1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (ÐиÑÑÑкий ÐÑÑÑм)
20 *
21 * Jan 2007: Alexander Schmidt, hacked per-volume update.
22 */
23
24/*
25 * This file contains implementation of the volume update and atomic LEB change
26 * functionality.
27 *
28 * The update operation is based on the per-volume update marker which is
29 * stored in the volume table. The update marker is set before the update
30 * starts, and removed after the update has been finished. So if the update was
31 * interrupted by an unclean re-boot or due to some other reasons, the update
32 * marker stays on the flash media and UBI finds it when it attaches the MTD
33 * device next time. If the update marker is set for a volume, the volume is
34 * treated as damaged and most I/O operations are prohibited. Only a new update
35 * operation is allowed.
36 *
37 * Note, in general it is possible to implement the update operation as a
38 * transaction with a roll-back capability.
39 */
40
41#include <linux/err.h>
42#include <linux/uaccess.h>
43#include <linux/math64.h>
44#include "ubi.h"
45
46/**
47 * set_update_marker - set update marker.
48 * @ubi: UBI device description object
49 * @vol: volume description object
50 *
51 * This function sets the update marker flag for volume @vol. Returns zero
52 * in case of success and a negative error code in case of failure.
53 */
54static int set_update_marker(struct ubi_device *ubi, struct ubi_volume *vol)
55{
56	int err;
57	struct ubi_vtbl_record vtbl_rec;
58
59	dbg_gen("set update marker for volume %d", vol->vol_id);
60
61	if (vol->upd_marker) {
62		ubi_assert(ubi->vtbl[vol->vol_id].upd_marker);
63		dbg_gen("already set");
64		return 0;
65	}
66
67	memcpy(&vtbl_rec, &ubi->vtbl[vol->vol_id],
68	       sizeof(struct ubi_vtbl_record));
69	vtbl_rec.upd_marker = 1;
70
71	mutex_lock(&ubi->device_mutex);
72	err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
73	vol->upd_marker = 1;
74	mutex_unlock(&ubi->device_mutex);
75	return err;
76}
77
78/**
79 * clear_update_marker - clear update marker.
80 * @ubi: UBI device description object
81 * @vol: volume description object
82 * @bytes: new data size in bytes
83 *
84 * This function clears the update marker for volume @vol, sets new volume
85 * data size and clears the "corrupted" flag (static volumes only). Returns
86 * zero in case of success and a negative error code in case of failure.
87 */
88static int clear_update_marker(struct ubi_device *ubi, struct ubi_volume *vol,
89			       long long bytes)
90{
91	int err;
92	struct ubi_vtbl_record vtbl_rec;
93
94	dbg_gen("clear update marker for volume %d", vol->vol_id);
95
96	memcpy(&vtbl_rec, &ubi->vtbl[vol->vol_id],
97	       sizeof(struct ubi_vtbl_record));
98	ubi_assert(vol->upd_marker && vtbl_rec.upd_marker);
99	vtbl_rec.upd_marker = 0;
100
101	if (vol->vol_type == UBI_STATIC_VOLUME) {
102		vol->corrupted = 0;
103		vol->used_bytes = bytes;
104		vol->used_ebs = div_u64_rem(bytes, vol->usable_leb_size,
105					    &vol->last_eb_bytes);
106		if (vol->last_eb_bytes)
107			vol->used_ebs += 1;
108		else
109			vol->last_eb_bytes = vol->usable_leb_size;
110	}
111
112	mutex_lock(&ubi->device_mutex);
113	err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
114	vol->upd_marker = 0;
115	mutex_unlock(&ubi->device_mutex);
116	return err;
117}
118
119/**
120 * ubi_start_update - start volume update.
121 * @ubi: UBI device description object
122 * @vol: volume description object
123 * @bytes: update bytes
124 *
125 * This function starts volume update operation. If @bytes is zero, the volume
126 * is just wiped out. Returns zero in case of success and a negative error code
127 * in case of failure.
128 */
129int ubi_start_update(struct ubi_device *ubi, struct ubi_volume *vol,
130		     long long bytes)
131{
132	int i, err;
133
134	dbg_gen("start update of volume %d, %llu bytes", vol->vol_id, bytes);
135	ubi_assert(!vol->updating && !vol->changing_leb);
136	vol->updating = 1;
137
138	err = set_update_marker(ubi, vol);
139	if (err)
140		return err;
141
142	/* Before updating - wipe out the volume */
143	for (i = 0; i < vol->reserved_pebs; i++) {
144		err = ubi_eba_unmap_leb(ubi, vol, i);
145		if (err)
146			return err;
147	}
148
149	if (bytes == 0) {
150		err = ubi_wl_flush(ubi);
151		if (err)
152			return err;
153
154		err = clear_update_marker(ubi, vol, 0);
155		if (err)
156			return err;
157		vol->updating = 0;
158		return 0;
159	}
160
161	vol->upd_buf = vmalloc(ubi->leb_size);
162	if (!vol->upd_buf)
163		return -ENOMEM;
164
165	vol->upd_ebs = div_u64(bytes + vol->usable_leb_size - 1,
166			       vol->usable_leb_size);
167	vol->upd_bytes = bytes;
168	vol->upd_received = 0;
169	return 0;
170}
171
172/**
173 * ubi_start_leb_change - start atomic LEB change.
