1/*
2 * @ubi: UBI device description object
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Authors: Artem Bityutskiy (ÐиÑÑÑкий ÐÑÑÑм), Thomas Gleixner
20 */
21
22/*
23 * UBI wear-leveling sub-system.
24 *
25 * This sub-system is responsible for wear-leveling. It works in terms of
26 * physical eraseblocks and erase counters and knows nothing about logical
27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28 * eraseblocks are of two types - used and free. Used physical eraseblocks are
29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31 *
32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33 * header. The rest of the physical eraseblock contains only %0xFF bytes.
34 *
35 * When physical eraseblocks are returned to the WL sub-system by means of the
36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37 * done asynchronously in context of the per-UBI device background thread,
38 * which is also managed by the WL sub-system.
39 *
40 * The wear-leveling is ensured by means of moving the contents of used
41 * physical eraseblocks with low erase counter to free physical eraseblocks
42 * with high erase counter.
43 *
44 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
45 * an "optimal" physical eraseblock. For example, when it is known that the
46 * physical eraseblock will be "put" soon because it contains short-term data,
47 * the WL sub-system may pick a free physical eraseblock with low erase
48 * counter, and so forth.
49 *
50 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
51 * bad.
52 *
53 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
54 * in a physical eraseblock, it has to be moved. Technically this is the same
55 * as moving it for wear-leveling reasons.
56 *
57 * As it was said, for the UBI sub-system all physical eraseblocks are either
58 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
59 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
60 * RB-trees, as well as (temporarily) in the @wl->pq queue.
61 *
62 * When the WL sub-system returns a physical eraseblock, the physical
63 * eraseblock is protected from being moved for some "time". For this reason,
64 * the physical eraseblock is not directly moved from the @wl->free tree to the
65 * @wl->used tree. There is a protection queue in between where this
66 * physical eraseblock is temporarily stored (@wl->pq).
67 *
68 * All this protection stuff is needed because:
69 *  o we don't want to move physical eraseblocks just after we have given them
70 *    to the user; instead, we first want to let users fill them up with data;
71 *
72 *  o there is a chance that the user will put the physical eraseblock very
73 *    soon, so it makes sense not to move it for some time, but wait; this is
74 *    especially important in case of "short term" physical eraseblocks.
75 *
76 * Physical eraseblocks stay protected only for limited time. But the "time" is
77 * measured in erase cycles in this case. This is implemented with help of the
78 * protection queue. Eraseblocks are put to the tail of this queue when they
79 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
80 * head of the queue on each erase operation (for any eraseblock). So the
81 * length of the queue defines how may (global) erase cycles PEBs are protected.
82 *
83 * To put it differently, each physical eraseblock has 2 main states: free and
84 * used. The former state corresponds to the @wl->free tree. The latter state
85 * is split up on several sub-states:
86 * o the WL movement is allowed (@wl->used tree);
87 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
88 *   erroneous - e.g., there was a read error;
89 * o the WL movement is temporarily prohibited (@wl->pq queue);
90 * o scrubbing is needed (@wl->scrub tree).
91 *
92 * Depending on the sub-state, wear-leveling entries of the used physical
93 * eraseblocks may be kept in one of those structures.
94 *
95 * Note, in this implementation, we keep a small in-RAM object for each physical
96 * eraseblock. This is surely not a scalable solution. But it appears to be good
97 * enough for moderately large flashes and it is simple. In future, one may
98 * re-work this sub-system and make it more scalable.
99 *
100 * At the moment this sub-system does not utilize the sequence number, which
101 * was introduced relatively recently. But it would be wise to do this because
102 * the sequence number of a logical eraseblock characterizes how old is it. For
103 * example, when we move a PEB with low erase counter, and we need to pick the
104 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
105 * pick target PEB with an average EC if our PEB is not very "old". This is a
106 * room for future re-works of the WL sub-system.
107 */
108
109#include <linux/slab.h>
110#include <linux/crc32.h>
111#include <linux/freezer.h>
112#include <linux/kthread.h>
113#include "ubi.h"
114
115/* Number of physical eraseblocks reserved for wear-leveling purposes */
116#define WL_RESERVED_PEBS 1
117
118/*
119 * Maximum difference between two erase counters. If this threshold is
120 * exceeded, the WL sub-system starts moving data from used physical
121 * eraseblocks with low erase counter to free physical eraseblocks with high
122 * erase counter.
