1/*
2 * NAND flash simulator.
3 *
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5 *
6 * Copyright (C) 2004 Nokia Corporation
7 *
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24 */
25
26#include <linux/init.h>
27#include <linux/types.h>
28#include <linux/module.h>
29#include <linux/moduleparam.h>
30#include <linux/vmalloc.h>
31#include <asm/div64.h>
32#include <linux/slab.h>
33#include <linux/errno.h>
34#include <linux/string.h>
35#include <linux/mtd/mtd.h>
36#include <linux/mtd/nand.h>
37#include <linux/mtd/nand_bch.h>
38#include <linux/mtd/partitions.h>
39#include <linux/delay.h>
40#include <linux/list.h>
41#include <linux/random.h>
42#include <linux/sched.h>
43#include <linux/fs.h>
44#include <linux/pagemap.h>
45
46/* Default simulator parameters values */
47#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
48    !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
49    !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
50    !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
51#define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
52#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
53#define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
54#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
55#endif
56
57#ifndef CONFIG_NANDSIM_ACCESS_DELAY
58#define CONFIG_NANDSIM_ACCESS_DELAY 25
59#endif
60#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
61#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
62#endif
63#ifndef CONFIG_NANDSIM_ERASE_DELAY
64#define CONFIG_NANDSIM_ERASE_DELAY 2
65#endif
66#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
67#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
68#endif
69#ifndef CONFIG_NANDSIM_INPUT_CYCLE
70#define CONFIG_NANDSIM_INPUT_CYCLE  50
71#endif
72#ifndef CONFIG_NANDSIM_BUS_WIDTH
73#define CONFIG_NANDSIM_BUS_WIDTH  8
74#endif
75#ifndef CONFIG_NANDSIM_DO_DELAYS
76#define CONFIG_NANDSIM_DO_DELAYS  0
77#endif
78#ifndef CONFIG_NANDSIM_LOG
79#define CONFIG_NANDSIM_LOG        0
80#endif
81#ifndef CONFIG_NANDSIM_DBG
82#define CONFIG_NANDSIM_DBG        0
83#endif
84#ifndef CONFIG_NANDSIM_MAX_PARTS
85#define CONFIG_NANDSIM_MAX_PARTS  32
86#endif
87
88static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
89static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
90static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
91static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
92static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
93static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
94static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
95static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
96static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
97static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
98static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
99static uint log            = CONFIG_NANDSIM_LOG;
100static uint dbg            = CONFIG_NANDSIM_DBG;
101static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
102static unsigned int parts_num;
103static char *badblocks = NULL;
104static char *weakblocks = NULL;
105static char *weakpages = NULL;
106static unsigned int bitflips = 0;
107static char *gravepages = NULL;
108static unsigned int rptwear = 0;
109static unsigned int overridesize = 0;
110static char *cache_file = NULL;
111static unsigned int bbt;
112static unsigned int bch;
113
114module_param(first_id_byte,  uint, 0400);
115module_param(second_id_byte, uint, 0400);
116module_param(third_id_byte,  uint, 0400);
117module_param(fourth_id_byte, uint, 0400);
118module_param(access_delay,   uint, 0400);
119module_param(programm_delay, uint, 0400);
120module_param(erase_delay,    uint, 0400);
121module_param(output_cycle,   uint, 0400);
122module_param(input_cycle,    uint, 0400);
123module_param(bus_width,      uint, 0400);
124module_param(do_delays,      uint, 0400);
125module_param(log,            uint, 0400);
126module_param(dbg,            uint, 0400);
127module_param_array(parts, ulong, &parts_num, 0400);
128module_param(badblocks,      charp, 0400);
129module_param(weakblocks,     charp, 0400);
130module_param(weakpages,      charp, 0400);
131module_param(bitflips,       uint, 0400);
132module_param(gravepages,     charp, 0400);
133module_param(rptwear,        uint, 0400);
134module_param(overridesize,   uint, 0400);
135module_param(cache_file,     charp, 0400);
136module_param(bbt,	     uint, 0400);
137module_param(bch,	     uint, 0400);
138
139MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
140MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
141MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
142MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
143MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
144MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
145MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
146MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
147MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
148MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
149MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
150MODULE_PARM_DESC(log,            "Perform logging if not zero");
151MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
152MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
153/* Page and erase block positions for the following parameters are independent of any partitions */
154MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
155MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
156				 " separated by commas e.g. 113:2 means eb 113"
157				 " can be erased only twice before failing");
158MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
159				 " separated by commas e.g. 1401:2 means page 1401"
160				 " can be written only twice before failing");
161MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
162MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
163				 " separated by commas e.g. 1401:2 means page 1401"
164				 " can be read only twice before failing");
165MODULE_PARM_DESC(rptwear,        "Number of erases between reporting wear, if not zero");
166MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
167				 "The size is specified in erase blocks and as the exponent of a power of two"
168				 " e.g. 5 means a size of 32 erase blocks");
169MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
170MODULE_PARM_DESC(bbt,		 "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
171MODULE_PARM_DESC(bch,		 "Enable BCH ecc and set how many bits should "
172				 "be correctable in 512-byte blocks");
173
174/* The largest possible page size */
175#define NS_LARGEST_PAGE_SIZE	4096
176
177/* The prefix for simulator output */
178#define NS_OUTPUT_PREFIX "[nandsim]"
179
180/* Simulator's output macros (logging, debugging, warning, error) */
181#define NS_LOG(args...) \
182	do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
183#define NS_DBG(args...) \
184	do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
185#define NS_WARN(args...) \
186	do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
187#define NS_ERR(args...) \
188	do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
189#define NS_INFO(args...) \
190	do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
191
192/* Busy-wait delay macros (microseconds, milliseconds) */
193#define NS_UDELAY(us) \
194        do { if (do_delays) udelay(us); } while(0)
195#define NS_MDELAY(us) \
196        do { if (do_delays) mdelay(us); } while(0)
197
198/* Is the nandsim structure initialized ? */
199#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
200
201/* Good operation completion status */
202#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
203
204/* Operation failed completion status */
205#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
206
207/* Calculate the page offset in flash RAM image by (row, column) address */
208#define NS_RAW_OFFSET(ns) \
209	(((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
210
211/* Calculate the OOB offset in flash RAM image by (row, column) address */
212#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
213
214/* After a command is input, the simulator goes to one of the following states */
215#define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
216#define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
217#define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
218#define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
219#define STATE_CMD_READOOB      0x00000005 /* read OOB area */
220#define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
221#define STATE_CMD_STATUS       0x00000007 /* read status */
222#define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
223#define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
224#define STATE_CMD_READID       0x0000000A /* read ID */
225#define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
226#define STATE_CMD_RESET        0x0000000C /* reset */
227#define STATE_CMD_RNDOUT       0x0000000D /* random output command */
228#define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
229#define STATE_CMD_MASK         0x0000000F /* command states mask */
230
231/* After an address is input, the simulator goes to one of these states */
232#define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
233#define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
234#define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
235#define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
236#define STATE_ADDR_MASK        0x00000070 /* address states mask */
237
238/* During data input/output the simulator is in these states */
239#define STATE_DATAIN           0x00000100 /* waiting for data input */
240#define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
241
242#define STATE_DATAOUT          0x00001000 /* waiting for page data output */
243#define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
244#define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
245#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
246#define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
247
248/* Previous operation is done, ready to accept new requests */
249#define STATE_READY            0x00000000
250
251/* This state is used to mark that the next state isn't known yet */
252#define STATE_UNKNOWN          0x10000000
253
254/* Simulator's actions bit masks */
255#define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
256#define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
257#define ACTION_SECERASE  0x00300000 /* erase sector */
258#define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
259#define ACTION_HALFOFF   0x00500000 /* add to address half of page */
260#define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
261#define ACTION_MASK      0x00700000 /* action mask */
262
263#define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
264#define NS_OPER_STATES   6  /* Maximum number of states in operation */
265
266#define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
267#define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
268#define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
269#define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
270#define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
271#define OPT_AUTOINCR     0x00000020 /* page number auto incrementation is possible */
272#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
273#define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
274#define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
275#define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
276
277/* Remove action bits from state */
278#define NS_STATE(x) ((x) & ~ACTION_MASK)
279
280/*
281 * Maximum previous states which need to be saved. Currently saving is
282 * only needed for page program operation with preceded read command
283 * (which is only valid for 512-byte pages).
284 */
285#define NS_MAX_PREVSTATES 1
286
287/* Maximum page cache pages needed to read or write a NAND page to the cache_file */
288#define NS_MAX_HELD_PAGES 16
289
290/*
291 * A union to represent flash memory contents and flash buffer.
292 */
293union ns_mem {
294	u_char *byte;    /* for byte access */
295	uint16_t *word;  /* for 16-bit word access */
296};
297
298/*
299 * The structure which describes all the internal simulator data.
