_req(struct mmc_host *host,
324				    struct mmc_async_req *areq, int *error)
325{
326	int err = 0;
327	struct mmc_async_req *data = host->areq;
328
329	/* Prepare a new request */
330	if (areq)
331		mmc_pre_req(host, areq->mrq, !host->areq);
332
333	if (host->areq) {
334		mmc_wait_for_req_done(host, host->areq->mrq);
335		err = host->areq->err_check(host->card, host->areq);
336		if (err) {
337			/* post process the completed failed request */
338			mmc_post_req(host, host->areq->mrq, 0);
339			if (areq)
340				/*
341				 * Cancel the new prepared request, because
342				 * it can't run until the failed
343				 * request has been properly handled.
344				 */
345				mmc_post_req(host, areq->mrq, -EINVAL);
346
347			host->areq = NULL;
348			goto out;
349		}
350	}
351
352	if (areq)
353		__mmc_start_req(host, areq->mrq);
354
355	if (host->areq)
356		mmc_post_req(host, host->areq->mrq, 0);
357
358	host->areq = areq;
359 out:
360	if (error)
361		*error = err;
362	return data;
363}
364EXPORT_SYMBOL(mmc_start_req);
365
366/**
367 *	mmc_wait_for_req - start a request and wait for completion
368 *	@host: MMC host to start command
369 *	@mrq: MMC request to start
370 *
371 *	Start a new MMC custom command request for a host, and wait
372 *	for the command to complete. Does not attempt to parse the
373 *	response.
374 */
375void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
376{
377	__mmc_start_req(host, mrq);
378	mmc_wait_for_req_done(host, mrq);
379}
380EXPORT_SYMBOL(mmc_wait_for_req);
381
382/**
383 *	mmc_interrupt_hpi - Issue for High priority Interrupt
384 *	@card: the MMC card associated with the HPI transfer
385 *
386 *	Issued High Priority Interrupt, and check for card status
387 *	util out-of prg-state.
388 */
389int mmc_interrupt_hpi(struct mmc_card *card)
390{
391	int err;
392	u32 status;
393
394	BUG_ON(!card);
395
396	if (!card->ext_csd.hpi_en) {
397		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
398		return 1;
399	}
400
401	mmc_claim_host(card->host);
402	err = mmc_send_status(card, &status);
403	if (err) {
404		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
405		goto out;
406	}
407
408	/*
409	 * If the card status is in PRG-state, we can send the HPI command.
410	 */
411	if (R1_CURRENT_STATE(status) == R1_STATE_PRG) {
412		do {
413			/*
414			 * We don't know when the HPI command will finish
415			 * processing, so we need to resend HPI until out
416			 * of prg-state, and keep checking the card status
417			 * with SEND_STATUS.  If a timeout error occurs when
418			 * sending the HPI command, we are already out of
419			 * prg-state.
420			 */
421			err = mmc_send_hpi_cmd(card, &status);
422			if (err)
423				pr_debug("%s: abort HPI (%d error)\n",
424					 mmc_hostname(card->host), err);
425
426			err = mmc_send_status(card, &status);
427			if (err)
428				break;
429		} while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
430	} else
431		pr_debug("%s: Left prg-state\n", mmc_hostname(card->host));
432
433out:
434	mmc_release_host(card->host);
435	return err;
436}
437EXPORT_SYMBOL(mmc_interrupt_hpi);
438
439/**
440 *	mmc_wait_for_cmd - start a command and wait for completion
441 *	@host: MMC host to start command
442 *	@cmd: MMC command to start
443 *	@retries: maximum number of retries
444 *
445 *	Start a new MMC command for a host, and wait for the command
446 *	to complete.  Return any error that occurred while the command
447 *	was executing.  Do not attempt to parse the response.
448 */
449int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
450{
451	struct mmc_request mrq = {NULL};
452
453	WARN_ON(!host->claimed);
454
455	memset(cmd->resp, 0, sizeof(cmd->resp));
456	cmd->retries = retries;
457
458	mrq.cmd = cmd;
459	cmd->data = NULL;
460
461	mmc_wait_for_req(host, &mrq);
462
463	return cmd->error;
464}
465
466EXPORT_SYMBOL(mmc_wait_for_cmd);
467
468/**
469 *	mmc_set_data_timeout - set the timeout for a data command
470 *	@data: data phase for command
471 *	@card: the MMC card associated with the data transfer
472 *
473 *	Computes the data timeout parameters according to the
474 *	correct algorithm given the card type.
475 */
476void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
477{
478	unsigned int mult;
479
480	/*
481	 * SDIO cards only define an upper 1 s limit on access.
482	 */
483	if (mmc_card_sdio(card)) {
484		data->timeout_ns = 1000000000;
485		data->timeout_clks = 0;
486		return;
487	}
488
489	/*
490	 * SD cards use a 100 multiplier rather than 10
491	 */
492	mult = mmc_card_sd(card) ? 100 : 10;
493
494	/*
495	 * Scale up the multiplier (and therefore the timeout) by
496	 * the r2w factor for writes.
497	 */
498	if (data->flags & MMC_DATA_WRITE)
499		mult <<= card->csd.r2w_factor;
500
501	data->timeout_ns = card->csd.tacc_ns * mult;
502	data->timeout_clks = card->csd.tacc_clks * mult;
503
504	/*
505	 * SD cards also have an upper limit on the timeout.
506	 */
507	if (mmc_card_sd(card)) {
508		unsigned int timeout_us, limit_us;
509
510		timeout_us = data->timeout_ns / 1000;
511		if (mmc_host_clk_rate(card->host))
512			timeout_us += data->timeout_clks * 1000 /
513				(mmc_host_clk_rate(card->host) / 1000);
514
515		if (data->flags & MMC_DATA_WRITE)
516			/*
517			 * The limit is really 250 ms, but that is
518			 * insufficient for some crappy cards.
519			 */
520			limit_us = 300000;
521		else
522			limit_us = 100000;
523
524		/*
525		 * SDHC cards always use these fixed values.
526		 */
527		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
528			data->timeout_ns = limit_us * 1000;
529			data->timeout_clks = 0;
530		}
531	}
532
533	/*
534	 * Some cards require longer data read timeout than indicated in CSD.
535	 * Address this by setting the read timeout to a "reasonably high"
536	 * value. For the cards tested, 300ms has proven enough. If necessary,
537	 * this value can be increased if other problematic cards require this.
538	 */
539	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
540		data->timeout_ns = 300000000;
541		data->timeout_clks = 0;
542	}
543
544	/*
545	 * Some cards need very high timeouts if driven in SPI mode.
546	 * The worst observed timeout was 900ms after writing a
547	 * continuous stream of data until the internal logic
548	 * overflowed.
549	 */
550	if (mmc_host_is_spi(card->host)) {
551		if (data->flags & MMC_DATA_WRITE) {
552			if (data->timeout_ns < 1000000000)
553				data->timeout_ns = 1000000000;	/* 1s */
554		} else {
555			if (data->timeout_ns < 100000000)
556				data->timeout_ns =  100000000;	/* 100ms */
557		}
558	}
559}
560EXPORT_SYMBOL(mmc_set_data_timeout);
561
562/**
563 *	mmc_align_data_size - pads a transfer size to a more optimal value
564 *	@card: the MMC card associated with the data transfer
565 *	@sz: original transfer size
566 *
567 *	Pads the original data size with a number of extra bytes in
568 *	order to avoid controller bugs and/or performance hits
569 *	(e.g. some controllers revert to PIO for certain sizes).
570 *
571 *	Returns the improved size, which might be unmodified.
572 *
573 *	Note that this function is only relevant when issuing a
574 *	single scatter gather entry.
575 */
576unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
577{
578	/*
579	 * FIXME: We don't have a system for the controller to tell
580	 * the core about its problems yet, so for now we just 32-bit
581	 * align the size.
582	 */
583	sz = ((sz + 3) / 4) * 4;
584
585	return sz;
586}
587EXPORT_SYMBOL(mmc_align_data_size);
588
589/**
590 *	mmc_host_enable - enable a host.
