core.c revision 807e8e40673d9628fa7dcdd14423424b4ee5f43b
1/*
2 *  linux/drivers/mmc/core/core.c
3 *
4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26
27#include <linux/mmc/card.h>
28#include <linux/mmc/host.h>
29#include <linux/mmc/mmc.h>
30#include <linux/mmc/sd.h>
31
32#include "core.h"
33#include "bus.h"
34#include "host.h"
35#include "sdio_bus.h"
36
37#include "mmc_ops.h"
38#include "sd_ops.h"
39#include "sdio_ops.h"
40
41static struct workqueue_struct *workqueue;
42
43/*
44 * Enabling software CRCs on the data blocks can be a significant (30%)
45 * performance cost, and for other reasons may not always be desired.
46 * So we allow it it to be disabled.
47 */
48int use_spi_crc = 1;
49module_param(use_spi_crc, bool, 0);
50
51/*
52 * We normally treat cards as removed during suspend if they are not
53 * known to be on a non-removable bus, to avoid the risk of writing
54 * back data to a different card after resume.  Allow this to be
55 * overridden if necessary.
56 */
57#ifdef CONFIG_MMC_UNSAFE_RESUME
58int mmc_assume_removable;
59#else
60int mmc_assume_removable = 1;
61#endif
62EXPORT_SYMBOL(mmc_assume_removable);
63module_param_named(removable, mmc_assume_removable, bool, 0644);
64MODULE_PARM_DESC(
65	removable,
66	"MMC/SD cards are removable and may be removed during suspend");
67
68/*
69 * Internal function. Schedule delayed work in the MMC work queue.
70 */
71static int mmc_schedule_delayed_work(struct delayed_work *work,
72				     unsigned long delay)
73{
74	return queue_delayed_work(workqueue, work, delay);
75}
76
77/*
78 * Internal function. Flush all scheduled work from the MMC work queue.
79 */
80static void mmc_flush_scheduled_work(void)
81{
82	flush_workqueue(workqueue);
83}
84
85/**
86 *	mmc_request_done - finish processing an MMC request
87 *	@host: MMC host which completed request
88 *	@mrq: MMC request which request
89 *
90 *	MMC drivers should call this function when they have completed
91 *	their processing of a request.
92 */
93void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
94{
95	struct mmc_command *cmd = mrq->cmd;
96	int err = cmd->error;
97
98	if (err && cmd->retries && mmc_host_is_spi(host)) {
99		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
100			cmd->retries = 0;
101	}
102
103	if (err && cmd->retries) {
104		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
105			mmc_hostname(host), cmd->opcode, err);
106
107		cmd->retries--;
108		cmd->error = 0;
109		host->ops->request(host, mrq);
110	} else {
111		led_trigger_event(host->led, LED_OFF);
112
113		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
114			mmc_hostname(host), cmd->opcode, err,
115			cmd->resp[0], cmd->resp[1],
116			cmd->resp[2], cmd->resp[3]);
117
118		if (mrq->data) {
119			pr_debug("%s:     %d bytes transferred: %d\n",
120				mmc_hostname(host),
121				mrq->data->bytes_xfered, mrq->data->error);
122		}
123
124		if (mrq->stop) {
125			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
126				mmc_hostname(host), mrq->stop->opcode,
127				mrq->stop->error,
128				mrq->stop->resp[0], mrq->stop->resp[1],
129				mrq->stop->resp[2], mrq->stop->resp[3]);
130		}
131
132		if (mrq->done)
133			mrq->done(mrq);
134
135		mmc_host_clk_gate(host);
136	}
137}
138
139EXPORT_SYMBOL(mmc_request_done);
140
141static void
142mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
143{
144#ifdef CONFIG_MMC_DEBUG
145	unsigned int i, sz;
146	struct scatterlist *sg;
147#endif
148
149	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
150		 mmc_hostname(host), mrq->cmd->opcode,
151		 mrq->cmd->arg, mrq->cmd->flags);
152
153	if (mrq->data) {
154		pr_debug("%s:     blksz %d blocks %d flags %08x "
155			"tsac %d ms nsac %d\n",
156			mmc_hostname(host), mrq->data->blksz,
157			mrq->data->blocks, mrq->data->flags,
158			mrq->data->timeout_ns / 1000000,
159			mrq->data->timeout_clks);
160	}
161
162	if (mrq->stop) {
163		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
164			 mmc_hostname(host), mrq->stop->opcode,
165			 mrq->stop->arg, mrq->stop->flags);
166	}
167
168	WARN_ON(!host->claimed);
169
170	led_trigger_event(host->led, LED_FULL);
171
172	mrq->cmd->error = 0;
173	mrq->cmd->mrq = mrq;
174	if (mrq->data) {
175		BUG_ON(mrq->data->blksz > host->max_blk_size);
176		BUG_ON(mrq->data->blocks > host->max_blk_count);
177		BUG_ON(mrq->data->blocks * mrq->data->blksz >
178			host->max_req_size);
179
180#ifdef CONFIG_MMC_DEBUG
181		sz = 0;
182		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
183			sz += sg->length;
184		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
185#endif
186
187		mrq->cmd->data = mrq->data;
188		mrq->data->error = 0;
189		mrq->data->mrq = mrq;
190		if (mrq->stop) {
191			mrq->data->stop = mrq->stop;
192			mrq->stop->error = 0;
193			mrq->stop->mrq = mrq;
194		}
195	}
196	mmc_host_clk_ungate(host);
197	host->ops->request(host, mrq);
198}
199
200static void mmc_wait_done(struct mmc_request *mrq)
201{
202	complete(mrq->done_data);
203}
204
205/**
206 *	mmc_wait_for_req - start a request and wait for completion
207 *	@host: MMC host to start command
208 *	@mrq: MMC request to start
209 *
210 *	Start a new MMC custom command request for a host, and wait
211 *	for the command to complete. Does not attempt to parse the
212 *	response.
213 */
214void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
215{
216	DECLARE_COMPLETION_ONSTACK(complete);
217
218	mrq->done_data = &complete;
219	mrq->done = mmc_wait_done;
220
221	mmc_start_request(host, mrq);
222
223	wait_for_completion(&complete);
224}
225
226EXPORT_SYMBOL(mmc_wait_for_req);
227
228/**
229 *	mmc_wait_for_cmd - start a command and wait for completion
230 *	@host: MMC host to start command
231 *	@cmd: MMC command to start
232 *	@retries: maximum number of retries
233 *
234 *	Start a new MMC command for a host, and wait for the command
235 *	to complete.  Return any error that occurred while the command
236 *	was executing.  Do not attempt to parse the response.