123 */
124#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
125
126/*
127 * When a physical eraseblock is moved, the WL sub-system has to pick the target
128 * physical eraseblock to move to. The simplest way would be just to pick the
129 * one with the highest erase counter. But in certain workloads this could lead
130 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
131 * situation when the picked physical eraseblock is constantly erased after the
132 * data is written to it. So, we have a constant which limits the highest erase
133 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
134 * does not pick eraseblocks with erase counter greater than the lowest erase
135 * counter plus %WL_FREE_MAX_DIFF.
136 */
137#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
138
139/*
140 * Maximum number of consecutive background thread failures which is enough to
141 * switch to read-only mode.
142 */
143#define WL_MAX_FAILURES 32
144
145/**
146 * struct ubi_work - UBI work description data structure.
147 * @list: a link in the list of pending works
148 * @func: worker function
149 * @e: physical eraseblock to erase
150 * @torture: if the physical eraseblock has to be tortured
151 *
152 * The @func pointer points to the worker function. If the @cancel argument is
153 * not zero, the worker has to free the resources and exit immediately. The
154 * worker has to return zero in case of success and a negative error code in
155 * case of failure.
156 */
157struct ubi_work {
158	struct list_head list;
159	int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
160	/* The below fields are only relevant to erasure works */
161	struct ubi_wl_entry *e;
162	int torture;
163};
164
165#ifdef CONFIG_MTD_UBI_DEBUG
166static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
167static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
168				     struct ubi_wl_entry *e,
169				     struct rb_root *root);
170static int paranoid_check_in_pq(const struct ubi_device *ubi,
171				struct ubi_wl_entry *e);
172#else
173#define paranoid_check_ec(ubi, pnum, ec) 0
174#define paranoid_check_in_wl_tree(ubi, e, root)
175#define paranoid_check_in_pq(ubi, e) 0
176#endif
177
178/**
179 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
180 * @e: the wear-leveling entry to add
181 * @root: the root of the tree
182 *
183 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
184 * the @ubi->used and @ubi->free RB-trees.
185 */
186static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
187{
188	struct rb_node **p, *parent = NULL;
189
190	p = &root->rb_node;
191	while (*p) {
192		struct ubi_wl_entry *e1;
193
194		parent = *p;
195		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
196
197		if (e->ec < e1->ec)
198			p = &(*p)->rb_left;
199		else if (e->ec > e1->ec)
200			p = &(*p)->rb_right;
201		else {
202			ubi_assert(e->pnum != e1->pnum);
203			if (e->pnum < e1->pnum)
204				p = &(*p)->rb_left;
205			else
206				p = &(*p)->rb_right;
207		}
208	}
209
210	rb_link_node(&e->u.rb, parent, p);
211	rb_insert_color(&e->u.rb, root);
212}
213
214/**
215 * do_work - do one pending work.
216 * @ubi: UBI device description object
217 *
218 * This function returns zero in case of success and a negative error code in
219 * case of failure.
220 */
221static int do_work(struct ubi_device *ubi)
222{
223	int err;
224	struct ubi_work *wrk;
225
226	cond_resched();
227
228	/*
229	 * @ubi->work_sem is used to synchronize with the workers. Workers take
230	 * it in read mode, so many of them may be doing works at a time. But
231	 * the queue flush code has to be sure the whole queue of works is
232	 * done, and it takes the mutex in write mode.
233	 */
234	down_read(&ubi->work_sem);
235	spin_lock(&ubi->wl_lock);
236	if (list_empty(&ubi->works)) {
237		spin_unlock(&ubi->wl_lock);
238		up_read(&ubi->work_sem);
239		return 0;
240	}
241
242	wrk = list_entry(ubi->works.next, struct ubi_work, list);
243	list_del(&wrk->list);
244	ubi->works_count -= 1;
245	ubi_assert(ubi->works_count >= 0);
246	spin_unlock(&ubi->wl_lock);
247
248	/*
249	 * Call the worker function. Do not touch the work structure
250	 * after this call as it will have been freed or reused by that
251	 * time by the worker function.
252	 */
253	err = wrk->func(ubi, wrk, 0);
254	if (err)
255		ubi_err("work failed with error code %d", err);
256	up_read(&ubi->work_sem);
257
258	return err;
259}
260
261/**
262 * produce_free_peb - produce a free physical eraseblock.