591 *	@host: mmc host to enable
592 *
593 *	Hosts that support power saving can use the 'enable' and 'disable'
594 *	methods to exit and enter power saving states. For more information
595 *	see comments for struct mmc_host_ops.
596 */
597int mmc_host_enable(struct mmc_host *host)
598{
599	if (!(host->caps & MMC_CAP_DISABLE))
600		return 0;
601
602	if (host->en_dis_recurs)
603		return 0;
604
605	if (host->nesting_cnt++)
606		return 0;
607
608	cancel_delayed_work_sync(&host->disable);
609
610	if (host->enabled)
611		return 0;
612
613	if (host->ops->enable) {
614		int err;
615
616		host->en_dis_recurs = 1;
617		err = host->ops->enable(host);
618		host->en_dis_recurs = 0;
619
620		if (err) {
621			pr_debug("%s: enable error %d\n",
622				 mmc_hostname(host), err);
623			return err;
624		}
625	}
626	host->enabled = 1;
627	return 0;
628}
629EXPORT_SYMBOL(mmc_host_enable);
630
631static int mmc_host_do_disable(struct mmc_host *host, int lazy)
632{
633	if (host->ops->disable) {
634		int err;
635
636		host->en_dis_recurs = 1;
637		err = host->ops->disable(host, lazy);
638		host->en_dis_recurs = 0;
639
640		if (err < 0) {
641			pr_debug("%s: disable error %d\n",
642				 mmc_hostname(host), err);
643			return err;
644		}
645		if (err > 0) {
646			unsigned long delay = msecs_to_jiffies(err);
647
648			mmc_schedule_delayed_work(&host->disable, delay);
649		}
650	}
651	host->enabled = 0;
652	return 0;
653}
654
655/**
656 *	mmc_host_disable - disable a host.
657 *	@host: mmc host to disable
658 *
659 *	Hosts that support power saving can use the 'enable' and 'disable'
660 *	methods to exit and enter power saving states. For more information
661 *	see comments for struct mmc_host_ops.
662 */
663int mmc_host_disable(struct mmc_host *host)
664{
665	int err;
666
667	if (!(host->caps & MMC_CAP_DISABLE))
668		return 0;
669
670	if (host->en_dis_recurs)
671		return 0;
672
673	if (--host->nesting_cnt)
674		return 0;
675
676	if (!host->enabled)
677		return 0;
678
679	err = mmc_host_do_disable(host, 0);
680	return err;
681}
682EXPORT_SYMBOL(mmc_host_disable);
683
684/**
685 *	__mmc_claim_host - exclusively claim a host
686 *	@host: mmc host to claim
687 *	@abort: whether or not the operation should be aborted
688 *
689 *	Claim a host for a set of operations.  If @abort is non null and
690 *	dereference a non-zero value then this will return prematurely with
691 *	that non-zero value without acquiring the lock.  Returns zero
692 *	with the lock held otherwise.
693 */
694int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
695{
696	DECLARE_WAITQUEUE(wait, current);
697	unsigned long flags;
698	int stop;
699
700	might_sleep();
701
702	add_wait_queue(&host->wq, &wait);
703	spin_lock_irqsave(&host->lock, flags);
704	while (1) {
705		set_current_state(TASK_UNINTERRUPTIBLE);
706		stop = abort ? atomic_read(abort) : 0;
707		if (stop || !host->claimed || host->claimer == current)
708			break;
709		spin_unlock_irqrestore(&host->lock, flags);
710		schedule();
711		spin_lock_irqsave(&host->lock, flags);
712	}
713	set_current_state(TASK_RUNNING);
714	if (!stop) {
715		host->claimed = 1;
716		host->claimer = current;
717		host->claim_cnt += 1;
718	} else
719		wake_up(&host->wq);
720	spin_unlock_irqrestore(&host->lock, flags);
721	remove_wait_queue(&host->wq, &wait);
722	if (!stop)
723		mmc_host_enable(host);
724	return stop;
725}
726
727EXPORT_SYMBOL(__mmc_claim_host);
728
729/**
730 *	mmc_try_claim_host - try exclusively to claim a host
731 *	@host: mmc host to claim
732 *
733 *	Returns %1 if the host is claimed, %0 otherwise.
734 */
735int mmc_try_claim_host(struct mmc_host *host)
736{
737	int claimed_host = 0;
738	unsigned long flags;
739
740	spin_lock_irqsave(&host->lock, flags);
741	if (!host->claimed || host->claimer == current) {
742		host->claimed = 1;
743		host->claimer = current;
744		host->claim_cnt += 1;
745		claimed_host = 1;
746	}
747	spin_unlock_irqrestore(&host->lock, flags);
748	return claimed_host;
749}
750EXPORT_SYMBOL(mmc_try_claim_host);
751
752/**
753 *	mmc_do_release_host - release a claimed host
754 *	@host: mmc host to release
755 *
756 *	If you successfully claimed a host, this function will
757 *	release it again.
758 */
759void mmc_do_release_host(struct mmc_host *host)
760{
761	unsigned long flags;
762
763	spin_lock_irqsave(&host->lock, flags);
764	if (--host->claim_cnt) {
765		/* Release for nested claim */
766		spin_unlock_irqrestore(&host->lock, flags);
767	} else {
768		host->claimed = 0;
769		host->claimer = NULL;
770		spin_unlock_irqrestore(&host->lock, flags);
771		wake_up(&host->wq);
772	}
773}
774EXPORT_SYMBOL(mmc_do_release_host);
775
776void mmc_host_deeper_disable(struct work_struct *work)
777{
778	struct mmc_host *host =
779		container_of(work, struct mmc_host, disable.work);
780
781	/* If the host is claimed then we do not want to disable it anymore */
782	if (!mmc_try_claim_host(host))
783		return;
784	mmc_host_do_disable(host, 1);
785	mmc_do_release_host(host);
786}
787
788/**
789 *	mmc_host_lazy_disable - lazily disable a host.
790 *	@host: mmc host to disable
791 *
792 *	Hosts that support power saving can use the 'enable' and 'disable'
793 *	methods to exit and enter power saving states. For more information
794 *	see comments for struct mmc_host_ops.
795 */
796int mmc_host_lazy_disable(struct mmc_host *host)
797{
798	if (!(host->caps & MMC_CAP_DISABLE))
799		return 0;
800
801	if (host->en_dis_recurs)
802		return 0;
803
804	if (--host->nesting_cnt)
805		return 0;
806
807	if (!host->enabled)
808		return 0;
809
810	if (host->disable_delay) {
811		mmc_schedule_delayed_work(&host->disable,
812				msecs_to_jiffies(host->disable_delay));
813		return 0;
814	} else
815		return mmc_host_do_disable(host, 1);
816}
817EXPORT_SYMBOL(mmc_host_lazy_disable);
818
819/**
820 *	mmc_release_host - release a host
821 *	@host: mmc host to release
822 *
823 *	Release a MMC host, allowing others to claim the host
824 *	for their operations.
825 */
826void mmc_release_host(struct mmc_host *host)
827{
828	WARN_ON(!host->claimed);
829
830	mmc_host_lazy_disable(host);
831
832	mmc_do_release_host(host);
833}
834
835EXPORT_SYMBOL(mmc_release_host);
836
837/*
838 * Internal function that does the actual ios call to the host driver,
839 * optionally printing some debug output.
840 */
841static inline void mmc_set_ios(struct mmc_host *host)
842{
843	struct mmc_ios *ios = &host->ios;
844
845	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
846		"width %u timing %u\n",
847		 mmc_hostname(host), ios->clock, ios->bus_mode,
848		 ios->power_mode, ios->chip_select, ios->vdd,
849		 ios->bus_width, ios->timing);
850
851	if (ios->clock > 0)
852		mmc_set_ungated(host);
853	host->ops->set_ios(host, ios);
854}
855
856/*
857 * Control chip select pin on a host.
858 */
859void mmc_set_chip_select(struct mmc_host *host, int mode)
860{
861	mmc_host_clk_hold(host);
862	host->ios.chip_select = mode;
863	mmc_set_ios(host);
864	mmc_host_clk_release(host);
865}
866
867/*
868 * Sets the host clock to the highest possible frequency that
869 * is below "hz".