237 */
238int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
239{
240	struct mmc_request mrq;
241
242	WARN_ON(!host->claimed);
243
244	memset(&mrq, 0, sizeof(struct mmc_request));
245
246	memset(cmd->resp, 0, sizeof(cmd->resp));
247	cmd->retries = retries;
248
249	mrq.cmd = cmd;
250	cmd->data = NULL;
251
252	mmc_wait_for_req(host, &mrq);
253
254	return cmd->error;
255}
256
257EXPORT_SYMBOL(mmc_wait_for_cmd);
258
259/**
260 *	mmc_set_data_timeout - set the timeout for a data command
261 *	@data: data phase for command
262 *	@card: the MMC card associated with the data transfer
263 *
264 *	Computes the data timeout parameters according to the
265 *	correct algorithm given the card type.
266 */
267void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
268{
269	unsigned int mult;
270
271	/*
272	 * SDIO cards only define an upper 1 s limit on access.
273	 */
274	if (mmc_card_sdio(card)) {
275		data->timeout_ns = 1000000000;
276		data->timeout_clks = 0;
277		return;
278	}
279
280	/*
281	 * SD cards use a 100 multiplier rather than 10
282	 */
283	mult = mmc_card_sd(card) ? 100 : 10;
284
285	/*
286	 * Scale up the multiplier (and therefore the timeout) by
287	 * the r2w factor for writes.
288	 */
289	if (data->flags & MMC_DATA_WRITE)
290		mult <<= card->csd.r2w_factor;
291
292	data->timeout_ns = card->csd.tacc_ns * mult;
293	data->timeout_clks = card->csd.tacc_clks * mult;
294
295	/*
296	 * SD cards also have an upper limit on the timeout.
297	 */
298	if (mmc_card_sd(card)) {
299		unsigned int timeout_us, limit_us;
300
301		timeout_us = data->timeout_ns / 1000;
302		timeout_us += data->timeout_clks * 1000 /
303			(mmc_host_clk_rate(card->host) / 1000);
304
305		if (data->flags & MMC_DATA_WRITE)
306			/*
307			 * The limit is really 250 ms, but that is
308			 * insufficient for some crappy cards.
309			 */
310			limit_us = 300000;
311		else
312			limit_us = 100000;
313
314		/*
315		 * SDHC cards always use these fixed values.
316		 */
317		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
318			data->timeout_ns = limit_us * 1000;
319			data->timeout_clks = 0;
320		}
321	}
322	/*
323	 * Some cards need very high timeouts if driven in SPI mode.
324	 * The worst observed timeout was 900ms after writing a
325	 * continuous stream of data until the internal logic
326	 * overflowed.
327	 */
328	if (mmc_host_is_spi(card->host)) {
329		if (data->flags & MMC_DATA_WRITE) {
330			if (data->timeout_ns < 1000000000)
331				data->timeout_ns = 1000000000;	/* 1s */
332		} else {
333			if (data->timeout_ns < 100000000)
334				data->timeout_ns =  100000000;	/* 100ms */
335		}
336	}
337}
338EXPORT_SYMBOL(mmc_set_data_timeout);
339
340/**
341 *	mmc_align_data_size - pads a transfer size to a more optimal value
342 *	@card: the MMC card associated with the data transfer
343 *	@sz: original transfer size
344 *
345 *	Pads the original data size with a number of extra bytes in
346 *	order to avoid controller bugs and/or performance hits
347 *	(e.g. some controllers revert to PIO for certain sizes).
348 *
349 *	Returns the improved size, which might be unmodified.
350 *
351 *	Note that this function is only relevant when issuing a
352 *	single scatter gather entry.
353 */
354unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
355{
356	/*
357	 * FIXME: We don't have a system for the controller to tell
358	 * the core about its problems yet, so for now we just 32-bit
359	 * align the size.
360	 */
361	sz = ((sz + 3) / 4) * 4;
362
363	return sz;
364}
365EXPORT_SYMBOL(mmc_align_data_size);
366
367/**
368 *	mmc_host_enable - enable a host.
369 *	@host: mmc host to enable
370 *
371 *	Hosts that support power saving can use the 'enable' and 'disable'
372 *	methods to exit and enter power saving states. For more information
373 *	see comments for struct mmc_host_ops.
374 */
375int mmc_host_enable(struct mmc_host *host)
376{
377	if (!(host->caps & MMC_CAP_DISABLE))
378		return 0;
379
380	if (host->en_dis_recurs)
381		return 0;
382
383	if (host->nesting_cnt++)
384		return 0;
385
386	cancel_delayed_work_sync(&host->disable);
387
388	if (host->enabled)
389		return 0;
390
391	if (host->ops->enable) {
392		int err;
393
394		host->en_dis_recurs = 1;
395		err = host->ops->enable(host);
396		host->en_dis_recurs = 0;
397
398		if (err) {
399			pr_debug("%s: enable error %d\n",
400				 mmc_hostname(host), err);
401			return err;
402		}
403	}
404	host->enabled = 1;
405	return 0;
406}
407EXPORT_SYMBOL(mmc_host_enable);
408
409static int mmc_host_do_disable(struct mmc_host *host, int lazy)
410{
411	if (host->ops->disable) {
412		int err;
413
414		host->en_dis_recurs = 1;
415		err = host->ops->disable(host, lazy);
416		host->en_dis_recurs = 0;
417
418		if (err < 0) {
419			pr_debug("%s: disable error %d\n",
420				 mmc_hostname(host), err);
421			return err;
422		}
423		if (err > 0) {
424			unsigned long delay = msecs_to_jiffies(err);
425
426			mmc_schedule_delayed_work(&host->disable, delay);
427		}
428	}
429	host->enabled = 0;
430	return 0;
431}
432
433/**
434 *	mmc_host_disable - disable a host.
435 *	@host: mmc host to disable
436 *
437 *	Hosts that support power saving can use the 'enable' and 'disable'
438 *	methods to exit and enter power saving states. For more information
439 *	see comments for struct mmc_host_ops.
440 */
441int mmc_host_disable(struct mmc_host *host)
442{
443	int err;
444
445	if (!(host->caps & MMC_CAP_DISABLE))
446		return 0;
447
448	if (host->en_dis_recurs)
449		return 0;
450
451	if (--host->nesting_cnt)
452		return 0;
453
454	if (!host->enabled)
455		return 0;
456
457	err = mmc_host_do_disable(host, 0);
458	return err;
459}
460EXPORT_SYMBOL(mmc_host_disable);
461
462/**
463 *	__mmc_claim_host - exclusively claim a host
464 *	@host: mmc host to claim
465 *	@abort: whether or not the operation should be aborted
466 *
467 *	Claim a host for a set of operations.  If @abort is non null and
468 *	dereference a non-zero value then this will return prematurely with
469 *	that non-zero value without acquiring the lock.  Returns zero
470 *	with the lock held otherwise.