263 * @ubi: UBI device description object
264 *
265 * This function tries to make a free PEB by means of synchronous execution of
266 * pending works. This may be needed if, for example the background thread is
267 * disabled. Returns zero in case of success and a negative error code in case
268 * of failure.
269 */
270static int produce_free_peb(struct ubi_device *ubi)
271{
272	int err;
273
274	spin_lock(&ubi->wl_lock);
275	while (!ubi->free.rb_node) {
276		spin_unlock(&ubi->wl_lock);
277
278		dbg_wl("do one work synchronously");
279		err = do_work(ubi);
280		if (err)
281			return err;
282
283		spin_lock(&ubi->wl_lock);
284	}
285	spin_unlock(&ubi->wl_lock);
286
287	return 0;
288}
289
290/**
291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
292 * @e: the wear-leveling entry to check
293 * @root: the root of the tree
294 *
295 * This function returns non-zero if @e is in the @root RB-tree and zero if it
296 * is not.
297 */
298static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
299{
300	struct rb_node *p;
301
302	p = root->rb_node;
303	while (p) {
304		struct ubi_wl_entry *e1;
305
306		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
307
308		if (e->pnum == e1->pnum) {
309			ubi_assert(e == e1);
310			return 1;
311		}
312
313		if (e->ec < e1->ec)
314			p = p->rb_left;
315		else if (e->ec > e1->ec)
316			p = p->rb_right;
317		else {
318			ubi_assert(e->pnum != e1->pnum);
319			if (e->pnum < e1->pnum)
320				p = p->rb_left;
321			else
322				p = p->rb_right;
323		}
324	}
325
326	return 0;
327}
328
329/**
330 * prot_queue_add - add physical eraseblock to the protection queue.
331 * @ubi: UBI device description object
332 * @e: the physical eraseblock to add
333 *
334 * This function adds @e to the tail of the protection queue @ubi->pq, where
335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
337 * be locked.
338 */
339static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
340{
341	int pq_tail = ubi->pq_head - 1;
342
343	if (pq_tail < 0)
344		pq_tail = UBI_PROT_QUEUE_LEN - 1;
345	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
346	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
347	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
348}
349
350/**
351 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
352 * @root: the RB-tree where to look for
353 * @diff: maximum possible difference from the smallest erase counter
354 *
355 * This function looks for a wear leveling entry with erase counter closest to
356 * min + @diff, where min is the smallest erase counter.
357 */
358static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int diff)
359{
360	struct rb_node *p;
361	struct ubi_wl_entry *e;
362	int max;
363
364	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
365	max = e->ec + diff;
366
367	p = root->rb_node;
368	while (p) {
369		struct ubi_wl_entry *e1;
370
371		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
372		if (e1->ec >= max)
373			p = p->rb_left;
374		else {
375			p = p->rb_right;
376			e = e1;
377		}
378	}
379
380	return e;
381}
382
383/**
384 * ubi_wl_get_peb - get a physical eraseblock.
385 * @ubi: UBI device description object
386 * @dtype: type of data which will be stored in this physical eraseblock
387 *
388 * This function returns a physical eraseblock in case of success and a
389 * negative error code in case of failure. Might sleep.
390 */
391int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
392{
393	int err;
394	struct ubi_wl_entry *e, *first, *last;
395
396	ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
397		   dtype == UBI_UNKNOWN);
398
399retry:
400	spin_lock(&ubi->wl_lock);
401	if (!ubi->free.rb_node) {
402		if (ubi->works_count == 0) {
403			ubi_assert(list_empty(&ubi->works));
404			ubi_err("no free eraseblocks");
405			spin_unlock(&ubi->wl_lock);
406			return -ENOSPC;
407		}
408		spin_unlock(&ubi->wl_lock);
409
410		err = produce_free_peb(ubi);
411		if (err < 0)
412			return err;
413		goto retry;
414	}
415
416	switch (dtype) {
417	case UBI_LONGTERM:
418		/*
419		 * For long term data we pick a physical eraseblock with high
420		 * erase counter. But the highest erase counter we can pick is
421		 * bounded by the the lowest erase counter plus
422		 * %WL_FREE_MAX_DIFF.
423		 */
424		e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
425		break;
426	case UBI_UNKNOWN:
427		/*
428		 * For unknown data we pick a physical eraseblock with medium
429		 * erase counter. But we by no means can pick a physical
430		 * eraseblock with erase counter greater or equivalent than the
431		 * lowest erase counter plus %WL_FREE_MAX_DIFF/2.