870 */
871static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
872{
873	WARN_ON(hz < host->f_min);
874
875	if (hz > host->f_max)
876		hz = host->f_max;
877
878	host->ios.clock = hz;
879	mmc_set_ios(host);
880}
881
882void mmc_set_clock(struct mmc_host *host, unsigned int hz)
883{
884	mmc_host_clk_hold(host);
885	__mmc_set_clock(host, hz);
886	mmc_host_clk_release(host);
887}
888
889#ifdef CONFIG_MMC_CLKGATE
890/*
891 * This gates the clock by setting it to 0 Hz.
892 */
893void mmc_gate_clock(struct mmc_host *host)
894{
895	unsigned long flags;
896
897	spin_lock_irqsave(&host->clk_lock, flags);
898	host->clk_old = host->ios.clock;
899	host->ios.clock = 0;
900	host->clk_gated = true;
901	spin_unlock_irqrestore(&host->clk_lock, flags);
902	mmc_set_ios(host);
903}
904
905/*
906 * This restores the clock from gating by using the cached
907 * clock value.
908 */
909void mmc_ungate_clock(struct mmc_host *host)
910{
911	/*
912	 * We should previously have gated the clock, so the clock shall
913	 * be 0 here! The clock may however be 0 during initialization,
914	 * when some request operations are performed before setting
915	 * the frequency. When ungate is requested in that situation
916	 * we just ignore the call.
917	 */
918	if (host->clk_old) {
919		BUG_ON(host->ios.clock);
920		/* This call will also set host->clk_gated to false */
921		__mmc_set_clock(host, host->clk_old);
922	}
923}
924
925void mmc_set_ungated(struct mmc_host *host)
926{
927	unsigned long flags;
928
929	/*
930	 * We've been given a new frequency while the clock is gated,
931	 * so make sure we regard this as ungating it.
932	 */
933	spin_lock_irqsave(&host->clk_lock, flags);
934	host->clk_gated = false;
935	spin_unlock_irqrestore(&host->clk_lock, flags);
936}
937
938#else
939void mmc_set_ungated(struct mmc_host *host)
940{
941}
942#endif
943
944/*
945 * Change the bus mode (open drain/push-pull) of a host.
946 */
947void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
948{
949	mmc_host_clk_hold(host);
950	host->ios.bus_mode = mode;
951	mmc_set_ios(host);
952	mmc_host_clk_release(host);
953}
954
955/*
956 * Change data bus width of a host.
957 */
958void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
959{
960	mmc_host_clk_hold(host);
961	host->ios.bus_width = width;
962	mmc_set_ios(host);
963	mmc_host_clk_release(host);
964}
965
966/**
967 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
968 * @vdd:	voltage (mV)
969 * @low_bits:	prefer low bits in boundary cases
970 *
971 * This function returns the OCR bit number according to the provided @vdd
972 * value. If conversion is not possible a negative errno value returned.
973 *
974 * Depending on the @low_bits flag the function prefers low or high OCR bits
975 * on boundary voltages. For example,
976 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
977 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
978 *
979 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
980 */
981static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
982{
983	const int max_bit = ilog2(MMC_VDD_35_36);
984	int bit;
985
986	if (vdd < 1650 || vdd > 3600)
987		return -EINVAL;
988
989	if (vdd >= 1650 && vdd <= 1950)
990		return ilog2(MMC_VDD_165_195);
991
992	if (low_bits)
993		vdd -= 1;
994
995	/* Base 2000 mV, step 100 mV, bit's base 8. */
996	bit = (vdd - 2000) / 100 + 8;
997	if (bit > max_bit)
998		return max_bit;
999	return bit;
1000}
1001
1002/**
1003 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1004 * @vdd_min:	minimum voltage value (mV)
1005 * @vdd_max:	maximum voltage value (mV)
1006 *
1007 * This function returns the OCR mask bits according to the provided @vdd_min
1008 * and @vdd_max values. If conversion is not possible the function returns 0.
1009 *
1010 * Notes wrt boundary cases:
1011 * This function sets the OCR bits for all boundary voltages, for example
1012 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1013 * MMC_VDD_34_35 mask.
1014 */
1015u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1016{
1017	u32 mask = 0;
1018
1019	if (vdd_max < vdd_min)
1020		return 0;
1021
1022	/* Prefer high bits for the boundary vdd_max values. */
1023	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1024	if (vdd_max < 0)
1025		return 0;
1026
1027	/* Prefer low bits for the boundary vdd_min values. */
1028	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1029	if (vdd_min < 0)
1030		return 0;
1031
1032	/* Fill the mask, from max bit to min bit. */
1033	while (vdd_max >= vdd_min)
1034		mask |= 1 << vdd_max--;
1035
1036	return mask;
1037}
1038EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1039
1040#ifdef CONFIG_REGULATOR
1041
1042/**
1043 * mmc_regulator_get_ocrmask - return mask of supported voltages
1044 * @supply: regulator to use
1045 *
1046 * This returns either a negative errno, or a mask of voltages that
1047 * can be provided to MMC/SD/SDIO devices using the specified voltage
1048 * regulator.  This would normally be called before registering the
1049 * MMC host adapter.
1050 */
1051int mmc_regulator_get_ocrmask(struct regulator *supply)
1052{
1053	int			result = 0;
1054	int			count;
1055	int			i;
1056
1057	count = regulator_count_voltages(supply);
1058	if (count < 0)
1059		return count;
1060
1061	for (i = 0; i < count; i++) {
1062		int		vdd_uV;
1063		int		vdd_mV;
1064
1065		vdd_uV = regulator_list_voltage(supply, i);
1066		if (vdd_uV <= 0)
1067			continue;
1068
1069		vdd_mV = vdd_uV / 1000;
1070		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1071	}
1072
1073	return result;
1074}
1075EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
1076
1077/**
1078 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1079 * @mmc: the host to regulate
1080 * @supply: regulator to use
1081 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1082 *
1083 * Returns zero on success, else negative errno.
1084 *
1085 * MMC host drivers may use this to enable or disable a regulator using
1086 * a particular supply voltage.  This would normally be called from the
1087 * set_ios() method.
1088 */
1089int mmc_regulator_set_ocr(struct mmc_host *mmc,
1090			struct regulator *supply,
1091			unsigned short vdd_bit)
1092{
1093	int			result = 0;
1094	int			min_uV, max_uV;
1095
1096	if (vdd_bit) {
1097		int		tmp;
1098		int		voltage;
1099
1100		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
1101		 * bits this regulator doesn't quite support ... don't
1102		 * be too picky, most cards and regulators are OK with
1103		 * a 0.1V range goof (it's a small error percentage).
1104		 */
1105		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1106		if (tmp == 0) {
1107			min_uV = 1650 * 1000;
1108			max_uV = 1950 * 1000;
1109		} else {
1110			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1111			max_uV = min_uV + 100 * 1000;
1112		}
1113
1114		/* avoid needless changes to this voltage; the regulator
1115		 * might not allow this operation
1116		 */
1117		voltage = regulator_get_voltage(supply);
1118		if (voltage < 0)
1119			result = voltage;
1120		else if (voltage < min_uV || voltage > max_uV)
1121			result = regulator_set_voltage(supply, min_uV, max_uV);
1122		else
1123			result = 0;
1124
1125		if (result == 0 && !mmc->regulator_enabled) {
1126			result = regulator_enable(supply);
1127			if (!result)
1128				mmc->regulator_enabled = true;
1129		}
1130	} else if (mmc->regulator_enabled) {
1131		result = regulator_disable(supply);
1132		if (result == 0)
1133			mmc->regulator_enabled = false;
1134	}
1135
1136	if (result)
1137		dev_err(mmc_dev(mmc),
1138			"could not set regulator OCR (%d)\n", result);
1139	return result;
1140}
1141EXPORT_SYMBOL(mmc_regulator_set_ocr);
1142
1143#endif /* CONFIG_REGULATOR */
1144
1145/*
1146 * Mask off any voltages we don't support and select
1147 * the lowest voltage
1148 */
1149u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1150{
1151	int bit;
1152
1153	ocr &= host->ocr_avail;
1154
1155	bit = ffs(ocr);
1156	if (bit) {
1157		bit -= 1;
1158
1159		ocr &= 3 << bit;
1160
1161		mmc_host_clk_hold(host);
1162		host->ios.vdd = bit;
1163		mmc_set_ios(host);
1164		mmc_host_clk_release(host);
1165	} else {
1166		pr_warning("%s: host doesn't support card's voltages\n",
1167				mmc_hostname(host));
1168		ocr = 0;
1169	}
1170
1171	return ocr;
1172}
1173
1174int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1175{
1176	struct mmc_command cmd = {0};
1177	int err = 0;
1178
1179	BUG_ON(!host);
1180
1181	/*
1182	 * Send CMD11 only if the request is to switch the card to
1183	 * 1.8V signalling.