471 */
472int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
473{
474	DECLARE_WAITQUEUE(wait, current);
475	unsigned long flags;
476	int stop;
477
478	might_sleep();
479
480	add_wait_queue(&host->wq, &wait);
481	spin_lock_irqsave(&host->lock, flags);
482	while (1) {
483		set_current_state(TASK_UNINTERRUPTIBLE);
484		stop = abort ? atomic_read(abort) : 0;
485		if (stop || !host->claimed || host->claimer == current)
486			break;
487		spin_unlock_irqrestore(&host->lock, flags);
488		schedule();
489		spin_lock_irqsave(&host->lock, flags);
490	}
491	set_current_state(TASK_RUNNING);
492	if (!stop) {
493		host->claimed = 1;
494		host->claimer = current;
495		host->claim_cnt += 1;
496	} else
497		wake_up(&host->wq);
498	spin_unlock_irqrestore(&host->lock, flags);
499	remove_wait_queue(&host->wq, &wait);
500	if (!stop)
501		mmc_host_enable(host);
502	return stop;
503}
504
505EXPORT_SYMBOL(__mmc_claim_host);
506
507/**
508 *	mmc_try_claim_host - try exclusively to claim a host
509 *	@host: mmc host to claim
510 *
511 *	Returns %1 if the host is claimed, %0 otherwise.
512 */
513int mmc_try_claim_host(struct mmc_host *host)
514{
515	int claimed_host = 0;
516	unsigned long flags;
517
518	spin_lock_irqsave(&host->lock, flags);
519	if (!host->claimed || host->claimer == current) {
520		host->claimed = 1;
521		host->claimer = current;
522		host->claim_cnt += 1;
523		claimed_host = 1;
524	}
525	spin_unlock_irqrestore(&host->lock, flags);
526	return claimed_host;
527}
528EXPORT_SYMBOL(mmc_try_claim_host);
529
530static void mmc_do_release_host(struct mmc_host *host)
531{
532	unsigned long flags;
533
534	spin_lock_irqsave(&host->lock, flags);
535	if (--host->claim_cnt) {
536		/* Release for nested claim */
537		spin_unlock_irqrestore(&host->lock, flags);
538	} else {
539		host->claimed = 0;
540		host->claimer = NULL;
541		spin_unlock_irqrestore(&host->lock, flags);
542		wake_up(&host->wq);
543	}
544}
545
546void mmc_host_deeper_disable(struct work_struct *work)
547{
548	struct mmc_host *host =
549		container_of(work, struct mmc_host, disable.work);
550
551	/* If the host is claimed then we do not want to disable it anymore */
552	if (!mmc_try_claim_host(host))
553		return;
554	mmc_host_do_disable(host, 1);
555	mmc_do_release_host(host);
556}
557
558/**
559 *	mmc_host_lazy_disable - lazily disable a host.
560 *	@host: mmc host to disable
561 *
562 *	Hosts that support power saving can use the 'enable' and 'disable'
563 *	methods to exit and enter power saving states. For more information
564 *	see comments for struct mmc_host_ops.
565 */
566int mmc_host_lazy_disable(struct mmc_host *host)
567{
568	if (!(host->caps & MMC_CAP_DISABLE))
569		return 0;
570
571	if (host->en_dis_recurs)
572		return 0;
573
574	if (--host->nesting_cnt)
575		return 0;
576
577	if (!host->enabled)
578		return 0;
579
580	if (host->disable_delay) {
581		mmc_schedule_delayed_work(&host->disable,
582				msecs_to_jiffies(host->disable_delay));
583		return 0;
584	} else
585		return mmc_host_do_disable(host, 1);
586}
587EXPORT_SYMBOL(mmc_host_lazy_disable);
588
589/**
590 *	mmc_release_host - release a host
591 *	@host: mmc host to release
592 *
593 *	Release a MMC host, allowing others to claim the host
594 *	for their operations.
595 */
596void mmc_release_host(struct mmc_host *host)
597{
598	WARN_ON(!host->claimed);
599
600	mmc_host_lazy_disable(host);
601
602	mmc_do_release_host(host);
603}
604
605EXPORT_SYMBOL(mmc_release_host);
606
607/*
608 * Internal function that does the actual ios call to the host driver,
609 * optionally printing some debug output.
610 */
611static inline void mmc_set_ios(struct mmc_host *host)
612{
613	struct mmc_ios *ios = &host->ios;
614
615	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
616		"width %u timing %u\n",
617		 mmc_hostname(host), ios->clock, ios->bus_mode,
618		 ios->power_mode, ios->chip_select, ios->vdd,
619		 ios->bus_width, ios->timing);
620
621	if (ios->clock > 0)
622		mmc_set_ungated(host);
623	host->ops->set_ios(host, ios);
624}
625
626/*
627 * Control chip select pin on a host.
628 */
629void mmc_set_chip_select(struct mmc_host *host, int mode)
630{
631	host->ios.chip_select = mode;
632	mmc_set_ios(host);
633}
634
635/*
636 * Sets the host clock to the highest possible frequency that
637 * is below "hz".
638 */
639void mmc_set_clock(struct mmc_host *host, unsigned int hz)
640{
641	WARN_ON(hz < host->f_min);
642
643	if (hz > host->f_max)
644		hz = host->f_max;
645
646	host->ios.clock = hz;
647	mmc_set_ios(host);
648}
649
650#ifdef CONFIG_MMC_CLKGATE
651/*
652 * This gates the clock by setting it to 0 Hz.
653 */
654void mmc_gate_clock(struct mmc_host *host)
655{
656	unsigned long flags;
657
658	spin_lock_irqsave(&host->clk_lock, flags);
659	host->clk_old = host->ios.clock;
660	host->ios.clock = 0;
661	host->clk_gated = true;
662	spin_unlock_irqrestore(&host->clk_lock, flags);
663	mmc_set_ios(host);
664}
665
666/*
667 * This restores the clock from gating by using the cached
668 * clock value.
669 */
670void mmc_ungate_clock(struct mmc_host *host)
671{
672	/*
673	 * We should previously have gated the clock, so the clock shall
674	 * be 0 here! The clock may however be 0 during initialization,
675	 * when some request operations are performed before setting
676	 * the frequency. When ungate is requested in that situation
677	 * we just ignore the call.
678	 */
679	if (host->clk_old) {
680		BUG_ON(host->ios.clock);
681		/* This call will also set host->clk_gated to false */
682		mmc_set_clock(host, host->clk_old);
683	}
684}
685
686void mmc_set_ungated(struct mmc_host *host)
687{
688	unsigned long flags;
689
690	/*
691	 * We've been given a new frequency while the clock is gated,
692	 * so make sure we regard this as ungating it.
693	 */
694	spin_lock_irqsave(&host->clk_lock, flags);
695	host->clk_gated = false;
696	spin_unlock_irqrestore(&host->clk_lock, flags);
697}
698
699#else
700void mmc_set_ungated(struct mmc_host *host)
701{
702}
703#endif
704
705/*
706 * Change the bus mode (open drain/push-pull) of a host.
707 */
708void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
709{
710	host->ios.bus_mode = mode;
711	mmc_set_ios(host);
712}
713
714/*
715 * Change data bus width and DDR mode of a host.
716 */
717void mmc_set_bus_width_ddr(struct mmc_host *host, unsigned int width,
718			   unsigned int ddr)
719{
720	host->ios.bus_width = width;
721	host->ios.ddr = ddr;
722	mmc_set_ios(host);
723}
724
725/*
726 * Change data bus width of a host.