174 * @ubi: UBI device description object
175 * @vol: volume description object
176 * @req: operation request
177 *
178 * This function starts atomic LEB change operation. Returns zero in case of
179 * success and a negative error code in case of failure.
180 */
181int ubi_start_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
182			 const struct ubi_leb_change_req *req)
183{
184	ubi_assert(!vol->updating && !vol->changing_leb);
185
186	dbg_gen("start changing LEB %d:%d, %u bytes",
187		vol->vol_id, req->lnum, req->bytes);
188	if (req->bytes == 0)
189		return ubi_eba_atomic_leb_change(ubi, vol, req->lnum, NULL, 0,
190						 req->dtype);
191
192	vol->upd_bytes = req->bytes;
193	vol->upd_received = 0;
194	vol->changing_leb = 1;
195	vol->ch_lnum = req->lnum;
196	vol->ch_dtype = req->dtype;
197
198	vol->upd_buf = vmalloc(req->bytes);
199	if (!vol->upd_buf)
200		return -ENOMEM;
201
202	return 0;
203}
204
205/**
206 * write_leb - write update data.
207 * @ubi: UBI device description object
208 * @vol: volume description object
209 * @lnum: logical eraseblock number
210 * @buf: data to write
211 * @len: data size
212 * @used_ebs: how many logical eraseblocks will this volume contain (static
213 * volumes only)
214 *
215 * This function writes update data to corresponding logical eraseblock. In
216 * case of dynamic volume, this function checks if the data contains 0xFF bytes
217 * at the end. If yes, the 0xFF bytes are cut and not written. So if the whole
218 * buffer contains only 0xFF bytes, the LEB is left unmapped.
219 *
220 * The reason why we skip the trailing 0xFF bytes in case of dynamic volume is
221 * that we want to make sure that more data may be appended to the logical
222 * eraseblock in future. Indeed, writing 0xFF bytes may have side effects and
223 * this PEB won't be writable anymore. So if one writes the file-system image
224 * to the UBI volume where 0xFFs mean free space - UBI makes sure this free
225 * space is writable after the update.
226 *
227 * We do not do this for static volumes because they are read-only. But this
228 * also cannot be done because we have to store per-LEB CRC and the correct
229 * data length.
230 *
231 * This function returns zero in case of success and a negative error code in
232 * case of failure.
233 */
234static int write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
235		     void *buf, int len, int used_ebs)
236{
237	int err;
238
239	if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
240		int l = ALIGN(len, ubi->min_io_size);
241
242		memset(buf + len, 0xFF, l - len);
243		len = ubi_calc_data_len(ubi, buf, l);
244		if (len == 0) {
245			dbg_gen("all %d bytes contain 0xFF - skip", len);
246			return 0;
247		}
248
249		err = ubi_eba_write_leb(ubi, vol, lnum, buf, 0, len,
250					UBI_UNKNOWN);
251	} else {
252		/*
253		 * When writing static volume, and this is the last logical
254		 * eraseblock, the length (@len) does not have to be aligned to
255		 * the minimal flash I/O unit. The 'ubi_eba_write_leb_st()'
256		 * function accepts exact (unaligned) length and stores it in
257		 * the VID header. And it takes care of proper alignment by
258		 * padding the buffer. Here we just make sure the padding will
259		 * contain zeros, not random trash.
260		 */
261		memset(buf + len, 0, vol->usable_leb_size - len);
262		err = ubi_eba_write_leb_st(ubi, vol, lnum, buf, len,
263					   UBI_UNKNOWN, used_ebs);
264	}
265
266	return err;
267}
268
269/**
270 * ubi_more_update_data - write more update data.
271 * @ubi: UBI device description object
272 * @vol: volume description object
273 * @buf: write data (user-space memory buffer)
274 * @count: how much bytes to write
275 *
276 * This function writes more data to the volume which is being updated. It may
277 * be called arbitrary number of times until all the update data arriveis. This
278 * function returns %0 in case of success, number of bytes written during the
279 * last call if the whole volume update has been successfully finished, and a
280 * negative error code in case of failure.