1184	 */
1185	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1186		cmd.opcode = SD_SWITCH_VOLTAGE;
1187		cmd.arg = 0;
1188		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1189
1190		err = mmc_wait_for_cmd(host, &cmd, 0);
1191		if (err)
1192			return err;
1193
1194		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1195			return -EIO;
1196	}
1197
1198	host->ios.signal_voltage = signal_voltage;
1199
1200	if (host->ops->start_signal_voltage_switch)
1201		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1202
1203	return err;
1204}
1205
1206/*
1207 * Select timing parameters for host.
1208 */
1209void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1210{
1211	mmc_host_clk_hold(host);
1212	host->ios.timing = timing;
1213	mmc_set_ios(host);
1214	mmc_host_clk_release(host);
1215}
1216
1217/*
1218 * Select appropriate driver type for host.
1219 */
1220void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1221{
1222	mmc_host_clk_hold(host);
1223	host->ios.drv_type = drv_type;
1224	mmc_set_ios(host);
1225	mmc_host_clk_release(host);
1226}
1227
1228/*
1229 * Apply power to the MMC stack.  This is a two-stage process.
1230 * First, we enable power to the card without the clock running.
1231 * We then wait a bit for the power to stabilise.  Finally,
1232 * enable the bus drivers and clock to the card.
1233 *
1234 * We must _NOT_ enable the clock prior to power stablising.
1235 *
1236 * If a host does all the power sequencing itself, ignore the
1237 * initial MMC_POWER_UP stage.
1238 */
1239static void mmc_power_up(struct mmc_host *host)
1240{
1241	int bit;
1242
1243	mmc_host_clk_hold(host);
1244
1245	/* If ocr is set, we use it */
1246	if (host->ocr)
1247		bit = ffs(host->ocr) - 1;
1248	else
1249		bit = fls(host->ocr_avail) - 1;
1250
1251	host->ios.vdd = bit;
1252	if (mmc_host_is_spi(host))
1253		host->ios.chip_select = MMC_CS_HIGH;
1254	else
1255		host->ios.chip_select = MMC_CS_DONTCARE;
1256	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1257	host->ios.power_mode = MMC_POWER_UP;
1258	host->ios.bus_width = MMC_BUS_WIDTH_1;
1259	host->ios.timing = MMC_TIMING_LEGACY;
1260	mmc_set_ios(host);
1261
1262	/*
1263	 * This delay should be sufficient to allow the power supply
1264	 * to reach the minimum voltage.
1265	 */
1266	mmc_delay(10);
1267
1268	host->ios.clock = host->f_init;
1269
1270	host->ios.power_mode = MMC_POWER_ON;
1271	mmc_set_ios(host);
1272
1273	/*
1274	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1275	 * time required to reach a stable voltage.
1276	 */
1277	mmc_delay(10);
1278
1279	mmc_host_clk_release(host);
1280}
1281
1282void mmc_power_off(struct mmc_host *host)
1283{
1284	struct mmc_card *card;
1285	unsigned int notify_type;
1286	unsigned int timeout;
1287	int err;
1288
1289	mmc_host_clk_hold(host);
1290
1291	card = host->card;
1292	host->ios.clock = 0;
1293	host->ios.vdd = 0;
1294
1295	if (card && mmc_card_mmc(card) &&
1296	    (card->poweroff_notify_state == MMC_POWERED_ON)) {
1297
1298		if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
1299			notify_type = EXT_CSD_POWER_OFF_SHORT;
1300			timeout = card->ext_csd.generic_cmd6_time;
1301			card->poweroff_notify_state = MMC_POWEROFF_SHORT;
1302		} else {
1303			notify_type = EXT_CSD_POWER_OFF_LONG;
1304			timeout = card->ext_csd.power_off_longtime;
1305			card->poweroff_notify_state = MMC_POWEROFF_LONG;
1306		}
1307
1308		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1309				 EXT_CSD_POWER_OFF_NOTIFICATION,
1310				 notify_type, timeout);
1311
1312		if (err && err != -EBADMSG)
1313			pr_err("Device failed to respond within %d poweroff "
1314			       "time. Forcefully powering down the device\n",
1315			       timeout);
1316
1317		/* Set the card state to no notification after the poweroff */
1318		card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
1319	}
1320
1321	/*
1322	 * Reset ocr mask to be the highest possible voltage supported for
1323	 * this mmc host. This value will be used at next power up.
1324	 */
1325	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1326
1327	if (!mmc_host_is_spi(host)) {
1328		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1329		host->ios.chip_select = MMC_CS_DONTCARE;
1330	}
1331	host->ios.power_mode = MMC_POWER_OFF;
1332	host->ios.bus_width = MMC_BUS_WIDTH_1;
1333	host->ios.timing = MMC_TIMING_LEGACY;
1334	mmc_set_ios(host);
1335
1336	/*
1337	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1338	 * XO-1.5, require a short delay after poweroff before the card
1339	 * can be successfully turned on again.
1340	 */
1341	mmc_delay(1);
1342
1343	mmc_host_clk_release(host);
1344}
1345
1346/*
1347 * Cleanup when the last reference to the bus operator is dropped.
1348 */
1349static void __mmc_release_bus(struct mmc_host *host)
1350{
1351	BUG_ON(!host);
1352	BUG_ON(host->bus_refs);
1353	BUG_ON(!host->bus_dead);
1354
1355	host->bus_ops = NULL;
1356}
1357
1358/*
1359 * Increase reference count of bus operator
1360 */
1361static inline void mmc_bus_get(struct mmc_host *host)
1362{
1363	unsigned long flags;
1364
1365	spin_lock_irqsave(&host->lock, flags);
1366	host->bus_refs++;
1367	spin_unlock_irqrestore(&host->lock, flags);
1368}
1369
1370/*
1371 * Decrease reference count of bus operator and free it if
1372 * it is the last reference.
1373 */
1374static inline void mmc_bus_put(struct mmc_host *host)
1375{
1376	unsigned long flags;
1377
1378	spin_lock_irqsave(&host->lock, flags);
1379	host->bus_refs--;
1380	if ((host->bus_refs == 0) && host->bus_ops)
1381		__mmc_release_bus(host);
1382	spin_unlock_irqrestore(&host->lock, flags);
1383}
1384
1385/*
1386 * Assign a mmc bus handler to a host. Only one bus handler may control a
1387 * host at any given time.
1388 */
1389void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1390{
1391	unsigned long flags;
1392
1393	BUG_ON(!host);
1394	BUG_ON(!ops);
1395
1396	WARN_ON(!host->claimed);
1397
1398	spin_lock_irqsave(&host->lock, flags);
1399
1400	BUG_ON(host->bus_ops);
1401	BUG_ON(host->bus_refs);
1402
1403	host->bus_ops = ops;
1404	host->bus_refs = 1;
1405	host->bus_dead = 0;
1406
1407	spin_unlock_irqrestore(&host->lock, flags);
1408}
1409
1410/*
1411 * Remove the current bus handler from a host.