300 */
301struct nandsim {
302	struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
303	unsigned int nbparts;
304
305	uint busw;              /* flash chip bus width (8 or 16) */
306	u_char ids[4];          /* chip's ID bytes */
307	uint32_t options;       /* chip's characteristic bits */
308	uint32_t state;         /* current chip state */
309	uint32_t nxstate;       /* next expected state */
310
311	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
312	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
313	uint16_t npstates;      /* number of previous states saved */
314	uint16_t stateidx;      /* current state index */
315
316	/* The simulated NAND flash pages array */
317	union ns_mem *pages;
318
319	/* Slab allocator for nand pages */
320	struct kmem_cache *nand_pages_slab;
321
322	/* Internal buffer of page + OOB size bytes */
323	union ns_mem buf;
324
325	/* NAND flash "geometry" */
326	struct {
327		uint64_t totsz;     /* total flash size, bytes */
328		uint32_t secsz;     /* flash sector (erase block) size, bytes */
329		uint pgsz;          /* NAND flash page size, bytes */
330		uint oobsz;         /* page OOB area size, bytes */
331		uint64_t totszoob;  /* total flash size including OOB, bytes */
332		uint pgszoob;       /* page size including OOB , bytes*/
333		uint secszoob;      /* sector size including OOB, bytes */
334		uint pgnum;         /* total number of pages */
335		uint pgsec;         /* number of pages per sector */
336		uint secshift;      /* bits number in sector size */
337		uint pgshift;       /* bits number in page size */
338		uint oobshift;      /* bits number in OOB size */
339		uint pgaddrbytes;   /* bytes per page address */
340		uint secaddrbytes;  /* bytes per sector address */
341		uint idbytes;       /* the number ID bytes that this chip outputs */
342	} geom;
343
344	/* NAND flash internal registers */
345	struct {
346		unsigned command; /* the command register */
347		u_char   status;  /* the status register */
348		uint     row;     /* the page number */
349		uint     column;  /* the offset within page */
350		uint     count;   /* internal counter */
351		uint     num;     /* number of bytes which must be processed */
352		uint     off;     /* fixed page offset */
353	} regs;
354
355	/* NAND flash lines state */
356        struct {
357                int ce;  /* chip Enable */
358                int cle; /* command Latch Enable */
359                int ale; /* address Latch Enable */
360                int wp;  /* write Protect */
361        } lines;
362
363	/* Fields needed when using a cache file */
364	struct file *cfile; /* Open file */
365	unsigned char *pages_written; /* Which pages have been written */
366	void *file_buf;
367	struct page *held_pages[NS_MAX_HELD_PAGES];
368	int held_cnt;
369};
370
371/*
372 * Operations array. To perform any operation the simulator must pass
373 * through the correspondent states chain.
374 */
375static struct nandsim_operations {
376	uint32_t reqopts;  /* options which are required to perform the operation */
377	uint32_t states[NS_OPER_STATES]; /* operation's states */
378} ops[NS_OPER_NUM] = {
379	/* Read page + OOB from the beginning */
380	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
381			STATE_DATAOUT, STATE_READY}},
382	/* Read page + OOB from the second half */
383	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
384			STATE_DATAOUT, STATE_READY}},
385	/* Read OOB */
386	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
387			STATE_DATAOUT, STATE_READY}},
388	/* Program page starting from the beginning */
389	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
390			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
391	/* Program page starting from the beginning */
392	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
393			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
394	/* Program page starting from the second half */
395	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
396			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
397	/* Program OOB */
398	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
399			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
400	/* Erase sector */
401	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
402	/* Read status */
403	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
404	/* Read multi-plane status */
405	{OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
406	/* Read ID */
407	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
408	/* Large page devices read page */
409	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
410			       STATE_DATAOUT, STATE_READY}},
411	/* Large page devices random page read */
412	{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
413			       STATE_DATAOUT, STATE_READY}},
414};
415
416struct weak_block {
417	struct list_head list;
418	unsigned int erase_block_no;
419	unsigned int max_erases;
420	unsigned int erases_done;
421};
422
423static LIST_HEAD(weak_blocks);
424
425struct weak_page {
426	struct list_head list;
427	unsigned int page_no;
428	unsigned int max_writes;
429	unsigned int writes_done;
430};
431
432static LIST_HEAD(weak_pages);
433
434struct grave_page {
435	struct list_head list;
436	unsigned int page_no;
437	unsigned int max_reads;
438	unsigned int reads_done;
439};
440
441static LIST_HEAD(grave_pages);
442
443static unsigned long *erase_block_wear = NULL;
444static unsigned int wear_eb_count = 0;
445static unsigned long total_wear = 0;
446static unsigned int rptwear_cnt = 0;
447
448/* MTD structure for NAND controller */
449static struct mtd_info *nsmtd;
450
451static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
452
453/*
454 * Allocate array of page pointers, create slab allocation for an array
455 * and initialize the array by NULL pointers.
456 *
457 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
458 */
459static int alloc_device(struct nandsim *ns)
460{
461	struct file *cfile;
462	int i, err;
463
464	if (cache_file) {
465		cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
466		if (IS_ERR(cfile))
467			return PTR_ERR(cfile);
468		if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
469			NS_ERR("alloc_device: cache file not readable\n");
470			err = -EINVAL;
471			goto err_close;
472		}
473		if (!cfile->f_op->write && !cfile->f_op->aio_write) {
474			NS_ERR("alloc_device: cache file not writeable\n");
475			err = -EINVAL;
476			goto err_close;
477		}
478		ns->pages_written = vzalloc(ns->geom.pgnum);
479		if (!ns->pages_written) {
480			NS_ERR("alloc_device: unable to allocate pages written array\n");
481			err = -ENOMEM;
482			goto err_close;
483		}
484		ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
485		if (!ns->file_buf) {
486			NS_ERR("alloc_device: unable to allocate file buf\n");
487			err = -ENOMEM;
488			goto err_free;
489		}
490		ns->cfile = cfile;
491		return 0;
492	}
493
494	ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
495	if (!ns->pages) {
496		NS_ERR("alloc_device: unable to allocate page array\n");
497		return -ENOMEM;
498	}
499	for (i = 0; i < ns->geom.pgnum; i++) {
500		ns->pages[i].byte = NULL;
501	}
502	ns->nand_pages_slab = kmem_cache_create("nandsim",
503						ns->geom.pgszoob, 0, 0, NULL);
504	if (!ns->nand_pages_slab) {
505		NS_ERR("cache_create: unable to create kmem_cache\n");
506		return -ENOMEM;
507	}
508
509	return 0;
510
511err_free:
512	vfree(ns->pages_written);
513err_close:
514	filp_close(cfile, NULL);
515	return err;
516}
517
518/*
519 * Free any allocated pages, and free the array of page pointers.
520 */
521static void free_device(struct nandsim *ns)
522{
523	int i;
524
525	if (ns->cfile) {
526		kfree(ns->file_buf);
527		vfree(ns->pages_written);
528		filp_close(ns->cfile, NULL);
529		return;
530	}
531
532	if (ns->pages) {
533		for (i = 0; i < ns->geom.pgnum; i++) {
534			if (ns->pages[i].byte)
535				kmem_cache_free(ns->nand_pages_slab,
536						ns->pages[i].byte);
537		}
538		kmem_cache_destroy(ns->nand_pages_slab);
539		vfree(ns->pages);
540	}
541}
542
543static char *get_partition_name(int i)
544{
545	char buf[64];
546	sprintf(buf, "NAND simulator partition %d", i);
547	return kstrdup(buf, GFP_KERNEL);
548}
549
550static uint64_t divide(uint64_t n, uint32_t d)
551{
552	do_div(n, d);
553	return n;
554}
555
556/*
557 * Initialize the nandsim structure.
558 *
559 * RETURNS: 0 if success, -ERRNO if failure.