432		 */
433		first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry,
434					u.rb);
435		last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
436
437		if (last->ec - first->ec < WL_FREE_MAX_DIFF)
438			e = rb_entry(ubi->free.rb_node,
439					struct ubi_wl_entry, u.rb);
440		else
441			e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF/2);
442		break;
443	case UBI_SHORTTERM:
444		/*
445		 * For short term data we pick a physical eraseblock with the
446		 * lowest erase counter as we expect it will be erased soon.
447		 */
448		e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
449		break;
450	default:
451		BUG();
452	}
453
454	paranoid_check_in_wl_tree(ubi, e, &ubi->free);
455
456	/*
457	 * Move the physical eraseblock to the protection queue where it will
458	 * be protected from being moved for some time.
459	 */
460	rb_erase(&e->u.rb, &ubi->free);
461	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
462	prot_queue_add(ubi, e);
463	spin_unlock(&ubi->wl_lock);
464
465	err = ubi_dbg_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
466				   ubi->peb_size - ubi->vid_hdr_aloffset);
467	if (err) {
468		ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum);
469		return err;
470	}
471
472	return e->pnum;
473}
474
475/**
476 * prot_queue_del - remove a physical eraseblock from the protection queue.
477 * @ubi: UBI device description object
478 * @pnum: the physical eraseblock to remove
479 *
480 * This function deletes PEB @pnum from the protection queue and returns zero
481 * in case of success and %-ENODEV if the PEB was not found.
482 */
483static int prot_queue_del(struct ubi_device *ubi, int pnum)
484{
485	struct ubi_wl_entry *e;
486
487	e = ubi->lookuptbl[pnum];
488	if (!e)
489		return -ENODEV;
490
491	if (paranoid_check_in_pq(ubi, e))
492		return -ENODEV;
493
494	list_del(&e->u.list);
495	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
496	return 0;
497}
498
499/**
500 * sync_erase - synchronously erase a physical eraseblock.
501 * @ubi: UBI device description object
502 * @e: the the physical eraseblock to erase
503 * @torture: if the physical eraseblock has to be tortured
504 *
505 * This function returns zero in case of success and a negative error code in
506 * case of failure.
507 */
508static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
509		      int torture)
510{
511	int err;
512	struct ubi_ec_hdr *ec_hdr;
513	unsigned long long ec = e->ec;
514
515	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
516
517	err = paranoid_check_ec(ubi, e->pnum, e->ec);
518	if (err)
519		return -EINVAL;
520
521	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
522	if (!ec_hdr)
523		return -ENOMEM;
524
525	err = ubi_io_sync_erase(ubi, e->pnum, torture);
526	if (err < 0)
527		goto out_free;
528
529	ec += err;
530	if (ec > UBI_MAX_ERASECOUNTER) {
531		/*
532		 * Erase counter overflow. Upgrade UBI and use 64-bit
533		 * erase counters internally.
534		 */
535		ubi_err("erase counter overflow at PEB %d, EC %llu",
536			e->pnum, ec);
537		err = -EINVAL;
538		goto out_free;
539	}
540
541	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
542
543	ec_hdr->ec = cpu_to_be64(ec);
544
545	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
546	if (err)
547		goto out_free;
548
549	e->ec = ec;
550	spin_lock(&ubi->wl_lock);
551	if (e->ec > ubi->max_ec)
552		ubi->max_ec = e->ec;
553	spin_unlock(&ubi->wl_lock);
554
555out_free:
556	kfree(ec_hdr);
557	return err;
558}
559
560/**
561 * serve_prot_queue - check if it is time to stop protecting PEBs.
562 * @ubi: UBI device description object
563 *
564 * This function is called after each erase operation and removes PEBs from the
565 * tail of the protection queue. These PEBs have been protected for long enough
566 * and should be moved to the used tree.
567 */
568static void serve_prot_queue(struct ubi_device *ubi)
569{
570	struct ubi_wl_entry *e, *tmp;
571	int count;
572
573	/*
574	 * There may be several protected physical eraseblock to remove,
575	 * process them all.
576	 */
577repeat:
578	count = 0;
579	spin_lock(&ubi->wl_lock);
580	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
581		dbg_wl("PEB %d EC %d protection over, move to used tree",
582			e->pnum, e->ec);
583
584		list_del(&e->u.list);
585		wl_tree_add(e, &ubi->used);
586		if (count++ > 32) {
587			/*
588			 * Let's be nice and avoid holding the spinlock for
589			 * too long.