1412 */
1413void mmc_detach_bus(struct mmc_host *host)
1414{
1415	unsigned long flags;
1416
1417	BUG_ON(!host);
1418
1419	WARN_ON(!host->claimed);
1420	WARN_ON(!host->bus_ops);
1421
1422	spin_lock_irqsave(&host->lock, flags);
1423
1424	host->bus_dead = 1;
1425
1426	spin_unlock_irqrestore(&host->lock, flags);
1427
1428	mmc_bus_put(host);
1429}
1430
1431/**
1432 *	mmc_detect_change - process change of state on a MMC socket
1433 *	@host: host which changed state.
1434 *	@delay: optional delay to wait before detection (jiffies)
1435 *
1436 *	MMC drivers should call this when they detect a card has been
1437 *	inserted or removed. The MMC layer will confirm that any
1438 *	present card is still functional, and initialize any newly
1439 *	inserted.
1440 */
1441void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1442{
1443#ifdef CONFIG_MMC_DEBUG
1444	unsigned long flags;
1445	spin_lock_irqsave(&host->lock, flags);
1446	WARN_ON(host->removed);
1447	spin_unlock_irqrestore(&host->lock, flags);
1448#endif
1449
1450	mmc_schedule_delayed_work(&host->detect, delay);
1451}
1452
1453EXPORT_SYMBOL(mmc_detect_change);
1454
1455void mmc_init_erase(struct mmc_card *card)
1456{
1457	unsigned int sz;
1458
1459	if (is_power_of_2(card->erase_size))
1460		card->erase_shift = ffs(card->erase_size) - 1;
1461	else
1462		card->erase_shift = 0;
1463
1464	/*
1465	 * It is possible to erase an arbitrarily large area of an SD or MMC
1466	 * card.  That is not desirable because it can take a long time
1467	 * (minutes) potentially delaying more important I/O, and also the
1468	 * timeout calculations become increasingly hugely over-estimated.
1469	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1470	 * to that size and alignment.
1471	 *
1472	 * For SD cards that define Allocation Unit size, limit erases to one
1473	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1474	 * Erase Size, whether it is switched on or not, limit to that size.
1475	 * Otherwise just have a stab at a good value.  For modern cards it
1476	 * will end up being 4MiB.  Note that if the value is too small, it
1477	 * can end up taking longer to erase.
1478	 */
1479	if (mmc_card_sd(card) && card->ssr.au) {
1480		card->pref_erase = card->ssr.au;
1481		card->erase_shift = ffs(card->ssr.au) - 1;
1482	} else if (card->ext_csd.hc_erase_size) {
1483		card->pref_erase = card->ext_csd.hc_erase_size;
1484	} else {
1485		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1486		if (sz < 128)
1487			card->pref_erase = 512 * 1024 / 512;
1488		else if (sz < 512)
1489			card->pref_erase = 1024 * 1024 / 512;
1490		else if (sz < 1024)
1491			card->pref_erase = 2 * 1024 * 1024 / 512;
1492		else
1493			card->pref_erase = 4 * 1024 * 1024 / 512;
1494		if (card->pref_erase < card->erase_size)
1495			card->pref_erase = card->erase_size;
1496		else {
1497			sz = card->pref_erase % card->erase_size;
1498			if (sz)
1499				card->pref_erase += card->erase_size - sz;
1500		}
1501	}
1502}
1503
1504static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1505				          unsigned int arg, unsigned int qty)
1506{
1507	unsigned int erase_timeout;
1508
1509	if (card->ext_csd.erase_group_def & 1) {
1510		/* High Capacity Erase Group Size uses HC timeouts */
1511		if (arg == MMC_TRIM_ARG)
1512			erase_timeout = card->ext_csd.trim_timeout;
1513		else
1514			erase_timeout = card->ext_csd.hc_erase_timeout;
1515	} else {
1516		/* CSD Erase Group Size uses write timeout */
1517		unsigned int mult = (10 << card->csd.r2w_factor);
1518		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1519		unsigned int timeout_us;
1520
1521		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1522		if (card->csd.tacc_ns < 1000000)
1523			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1524		else
1525			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1526
1527		/*
1528		 * ios.clock is only a target.  The real clock rate might be
1529		 * less but not that much less, so fudge it by multiplying by 2.
1530		 */
1531		timeout_clks <<= 1;
1532		timeout_us += (timeout_clks * 1000) /
1533			      (mmc_host_clk_rate(card->host) / 1000);
1534
1535		erase_timeout = timeout_us / 1000;
1536
1537		/*
1538		 * Theoretically, the calculation could underflow so round up
1539		 * to 1ms in that case.
1540		 */
1541		if (!erase_timeout)
1542			erase_timeout = 1;
1543	}
1544
1545	/* Multiplier for secure operations */
1546	if (arg & MMC_SECURE_ARGS) {
1547		if (arg == MMC_SECURE_ERASE_ARG)
1548			erase_timeout *= card->ext_csd.sec_erase_mult;
1549		else
1550			erase_timeout *= card->ext_csd.sec_trim_mult;
1551	}
1552
1553	erase_timeout *= qty;
1554
1555	/*
1556	 * Ensure at least a 1 second timeout for SPI as per
1557	 * 'mmc_set_data_timeout()'
1558	 */
1559	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1560		erase_timeout = 1000;
1561
1562	return erase_timeout;
1563}
1564
1565static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1566					 unsigned int arg,
1567					 unsigned int qty)
1568{
1569	unsigned int erase_timeout;
1570
1571	if (card->ssr.erase_timeout) {
1572		/* Erase timeout specified in SD Status Register (SSR) */
1573		erase_timeout = card->ssr.erase_timeout * qty +
1574				card->ssr.erase_offset;
1575	} else {
1576		/*
1577		 * Erase timeout not specified in SD Status Register (SSR) so
1578		 * use 250ms per write block.
1579		 */
1580		erase_timeout = 250 * qty;
1581	}
1582
1583	/* Must not be less than 1 second */
1584	if (erase_timeout < 1000)
1585		erase_timeout = 1000;
1586
1587	return erase_timeout;
1588}
1589
1590static unsigned int mmc_erase_timeout(struct mmc_card *card,
1591				      unsigned int arg,
1592				      unsigned int qty)
1593{
1594	if (mmc_card_sd(card))
1595		return mmc_sd_erase_timeout(card, arg, qty);
1596	else
1597		return mmc_mmc_erase_timeout(card, arg, qty);
1598}
1599
1600static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1601			unsigned int to, unsigned int arg)
1602{
1603	struct mmc_command cmd = {0};
1604	unsigned int qty = 0;
1605	int err;
1606
1607	/*
1608	 * qty is used to calculate the erase timeout which depends on how many
1609	 * erase groups (or allocation units in SD terminology) are affected.
1610	 * We count erasing part of an erase group as one erase group.
1611	 * For SD, the allocation units are always a power of 2.  For MMC, the
1612	 * erase group size is almost certainly also power of 2, but it does not
1613	 * seem to insist on that in the JEDEC standard, so we fall back to
1614	 * division in that case.  SD may not specify an allocation unit size,
1615	 * in which case the timeout is based on the number of write blocks.
1616	 *
1617	 * Note that the timeout for secure trim 2 will only be correct if the
1618	 * number of erase groups specified is the same as the total of all
1619	 * preceding secure trim 1 commands.  Since the power may have been
1620	 * lost since the secure trim 1 commands occurred, it is generally
1621	 * impossible to calculate the secure trim 2 timeout correctly.