560 */
561static int init_nandsim(struct mtd_info *mtd)
562{
563	struct nand_chip *chip = mtd->priv;
564	struct nandsim   *ns   = chip->priv;
565	int i, ret = 0;
566	uint64_t remains;
567	uint64_t next_offset;
568
569	if (NS_IS_INITIALIZED(ns)) {
570		NS_ERR("init_nandsim: nandsim is already initialized\n");
571		return -EIO;
572	}
573
574	/* Force mtd to not do delays */
575	chip->chip_delay = 0;
576
577	/* Initialize the NAND flash parameters */
578	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
579	ns->geom.totsz    = mtd->size;
580	ns->geom.pgsz     = mtd->writesize;
581	ns->geom.oobsz    = mtd->oobsize;
582	ns->geom.secsz    = mtd->erasesize;
583	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
584	ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz);
585	ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
586	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
587	ns->geom.pgshift  = chip->page_shift;
588	ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
589	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
590	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
591	ns->options = 0;
592
593	if (ns->geom.pgsz == 256) {
594		ns->options |= OPT_PAGE256;
595	}
596	else if (ns->geom.pgsz == 512) {
597		ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
598		if (ns->busw == 8)
599			ns->options |= OPT_PAGE512_8BIT;
600	} else if (ns->geom.pgsz == 2048) {
601		ns->options |= OPT_PAGE2048;
602	} else if (ns->geom.pgsz == 4096) {
603		ns->options |= OPT_PAGE4096;
604	} else {
605		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
606		return -EIO;
607	}
608
609	if (ns->options & OPT_SMALLPAGE) {
610		if (ns->geom.totsz <= (32 << 20)) {
611			ns->geom.pgaddrbytes  = 3;
612			ns->geom.secaddrbytes = 2;
613		} else {
614			ns->geom.pgaddrbytes  = 4;
615			ns->geom.secaddrbytes = 3;
616		}
617	} else {
618		if (ns->geom.totsz <= (128 << 20)) {
619			ns->geom.pgaddrbytes  = 4;
620			ns->geom.secaddrbytes = 2;
621		} else {
622			ns->geom.pgaddrbytes  = 5;
623			ns->geom.secaddrbytes = 3;
624		}
625	}
626
627	/* Fill the partition_info structure */
628	if (parts_num > ARRAY_SIZE(ns->partitions)) {
629		NS_ERR("too many partitions.\n");
630		ret = -EINVAL;
631		goto error;
632	}
633	remains = ns->geom.totsz;
634	next_offset = 0;
635	for (i = 0; i < parts_num; ++i) {
636		uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
637
638		if (!part_sz || part_sz > remains) {
639			NS_ERR("bad partition size.\n");
640			ret = -EINVAL;
641			goto error;
642		}
643		ns->partitions[i].name   = get_partition_name(i);
644		ns->partitions[i].offset = next_offset;
645		ns->partitions[i].size   = part_sz;
646		next_offset += ns->partitions[i].size;
647		remains -= ns->partitions[i].size;
648	}
649	ns->nbparts = parts_num;
650	if (remains) {
651		if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
652			NS_ERR("too many partitions.\n");
653			ret = -EINVAL;
654			goto error;
655		}
656		ns->partitions[i].name   = get_partition_name(i);
657		ns->partitions[i].offset = next_offset;
658		ns->partitions[i].size   = remains;
659		ns->nbparts += 1;
660	}
661
662	/* Detect how many ID bytes the NAND chip outputs */
663        for (i = 0; nand_flash_ids[i].name != NULL; i++) {
664                if (second_id_byte != nand_flash_ids[i].id)
665                        continue;
666		if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
667			ns->options |= OPT_AUTOINCR;
668	}
669
670	if (ns->busw == 16)
671		NS_WARN("16-bit flashes support wasn't tested\n");
672
673	printk("flash size: %llu MiB\n",
674			(unsigned long long)ns->geom.totsz >> 20);
675	printk("page size: %u bytes\n",         ns->geom.pgsz);
676	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
677	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
678	printk("pages number: %u\n",            ns->geom.pgnum);
679	printk("pages per sector: %u\n",        ns->geom.pgsec);
680	printk("bus width: %u\n",               ns->busw);
681	printk("bits in sector size: %u\n",     ns->geom.secshift);
682	printk("bits in page size: %u\n",       ns->geom.pgshift);
683	printk("bits in OOB size: %u\n",	ns->geom.oobshift);
684	printk("flash size with OOB: %llu KiB\n",
685			(unsigned long long)ns->geom.totszoob >> 10);
686	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
687	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
688	printk("options: %#x\n",                ns->options);
689
690	if ((ret = alloc_device(ns)) != 0)
691		goto error;
692
693	/* Allocate / initialize the internal buffer */
694	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
695	if (!ns->buf.byte) {
696		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
697			ns->geom.pgszoob);
698		ret = -ENOMEM;
699		goto error;
700	}
701	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
702
703	return 0;
704
705error:
706	free_device(ns);
707
708	return ret;
709}
710
711/*
712 * Free the nandsim structure.
713 */
714static void free_nandsim(struct nandsim *ns)
715{
716	kfree(ns->buf.byte);
717	free_device(ns);
718
719	return;
720}
721
722static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
723{
724	char *w;
725	int zero_ok;
726	unsigned int erase_block_no;
727	loff_t offset;
728
729	if (!badblocks)
730		return 0;
731	w = badblocks;
732	do {
733		zero_ok = (*w == '0' ? 1 : 0);
734		erase_block_no = simple_strtoul(w, &w, 0);
735		if (!zero_ok && !erase_block_no) {
736			NS_ERR("invalid badblocks.\n");
737			return -EINVAL;
738		}
739		offset = erase_block_no * ns->geom.secsz;
740		if (mtd_block_markbad(mtd, offset)) {
741			NS_ERR("invalid badblocks.\n");
742			return -EINVAL;
743		}
744		if (*w == ',')
745			w += 1;
746	} while (*w);
747	return 0;
748}
749
750static int parse_weakblocks(void)
751{
752	char *w;
753	int zero_ok;
754	unsigned int erase_block_no;
755	unsigned int max_erases;
756	struct weak_block *wb;
757
758	if (!weakblocks)
759		return 0;
760	w = weakblocks;
761	do {
762		zero_ok = (*w == '0' ? 1 : 0);
763		erase_block_no = simple_strtoul(w, &w, 0);
764		if (!zero_ok && !erase_block_no) {
765			NS_ERR("invalid weakblocks.\n");
766			return -EINVAL;
767		}
768		max_erases = 3;
769		if (*w == ':') {
770			w += 1;
771			max_erases = simple_strtoul(w, &w, 0);
772		}
773		if (*w == ',')
774			w += 1;
775		wb = kzalloc(sizeof(*wb), GFP_KERNEL);
776		if (!wb) {
777			NS_ERR("unable to allocate memory.\n");
778			return -ENOMEM;
779		}
780		wb->erase_block_no = erase_block_no;
781		wb->max_erases = max_erases;
782		list_add(&wb->list, &weak_blocks);
783	} while (*w);
784	return 0;
785}
786
787static int erase_error(unsigned int erase_block_no)
788{
789	struct weak_block *wb;
790
791	list_for_each_entry(wb, &weak_blocks, list)
792		if (wb->erase_block_no == erase_block_no) {
793			if (wb->erases_done >= wb->max_erases)
794				return 1;
795			wb->erases_done += 1;
796			return 0;
797		}
798	return 0;
799}
800
801static int parse_weakpages(void)
802{
803	char *w;
804	int zero_ok;
805	unsigned int page_no;
806	unsigned int max_writes;
807	struct weak_page *wp;
808
809	if (!weakpages)
810		return 0;
811	w = weakpages;
812	do {
813		zero_ok = (*w == '0' ? 1 : 0);
814		page_no = simple_strtoul(w, &w, 0);
815		if (!zero_ok && !page_no) {
816			NS_ERR("invalid weakpagess.\n");
817			return -EINVAL;
818		}
819		max_writes = 3;
820		if (*w == ':') {
821			w += 1;
822			max_writes = simple_strtoul(w, &w, 0);
823		}
824		if (*w == ',')
825			w += 1;
826		wp = kzalloc(sizeof(*wp), GFP_KERNEL);
827		if (!wp) {
828			NS_ERR("unable to allocate memory.\n");
829			return -ENOMEM;
830		}
831		wp->page_no = page_no;
832		wp->max_writes = max_writes;
833		list_add(&wp->list, &weak_pages);
834	} while (*w);
835	return 0;
836}
837
838static int write_error(unsigned int page_no)
839{
840	struct weak_page *wp;
841
842	list_for_each_entry(wp, &weak_pages, list)
843		if (wp->page_no == page_no) {
844			if (wp->writes_done >= wp->max_writes)
845				return 1;
846			wp->writes_done += 1;
847			return 0;
848		}
849	return 0;
850}
851
852static int parse_gravepages(void)
853{