727 */
728void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
729{
730	mmc_set_bus_width_ddr(host, width, MMC_SDR_MODE);
731}
732
733/**
734 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
735 * @vdd:	voltage (mV)
736 * @low_bits:	prefer low bits in boundary cases
737 *
738 * This function returns the OCR bit number according to the provided @vdd
739 * value. If conversion is not possible a negative errno value returned.
740 *
741 * Depending on the @low_bits flag the function prefers low or high OCR bits
742 * on boundary voltages. For example,
743 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
744 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
745 *
746 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
747 */
748static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
749{
750	const int max_bit = ilog2(MMC_VDD_35_36);
751	int bit;
752
753	if (vdd < 1650 || vdd > 3600)
754		return -EINVAL;
755
756	if (vdd >= 1650 && vdd <= 1950)
757		return ilog2(MMC_VDD_165_195);
758
759	if (low_bits)
760		vdd -= 1;
761
762	/* Base 2000 mV, step 100 mV, bit's base 8. */
763	bit = (vdd - 2000) / 100 + 8;
764	if (bit > max_bit)
765		return max_bit;
766	return bit;
767}
768
769/**
770 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
771 * @vdd_min:	minimum voltage value (mV)
772 * @vdd_max:	maximum voltage value (mV)
773 *
774 * This function returns the OCR mask bits according to the provided @vdd_min
775 * and @vdd_max values. If conversion is not possible the function returns 0.
776 *
777 * Notes wrt boundary cases:
778 * This function sets the OCR bits for all boundary voltages, for example
779 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
780 * MMC_VDD_34_35 mask.
781 */
782u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
783{
784	u32 mask = 0;
785
786	if (vdd_max < vdd_min)
787		return 0;
788
789	/* Prefer high bits for the boundary vdd_max values. */
790	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
791	if (vdd_max < 0)
792		return 0;
793
794	/* Prefer low bits for the boundary vdd_min values. */
795	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
796	if (vdd_min < 0)
797		return 0;
798
799	/* Fill the mask, from max bit to min bit. */
800	while (vdd_max >= vdd_min)
801		mask |= 1 << vdd_max--;
802
803	return mask;
804}
805EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
806
807#ifdef CONFIG_REGULATOR
808
809/**
810 * mmc_regulator_get_ocrmask - return mask of supported voltages
811 * @supply: regulator to use
812 *
813 * This returns either a negative errno, or a mask of voltages that
814 * can be provided to MMC/SD/SDIO devices using the specified voltage
815 * regulator.  This would normally be called before registering the
816 * MMC host adapter.
817 */
818int mmc_regulator_get_ocrmask(struct regulator *supply)
819{
820	int			result = 0;
821	int			count;
822	int			i;
823
824	count = regulator_count_voltages(supply);
825	if (count < 0)
826		return count;
827
828	for (i = 0; i < count; i++) {
829		int		vdd_uV;
830		int		vdd_mV;
831
832		vdd_uV = regulator_list_voltage(supply, i);
833		if (vdd_uV <= 0)
834			continue;
835
836		vdd_mV = vdd_uV / 1000;
837		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
838	}
839
840	return result;
841}
842EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
843
844/**
845 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
846 * @mmc: the host to regulate
847 * @supply: regulator to use
848 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
849 *
850 * Returns zero on success, else negative errno.
851 *
852 * MMC host drivers may use this to enable or disable a regulator using
853 * a particular supply voltage.  This would normally be called from the
854 * set_ios() method.
855 */
856int mmc_regulator_set_ocr(struct mmc_host *mmc,
857			struct regulator *supply,
858			unsigned short vdd_bit)
859{
860	int			result = 0;
861	int			min_uV, max_uV;
862
863	if (vdd_bit) {
864		int		tmp;
865		int		voltage;
866
867		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
868		 * bits this regulator doesn't quite support ... don't
869		 * be too picky, most cards and regulators are OK with
870		 * a 0.1V range goof (it's a small error percentage).
871		 */
872		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
873		if (tmp == 0) {
874			min_uV = 1650 * 1000;
875			max_uV = 1950 * 1000;
876		} else {
877			min_uV = 1900 * 1000 + tmp * 100 * 1000;
878			max_uV = min_uV + 100 * 1000;
879		}
880
881		/* avoid needless changes to this voltage; the regulator
882		 * might not allow this operation
883		 */
884		voltage = regulator_get_voltage(supply);
885		if (voltage < 0)
886			result = voltage;
887		else if (voltage < min_uV || voltage > max_uV)
888			result = regulator_set_voltage(supply, min_uV, max_uV);
889		else
890			result = 0;
891
892		if (result == 0 && !mmc->regulator_enabled) {
893			result = regulator_enable(supply);
894			if (!result)
895				mmc->regulator_enabled = true;
896		}
897	} else if (mmc->regulator_enabled) {
898		result = regulator_disable(supply);
899		if (result == 0)
900			mmc->regulator_enabled = false;
901	}
902
903	if (result)
904		dev_err(mmc_dev(mmc),
905			"could not set regulator OCR (%d)\n", result);
906	return result;
907}
908EXPORT_SYMBOL(mmc_regulator_set_ocr);
909
910#endif /* CONFIG_REGULATOR */
911
912/*
913 * Mask off any voltages we don't support and select
914 * the lowest voltage
915 */
916u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
917{
918	int bit;
919
920	ocr &= host->ocr_avail;
921
922	bit = ffs(ocr);
923	if (bit) {
924		bit -= 1;
925
926		ocr &= 3 << bit;
927
928		host->ios.vdd = bit;
929		mmc_set_ios(host);
930	} else {
931		pr_warning("%s: host doesn't support card's voltages\n",
932				mmc_hostname(host));
933		ocr = 0;
934	}
935
936	return ocr;
937}
938
939/*
940 * Select timing parameters for host.
941 */
942void mmc_set_timing(struct mmc_host *host, unsigned int timing)
943{
944	host->ios.timing = timing;
945	mmc_set_ios(host);
946}
947
948/*
949 * Apply power to the MMC stack.  This is a two-stage process.
950 * First, we enable power to the card without the clock running.
951 * We then wait a bit for the power to stabilise.  Finally,
952 * enable the bus drivers and clock to the card.
953 *
954 * We must _NOT_ enable the clock prior to power stablising.
955 *
956 * If a host does all the power sequencing itself, ignore the
957 * initial MMC_POWER_UP stage.
958 */
959static void mmc_power_up(struct mmc_host *host)
960{
961	int bit;
962
963	/* If ocr is set, we use it */
964	if (host->ocr)
965		bit = ffs(host->ocr) - 1;
966	else
967		bit = fls(host->ocr_avail) - 1;
968
969	host->ios.vdd = bit;
970	if (mmc_host_is_spi(host)) {
971		host->ios.chip_select = MMC_CS_HIGH;
972		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
973	} else {
974		host->ios.chip_select = MMC_CS_DONTCARE;
975		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
976	}
977	host->ios.power_mode = MMC_POWER_UP;
978	host->ios.bus_width = MMC_BUS_WIDTH_1;
979	host->ios.timing = MMC_TIMING_LEGACY;
980	mmc_set_ios(host);
981
982	/*
983	 * This delay should be sufficient to allow the power supply
984	 * to reach the minimum voltage.