1622	 */
1623	if (card->erase_shift)
1624		qty += ((to >> card->erase_shift) -
1625			(from >> card->erase_shift)) + 1;
1626	else if (mmc_card_sd(card))
1627		qty += to - from + 1;
1628	else
1629		qty += ((to / card->erase_size) -
1630			(from / card->erase_size)) + 1;
1631
1632	if (!mmc_card_blockaddr(card)) {
1633		from <<= 9;
1634		to <<= 9;
1635	}
1636
1637	if (mmc_card_sd(card))
1638		cmd.opcode = SD_ERASE_WR_BLK_START;
1639	else
1640		cmd.opcode = MMC_ERASE_GROUP_START;
1641	cmd.arg = from;
1642	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1643	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1644	if (err) {
1645		pr_err("mmc_erase: group start error %d, "
1646		       "status %#x\n", err, cmd.resp[0]);
1647		err = -EIO;
1648		goto out;
1649	}
1650
1651	memset(&cmd, 0, sizeof(struct mmc_command));
1652	if (mmc_card_sd(card))
1653		cmd.opcode = SD_ERASE_WR_BLK_END;
1654	else
1655		cmd.opcode = MMC_ERASE_GROUP_END;
1656	cmd.arg = to;
1657	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1658	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1659	if (err) {
1660		pr_err("mmc_erase: group end error %d, status %#x\n",
1661		       err, cmd.resp[0]);
1662		err = -EIO;
1663		goto out;
1664	}
1665
1666	memset(&cmd, 0, sizeof(struct mmc_command));
1667	cmd.opcode = MMC_ERASE;
1668	cmd.arg = arg;
1669	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1670	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1671	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1672	if (err) {
1673		pr_err("mmc_erase: erase error %d, status %#x\n",
1674		       err, cmd.resp[0]);
1675		err = -EIO;
1676		goto out;
1677	}
1678
1679	if (mmc_host_is_spi(card->host))
1680		goto out;
1681
1682	do {
1683		memset(&cmd, 0, sizeof(struct mmc_command));
1684		cmd.opcode = MMC_SEND_STATUS;
1685		cmd.arg = card->rca << 16;
1686		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1687		/* Do not retry else we can't see errors */
1688		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1689		if (err || (cmd.resp[0] & 0xFDF92000)) {
1690			pr_err("error %d requesting status %#x\n",
1691				err, cmd.resp[0]);
1692			err = -EIO;
1693			goto out;
1694		}
1695	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1696		 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1697out:
1698	return err;
1699}
1700
1701/**
1702 * mmc_erase - erase sectors.
1703 * @card: card to erase
1704 * @from: first sector to erase
1705 * @nr: number of sectors to erase
1706 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1707 *
1708 * Caller must claim host before calling this function.
1709 */
1710int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1711	      unsigned int arg)
1712{
1713	unsigned int rem, to = from + nr;
1714
1715	if (!(card->host->caps & MMC_CAP_ERASE) ||
1716	    !(card->csd.cmdclass & CCC_ERASE))
1717		return -EOPNOTSUPP;
1718
1719	if (!card->erase_size)
1720		return -EOPNOTSUPP;
1721
1722	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1723		return -EOPNOTSUPP;
1724
1725	if ((arg & MMC_SECURE_ARGS) &&
1726	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1727		return -EOPNOTSUPP;
1728
1729	if ((arg & MMC_TRIM_ARGS) &&
1730	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1731		return -EOPNOTSUPP;
1732
1733	if (arg == MMC_SECURE_ERASE_ARG) {
1734		if (from % card->erase_size || nr % card->erase_size)
1735			return -EINVAL;
1736	}
1737
1738	if (arg == MMC_ERASE_ARG) {
1739		rem = from % card->erase_size;
1740		if (rem) {
1741			rem = card->erase_size - rem;
1742			from += rem;
1743			if (nr > rem)
1744				nr -= rem;
1745			else
1746				return 0;
1747		}
1748		rem = nr % card->erase_size;
1749		if (rem)
1750			nr -= rem;
1751	}
1752
1753	if (nr == 0)
1754		return 0;
1755
1756	to = from + nr;
1757
1758	if (to <= from)
1759		return -EINVAL;
1760
1761	/* 'from' and 'to' are inclusive */
1762	to -= 1;
1763
1764	return mmc_do_erase(card, from, to, arg);
1765}
1766EXPORT_SYMBOL(mmc_erase);
1767
1768int mmc_can_erase(struct mmc_card *card)
1769{
1770	if ((card->host->caps & MMC_CAP_ERASE) &&
1771	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1772		return 1;
1773	return 0;
1774}
1775EXPORT_SYMBOL(mmc_can_erase);
1776
1777int mmc_can_trim(struct mmc_card *card)
1778{
1779	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1780		return 1;
1781	if (mmc_can_discard(card))
1782		return 1;
1783	return 0;
1784}
1785EXPORT_SYMBOL(mmc_can_trim);
1786
1787int mmc_can_discard(struct mmc_card *card)
1788{
1789	/*
1790	 * As there's no way to detect the discard support bit at v4.5
1791	 * use the s/w feature support filed.
1792	 */
1793	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1794		return 1;
1795	return 0;
1796}
1797EXPORT_SYMBOL(mmc_can_discard);
1798
1799int mmc_can_sanitize(struct mmc_card *card)
1800{
1801	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1802		return 1;
1803	return 0;
1804}
1805EXPORT_SYMBOL(mmc_can_sanitize);
1806
1807int mmc_can_secure_erase_trim(struct mmc_card *card)
1808{
1809	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1810		return 1;
1811	return 0;
1812}
1813EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1814
1815int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1816			    unsigned int nr)
1817{
1818	if (!card->erase_size)
1819		return 0;
1820	if (from % card->erase_size || nr % card->erase_size)
1821		return 0;
1822	return 1;
1823}
1824EXPORT_SYMBOL(mmc_erase_group_aligned);
1825
1826static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1827					    unsigned int arg)
1828{
1829	struct mmc_host *host = card->host;
1830	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1831	unsigned int last_timeout = 0;
1832
1833	if (card->erase_shift)
1834		max_qty = UINT_MAX >> card->erase_shift;
1835	else if (mmc_card_sd(card))
1836		max_qty = UINT_MAX;
1837	else
1838		max_qty = UINT_MAX / card->erase_size;
1839
1840	/* Find the largest qty with an OK timeout */
1841	do {
1842		y = 0;
1843		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1844			timeout = mmc_erase_timeout(card, arg, qty + x);
1845			if (timeout > host->max_discard_to)
1846				break;
1847			if (timeout < last_timeout)
1848				break;
1849			last_timeout = timeout;
1850			y = x;
1851		}
1852		qty += y;
1853	} while (y);
1854
1855	if (!qty)
1856		return 0;
1857
1858	if (qty == 1)
1859		return 1;
1860
1861	/* Convert qty to sectors */
1862	if (card->erase_shift)
1863		max_discard = --qty << card->erase_shift;
1864	else if (mmc_card_sd(card))
1865		max_discard = qty;
1866	else
1867		max_discard = --qty * card->erase_size;
1868
1869	return max_discard;
1870}
1871
1872unsigned int mmc_calc_max_discard(struct mmc_card *card)
1873{
1874	struct mmc_host *host = card->host;
1875	unsigned int max_discard, max_trim;
1876
1877	if (!host->max_discard_to)
1878		return UINT_MAX;
1879
1880	/*
1881	 * Without erase_group_def set, MMC erase timeout depends on clock
1882	 * frequence which can change.  In that case, the best choice is
1883	 * just the preferred erase size.