854	char *g;
855	int zero_ok;
856	unsigned int page_no;
857	unsigned int max_reads;
858	struct grave_page *gp;
859
860	if (!gravepages)
861		return 0;
862	g = gravepages;
863	do {
864		zero_ok = (*g == '0' ? 1 : 0);
865		page_no = simple_strtoul(g, &g, 0);
866		if (!zero_ok && !page_no) {
867			NS_ERR("invalid gravepagess.\n");
868			return -EINVAL;
869		}
870		max_reads = 3;
871		if (*g == ':') {
872			g += 1;
873			max_reads = simple_strtoul(g, &g, 0);
874		}
875		if (*g == ',')
876			g += 1;
877		gp = kzalloc(sizeof(*gp), GFP_KERNEL);
878		if (!gp) {
879			NS_ERR("unable to allocate memory.\n");
880			return -ENOMEM;
881		}
882		gp->page_no = page_no;
883		gp->max_reads = max_reads;
884		list_add(&gp->list, &grave_pages);
885	} while (*g);
886	return 0;
887}
888
889static int read_error(unsigned int page_no)
890{
891	struct grave_page *gp;
892
893	list_for_each_entry(gp, &grave_pages, list)
894		if (gp->page_no == page_no) {
895			if (gp->reads_done >= gp->max_reads)
896				return 1;
897			gp->reads_done += 1;
898			return 0;
899		}
900	return 0;
901}
902
903static void free_lists(void)
904{
905	struct list_head *pos, *n;
906	list_for_each_safe(pos, n, &weak_blocks) {
907		list_del(pos);
908		kfree(list_entry(pos, struct weak_block, list));
909	}
910	list_for_each_safe(pos, n, &weak_pages) {
911		list_del(pos);
912		kfree(list_entry(pos, struct weak_page, list));
913	}
914	list_for_each_safe(pos, n, &grave_pages) {
915		list_del(pos);
916		kfree(list_entry(pos, struct grave_page, list));
917	}
918	kfree(erase_block_wear);
919}
920
921static int setup_wear_reporting(struct mtd_info *mtd)
922{
923	size_t mem;
924
925	if (!rptwear)
926		return 0;
927	wear_eb_count = divide(mtd->size, mtd->erasesize);
928	mem = wear_eb_count * sizeof(unsigned long);
929	if (mem / sizeof(unsigned long) != wear_eb_count) {
930		NS_ERR("Too many erase blocks for wear reporting\n");
931		return -ENOMEM;
932	}
933	erase_block_wear = kzalloc(mem, GFP_KERNEL);
934	if (!erase_block_wear) {
935		NS_ERR("Too many erase blocks for wear reporting\n");
936		return -ENOMEM;
937	}
938	return 0;
939}
940
941static void update_wear(unsigned int erase_block_no)
942{
943	unsigned long wmin = -1, wmax = 0, avg;
944	unsigned long deciles[10], decile_max[10], tot = 0;
945	unsigned int i;
946
947	if (!erase_block_wear)
948		return;
949	total_wear += 1;
950	if (total_wear == 0)
951		NS_ERR("Erase counter total overflow\n");
952	erase_block_wear[erase_block_no] += 1;
953	if (erase_block_wear[erase_block_no] == 0)
954		NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
955	rptwear_cnt += 1;
956	if (rptwear_cnt < rptwear)
957		return;
958	rptwear_cnt = 0;
959	/* Calc wear stats */
960	for (i = 0; i < wear_eb_count; ++i) {
961		unsigned long wear = erase_block_wear[i];
962		if (wear < wmin)
963			wmin = wear;
964		if (wear > wmax)
965			wmax = wear;
966		tot += wear;
967	}
968	for (i = 0; i < 9; ++i) {
969		deciles[i] = 0;
970		decile_max[i] = (wmax * (i + 1) + 5) / 10;
971	}
972	deciles[9] = 0;
973	decile_max[9] = wmax;
974	for (i = 0; i < wear_eb_count; ++i) {
975		int d;
976		unsigned long wear = erase_block_wear[i];
977		for (d = 0; d < 10; ++d)
978			if (wear <= decile_max[d]) {
979				deciles[d] += 1;
980				break;
981			}
982	}
983	avg = tot / wear_eb_count;
984	/* Output wear report */
985	NS_INFO("*** Wear Report ***\n");
986	NS_INFO("Total numbers of erases:  %lu\n", tot);
987	NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
988	NS_INFO("Average number of erases: %lu\n", avg);
989	NS_INFO("Maximum number of erases: %lu\n", wmax);
990	NS_INFO("Minimum number of erases: %lu\n", wmin);
991	for (i = 0; i < 10; ++i) {
992		unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
993		if (from > decile_max[i])
994			continue;
995		NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
996			from,
997			decile_max[i],
998			deciles[i]);
999	}
1000	NS_INFO("*** End of Wear Report ***\n");
1001}
1002
1003/*
1004 * Returns the string representation of 'state' state.
1005 */
1006static char *get_state_name(uint32_t state)
1007{
1008	switch (NS_STATE(state)) {
1009		case STATE_CMD_READ0:
1010			return "STATE_CMD_READ0";
1011		case STATE_CMD_READ1:
1012			return "STATE_CMD_READ1";
1013		case STATE_CMD_PAGEPROG:
1014			return "STATE_CMD_PAGEPROG";
1015		case STATE_CMD_READOOB:
1016			return "STATE_CMD_READOOB";
1017		case STATE_CMD_READSTART:
1018			return "STATE_CMD_READSTART";
1019		case STATE_CMD_ERASE1:
1020			return "STATE_CMD_ERASE1";
1021		case STATE_CMD_STATUS:
1022			return "STATE_CMD_STATUS";
1023		case STATE_CMD_STATUS_M:
1024			return "STATE_CMD_STATUS_M";
1025		case STATE_CMD_SEQIN:
1026			return "STATE_CMD_SEQIN";
1027		case STATE_CMD_READID:
1028			return "STATE_CMD_READID";
1029		case STATE_CMD_ERASE2:
1030			return "STATE_CMD_ERASE2";
1031		case STATE_CMD_RESET:
1032			return "STATE_CMD_RESET";
1033		case STATE_CMD_RNDOUT:
1034			return "STATE_CMD_RNDOUT";
1035		case STATE_CMD_RNDOUTSTART:
1036			return "STATE_CMD_RNDOUTSTART";
1037		case STATE_ADDR_PAGE:
1038			return "STATE_ADDR_PAGE";
1039		case STATE_ADDR_SEC:
1040			return "STATE_ADDR_SEC";
1041		case STATE_ADDR_ZERO:
1042			return "STATE_ADDR_ZERO";
1043		case STATE_ADDR_COLUMN:
1044			return "STATE_ADDR_COLUMN";
1045		case STATE_DATAIN:
1046			return "STATE_DATAIN";
1047		case STATE_DATAOUT:
1048			return "STATE_DATAOUT";
1049		case STATE_DATAOUT_ID:
1050			return "STATE_DATAOUT_ID";
1051		case STATE_DATAOUT_STATUS:
1052			return "STATE_DATAOUT_STATUS";
1053		case STATE_DATAOUT_STATUS_M:
1054			return "STATE_DATAOUT_STATUS_M";
1055		case STATE_READY:
1056			return "STATE_READY";
1057		case STATE_UNKNOWN:
1058			return "STATE_UNKNOWN";
1059	}
1060
1061	NS_ERR("get_state_name: unknown state, BUG\n");
1062	return NULL;
1063}
1064
1065/*
1066 * Check if command is valid.
1067 *
1068 * RETURNS: 1 if wrong command, 0 if right.
1069 */
1070static int check_command(int cmd)
1071{
1072	switch (cmd) {
1073
1074	case NAND_CMD_READ0:
1075	case NAND_CMD_READ1:
1076	case NAND_CMD_READSTART:
1077	case NAND_CMD_PAGEPROG:
1078	case NAND_CMD_READOOB:
1079	case NAND_CMD_ERASE1:
1080	case NAND_CMD_STATUS:
1081	case NAND_CMD_SEQIN:
1082	case NAND_CMD_READID:
1083	case NAND_CMD_ERASE2:
1084	case NAND_CMD_RESET:
1085	case NAND_CMD_RNDOUT:
1086	case NAND_CMD_RNDOUTSTART:
1087		return 0;
1088
1089	case NAND_CMD_STATUS_MULTI:
1090	default:
1091		return 1;
1092	}
1093}
1094
1095/*
1096 * Returns state after command is accepted by command number.
1097 */
1098static uint32_t get_state_by_command(unsigned command)
1099{
1100	switch (command) {
1101		case NAND_CMD_READ0:
1102			return STATE_CMD_READ0;
1103		case NAND_CMD_READ1:
1104			return STATE_CMD_READ1;
1105		case NAND_CMD_PAGEPROG:
1106			return STATE_CMD_PAGEPROG;
1107		case NAND_CMD_READSTART:
1108			return STATE_CMD_READSTART;
1109		case NAND_CMD_READOOB:
1110			return STATE_CMD_READOOB;
1111		case NAND_CMD_ERASE1:
1112			return STATE_CMD_ERASE1;
1113		case NAND_CMD_STATUS:
1114			return STATE_CMD_STATUS;
1115		case NAND_CMD_STATUS_MULTI:
1116			return STATE_CMD_STATUS_M;
1117		case NAND_CMD_SEQIN:
1118			return STATE_CMD_SEQIN;
1119		case NAND_CMD_READID:
1120			return STATE_CMD_READID;
1121		case NAND_CMD_ERASE2:
1122			return STATE_CMD_ERASE2;
1123		case NAND_CMD_RESET:
1124			return STATE_CMD_RESET;
1125		case NAND_CMD_RNDOUT:
1126			return STATE_CMD_RNDOUT;
1127		case NAND_CMD_RNDOUTSTART:
1128			return STATE_CMD_RNDOUTSTART;
1129	}
1130
1131	NS_ERR("get_state_by_command: unknown command, BUG\n");
1132	return 0;
1133}
1134
1135/*
1136 * Move an address byte to the correspondent internal register.
1137 */
1138static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1139{
1140	uint byte = (uint)bt;
1141
1142	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1143		ns->regs.column |= (byte << 8 * ns->regs.count);
1144	else {
1145		ns->regs.row |= (byte << 8 * (ns->regs.count -
1146						ns->geom.pgaddrbytes +
1147						ns->geom.secaddrbytes));
1148	}
1149
1150	return;
1151}
1152
1153/*
1154 * Switch to STATE_READY state.