590			 */
591			spin_unlock(&ubi->wl_lock);
592			cond_resched();
593			goto repeat;
594		}
595	}
596
597	ubi->pq_head += 1;
598	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
599		ubi->pq_head = 0;
600	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
601	spin_unlock(&ubi->wl_lock);
602}
603
604/**
605 * schedule_ubi_work - schedule a work.
606 * @ubi: UBI device description object
607 * @wrk: the work to schedule
608 *
609 * This function adds a work defined by @wrk to the tail of the pending works
610 * list.
611 */
612static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
613{
614	spin_lock(&ubi->wl_lock);
615	list_add_tail(&wrk->list, &ubi->works);
616	ubi_assert(ubi->works_count >= 0);
617	ubi->works_count += 1;
618	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
619		wake_up_process(ubi->bgt_thread);
620	spin_unlock(&ubi->wl_lock);
621}
622
623static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
624			int cancel);
625
626/**
627 * schedule_erase - schedule an erase work.
628 * @ubi: UBI device description object
629 * @e: the WL entry of the physical eraseblock to erase
630 * @torture: if the physical eraseblock has to be tortured
631 *
632 * This function returns zero in case of success and a %-ENOMEM in case of
633 * failure.
634 */
635static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
636			  int torture)
637{
638	struct ubi_work *wl_wrk;
639
640	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
641	       e->pnum, e->ec, torture);
642
643	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
644	if (!wl_wrk)
645		return -ENOMEM;
646
647	wl_wrk->func = &erase_worker;
648	wl_wrk->e = e;
649	wl_wrk->torture = torture;
650
651	schedule_ubi_work(ubi, wl_wrk);
652	return 0;
653}
654
655/**
656 * wear_leveling_worker - wear-leveling worker function.
657 * @ubi: UBI device description object
658 * @wrk: the work object
659 * @cancel: non-zero if the worker has to free memory and exit
660 *
661 * This function copies a more worn out physical eraseblock to a less worn out
662 * one. Returns zero in case of success and a negative error code in case of
663 * failure.
664 */
665static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
666				int cancel)
667{
668	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
669	int vol_id = -1, uninitialized_var(lnum);
670	struct ubi_wl_entry *e1, *e2;
671	struct ubi_vid_hdr *vid_hdr;
672
673	kfree(wrk);
674	if (cancel)
675		return 0;
676
677	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
678	if (!vid_hdr)
679		return -ENOMEM;
680
681	mutex_lock(&ubi->move_mutex);
682	spin_lock(&ubi->wl_lock);
683	ubi_assert(!ubi->move_from && !ubi->move_to);
684	ubi_assert(!ubi->move_to_put);
685
686	if (!ubi->free.rb_node ||
687	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
688		/*
689		 * No free physical eraseblocks? Well, they must be waiting in
690		 * the queue to be erased. Cancel movement - it will be
691		 * triggered again when a free physical eraseblock appears.
692		 *
693		 * No used physical eraseblocks? They must be temporarily
694		 * protected from being moved. They will be moved to the
695		 * @ubi->used tree later and the wear-leveling will be
696		 * triggered again.
697		 */
698		dbg_wl("cancel WL, a list is empty: free %d, used %d",
699		       !ubi->free.rb_node, !ubi->used.rb_node);
700		goto out_cancel;
701	}
702
703	if (!ubi->scrub.rb_node) {
704		/*
705		 * Now pick the least worn-out used physical eraseblock and a
706		 * highly worn-out free physical eraseblock. If the erase
707		 * counters differ much enough, start wear-leveling.
708		 */
709		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
710		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
711
712		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
713			dbg_wl("no WL needed: min used EC %d, max free EC %d",
714			       e1->ec, e2->ec);
715			goto out_cancel;
716		}
717		paranoid_check_in_wl_tree(ubi, e1, &ubi->used);
718		rb_erase(&e1->u.rb, &ubi->used);
719		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
720		       e1->pnum, e1->ec, e2->pnum, e2->ec);
721	} else {
722		/* Perform scrubbing */
723		scrubbing = 1;
724		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
725		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
726		paranoid_check_in_wl_tree(ubi, e1, &ubi->scrub);
727		rb_erase(&e1->u.rb, &ubi->scrub);
728		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
729	}
730
731	paranoid_check_in_wl_tree(ubi, e2, &ubi->free);
732	rb_erase(&e2->u.rb, &ubi->free);
733	ubi->move_from = e1;
734	ubi->move_to = e2;
735	spin_unlock(&ubi->wl_lock);
736
737	/*
738	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
739	 * We so far do not know which logical eraseblock our physical
740	 * eraseblock (@e1) belongs to. We have to read the volume identifier
741	 * header first.