1884	 */
1885	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1886		return card->pref_erase;
1887
1888	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1889	if (mmc_can_trim(card)) {
1890		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1891		if (max_trim < max_discard)
1892			max_discard = max_trim;
1893	} else if (max_discard < card->erase_size) {
1894		max_discard = 0;
1895	}
1896	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1897		 mmc_hostname(host), max_discard, host->max_discard_to);
1898	return max_discard;
1899}
1900EXPORT_SYMBOL(mmc_calc_max_discard);
1901
1902int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1903{
1904	struct mmc_command cmd = {0};
1905
1906	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1907		return 0;
1908
1909	cmd.opcode = MMC_SET_BLOCKLEN;
1910	cmd.arg = blocklen;
1911	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1912	return mmc_wait_for_cmd(card->host, &cmd, 5);
1913}
1914EXPORT_SYMBOL(mmc_set_blocklen);
1915
1916static void mmc_hw_reset_for_init(struct mmc_host *host)
1917{
1918	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1919		return;
1920	mmc_host_clk_hold(host);
1921	host->ops->hw_reset(host);
1922	mmc_host_clk_release(host);
1923}
1924
1925int mmc_can_reset(struct mmc_card *card)
1926{
1927	u8 rst_n_function;
1928
1929	if (!mmc_card_mmc(card))
1930		return 0;
1931	rst_n_function = card->ext_csd.rst_n_function;
1932	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1933		return 0;
1934	return 1;
1935}
1936EXPORT_SYMBOL(mmc_can_reset);
1937
1938static int mmc_do_hw_reset(struct mmc_host *host, int check)
1939{
1940	struct mmc_card *card = host->card;
1941
1942	if (!host->bus_ops->power_restore)
1943		return -EOPNOTSUPP;
1944
1945	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1946		return -EOPNOTSUPP;
1947
1948	if (!card)
1949		return -EINVAL;
1950
1951	if (!mmc_can_reset(card))
1952		return -EOPNOTSUPP;
1953
1954	mmc_host_clk_hold(host);
1955	mmc_set_clock(host, host->f_init);
1956
1957	host->ops->hw_reset(host);
1958
1959	/* If the reset has happened, then a status command will fail */
1960	if (check) {
1961		struct mmc_command cmd = {0};
1962		int err;
1963
1964		cmd.opcode = MMC_SEND_STATUS;
1965		if (!mmc_host_is_spi(card->host))
1966			cmd.arg = card->rca << 16;
1967		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1968		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1969		if (!err) {
1970			mmc_host_clk_release(host);
1971			return -ENOSYS;
1972		}
1973	}
1974
1975	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
1976	if (mmc_host_is_spi(host)) {
1977		host->ios.chip_select = MMC_CS_HIGH;
1978		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1979	} else {
1980		host->ios.chip_select = MMC_CS_DONTCARE;
1981		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1982	}
1983	host->ios.bus_width = MMC_BUS_WIDTH_1;
1984	host->ios.timing = MMC_TIMING_LEGACY;
1985	mmc_set_ios(host);
1986
1987	mmc_host_clk_release(host);
1988
1989	return host->bus_ops->power_restore(host);
1990}
1991
1992int mmc_hw_reset(struct mmc_host *host)
1993{
1994	return mmc_do_hw_reset(host, 0);
1995}
1996EXPORT_SYMBOL(mmc_hw_reset);
1997
1998int mmc_hw_reset_check(struct mmc_host *host)
1999{
2000	return mmc_do_hw_reset(host, 1);
2001}
2002EXPORT_SYMBOL(mmc_hw_reset_check);
2003
2004static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2005{
2006	host->f_init = freq;
2007
2008#ifdef CONFIG_MMC_DEBUG
2009	pr_info("%s: %s: trying to init card at %u Hz\n",
2010		mmc_hostname(host), __func__, host->f_init);
2011#endif
2012	mmc_power_up(host);
2013
2014	/*
2015	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2016	 * do a hardware reset if possible.
2017	 */
2018	mmc_hw_reset_for_init(host);
2019
2020	/*
2021	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2022	 * if the card is being re-initialized, just send it.  CMD52
2023	 * should be ignored by SD/eMMC cards.
2024	 */
2025	sdio_reset(host);
2026	mmc_go_idle(host);
2027
2028	mmc_send_if_cond(host, host->ocr_avail);
2029
2030	/* Order's important: probe SDIO, then SD, then MMC */
2031	if (!mmc_attach_sdio(host))
2032		return 0;
2033	if (!mmc_attach_sd(host))
2034		return 0;
2035	if (!mmc_attach_mmc(host))
2036		return 0;
2037
2038	mmc_power_off(host);
2039	return -EIO;
2040}
2041
2042void mmc_rescan(struct work_struct *work)
2043{
2044	static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
2045	struct mmc_host *host =
2046		container_of(work, struct mmc_host, detect.work);
2047	int i;
2048
2049	if (host->rescan_disable)
2050		return;
2051
2052	mmc_bus_get(host);
2053
2054	/*
2055	 * if there is a _removable_ card registered, check whether it is
2056	 * still present
2057	 */
2058	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2059	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2060		host->bus_ops->detect(host);
2061
2062	/*
2063	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2064	 * the card is no longer present.
2065	 */
2066	mmc_bus_put(host);
2067	mmc_bus_get(host);
2068
2069	/* if there still is a card present, stop here */
2070	if (host->bus_ops != NULL) {
2071		mmc_bus_put(host);
2072		goto out;
2073	}
2074
2075	/*
2076	 * Only we can add a new handler, so it's safe to
2077	 * release the lock here.
2078	 */
2079	mmc_bus_put(host);
2080
2081	if (host->ops->get_cd && host->ops->get_cd(host) == 0)
2082		goto out;
2083
2084	mmc_claim_host(host);
2085	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2086		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2087			break;
2088		if (freqs[i] <= host->f_min)
2089			break;
2090	}
2091	mmc_release_host(host);
2092
2093 out:
2094	if (host->caps & MMC_CAP_NEEDS_POLL)
2095		mmc_schedule_delayed_work(&host->detect, HZ);
2096}
2097
2098void mmc_start_host(struct mmc_host *host)
2099{
2100	mmc_power_off(host);
2101	mmc_detect_change(host, 0);
2102}
2103
2104void mmc_stop_host(struct mmc_host *host)
2105{
2106#ifdef CONFIG_MMC_DEBUG
2107	unsigned long flags;
2108	spin_lock_irqsave(&host->lock, flags);
2109	host->removed = 1;
2110	spin_unlock_irqrestore(&host->lock, flags);
2111#endif
2112
2113	if (host->caps & MMC_CAP_DISABLE)
2114		cancel_delayed_work(&host->disable);
2115	cancel_delayed_work_sync(&host->detect);
2116	mmc_flush_scheduled_work();
2117
2118	/* clear pm flags now and let card drivers set them as needed */
2119	host->pm_flags = 0;
2120
2121	mmc_bus_get(host);
2122	if (host->bus_ops && !host->bus_dead) {
2123		if (host->bus_ops->remove)
2124			host->bus_ops->remove(host);
2125
2126		mmc_claim_host(host);
2127		mmc_detach_bus(host);
2128		mmc_power_off(host);
2129		mmc_release_host(host);
2130		mmc_bus_put(host);
2131		return;
2132	}
2133	mmc_bus_put(host);
2134
2135	BUG_ON(host->card);
2136
2137	mmc_power_off(host);
2138}
2139
2140int mmc_power_save_host(struct mmc_host *host)
2141{
2142	int ret = 0;
2143
2144#ifdef CONFIG_MMC_DEBUG
2145	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2146#endif
2147
2148	mmc_bus_get(host);
2149
2150	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2151		mmc_bus_put(host);
2152		return -EINVAL;
2153	}
2154
2155	if (host->bus_ops->power_save)
2156		ret = host->bus_ops->power_save(host);
2157
2158	mmc_bus_put(host);
2159
2160	mmc_power_off(host);
2161
2162	return ret;
2163}
2164EXPORT_SYMBOL(mmc_power_save_host);
2165
2166int mmc_power_restore_host(struct mmc_host *host)
2167{
2168	int ret;
2169
2170#ifdef CONFIG_MMC_DEBUG
2171	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2172#endif
2173
2174	mmc_bus_get(host);
2175
2176	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2177		mmc_bus_put(host);
2178		return -EINVAL;
2179	}
2180
2181	mmc_power_up(host);
2182	ret = host->bus_ops->power_restore(host);
2183
2184	mmc_bus_put(host);
2185
2186	return ret;
2187}
2188EXPORT_SYMBOL(mmc_power_restore_host);
2189
2190int mmc_card_awake(struct mmc_host *host)
2191{
2192	int err = -ENOSYS;
2193
2194	mmc_bus_get(host);
2195
2196	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2197		err = host->bus_ops->awake(host);
2198
2199	mmc_bus_put(host);
2200
2201	return err;
2202}
2203EXPORT_SYMBOL(mmc_card_awake);
2204
2205int mmc_card_sleep(struct mmc_host *host)
2206{
2207	int err = -ENOSYS;
2208
2209	mmc_bus_get(host);
2210
2211	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2212		err = host->bus_ops->sleep(host);
2213
2214	mmc_bus_put(host);
2215
2216	return err;
2217}
2218EXPORT_SYMBOL(mmc_card_sleep);
2219
2220int mmc_card_can_sleep(struct mmc_host *host)
2221{
2222	struct mmc_card *card = host->card;
2223
2224	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2225		return 1;
2226	return 0;
2227}
2228EXPORT_SYMBOL(mmc_card_can_sleep);
2229
2230/*
2231 * Flush the cache to the non-volatile storage.