1155 */
1156static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1157{
1158	NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1159
1160	ns->state       = STATE_READY;
1161	ns->nxstate     = STATE_UNKNOWN;
1162	ns->op          = NULL;
1163	ns->npstates    = 0;
1164	ns->stateidx    = 0;
1165	ns->regs.num    = 0;
1166	ns->regs.count  = 0;
1167	ns->regs.off    = 0;
1168	ns->regs.row    = 0;
1169	ns->regs.column = 0;
1170	ns->regs.status = status;
1171}
1172
1173/*
1174 * If the operation isn't known yet, try to find it in the global array
1175 * of supported operations.
1176 *
1177 * Operation can be unknown because of the following.
1178 *   1. New command was accepted and this is the first call to find the
1179 *      correspondent states chain. In this case ns->npstates = 0;
1180 *   2. There are several operations which begin with the same command(s)
1181 *      (for example program from the second half and read from the
1182 *      second half operations both begin with the READ1 command). In this
1183 *      case the ns->pstates[] array contains previous states.
1184 *
1185 * Thus, the function tries to find operation containing the following
1186 * states (if the 'flag' parameter is 0):
1187 *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1188 *
1189 * If (one and only one) matching operation is found, it is accepted (
1190 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1191 * zeroed).
1192 *
1193 * If there are several matches, the current state is pushed to the
1194 * ns->pstates.
1195 *
1196 * The operation can be unknown only while commands are input to the chip.
1197 * As soon as address command is accepted, the operation must be known.
1198 * In such situation the function is called with 'flag' != 0, and the
1199 * operation is searched using the following pattern:
1200 *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1201 *
1202 * It is supposed that this pattern must either match one operation or
1203 * none. There can't be ambiguity in that case.
1204 *
1205 * If no matches found, the function does the following:
1206 *   1. if there are saved states present, try to ignore them and search
1207 *      again only using the last command. If nothing was found, switch
1208 *      to the STATE_READY state.
1209 *   2. if there are no saved states, switch to the STATE_READY state.
1210 *
1211 * RETURNS: -2 - no matched operations found.
1212 *          -1 - several matches.
1213 *           0 - operation is found.
1214 */
1215static int find_operation(struct nandsim *ns, uint32_t flag)
1216{
1217	int opsfound = 0;
1218	int i, j, idx = 0;
1219
1220	for (i = 0; i < NS_OPER_NUM; i++) {
1221
1222		int found = 1;
1223
1224		if (!(ns->options & ops[i].reqopts))
1225			/* Ignore operations we can't perform */
1226			continue;
1227
1228		if (flag) {
1229			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1230				continue;
1231		} else {
1232			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1233				continue;
1234		}
1235
1236		for (j = 0; j < ns->npstates; j++)
1237			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1238				&& (ns->options & ops[idx].reqopts)) {
1239				found = 0;
1240				break;
1241			}
1242
1243		if (found) {
1244			idx = i;
1245			opsfound += 1;
1246		}
1247	}
1248
1249	if (opsfound == 1) {
1250		/* Exact match */
1251		ns->op = &ops[idx].states[0];
1252		if (flag) {
1253			/*
1254			 * In this case the find_operation function was
1255			 * called when address has just began input. But it isn't
1256			 * yet fully input and the current state must
1257			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1258			 * state must be the next state (ns->nxstate).
1259			 */
1260			ns->stateidx = ns->npstates - 1;
1261		} else {
1262			ns->stateidx = ns->npstates;
1263		}
1264		ns->npstates = 0;
1265		ns->state = ns->op[ns->stateidx];
1266		ns->nxstate = ns->op[ns->stateidx + 1];
1267		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1268				idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1269		return 0;
1270	}
1271
1272	if (opsfound == 0) {
1273		/* Nothing was found. Try to ignore previous commands (if any) and search again */
1274		if (ns->npstates != 0) {
1275			NS_DBG("find_operation: no operation found, try again with state %s\n",
1276					get_state_name(ns->state));
1277			ns->npstates = 0;
1278			return find_operation(ns, 0);
1279
1280		}
1281		NS_DBG("find_operation: no operations found\n");
1282		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1283		return -2;
1284	}
1285
1286	if (flag) {
1287		/* This shouldn't happen */
1288		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1289		return -2;
1290	}
1291
1292	NS_DBG("find_operation: there is still ambiguity\n");
1293
1294	ns->pstates[ns->npstates++] = ns->state;
1295
1296	return -1;
1297}
1298
1299static void put_pages(struct nandsim *ns)
1300{
1301	int i;
1302
1303	for (i = 0; i < ns->held_cnt; i++)
1304		page_cache_release(ns->held_pages[i]);
1305}
1306
1307/* Get page cache pages in advance to provide NOFS memory allocation */
1308static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1309{
1310	pgoff_t index, start_index, end_index;
1311	struct page *page;
1312	struct address_space *mapping = file->f_mapping;
1313
1314	start_index = pos >> PAGE_CACHE_SHIFT;
1315	end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1316	if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1317		return -EINVAL;
1318	ns->held_cnt = 0;
1319	for (index = start_index; index <= end_index; index++) {
1320		page = find_get_page(mapping, index);
1321		if (page == NULL) {
1322			page = find_or_create_page(mapping, index, GFP_NOFS);
1323			if (page == NULL) {
1324				write_inode_now(mapping->host, 1);
1325				page = find_or_create_page(mapping, index, GFP_NOFS);
1326			}
1327			if (page == NULL) {
1328				put_pages(ns);
1329				return -ENOMEM;
1330			}
1331			unlock_page(page);
1332		}
1333		ns->held_pages[ns->held_cnt++] = page;
1334	}
1335	return 0;
1336}
1337
1338static int set_memalloc(void)
1339{
1340	if (current->flags & PF_MEMALLOC)
1341		return 0;
1342	current->flags |= PF_MEMALLOC;
1343	return 1;
1344}
1345
1346static void clear_memalloc(int memalloc)
1347{
1348	if (memalloc)
1349		current->flags &= ~PF_MEMALLOC;
1350}
1351
1352static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1353{
1354	mm_segment_t old_fs;
1355	ssize_t tx;
1356	int err, memalloc;
1357
1358	err = get_pages(ns, file, count, *pos);
1359	if (err)
1360		return err;
1361	old_fs = get_fs();
1362	set_fs(get_ds());
1363	memalloc = set_memalloc();
1364	tx = vfs_read(file, (char __user *)buf, count, pos);
1365	clear_memalloc(memalloc);
1366	set_fs(old_fs);
1367	put_pages(ns);
1368	return tx;
1369}
1370
1371static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1372{
1373	mm_segment_t old_fs;
1374	ssize_t tx;
1375	int err, memalloc;
1376
1377	err = get_pages(ns, file, count, *pos);
1378	if (err)
1379		return err;
1380	old_fs = get_fs();
1381	set_fs(get_ds());
1382	memalloc = set_memalloc();
1383	tx = vfs_write(file, (char __user *)buf, count, pos);
1384	clear_memalloc(memalloc);
1385	set_fs(old_fs);
1386	put_pages(ns);
1387	return tx;
1388}
1389
1390/*
1391 * Returns a pointer to the current page.
1392 */
1393static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1394{
1395	return &(ns->pages[ns->regs.row]);
1396}
1397
1398/*
1399 * Retuns a pointer to the current byte, within the current page.
1400 */
1401static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1402{
1403	return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1404}
1405
1406int do_read_error(struct nandsim *ns, int num)
1407{
1408	unsigned int page_no = ns->regs.row;
1409
1410	if (read_error(page_no)) {
1411		int i;
1412		memset(ns->buf.byte, 0xFF, num);
1413		for (i = 0; i < num; ++i)
1414			ns->buf.byte[i] = random32();
1415		NS_WARN("simulating read error in page %u\n", page_no);
1416		return 1;
1417	}
1418	return 0;
1419}
1420
1421void do_bit_flips(struct nandsim *ns, int num)
1422{
1423	if (bitflips && random32() < (1 << 22)) {
1424		int flips = 1;
1425		if (bitflips > 1)
1426			flips = (random32() % (int) bitflips) + 1;
1427		while (flips--) {
1428			int pos = random32() % (num * 8);
1429			ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1430			NS_WARN("read_page: flipping bit %d in page %d "
1431				"reading from %d ecc: corrected=%u failed=%u\n",
1432				pos, ns->regs.row, ns->regs.column + ns->regs.off,
1433				nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1434		}
1435	}
1436}
1437
1438/*
1439 * Fill the NAND buffer with data read from the specified page.
1440 */
1441static void read_page(struct nandsim *ns, int num)
1442{
1443	union ns_mem *mypage;
1444
1445	if (ns->cfile) {
1446		if (!ns->pages_written[ns->regs.row]) {
1447			NS_DBG("read_page: page %d not written\n", ns->regs.row);
1448			memset(ns->buf.byte, 0xFF, num);
1449		} else {
1450			loff_t pos;
1451			ssize_t tx;
1452
1453			NS_DBG("read_page: page %d written, reading from %d\n",
1454				ns->regs.row, ns->regs.column + ns->regs.off);
1455			if (do_read_error(ns, num))
1456				return;
1457			pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1458			tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1459			if (tx != num) {
1460				NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1461				return;
1462			}
1463			do_bit_flips(ns, num);
1464		}
1465		return;
1466	}
1467
1468	mypage = NS_GET_PAGE(ns);
1469	if (mypage->byte == NULL) {
1470		NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1471		memset(ns->buf.byte, 0xFF, num);
1472	} else {
1473		NS_DBG("read_page: page %d allocated, reading from %d\n",
1474			ns->regs.row, ns->regs.column + ns->regs.off);
1475		if (do_read_error(ns, num))
1476			return;
1477		memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1478		do_bit_flips(ns, num);
1479	}
1480}
1481
1482/*
1483 * Erase all pages in the specified sector.