742	 *
743	 * Note, we are protected from this PEB being unmapped and erased. The
744	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
745	 * which is being moved was unmapped.
746	 */
747
748	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
749	if (err && err != UBI_IO_BITFLIPS) {
750		if (err == UBI_IO_FF) {
751			/*
752			 * We are trying to move PEB without a VID header. UBI
753			 * always write VID headers shortly after the PEB was
754			 * given, so we have a situation when it has not yet
755			 * had a chance to write it, because it was preempted.
756			 * So add this PEB to the protection queue so far,
757			 * because presumably more data will be written there
758			 * (including the missing VID header), and then we'll
759			 * move it.
760			 */
761			dbg_wl("PEB %d has no VID header", e1->pnum);
762			protect = 1;
763			goto out_not_moved;
764		} else if (err == UBI_IO_FF_BITFLIPS) {
765			/*
766			 * The same situation as %UBI_IO_FF, but bit-flips were
767			 * detected. It is better to schedule this PEB for
768			 * scrubbing.
769			 */
770			dbg_wl("PEB %d has no VID header but has bit-flips",
771			       e1->pnum);
772			scrubbing = 1;
773			goto out_not_moved;
774		}
775
776		ubi_err("error %d while reading VID header from PEB %d",
777			err, e1->pnum);
778		goto out_error;
779	}
780
781	vol_id = be32_to_cpu(vid_hdr->vol_id);
782	lnum = be32_to_cpu(vid_hdr->lnum);
783
784	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
785	if (err) {
786		if (err == MOVE_CANCEL_RACE) {
787			/*
788			 * The LEB has not been moved because the volume is
789			 * being deleted or the PEB has been put meanwhile. We
790			 * should prevent this PEB from being selected for
791			 * wear-leveling movement again, so put it to the
792			 * protection queue.
793			 */
794			protect = 1;
795			goto out_not_moved;
796		}
797		if (err == MOVE_RETRY) {
798			scrubbing = 1;
799			goto out_not_moved;
800		}
801		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
802		    err == MOVE_TARGET_RD_ERR) {
803			/*
804			 * Target PEB had bit-flips or write error - torture it.
805			 */
806			torture = 1;
807			goto out_not_moved;
808		}
809
810		if (err == MOVE_SOURCE_RD_ERR) {
811			/*
812			 * An error happened while reading the source PEB. Do
813			 * not switch to R/O mode in this case, and give the
814			 * upper layers a possibility to recover from this,
815			 * e.g. by unmapping corresponding LEB. Instead, just
816			 * put this PEB to the @ubi->erroneous list to prevent
817			 * UBI from trying to move it over and over again.
818			 */
819			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
820				ubi_err("too many erroneous eraseblocks (%d)",
821					ubi->erroneous_peb_count);
822				goto out_error;
823			}
824			erroneous = 1;
825			goto out_not_moved;
826		}
827
828		if (err < 0)
829			goto out_error;
830
831		ubi_assert(0);
832	}
833
834	/* The PEB has been successfully moved */
835	if (scrubbing)
836		ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
837			e1->pnum, vol_id, lnum, e2->pnum);
838	ubi_free_vid_hdr(ubi, vid_hdr);
839
840	spin_lock(&ubi->wl_lock);
841	if (!ubi->move_to_put) {
842		wl_tree_add(e2, &ubi->used);
843		e2 = NULL;
844	}
845	ubi->move_from = ubi->move_to = NULL;
846	ubi->move_to_put = ubi->wl_scheduled = 0;
847	spin_unlock(&ubi->wl_lock);
848
849	err = schedule_erase(ubi, e1, 0);
850	if (err) {
851		kmem_cache_free(ubi_wl_entry_slab, e1);
852		if (e2)
853			kmem_cache_free(ubi_wl_entry_slab, e2);
854		goto out_ro;
855	}
856
857	if (e2) {
858		/*
859		 * Well, the target PEB was put meanwhile, schedule it for
860		 * erasure.