2232 */
2233int mmc_flush_cache(struct mmc_card *card)
2234{
2235	struct mmc_host *host = card->host;
2236	int err = 0;
2237
2238	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2239		return err;
2240
2241	if (mmc_card_mmc(card) &&
2242			(card->ext_csd.cache_size > 0) &&
2243			(card->ext_csd.cache_ctrl & 1)) {
2244		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2245				EXT_CSD_FLUSH_CACHE, 1, 0);
2246		if (err)
2247			pr_err("%s: cache flush error %d\n",
2248					mmc_hostname(card->host), err);
2249	}
2250
2251	return err;
2252}
2253EXPORT_SYMBOL(mmc_flush_cache);
2254
2255/*
2256 * Turn the cache ON/OFF.
2257 * Turning the cache OFF shall trigger flushing of the data
2258 * to the non-volatile storage.
2259 */
2260int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2261{
2262	struct mmc_card *card = host->card;
2263	int err = 0;
2264
2265	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2266			mmc_card_is_removable(host))
2267		return err;
2268
2269	if (card && mmc_card_mmc(card) &&
2270			(card->ext_csd.cache_size > 0)) {
2271		enable = !!enable;
2272
2273		if (card->ext_csd.cache_ctrl ^ enable)
2274			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2275					EXT_CSD_CACHE_CTRL, enable, 0);
2276		if (err)
2277			pr_err("%s: cache %s error %d\n",
2278					mmc_hostname(card->host),
2279					enable ? "on" : "off",
2280					err);
2281		else
2282			card->ext_csd.cache_ctrl = enable;
2283	}
2284
2285	return err;
2286}
2287EXPORT_SYMBOL(mmc_cache_ctrl);
2288
2289#ifdef CONFIG_PM
2290
2291/**
2292 *	mmc_suspend_host - suspend a host
2293 *	@host: mmc host
2294 */
2295int mmc_suspend_host(struct mmc_host *host)
2296{
2297	int err = 0;
2298
2299	if (host->caps & MMC_CAP_DISABLE)
2300		cancel_delayed_work(&host->disable);
2301	cancel_delayed_work(&host->detect);
2302	mmc_flush_scheduled_work();
2303	err = mmc_cache_ctrl(host, 0);
2304	if (err)
2305		goto out;
2306
2307	mmc_bus_get(host);
2308	if (host->bus_ops && !host->bus_dead) {
2309
2310		/*
2311		 * A long response time is not acceptable for device drivers
2312		 * when doing suspend. Prevent mmc_claim_host in the suspend
2313		 * sequence, to potentially wait "forever" by trying to
2314		 * pre-claim the host.
2315		 */
2316		if (mmc_try_claim_host(host)) {
2317			if (host->bus_ops->suspend)
2318				err = host->bus_ops->suspend(host);
2319			if (err == -ENOSYS || !host->bus_ops->resume) {
2320				/*
2321				 * We simply "remove" the card in this case.
2322				 * It will be redetected on resume.
2323				 */
2324				if (host->bus_ops->remove)
2325					host->bus_ops->remove(host);
2326				mmc_claim_host(host);
2327				mmc_detach_bus(host);
2328				mmc_power_off(host);
2329				mmc_release_host(host);
2330				host->pm_flags = 0;
2331				err = 0;
2332			}
2333			mmc_do_release_host(host);
2334		} else {
2335			err = -EBUSY;
2336		}
2337	}
2338	mmc_bus_put(host);
2339
2340	if (!err && !mmc_card_keep_power(host))
2341		mmc_power_off(host);
2342
2343out:
2344	return err;
2345}
2346
2347EXPORT_SYMBOL(mmc_suspend_host);
2348
2349/**
2350 *	mmc_resume_host - resume a previously suspended host
2351 *	@host: mmc host
2352 */
2353int mmc_resume_host(struct mmc_host *host)
2354{
2355	int err = 0;
2356
2357	mmc_bus_get(host);
2358	if (host->bus_ops && !host->bus_dead) {
2359		if (!mmc_card_keep_power(host)) {
2360			mmc_power_up(host);
2361			mmc_select_voltage(host, host->ocr);
2362			/*
2363			 * Tell runtime PM core we just powered up the card,
2364			 * since it still believes the card is powered off.
2365			 * Note that currently runtime PM is only enabled
2366			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2367			 */
2368			if (mmc_card_sdio(host->card) &&
2369			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2370				pm_runtime_disable(&host->card->dev);
2371				pm_runtime_set_active(&host->card->dev);
2372				pm_runtime_enable(&host->card->dev);
2373			}
2374		}
2375		BUG_ON(!host->bus_ops->resume);
2376		err = host->bus_ops->resume(host);
2377		if (err) {
2378			pr_warning("%s: error %d during resume "
2379					    "(card was removed?)\n",
2380					    mmc_hostname(host), err);
2381			err = 0;
2382		}
2383	}
2384	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2385	mmc_bus_put(host);
2386
2387	return err;
2388}
2389EXPORT_SYMBOL(mmc_resume_host);
2390
2391/* Do the card removal on suspend if card is assumed removeable
2392 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2393   to sync the card.
2394*/
2395int mmc_pm_notify(struct notifier_block *notify_block,
2396					unsigned long mode, void *unused)
2397{
2398	struct mmc_host *host = container_of(
2399		notify_block, struct mmc_host, pm_notify);
2400	unsigned long flags;
2401
2402
2403	switch (mode) {
2404	case PM_HIBERNATION_PREPARE:
2405	case PM_SUSPEND_PREPARE:
2406
2407		spin_lock_irqsave(&host->lock, flags);
2408		host->rescan_disable = 1;
2409		host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
2410		spin_unlock_irqrestore(&host->lock, flags);
2411		cancel_delayed_work_sync(&host->detect);
2412
2413		if (!host->bus_ops || host->bus_ops->suspend)
2414			break;
2415
2416		mmc_claim_host(host);
2417
2418		if (host->bus_ops->remove)
2419			host->bus_ops->remove(host);
2420
2421		mmc_detach_bus(host);
2422		mmc_power_off(host);
2423		mmc_release_host(host);
2424		host->pm_flags = 0;
2425		break;
2426
2427	case PM_POST_SUSPEND:
2428	case PM_POST_HIBERNATION:
2429	case PM_POST_RESTORE:
2430
2431		spin_lock_irqsave(&host->lock, flags);
2432		host->rescan_disable = 0;
2433		host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
2434		spin_unlock_irqrestore(&host->lock, flags);
2435		mmc_detect_change(host, 0);
2436
2437	}
2438
2439	return 0;
2440}
2441#endif
2442
2443static int __init mmc_init(void)
2444{
2445	int ret;
2446
2447	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2448	if (!workqueue)
2449		return -ENOMEM;
2450
2451	ret = mmc_register_bus();
2452	if (ret)
2453		goto destroy_workqueue;
2454
2455	ret = mmc_register_host_class();
2456	if (ret)
2457		goto unregister_bus;
2458
2459	ret = sdio_register_bus();
2460	if (ret)
2461		goto unregister_host_class;
2462
2463	return 0;
2464
2465unregister_host_class:
2466	mmc_unregister_host_class();
2467unregister_bus:
2468	mmc_unregister_bus();
2469destroy_workqueue:
2470	destroy_workqueue(workqueue);
2471
2472	return ret;
2473}
2474
2475static void __exit mmc_exit(void)
2476{
2477	sdio_unregister_bus();
2478	mmc_unregister_host_class();
2479	mmc_unregister_bus();
2480	destroy_workqueue(workqueue);
2481}
2482
2483subsys_initcall(mmc_init);
2484module_exit(mmc_exit);
2485
2486MODULE_LICENSE("GPL");
2487