985	 */
986	mmc_delay(10);
987
988	host->ios.clock = host->f_init;
989
990	host->ios.power_mode = MMC_POWER_ON;
991	mmc_set_ios(host);
992
993	/*
994	 * This delay must be at least 74 clock sizes, or 1 ms, or the
995	 * time required to reach a stable voltage.
996	 */
997	mmc_delay(10);
998}
999
1000static void mmc_power_off(struct mmc_host *host)
1001{
1002	host->ios.clock = 0;
1003	host->ios.vdd = 0;
1004	if (!mmc_host_is_spi(host)) {
1005		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1006		host->ios.chip_select = MMC_CS_DONTCARE;
1007	}
1008	host->ios.power_mode = MMC_POWER_OFF;
1009	host->ios.bus_width = MMC_BUS_WIDTH_1;
1010	host->ios.timing = MMC_TIMING_LEGACY;
1011	mmc_set_ios(host);
1012}
1013
1014/*
1015 * Cleanup when the last reference to the bus operator is dropped.
1016 */
1017static void __mmc_release_bus(struct mmc_host *host)
1018{
1019	BUG_ON(!host);
1020	BUG_ON(host->bus_refs);
1021	BUG_ON(!host->bus_dead);
1022
1023	host->bus_ops = NULL;
1024}
1025
1026/*
1027 * Increase reference count of bus operator
1028 */
1029static inline void mmc_bus_get(struct mmc_host *host)
1030{
1031	unsigned long flags;
1032
1033	spin_lock_irqsave(&host->lock, flags);
1034	host->bus_refs++;
1035	spin_unlock_irqrestore(&host->lock, flags);
1036}
1037
1038/*
1039 * Decrease reference count of bus operator and free it if
1040 * it is the last reference.
1041 */
1042static inline void mmc_bus_put(struct mmc_host *host)
1043{
1044	unsigned long flags;
1045
1046	spin_lock_irqsave(&host->lock, flags);
1047	host->bus_refs--;
1048	if ((host->bus_refs == 0) && host->bus_ops)
1049		__mmc_release_bus(host);
1050	spin_unlock_irqrestore(&host->lock, flags);
1051}
1052
1053/*
1054 * Assign a mmc bus handler to a host. Only one bus handler may control a
1055 * host at any given time.
1056 */
1057void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1058{
1059	unsigned long flags;
1060
1061	BUG_ON(!host);
1062	BUG_ON(!ops);
1063
1064	WARN_ON(!host->claimed);
1065
1066	spin_lock_irqsave(&host->lock, flags);
1067
1068	BUG_ON(host->bus_ops);
1069	BUG_ON(host->bus_refs);
1070
1071	host->bus_ops = ops;
1072	host->bus_refs = 1;
1073	host->bus_dead = 0;
1074
1075	spin_unlock_irqrestore(&host->lock, flags);
1076}
1077
1078/*
1079 * Remove the current bus handler from a host. Assumes that there are
1080 * no interesting cards left, so the bus is powered down.
1081 */
1082void mmc_detach_bus(struct mmc_host *host)
1083{
1084	unsigned long flags;
1085
1086	BUG_ON(!host);
1087
1088	WARN_ON(!host->claimed);
1089	WARN_ON(!host->bus_ops);
1090
1091	spin_lock_irqsave(&host->lock, flags);
1092
1093	host->bus_dead = 1;
1094
1095	spin_unlock_irqrestore(&host->lock, flags);
1096
1097	mmc_power_off(host);
1098
1099	mmc_bus_put(host);
1100}
1101
1102/**
1103 *	mmc_detect_change - process change of state on a MMC socket
1104 *	@host: host which changed state.
1105 *	@delay: optional delay to wait before detection (jiffies)
1106 *
1107 *	MMC drivers should call this when they detect a card has been
1108 *	inserted or removed. The MMC layer will confirm that any
1109 *	present card is still functional, and initialize any newly
1110 *	inserted.
1111 */
1112void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1113{
1114#ifdef CONFIG_MMC_DEBUG
1115	unsigned long flags;
1116	spin_lock_irqsave(&host->lock, flags);
1117	WARN_ON(host->removed);
1118	spin_unlock_irqrestore(&host->lock, flags);
1119#endif
1120
1121	mmc_schedule_delayed_work(&host->detect, delay);
1122}
1123
1124EXPORT_SYMBOL(mmc_detect_change);
1125
1126void mmc_init_erase(struct mmc_card *card)
1127{
1128	unsigned int sz;
1129
1130	if (is_power_of_2(card->erase_size))
1131		card->erase_shift = ffs(card->erase_size) - 1;
1132	else
1133		card->erase_shift = 0;
1134
1135	/*
1136	 * It is possible to erase an arbitrarily large area of an SD or MMC
1137	 * card.  That is not desirable because it can take a long time
1138	 * (minutes) potentially delaying more important I/O, and also the
1139	 * timeout calculations become increasingly hugely over-estimated.
1140	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1141	 * to that size and alignment.
1142	 *
1143	 * For SD cards that define Allocation Unit size, limit erases to one
1144	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1145	 * Erase Size, whether it is switched on or not, limit to that size.
1146	 * Otherwise just have a stab at a good value.  For modern cards it
1147	 * will end up being 4MiB.  Note that if the value is too small, it
1148	 * can end up taking longer to erase.
1149	 */
1150	if (mmc_card_sd(card) && card->ssr.au) {
1151		card->pref_erase = card->ssr.au;
1152		card->erase_shift = ffs(card->ssr.au) - 1;
1153	} else if (card->ext_csd.hc_erase_size) {
1154		card->pref_erase = card->ext_csd.hc_erase_size;
1155	} else {
1156		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1157		if (sz < 128)
1158			card->pref_erase = 512 * 1024 / 512;
1159		else if (sz < 512)
1160			card->pref_erase = 1024 * 1024 / 512;
1161		else if (sz < 1024)
1162			card->pref_erase = 2 * 1024 * 1024 / 512;
1163		else
1164			card->pref_erase = 4 * 1024 * 1024 / 512;
1165		if (card->pref_erase < card->erase_size)
1166			card->pref_erase = card->erase_size;
1167		else {
1168			sz = card->pref_erase % card->erase_size;
1169			if (sz)
1170				card->pref_erase += card->erase_size - sz;
1171		}
1172	}
1173}
1174
1175static void mmc_set_mmc_erase_timeout(struct mmc_card *card,
1176				      struct mmc_command *cmd,
1177				      unsigned int arg, unsigned int qty)
1178{
1179	unsigned int erase_timeout;
1180
1181	if (card->ext_csd.erase_group_def & 1) {
1182		/* High Capacity Erase Group Size uses HC timeouts */
1183		if (arg == MMC_TRIM_ARG)
1184			erase_timeout = card->ext_csd.trim_timeout;
1185		else
1186			erase_timeout = card->ext_csd.hc_erase_timeout;
1187	} else {
1188		/* CSD Erase Group Size uses write timeout */
1189		unsigned int mult = (10 << card->csd.r2w_factor);
1190		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1191		unsigned int timeout_us;
1192
1193		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1194		if (card->csd.tacc_ns < 1000000)
1195			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1196		else
1197			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1198
1199		/*
1200		 * ios.clock is only a target.  The real clock rate might be
1201		 * less but not that much less, so fudge it by multiplying by 2.