1484 */
1485static void erase_sector(struct nandsim *ns)
1486{
1487	union ns_mem *mypage;
1488	int i;
1489
1490	if (ns->cfile) {
1491		for (i = 0; i < ns->geom.pgsec; i++)
1492			if (ns->pages_written[ns->regs.row + i]) {
1493				NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1494				ns->pages_written[ns->regs.row + i] = 0;
1495			}
1496		return;
1497	}
1498
1499	mypage = NS_GET_PAGE(ns);
1500	for (i = 0; i < ns->geom.pgsec; i++) {
1501		if (mypage->byte != NULL) {
1502			NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1503			kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1504			mypage->byte = NULL;
1505		}
1506		mypage++;
1507	}
1508}
1509
1510/*
1511 * Program the specified page with the contents from the NAND buffer.
1512 */
1513static int prog_page(struct nandsim *ns, int num)
1514{
1515	int i;
1516	union ns_mem *mypage;
1517	u_char *pg_off;
1518
1519	if (ns->cfile) {
1520		loff_t off, pos;
1521		ssize_t tx;
1522		int all;
1523
1524		NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1525		pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1526		off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1527		if (!ns->pages_written[ns->regs.row]) {
1528			all = 1;
1529			memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1530		} else {
1531			all = 0;
1532			pos = off;
1533			tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1534			if (tx != num) {
1535				NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1536				return -1;
1537			}
1538		}
1539		for (i = 0; i < num; i++)
1540			pg_off[i] &= ns->buf.byte[i];
1541		if (all) {
1542			pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1543			tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1544			if (tx != ns->geom.pgszoob) {
1545				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1546				return -1;
1547			}
1548			ns->pages_written[ns->regs.row] = 1;
1549		} else {
1550			pos = off;
1551			tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1552			if (tx != num) {
1553				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1554				return -1;
1555			}
1556		}
1557		return 0;
1558	}
1559
1560	mypage = NS_GET_PAGE(ns);
1561	if (mypage->byte == NULL) {
1562		NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1563		/*
1564		 * We allocate memory with GFP_NOFS because a flash FS may
1565		 * utilize this. If it is holding an FS lock, then gets here,
1566		 * then kernel memory alloc runs writeback which goes to the FS
1567		 * again and deadlocks. This was seen in practice.
1568		 */
1569		mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1570		if (mypage->byte == NULL) {
1571			NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1572			return -1;
1573		}
1574		memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1575	}
1576
1577	pg_off = NS_PAGE_BYTE_OFF(ns);
1578	for (i = 0; i < num; i++)
1579		pg_off[i] &= ns->buf.byte[i];
1580
1581	return 0;
1582}
1583
1584/*
1585 * If state has any action bit, perform this action.
1586 *
1587 * RETURNS: 0 if success, -1 if error.
1588 */
1589static int do_state_action(struct nandsim *ns, uint32_t action)
1590{
1591	int num;
1592	int busdiv = ns->busw == 8 ? 1 : 2;
1593	unsigned int erase_block_no, page_no;
1594
1595	action &= ACTION_MASK;
1596
1597	/* Check that page address input is correct */
1598	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1599		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1600		return -1;
1601	}
1602
1603	switch (action) {
1604
1605	case ACTION_CPY:
1606		/*
1607		 * Copy page data to the internal buffer.
1608		 */
1609
1610		/* Column shouldn't be very large */
1611		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1612			NS_ERR("do_state_action: column number is too large\n");
1613			break;
1614		}
1615		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1616		read_page(ns, num);
1617
1618		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1619			num, NS_RAW_OFFSET(ns) + ns->regs.off);
1620
1621		if (ns->regs.off == 0)
1622			NS_LOG("read page %d\n", ns->regs.row);
1623		else if (ns->regs.off < ns->geom.pgsz)
1624			NS_LOG("read page %d (second half)\n", ns->regs.row);
1625		else
1626			NS_LOG("read OOB of page %d\n", ns->regs.row);
1627
1628		NS_UDELAY(access_delay);
1629		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1630
1631		break;
1632
1633	case ACTION_SECERASE:
1634		/*
1635		 * Erase sector.
1636		 */
1637
1638		if (ns->lines.wp) {
1639			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1640			return -1;
1641		}
1642
1643		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1644			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
1645			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1646			return -1;
1647		}
1648
1649		ns->regs.row = (ns->regs.row <<
1650				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1651		ns->regs.column = 0;
1652
1653		erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1654
1655		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1656				ns->regs.row, NS_RAW_OFFSET(ns));
1657		NS_LOG("erase sector %u\n", erase_block_no);
1658
1659		erase_sector(ns);
1660
1661		NS_MDELAY(erase_delay);
1662
1663		if (erase_block_wear)
1664			update_wear(erase_block_no);
1665
1666		if (erase_error(erase_block_no)) {
1667			NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1668			return -1;
1669		}
1670
1671		break;
1672
1673	case ACTION_PRGPAGE:
1674		/*
1675		 * Program page - move internal buffer data to the page.
1676		 */
1677
1678		if (ns->lines.wp) {
1679			NS_WARN("do_state_action: device is write-protected, programm\n");
1680			return -1;
1681		}
1682
1683		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1684		if (num != ns->regs.count) {
1685			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1686					ns->regs.count, num);
1687			return -1;
1688		}
1689
1690		if (prog_page(ns, num) == -1)
1691			return -1;
1692
1693		page_no = ns->regs.row;
1694
1695		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1696			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1697		NS_LOG("programm page %d\n", ns->regs.row);
1698
1699		NS_UDELAY(programm_delay);
1700		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1701
1702		if (write_error(page_no)) {
1703			NS_WARN("simulating write failure in page %u\n", page_no);
1704			return -1;
1705		}
1706
1707		break;
1708
1709	case ACTION_ZEROOFF:
1710		NS_DBG("do_state_action: set internal offset to 0\n");
1711		ns->regs.off = 0;
1712		break;
1713
1714	case ACTION_HALFOFF:
1715		if (!(ns->options & OPT_PAGE512_8BIT)) {
1716			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1717				"byte page size 8x chips\n");
1718			return -1;
1719		}
1720		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1721		ns->regs.off = ns->geom.pgsz/2;
1722		break;
1723
1724	case ACTION_OOBOFF:
1725		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1726		ns->regs.off = ns->geom.pgsz;
1727		break;
1728
1729	default:
1730		NS_DBG("do_state_action: BUG! unknown action\n");
1731	}
1732
1733	return 0;
1734}
1735
1736/*
1737 * Switch simulator's state.
1738 */
1739static void switch_state(struct nandsim *ns)
1740{
1741	if (ns->op) {
1742		/*
1743		 * The current operation have already been identified.
1744		 * Just follow the states chain.
1745		 */
1746
1747		ns->stateidx += 1;
1748		ns->state = ns->nxstate;
1749		ns->nxstate = ns->op[ns->stateidx + 1];
1750
1751		NS_DBG("switch_state: operation is known, switch to the next state, "
1752			"state: %s, nxstate: %s\n",
1753			get_state_name(ns->state), get_state_name(ns->nxstate));
1754
1755		/* See, whether we need to do some action */
1756		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1757			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1758			return;
1759		}
1760
1761	} else {
1762		/*
1763		 * We don't yet know which operation we perform.
1764		 * Try to identify it.
1765		 */
1766
1767		/*
1768		 *  The only event causing the switch_state function to
1769		 *  be called with yet unknown operation is new command.