281 */
282int ubi_more_update_data(struct ubi_device *ubi, struct ubi_volume *vol,
283			 const void __user *buf, int count)
284{
285	int lnum, offs, err = 0, len, to_write = count;
286
287	dbg_gen("write %d of %lld bytes, %lld already passed",
288		count, vol->upd_bytes, vol->upd_received);
289
290	if (ubi->ro_mode)
291		return -EROFS;
292
293	lnum = div_u64_rem(vol->upd_received,  vol->usable_leb_size, &offs);
294	if (vol->upd_received + count > vol->upd_bytes)
295		to_write = count = vol->upd_bytes - vol->upd_received;
296
297	/*
298	 * When updating volumes, we accumulate whole logical eraseblock of
299	 * data and write it at once.
300	 */
301	if (offs != 0) {
302		/*
303		 * This is a write to the middle of the logical eraseblock. We
304		 * copy the data to our update buffer and wait for more data or
305		 * flush it if the whole eraseblock is written or the update
306		 * is finished.
307		 */
308
309		len = vol->usable_leb_size - offs;
310		if (len > count)
311			len = count;
312
313		err = copy_from_user(vol->upd_buf + offs, buf, len);
314		if (err)
315			return -EFAULT;
316
317		if (offs + len == vol->usable_leb_size ||
318		    vol->upd_received + len == vol->upd_bytes) {
319			int flush_len = offs + len;
320
321			/*
322			 * OK, we gathered either the whole eraseblock or this
323			 * is the last chunk, it's time to flush the buffer.
324			 */
325			ubi_assert(flush_len <= vol->usable_leb_size);
326			err = write_leb(ubi, vol, lnum, vol->upd_buf, flush_len,
327					vol->upd_ebs);
328			if (err)
329				return err;
330		}
331
332		vol->upd_received += len;
333		count -= len;
334		buf += len;
335		lnum += 1;
336	}
337
338	/*
339	 * If we've got more to write, let's continue. At this point we know we
340	 * are starting from the beginning of an eraseblock.
341	 */
342	while (count) {
343		if (count > vol->usable_leb_size)
344			len = vol->usable_leb_size;
345		else
346			len = count;
347
348		err = copy_from_user(vol->upd_buf, buf, len);
349		if (err)
350			return -EFAULT;
351
352		if (len == vol->usable_leb_size ||
353		    vol->upd_received + len == vol->upd_bytes) {
354			err = write_leb(ubi, vol, lnum, vol->upd_buf,
355					len, vol->upd_ebs);
356			if (err)
357				break;
358		}
359
360		vol->upd_received += len;
361		count -= len;
362		lnum += 1;
363		buf += len;
364	}
365
366	ubi_assert(vol->upd_received <= vol->upd_bytes);
367	if (vol->upd_received == vol->upd_bytes) {
368		err = ubi_wl_flush(ubi);
369		if (err)
370			return err;
371		/* The update is finished, clear the update marker */
372		err = clear_update_marker(ubi, vol, vol->upd_bytes);
373		if (err)
374			return err;
375		vol->updating = 0;
376		err = to_write;
377		vfree(vol->upd_buf);
378	}
379
380	return err;
381}
382
383/**
384 * ubi_more_leb_change_data - accept more data for atomic LEB change.
385 * @ubi: UBI device description object
386 * @vol: volume description object
387 * @buf: write data (user-space memory buffer)
388 * @count: how much bytes to write
389 *
390 * This function accepts more data to the volume which is being under the
391 * "atomic LEB change" operation. It may be called arbitrary number of times
392 * until all data arrives. This function returns %0 in case of success, number
393 * of bytes written during the last call if the whole "atomic LEB change"
394 * operation has been successfully finished, and a negative error code in case
395 * of failure.
396 */
397int ubi_more_leb_change_data(struct ubi_device *ubi, struct ubi_volume *vol,
398			     const void __user *buf, int count)
399{
400	int err;
401
402	dbg_gen("write %d of %lld bytes, %lld already passed",
403		count, vol->upd_bytes, vol->upd_received);
404
405	if (ubi->ro_mode)
406		return -EROFS;
407
408	if (vol->upd_received + count > vol->upd_bytes)
409		count = vol->upd_bytes - vol->upd_received;
410
411	err = copy_from_user(vol->upd_buf + vol->upd_received, buf, count);
412	if (err)
413		return -EFAULT;
414
415	vol->upd_received += count;
416
417	if (vol->upd_received == vol->upd_bytes) {
418		int len = ALIGN((int)vol->upd_bytes, ubi->min_io_size);
419
420		memset(vol->upd_buf + vol->upd_bytes, 0xFF,
421		       len - vol->upd_bytes);
422		len = ubi_calc_data_len(ubi, vol->upd_buf, len);
423		err = ubi_eba_atomic_leb_change(ubi, vol, vol->ch_lnum,
424						vol->upd_buf, len, UBI_UNKNOWN);
425		if (err)
426			return err;
427	}
428
429	ubi_assert(vol->upd_received <= vol->upd_bytes);
430	if (vol->upd_received == vol->upd_bytes) {
431		vol->changing_leb = 0;
432		err = count;
433		vfree(vol->upd_buf);
434	}
435
436	return err;
437}
438