1202		 */
1203		timeout_clks <<= 1;
1204		timeout_us += (timeout_clks * 1000) /
1205			      (card->host->ios.clock / 1000);
1206
1207		erase_timeout = timeout_us / 1000;
1208
1209		/*
1210		 * Theoretically, the calculation could underflow so round up
1211		 * to 1ms in that case.
1212		 */
1213		if (!erase_timeout)
1214			erase_timeout = 1;
1215	}
1216
1217	/* Multiplier for secure operations */
1218	if (arg & MMC_SECURE_ARGS) {
1219		if (arg == MMC_SECURE_ERASE_ARG)
1220			erase_timeout *= card->ext_csd.sec_erase_mult;
1221		else
1222			erase_timeout *= card->ext_csd.sec_trim_mult;
1223	}
1224
1225	erase_timeout *= qty;
1226
1227	/*
1228	 * Ensure at least a 1 second timeout for SPI as per
1229	 * 'mmc_set_data_timeout()'
1230	 */
1231	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1232		erase_timeout = 1000;
1233
1234	cmd->erase_timeout = erase_timeout;
1235}
1236
1237static void mmc_set_sd_erase_timeout(struct mmc_card *card,
1238				     struct mmc_command *cmd, unsigned int arg,
1239				     unsigned int qty)
1240{
1241	if (card->ssr.erase_timeout) {
1242		/* Erase timeout specified in SD Status Register (SSR) */
1243		cmd->erase_timeout = card->ssr.erase_timeout * qty +
1244				     card->ssr.erase_offset;
1245	} else {
1246		/*
1247		 * Erase timeout not specified in SD Status Register (SSR) so
1248		 * use 250ms per write block.
1249		 */
1250		cmd->erase_timeout = 250 * qty;
1251	}
1252
1253	/* Must not be less than 1 second */
1254	if (cmd->erase_timeout < 1000)
1255		cmd->erase_timeout = 1000;
1256}
1257
1258static void mmc_set_erase_timeout(struct mmc_card *card,
1259				  struct mmc_command *cmd, unsigned int arg,
1260				  unsigned int qty)
1261{
1262	if (mmc_card_sd(card))
1263		mmc_set_sd_erase_timeout(card, cmd, arg, qty);
1264	else
1265		mmc_set_mmc_erase_timeout(card, cmd, arg, qty);
1266}
1267
1268static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1269			unsigned int to, unsigned int arg)
1270{
1271	struct mmc_command cmd;
1272	unsigned int qty = 0;
1273	int err;
1274
1275	/*
1276	 * qty is used to calculate the erase timeout which depends on how many
1277	 * erase groups (or allocation units in SD terminology) are affected.
1278	 * We count erasing part of an erase group as one erase group.
1279	 * For SD, the allocation units are always a power of 2.  For MMC, the
1280	 * erase group size is almost certainly also power of 2, but it does not
1281	 * seem to insist on that in the JEDEC standard, so we fall back to
1282	 * division in that case.  SD may not specify an allocation unit size,
1283	 * in which case the timeout is based on the number of write blocks.
1284	 *
1285	 * Note that the timeout for secure trim 2 will only be correct if the
1286	 * number of erase groups specified is the same as the total of all
1287	 * preceding secure trim 1 commands.  Since the power may have been
1288	 * lost since the secure trim 1 commands occurred, it is generally
1289	 * impossible to calculate the secure trim 2 timeout correctly.
1290	 */
1291	if (card->erase_shift)
1292		qty += ((to >> card->erase_shift) -
1293			(from >> card->erase_shift)) + 1;
1294	else if (mmc_card_sd(card))
1295		qty += to - from + 1;
1296	else
1297		qty += ((to / card->erase_size) -
1298			(from / card->erase_size)) + 1;
1299
1300	if (!mmc_card_blockaddr(card)) {
1301		from <<= 9;
1302		to <<= 9;
1303	}
1304
1305	memset(&cmd, 0, sizeof(struct mmc_command));
1306	if (mmc_card_sd(card))
1307		cmd.opcode = SD_ERASE_WR_BLK_START;
1308	else
1309		cmd.opcode = MMC_ERASE_GROUP_START;
1310	cmd.arg = from;
1311	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1312	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1313	if (err) {
1314		printk(KERN_ERR "mmc_erase: group start error %d, "
1315		       "status %#x\n", err, cmd.resp[0]);
1316		err = -EINVAL;
1317		goto out;
1318	}
1319
1320	memset(&cmd, 0, sizeof(struct mmc_command));
1321	if (mmc_card_sd(card))
1322		cmd.opcode = SD_ERASE_WR_BLK_END;
1323	else
1324		cmd.opcode = MMC_ERASE_GROUP_END;
1325	cmd.arg = to;
1326	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1327	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1328	if (err) {
1329		printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1330		       err, cmd.resp[0]);
1331		err = -EINVAL;
1332		goto out;
1333	}
1334
1335	memset(&cmd, 0, sizeof(struct mmc_command));
1336	cmd.opcode = MMC_ERASE;
1337	cmd.arg = arg;
1338	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1339	mmc_set_erase_timeout(card, &cmd, arg, qty);
1340	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1341	if (err) {
1342		printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1343		       err, cmd.resp[0]);
1344		err = -EIO;
1345		goto out;
1346	}
1347
1348	if (mmc_host_is_spi(card->host))
1349		goto out;
1350
1351	do {
1352		memset(&cmd, 0, sizeof(struct mmc_command));
1353		cmd.opcode = MMC_SEND_STATUS;
1354		cmd.arg = card->rca << 16;
1355		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1356		/* Do not retry else we can't see errors */
1357		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1358		if (err || (cmd.resp[0] & 0xFDF92000)) {
1359			printk(KERN_ERR "error %d requesting status %#x\n",
1360				err, cmd.resp[0]);
1361			err = -EIO;
1362			goto out;
1363		}
1364	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1365		 R1_CURRENT_STATE(cmd.resp[0]) == 7);
1366out:
1367	return err;
1368}
1369
1370/**
1371 * mmc_erase - erase sectors.
1372 * @card: card to erase
1373 * @from: first sector to erase
1374 * @nr: number of sectors to erase
1375 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1376 *
1377 * Caller must claim host before calling this function.