1770		 */
1771		ns->state = get_state_by_command(ns->regs.command);
1772
1773		NS_DBG("switch_state: operation is unknown, try to find it\n");
1774
1775		if (find_operation(ns, 0) != 0)
1776			return;
1777
1778		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1779			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1780			return;
1781		}
1782	}
1783
1784	/* For 16x devices column means the page offset in words */
1785	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1786		NS_DBG("switch_state: double the column number for 16x device\n");
1787		ns->regs.column <<= 1;
1788	}
1789
1790	if (NS_STATE(ns->nxstate) == STATE_READY) {
1791		/*
1792		 * The current state is the last. Return to STATE_READY
1793		 */
1794
1795		u_char status = NS_STATUS_OK(ns);
1796
1797		/* In case of data states, see if all bytes were input/output */
1798		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1799			&& ns->regs.count != ns->regs.num) {
1800			NS_WARN("switch_state: not all bytes were processed, %d left\n",
1801					ns->regs.num - ns->regs.count);
1802			status = NS_STATUS_FAILED(ns);
1803		}
1804
1805		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1806
1807		switch_to_ready_state(ns, status);
1808
1809		return;
1810	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1811		/*
1812		 * If the next state is data input/output, switch to it now
1813		 */
1814
1815		ns->state      = ns->nxstate;
1816		ns->nxstate    = ns->op[++ns->stateidx + 1];
1817		ns->regs.num   = ns->regs.count = 0;
1818
1819		NS_DBG("switch_state: the next state is data I/O, switch, "
1820			"state: %s, nxstate: %s\n",
1821			get_state_name(ns->state), get_state_name(ns->nxstate));
1822
1823		/*
1824		 * Set the internal register to the count of bytes which
1825		 * are expected to be input or output
1826		 */
1827		switch (NS_STATE(ns->state)) {
1828			case STATE_DATAIN:
1829			case STATE_DATAOUT:
1830				ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1831				break;
1832
1833			case STATE_DATAOUT_ID:
1834				ns->regs.num = ns->geom.idbytes;
1835				break;
1836
1837			case STATE_DATAOUT_STATUS:
1838			case STATE_DATAOUT_STATUS_M:
1839				ns->regs.count = ns->regs.num = 0;
1840				break;
1841
1842			default:
1843				NS_ERR("switch_state: BUG! unknown data state\n");
1844		}
1845
1846	} else if (ns->nxstate & STATE_ADDR_MASK) {
1847		/*
1848		 * If the next state is address input, set the internal
1849		 * register to the number of expected address bytes
1850		 */
1851
1852		ns->regs.count = 0;
1853
1854		switch (NS_STATE(ns->nxstate)) {
1855			case STATE_ADDR_PAGE:
1856				ns->regs.num = ns->geom.pgaddrbytes;
1857
1858				break;
1859			case STATE_ADDR_SEC:
1860				ns->regs.num = ns->geom.secaddrbytes;
1861				break;
1862
1863			case STATE_ADDR_ZERO:
1864				ns->regs.num = 1;
1865				break;
1866
1867			case STATE_ADDR_COLUMN:
1868				/* Column address is always 2 bytes */
1869				ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1870				break;
1871
1872			default:
1873				NS_ERR("switch_state: BUG! unknown address state\n");
1874		}
1875	} else {
1876		/*
1877		 * Just reset internal counters.
1878		 */
1879
1880		ns->regs.num = 0;
1881		ns->regs.count = 0;
1882	}
1883}
1884
1885static u_char ns_nand_read_byte(struct mtd_info *mtd)
1886{
1887	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1888	u_char outb = 0x00;
1889
1890	/* Sanity and correctness checks */
1891	if (!ns->lines.ce) {
1892		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1893		return outb;
1894	}
1895	if (ns->lines.ale || ns->lines.cle) {
1896		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1897		return outb;
1898	}
1899	if (!(ns->state & STATE_DATAOUT_MASK)) {
1900		NS_WARN("read_byte: unexpected data output cycle, state is %s "
1901			"return %#x\n", get_state_name(ns->state), (uint)outb);
1902		return outb;
1903	}
1904
1905	/* Status register may be read as many times as it is wanted */
1906	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1907		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1908		return ns->regs.status;
1909	}
1910
1911	/* Check if there is any data in the internal buffer which may be read */
1912	if (ns->regs.count == ns->regs.num) {
1913		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1914		return outb;
1915	}
1916
1917	switch (NS_STATE(ns->state)) {
1918		case STATE_DATAOUT:
1919			if (ns->busw == 8) {
1920				outb = ns->buf.byte[ns->regs.count];
1921				ns->regs.count += 1;
1922			} else {
1923				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1924				ns->regs.count += 2;
1925			}
1926			break;
1927		case STATE_DATAOUT_ID:
1928			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1929			outb = ns->ids[ns->regs.count];
1930			ns->regs.count += 1;
1931			break;
1932		default:
1933			BUG();
1934	}
1935
1936	if (ns->regs.count == ns->regs.num) {
1937		NS_DBG("read_byte: all bytes were read\n");
1938
1939		/*
1940		 * The OPT_AUTOINCR allows to read next consecutive pages without
1941		 * new read operation cycle.
1942		 */
1943		if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1944			ns->regs.count = 0;
1945			if (ns->regs.row + 1 < ns->geom.pgnum)
1946				ns->regs.row += 1;
1947			NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1948			do_state_action(ns, ACTION_CPY);
1949		}
1950		else if (NS_STATE(ns->nxstate) == STATE_READY)
1951			switch_state(ns);
1952
1953	}
1954
1955	return outb;
1956}
1957
1958static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1959{
1960	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1961
1962	/* Sanity and correctness checks */
1963	if (!ns->lines.ce) {
1964		NS_ERR("write_byte: chip is disabled, ignore write\n");
1965		return;
1966	}
1967	if (ns->lines.ale && ns->lines.cle) {
1968		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1969		return;
1970	}
1971
1972	if (ns->lines.cle == 1) {
1973		/*
1974		 * The byte written is a command.
1975		 */
1976
1977		if (byte == NAND_CMD_RESET) {
1978			NS_LOG("reset chip\n");
1979			switch_to_ready_state(ns, NS_STATUS_OK(ns));
1980			return;
1981		}
1982
1983		/* Check that the command byte is correct */
1984		if (check_command(byte)) {
1985			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1986			return;
1987		}
1988
1989		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1990			|| NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1991			|| NS_STATE(ns->state) == STATE_DATAOUT) {
1992			int row = ns->regs.row;
1993
1994			switch_state(ns);
1995			if (byte == NAND_CMD_RNDOUT)
1996				ns->regs.row = row;
1997		}
1998
1999		/* Check if chip is expecting command */
2000		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
2001			/* Do not warn if only 2 id bytes are read */
2002			if (!(ns->regs.command == NAND_CMD_READID &&
2003			    NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2004				/*
2005				 * We are in situation when something else (not command)
2006				 * was expected but command was input. In this case ignore
2007				 * previous command(s)/state(s) and accept the last one.
2008				 */
2009				NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2010					"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2011			}
2012			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2013		}
2014
2015		NS_DBG("command byte corresponding to %s state accepted\n",
2016			get_state_name(get_state_by_command(byte)));
2017		ns->regs.command = byte;
2018		switch_state(ns);
2019
2020	} else if (ns->lines.ale == 1) {
2021		/*
2022		 * The byte written is an address.
2023		 */
2024
2025		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2026
2027			NS_DBG("write_byte: operation isn't known yet, identify it\n");
2028
2029			if (find_operation(ns, 1) < 0)
2030				return;
2031
2032			if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2033				switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2034				return;
2035			}
2036
2037			ns->regs.count = 0;
2038			switch (NS_STATE(ns->nxstate)) {
2039				case STATE_ADDR_PAGE:
2040					ns->regs.num = ns->geom.pgaddrbytes;
2041					break;
2042				case STATE_ADDR_SEC:
2043					ns->regs.num = ns->geom.secaddrbytes;
2044					break;
2045				case STATE_ADDR_ZERO:
2046					ns->regs.num = 1;
2047					break;
2048				default:
2049					BUG();
2050			}
2051		}
2052
2053		/* Check that chip is expecting address */
2054		if (!(ns->nxstate & STATE_ADDR_MASK)) {
2055			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2056				"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2057			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2058			return;
2059		}
2060
2061		/* Check if this is expected byte */
2062		if (ns->regs.count == ns->regs.num) {
2063			NS_ERR("write_byte: no more address bytes expected\n");
2064			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2065			return;
2066		}
2067
2068		accept_addr_byte(ns, byte);
2069
2070		ns->regs.count += 1;
2071
2072		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2073				(uint)byte, ns->regs.count, ns->regs.num);
2074
2075		if (ns->regs.count == ns->regs.num) {
2076			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2077			switch_state(ns);
2078		}
2079
2080	} else {
2081		/*
2082		 * The byte written is an input data.