1378 */
1379int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1380	      unsigned int arg)
1381{
1382	unsigned int rem, to = from + nr;
1383
1384	if (!(card->host->caps & MMC_CAP_ERASE) ||
1385	    !(card->csd.cmdclass & CCC_ERASE))
1386		return -EOPNOTSUPP;
1387
1388	if (!card->erase_size)
1389		return -EOPNOTSUPP;
1390
1391	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1392		return -EOPNOTSUPP;
1393
1394	if ((arg & MMC_SECURE_ARGS) &&
1395	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1396		return -EOPNOTSUPP;
1397
1398	if ((arg & MMC_TRIM_ARGS) &&
1399	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1400		return -EOPNOTSUPP;
1401
1402	if (arg == MMC_SECURE_ERASE_ARG) {
1403		if (from % card->erase_size || nr % card->erase_size)
1404			return -EINVAL;
1405	}
1406
1407	if (arg == MMC_ERASE_ARG) {
1408		rem = from % card->erase_size;
1409		if (rem) {
1410			rem = card->erase_size - rem;
1411			from += rem;
1412			if (nr > rem)
1413				nr -= rem;
1414			else
1415				return 0;
1416		}
1417		rem = nr % card->erase_size;
1418		if (rem)
1419			nr -= rem;
1420	}
1421
1422	if (nr == 0)
1423		return 0;
1424
1425	to = from + nr;
1426
1427	if (to <= from)
1428		return -EINVAL;
1429
1430	/* 'from' and 'to' are inclusive */
1431	to -= 1;
1432
1433	return mmc_do_erase(card, from, to, arg);
1434}
1435EXPORT_SYMBOL(mmc_erase);
1436
1437int mmc_can_erase(struct mmc_card *card)
1438{
1439	if ((card->host->caps & MMC_CAP_ERASE) &&
1440	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1441		return 1;
1442	return 0;
1443}
1444EXPORT_SYMBOL(mmc_can_erase);
1445
1446int mmc_can_trim(struct mmc_card *card)
1447{
1448	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1449		return 1;
1450	return 0;
1451}
1452EXPORT_SYMBOL(mmc_can_trim);
1453
1454int mmc_can_secure_erase_trim(struct mmc_card *card)
1455{
1456	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1457		return 1;
1458	return 0;
1459}
1460EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1461
1462int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1463			    unsigned int nr)
1464{
1465	if (!card->erase_size)
1466		return 0;
1467	if (from % card->erase_size || nr % card->erase_size)
1468		return 0;
1469	return 1;
1470}
1471EXPORT_SYMBOL(mmc_erase_group_aligned);
1472
1473int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1474{
1475	struct mmc_command cmd;
1476
1477	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1478		return 0;
1479
1480	memset(&cmd, 0, sizeof(struct mmc_command));
1481	cmd.opcode = MMC_SET_BLOCKLEN;
1482	cmd.arg = blocklen;
1483	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1484	return mmc_wait_for_cmd(card->host, &cmd, 5);
1485}
1486EXPORT_SYMBOL(mmc_set_blocklen);
1487
1488static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1489{
1490	host->f_init = freq;
1491
1492#ifdef CONFIG_MMC_DEBUG
1493	pr_info("%s: %s: trying to init card at %u Hz\n",
1494		mmc_hostname(host), __func__, host->f_init);
1495#endif
1496	mmc_power_up(host);
1497	sdio_reset(host);
1498	mmc_go_idle(host);
1499
1500	mmc_send_if_cond(host, host->ocr_avail);
1501
1502	/* Order's important: probe SDIO, then SD, then MMC */
1503	if (!mmc_attach_sdio(host))
1504		return 0;
1505	if (!mmc_attach_sd(host))
1506		return 0;
1507	if (!mmc_attach_mmc(host))
1508		return 0;
1509
1510	mmc_power_off(host);
1511	return -EIO;
1512}
1513
1514void mmc_rescan(struct work_struct *work)
1515{
1516	static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1517	struct mmc_host *host =
1518		container_of(work, struct mmc_host, detect.work);
1519	int i;
1520
1521	if (host->rescan_disable)
1522		return;
1523
1524	mmc_bus_get(host);
1525
1526	/*
1527	 * if there is a _removable_ card registered, check whether it is
1528	 * still present
1529	 */
1530	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1531	    && mmc_card_is_removable(host))
1532		host->bus_ops->detect(host);
1533
1534	mmc_bus_put(host);
1535
1536
1537	mmc_bus_get(host);
1538
1539	/* if there still is a card present, stop here */
1540	if (host->bus_ops != NULL) {
1541		mmc_bus_put(host);
1542		goto out;
1543	}
1544
1545	/*
1546	 * Only we can add a new handler, so it's safe to
1547	 * release the lock here.
1548	 */
1549	mmc_bus_put(host);
1550
1551	if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1552		goto out;
1553
1554	mmc_claim_host(host);
1555	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1556		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1557			break;
1558		if (freqs[i] < host->f_min)
1559			break;
1560	}
1561	mmc_release_host(host);
1562
1563 out:
1564	if (host->caps & MMC_CAP_NEEDS_POLL)
1565		mmc_schedule_delayed_work(&host->detect, HZ);
1566}
1567
1568void mmc_start_host(struct mmc_host *host)
1569{
1570	mmc_power_off(host);
1571	mmc_detect_change(host, 0);
1572}
1573
1574void mmc_stop_host(struct mmc_host *host)
1575{
1576#ifdef CONFIG_MMC_DEBUG
1577	unsigned long flags;
1578	spin_lock_irqsave(&host->lock, flags);
1579	host->removed = 1;
1580	spin_unlock_irqrestore(&host->lock, flags);
1581#endif
1582
1583	if (host->caps & MMC_CAP_DISABLE)
1584		cancel_delayed_work(&host->disable);
1585	cancel_delayed_work_sync(&host->detect);
1586	mmc_flush_scheduled_work();
1587
1588	/* clear pm flags now and let card drivers set them as needed */
1589	host->pm_flags = 0;
1590
1591	mmc_bus_get(host);
1592	if (host->bus_ops && !host->bus_dead) {
1593		if (host->bus_ops->remove)
1594			host->bus_ops->remove(host);
1595
1596		mmc_claim_host(host);
1597		mmc_detach_bus(host);
1598		mmc_release_host(host);
1599		mmc_bus_put(host);
1600		return;
1601	}
1602	mmc_bus_put(host);
1603
1604	BUG_ON(host->card);
1605
1606	mmc_power_off(host);
1607}
1608
1609int mmc_power_save_host(struct mmc_host *host)
1610{
1611	int ret = 0;
1612
1613	mmc_bus_get(host);
1614
1615	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1616		mmc_bus_put(host);
1617		return -EINVAL;
1618	}
1619