2083		 */
2084
2085		/* Check that chip is expecting data input */
2086		if (!(ns->state & STATE_DATAIN_MASK)) {
2087			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2088				"switch to %s\n", (uint)byte,
2089				get_state_name(ns->state), get_state_name(STATE_READY));
2090			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2091			return;
2092		}
2093
2094		/* Check if this is expected byte */
2095		if (ns->regs.count == ns->regs.num) {
2096			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2097					ns->regs.num);
2098			return;
2099		}
2100
2101		if (ns->busw == 8) {
2102			ns->buf.byte[ns->regs.count] = byte;
2103			ns->regs.count += 1;
2104		} else {
2105			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2106			ns->regs.count += 2;
2107		}
2108	}
2109
2110	return;
2111}
2112
2113static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2114{
2115	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2116
2117	ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2118	ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2119	ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2120
2121	if (cmd != NAND_CMD_NONE)
2122		ns_nand_write_byte(mtd, cmd);
2123}
2124
2125static int ns_device_ready(struct mtd_info *mtd)
2126{
2127	NS_DBG("device_ready\n");
2128	return 1;
2129}
2130
2131static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2132{
2133	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2134
2135	NS_DBG("read_word\n");
2136
2137	return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2138}
2139
2140static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2141{
2142	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2143
2144	/* Check that chip is expecting data input */
2145	if (!(ns->state & STATE_DATAIN_MASK)) {
2146		NS_ERR("write_buf: data input isn't expected, state is %s, "
2147			"switch to STATE_READY\n", get_state_name(ns->state));
2148		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2149		return;
2150	}
2151
2152	/* Check if these are expected bytes */
2153	if (ns->regs.count + len > ns->regs.num) {
2154		NS_ERR("write_buf: too many input bytes\n");
2155		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2156		return;
2157	}
2158
2159	memcpy(ns->buf.byte + ns->regs.count, buf, len);
2160	ns->regs.count += len;
2161
2162	if (ns->regs.count == ns->regs.num) {
2163		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2164	}
2165}
2166
2167static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2168{
2169	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2170
2171	/* Sanity and correctness checks */
2172	if (!ns->lines.ce) {
2173		NS_ERR("read_buf: chip is disabled\n");
2174		return;
2175	}
2176	if (ns->lines.ale || ns->lines.cle) {
2177		NS_ERR("read_buf: ALE or CLE pin is high\n");
2178		return;
2179	}
2180	if (!(ns->state & STATE_DATAOUT_MASK)) {
2181		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2182			get_state_name(ns->state));
2183		return;
2184	}
2185
2186	if (NS_STATE(ns->state) != STATE_DATAOUT) {
2187		int i;
2188
2189		for (i = 0; i < len; i++)
2190			buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2191
2192		return;
2193	}
2194
2195	/* Check if these are expected bytes */
2196	if (ns->regs.count + len > ns->regs.num) {
2197		NS_ERR("read_buf: too many bytes to read\n");
2198		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2199		return;
2200	}
2201
2202	memcpy(buf, ns->buf.byte + ns->regs.count, len);
2203	ns->regs.count += len;
2204
2205	if (ns->regs.count == ns->regs.num) {
2206		if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
2207			ns->regs.count = 0;
2208			if (ns->regs.row + 1 < ns->geom.pgnum)
2209				ns->regs.row += 1;
2210			NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
2211			do_state_action(ns, ACTION_CPY);
2212		}
2213		else if (NS_STATE(ns->nxstate) == STATE_READY)
2214			switch_state(ns);
2215	}
2216
2217	return;
2218}
2219
2220static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
2221{
2222	ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
2223
2224	if (!memcmp(buf, &ns_verify_buf[0], len)) {
2225		NS_DBG("verify_buf: the buffer is OK\n");
2226		return 0;
2227	} else {
2228		NS_DBG("verify_buf: the buffer is wrong\n");
2229		return -EFAULT;
2230	}
2231}
2232
2233/*
2234 * Module initialization function
2235 */
2236static int __init ns_init_module(void)
2237{
2238	struct nand_chip *chip;
2239	struct nandsim *nand;
2240	int retval = -ENOMEM, i;
2241
2242	if (bus_width != 8 && bus_width != 16) {
2243		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2244		return -EINVAL;
2245	}
2246
2247	/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2248	nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2249				+ sizeof(struct nandsim), GFP_KERNEL);
2250	if (!nsmtd) {
2251		NS_ERR("unable to allocate core structures.\n");
2252		return -ENOMEM;
2253	}
2254	chip        = (struct nand_chip *)(nsmtd + 1);
2255        nsmtd->priv = (void *)chip;
2256	nand        = (struct nandsim *)(chip + 1);
2257	chip->priv  = (void *)nand;
2258
2259	/*
2260	 * Register simulator's callbacks.
2261	 */
2262	chip->cmd_ctrl	 = ns_hwcontrol;
2263	chip->read_byte  = ns_nand_read_byte;
2264	chip->dev_ready  = ns_device_ready;
2265	chip->write_buf  = ns_nand_write_buf;
2266	chip->read_buf   = ns_nand_read_buf;
2267	chip->verify_buf = ns_nand_verify_buf;
2268	chip->read_word  = ns_nand_read_word;
2269	chip->ecc.mode   = NAND_ECC_SOFT;
2270	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2271	/* and 'badblocks' parameters to work */
2272	chip->options   |= NAND_SKIP_BBTSCAN;
2273
2274	switch (bbt) {
2275	case 2:
2276		 chip->bbt_options |= NAND_BBT_NO_OOB;
2277	case 1:
2278		 chip->bbt_options |= NAND_BBT_USE_FLASH;
2279	case 0:
2280		break;
2281	default:
2282		NS_ERR("bbt has to be 0..2\n");
2283		retval = -EINVAL;
2284		goto error;
2285	}
2286	/*
2287	 * Perform minimum nandsim structure initialization to handle
2288	 * the initial ID read command correctly
2289	 */
2290	if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2291		nand->geom.idbytes = 4;
2292	else
2293		nand->geom.idbytes = 2;
2294	nand->regs.status = NS_STATUS_OK(nand);
2295	nand->nxstate = STATE_UNKNOWN;
2296	nand->options |= OPT_PAGE256; /* temporary value */
2297	nand->ids[0] = first_id_byte;
2298	nand->ids[1] = second_id_byte;
2299	nand->ids[2] = third_id_byte;
2300	nand->ids[3] = fourth_id_byte;
2301	if (bus_width == 16) {
2302		nand->busw = 16;
2303		chip->options |= NAND_BUSWIDTH_16;
2304	}
2305
2306	nsmtd->owner = THIS_MODULE;
2307
2308	if ((retval = parse_weakblocks()) != 0)
2309		goto error;
2310
2311	if ((retval = parse_weakpages()) != 0)
2312		goto error;
2313
2314	if ((retval = parse_gravepages()) != 0)
2315		goto error;
2316
2317	retval = nand_scan_ident(nsmtd, 1, NULL);
2318	if (retval) {
2319		NS_ERR("cannot scan NAND Simulator device\n");
2320		if (retval > 0)
2321			retval = -ENXIO;
2322		goto error;
2323	}
2324
2325	if (bch) {
2326		unsigned int eccsteps, eccbytes;
2327		if (!mtd_nand_has_bch()) {
2328			NS_ERR("BCH ECC support is disabled\n");
2329			retval = -EINVAL;
2330			goto error;
2331		}
2332		/* use 512-byte ecc blocks */
2333		eccsteps = nsmtd->writesize/512;
2334		eccbytes = (bch*13+7)/8;
2335		/* do not bother supporting small page devices */
2336		if ((nsmtd->oobsize < 64) || !eccsteps) {
2337			NS_ERR("bch not available on small page devices\n");
2338			retval = -EINVAL;
2339			goto error;
2340		}
2341		if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2342			NS_ERR("invalid bch value %u\n", bch);
2343			retval = -EINVAL;
2344			goto error;
2345		}
2346		chip->ecc.mode = NAND_ECC_SOFT_BCH;
2347		chip->ecc.size = 512;
2348		chip->ecc.bytes = eccbytes;
2349		NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2350	}
2351
2352	retval = nand_scan_tail(nsmtd);
2353	if (retval) {
2354		NS_ERR("can't register NAND Simulator\n");
2355		if (retval > 0)
2356			retval = -ENXIO;
2357		goto error;
2358	}
2359
2360	if (overridesize) {
2361		uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2362		if (new_size >> overridesize != nsmtd->erasesize) {
2363			NS_ERR("overridesize is too big\n");
2364			goto err_exit;
2365		}
2366		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
2367		nsmtd->size = new_size;
2368		chip->chipsize = new_size;
2369		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2370		chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2371	}
2372
2373	if ((retval = setup_wear_reporting(nsmtd)) != 0)
2374		goto err_exit;
2375
2376	if ((retval = init_nandsim(nsmtd)) != 0)
2377		goto err_exit;
2378
2379	if ((retval = nand_default_bbt(nsmtd)) != 0)
2380		goto err_exit;
2381
2382	if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2383		goto err_exit;
2384
2385	/* Register NAND partitions */
2386	retval = mtd_device_register(nsmtd, &nand->partitions[0],
2387				     nand->nbparts);
2388	if (retval != 0)
2389		goto err_exit;
2390
2391        return 0;
2392
2393err_exit:
2394	free_nandsim(nand);
2395	nand_release(nsmtd);
2396	for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2397		kfree(nand->partitions[i].name);
2398error:
2399	kfree(nsmtd);
2400	free_lists();
2401
2402	return retval;
2403}
2404
2405module_init(ns_init_module);
2406
2407/*
2408 * Module clean-up function
2409 */
2410static void __exit ns_cleanup_module(void)
2411{
2412	struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2413	int i;
2414
2415	free_nandsim(ns);    /* Free nandsim private resources */
2416	nand_release(nsmtd); /* Unregister driver */
2417	for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2418		kfree(ns->partitions[i].name);
2419	kfree(nsmtd);        /* Free other structures */
2420	free_lists();
2421}
2422
2423module_exit(ns_cleanup_module);
2424
2425MODULE_LICENSE ("GPL");
2426MODULE_AUTHOR ("Artem B. Bityuckiy");
2427MODULE_DESCRIPTION ("The NAND flash simulator");
2428