1620	if (host->bus_ops->power_save)
1621		ret = host->bus_ops->power_save(host);
1622
1623	mmc_bus_put(host);
1624
1625	mmc_power_off(host);
1626
1627	return ret;
1628}
1629EXPORT_SYMBOL(mmc_power_save_host);
1630
1631int mmc_power_restore_host(struct mmc_host *host)
1632{
1633	int ret;
1634
1635	mmc_bus_get(host);
1636
1637	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1638		mmc_bus_put(host);
1639		return -EINVAL;
1640	}
1641
1642	mmc_power_up(host);
1643	ret = host->bus_ops->power_restore(host);
1644
1645	mmc_bus_put(host);
1646
1647	return ret;
1648}
1649EXPORT_SYMBOL(mmc_power_restore_host);
1650
1651int mmc_card_awake(struct mmc_host *host)
1652{
1653	int err = -ENOSYS;
1654
1655	mmc_bus_get(host);
1656
1657	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1658		err = host->bus_ops->awake(host);
1659
1660	mmc_bus_put(host);
1661
1662	return err;
1663}
1664EXPORT_SYMBOL(mmc_card_awake);
1665
1666int mmc_card_sleep(struct mmc_host *host)
1667{
1668	int err = -ENOSYS;
1669
1670	mmc_bus_get(host);
1671
1672	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1673		err = host->bus_ops->sleep(host);
1674
1675	mmc_bus_put(host);
1676
1677	return err;
1678}
1679EXPORT_SYMBOL(mmc_card_sleep);
1680
1681int mmc_card_can_sleep(struct mmc_host *host)
1682{
1683	struct mmc_card *card = host->card;
1684
1685	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1686		return 1;
1687	return 0;
1688}
1689EXPORT_SYMBOL(mmc_card_can_sleep);
1690
1691#ifdef CONFIG_PM
1692
1693/**
1694 *	mmc_suspend_host - suspend a host
1695 *	@host: mmc host
1696 */
1697int mmc_suspend_host(struct mmc_host *host)
1698{
1699	int err = 0;
1700
1701	if (host->caps & MMC_CAP_DISABLE)
1702		cancel_delayed_work(&host->disable);
1703	cancel_delayed_work(&host->detect);
1704	mmc_flush_scheduled_work();
1705
1706	mmc_bus_get(host);
1707	if (host->bus_ops && !host->bus_dead) {
1708		if (host->bus_ops->suspend)
1709			err = host->bus_ops->suspend(host);
1710		if (err == -ENOSYS || !host->bus_ops->resume) {
1711			/*
1712			 * We simply "remove" the card in this case.
1713			 * It will be redetected on resume.
1714			 */
1715			if (host->bus_ops->remove)
1716				host->bus_ops->remove(host);
1717			mmc_claim_host(host);
1718			mmc_detach_bus(host);
1719			mmc_release_host(host);
1720			host->pm_flags = 0;
1721			err = 0;
1722		}
1723	}
1724	mmc_bus_put(host);
1725
1726	if (!err && !(host->pm_flags & MMC_PM_KEEP_POWER))
1727		mmc_power_off(host);
1728
1729	return err;
1730}
1731
1732EXPORT_SYMBOL(mmc_suspend_host);
1733
1734/**
1735 *	mmc_resume_host - resume a previously suspended host
1736 *	@host: mmc host
1737 */
1738int mmc_resume_host(struct mmc_host *host)
1739{
1740	int err = 0;
1741
1742	mmc_bus_get(host);
1743	if (host->bus_ops && !host->bus_dead) {
1744		if (!(host->pm_flags & MMC_PM_KEEP_POWER)) {
1745			mmc_power_up(host);
1746			mmc_select_voltage(host, host->ocr);
1747			/*
1748			 * Tell runtime PM core we just powered up the card,
1749			 * since it still believes the card is powered off.
1750			 * Note that currently runtime PM is only enabled
1751			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
1752			 */
1753			if (mmc_card_sdio(host->card) &&
1754			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
1755				pm_runtime_disable(&host->card->dev);
1756				pm_runtime_set_active(&host->card->dev);
1757				pm_runtime_enable(&host->card->dev);
1758			}
1759		}
1760		BUG_ON(!host->bus_ops->resume);
1761		err = host->bus_ops->resume(host);
1762		if (err) {
1763			printk(KERN_WARNING "%s: error %d during resume "
1764					    "(card was removed?)\n",
1765					    mmc_hostname(host), err);
1766			err = 0;
1767		}
1768	}
1769	mmc_bus_put(host);
1770
1771	return err;
1772}
1773EXPORT_SYMBOL(mmc_resume_host);
1774
1775/* Do the card removal on suspend if card is assumed removeable
1776 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
1777   to sync the card.
1778*/
1779int mmc_pm_notify(struct notifier_block *notify_block,
1780					unsigned long mode, void *unused)
1781{
1782	struct mmc_host *host = container_of(
1783		notify_block, struct mmc_host, pm_notify);
1784	unsigned long flags;
1785
1786
1787	switch (mode) {
1788	case PM_HIBERNATION_PREPARE:
1789	case PM_SUSPEND_PREPARE:
1790
1791		spin_lock_irqsave(&host->lock, flags);
1792		host->rescan_disable = 1;
1793		spin_unlock_irqrestore(&host->lock, flags);
1794		cancel_delayed_work_sync(&host->detect);
1795
1796		if (!host->bus_ops || host->bus_ops->suspend)
1797			break;
1798
1799		mmc_claim_host(host);
1800
1801		if (host->bus_ops->remove)
1802			host->bus_ops->remove(host);
1803
1804		mmc_detach_bus(host);
1805		mmc_release_host(host);
1806		host->pm_flags = 0;
1807		break;
1808
1809	case PM_POST_SUSPEND:
1810	case PM_POST_HIBERNATION:
1811	case PM_POST_RESTORE:
1812
1813		spin_lock_irqsave(&host->lock, flags);
1814		host->rescan_disable = 0;
1815		spin_unlock_irqrestore(&host->lock, flags);
1816		mmc_detect_change(host, 0);
1817
1818	}
1819
1820	return 0;
1821}
1822#endif
1823
1824static int __init mmc_init(void)
1825{
1826	int ret;
1827
1828	workqueue = alloc_ordered_workqueue("kmmcd", 0);
1829	if (!workqueue)
1830		return -ENOMEM;
1831
1832	ret = mmc_register_bus();
1833	if (ret)
1834		goto destroy_workqueue;
1835
1836	ret = mmc_register_host_class();
1837	if (ret)
1838		goto unregister_bus;
1839
1840	ret = sdio_register_bus();
1841	if (ret)
1842		goto unregister_host_class;
1843
1844	return 0;
1845
1846unregister_host_class:
1847	mmc_unregister_host_class();
1848unregister_bus:
1849	mmc_unregister_bus();
1850destroy_workqueue:
1851	destroy_workqueue(workqueue);
1852
1853	return ret;
1854}
1855
1856static void __exit mmc_exit(void)
1857{
1858	sdio_unregister_bus();
1859	mmc_unregister_host_class();
1860	mmc_unregister_bus();
1861	destroy_workqueue(workqueue);
1862}
1863
1864subsys_initcall(mmc_init);
1865module_exit(mmc_exit);
1866
1867MODULE_LICENSE("GPL");
1868