861		 */
862		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
863		       e2->pnum, vol_id, lnum);
864		err = schedule_erase(ubi, e2, 0);
865		if (err) {
866			kmem_cache_free(ubi_wl_entry_slab, e2);
867			goto out_ro;
868		}
869	}
870
871	dbg_wl("done");
872	mutex_unlock(&ubi->move_mutex);
873	return 0;
874
875	/*
876	 * For some reasons the LEB was not moved, might be an error, might be
877	 * something else. @e1 was not changed, so return it back. @e2 might
878	 * have been changed, schedule it for erasure.
879	 */
880out_not_moved:
881	if (vol_id != -1)
882		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
883		       e1->pnum, vol_id, lnum, e2->pnum, err);
884	else
885		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
886		       e1->pnum, e2->pnum, err);
887	spin_lock(&ubi->wl_lock);
888	if (protect)
889		prot_queue_add(ubi, e1);
890	else if (erroneous) {
891		wl_tree_add(e1, &ubi->erroneous);
892		ubi->erroneous_peb_count += 1;
893	} else if (scrubbing)
894		wl_tree_add(e1, &ubi->scrub);
895	else
896		wl_tree_add(e1, &ubi->used);
897	ubi_assert(!ubi->move_to_put);
898	ubi->move_from = ubi->move_to = NULL;
899	ubi->wl_scheduled = 0;
900	spin_unlock(&ubi->wl_lock);
901
902	ubi_free_vid_hdr(ubi, vid_hdr);
903	err = schedule_erase(ubi, e2, torture);
904	if (err) {
905		kmem_cache_free(ubi_wl_entry_slab, e2);
906		goto out_ro;
907	}
908	mutex_unlock(&ubi->move_mutex);
909	return 0;
910
911out_error:
912	if (vol_id != -1)
913		ubi_err("error %d while moving PEB %d to PEB %d",
914			err, e1->pnum, e2->pnum);
915	else
916		ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
917			err, e1->pnum, vol_id, lnum, e2->pnum);
918	spin_lock(&ubi->wl_lock);
919	ubi->move_from = ubi->move_to = NULL;
920	ubi->move_to_put = ubi->wl_scheduled = 0;
921	spin_unlock(&ubi->wl_lock);
922
923	ubi_free_vid_hdr(ubi, vid_hdr);
924	kmem_cache_free(ubi_wl_entry_slab, e1);
925	kmem_cache_free(ubi_wl_entry_slab, e2);
926
927out_ro:
928	ubi_ro_mode(ubi);
929	mutex_unlock(&ubi->move_mutex);
930	ubi_assert(err != 0);
931	return err < 0 ? err : -EIO;
932
933out_cancel:
934	ubi->wl_scheduled = 0;
935	spin_unlock(&ubi->wl_lock);
936	mutex_unlock(&ubi->move_mutex);
937	ubi_free_vid_hdr(ubi, vid_hdr);
938	return 0;
939}
940
941/**
942 * ensure_wear_leveling - schedule wear-leveling if it is needed.
943 * @ubi: UBI device description object
944 *
945 * This function checks if it is time to start wear-leveling and schedules it
946 * if yes. This function returns zero in case of success and a negative error
947 * code in case of failure.
948 */
949static int ensure_wear_leveling(struct ubi_device *ubi)
950{
951	int err = 0;
952	struct ubi_wl_entry *e1;
953	struct ubi_wl_entry *e2;
954	struct ubi_work *wrk;
955
956	spin_lock(&ubi->wl_lock);
957	if (ubi->wl_scheduled)
958		/* Wear-leveling is already in the work queue */
959		goto out_unlock;
960
961	/*
962	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
963	 * the WL worker has to be scheduled anyway.
964	 */
965	if (!ubi->scrub.rb_node) {
966		if (!ubi->used.rb_node || !ubi->free.rb_node)
967			/* No physical eraseblocks - no deal */
968			goto out_unlock;
969
970		/*
971		 * We schedule wear-leveling only if the difference between the
972		 * lowest erase counter of used physical eraseblocks and a high
973		 * erase counter of free physical eraseblocks is greater than
974		 * %UBI_WL_THRESHOLD.
975		 */
976		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
977		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
978
979		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
980			goto out_unlock;
981		dbg_wl("schedule wear-leveling");
982	} else
983		dbg_wl("schedule scrubbing");
984
985	ubi->wl_scheduled = 1;
986	spin_unlock(&ubi->wl_lock);
987
988	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
989	if (!wrk) {
990		err = -ENOMEM;
991		goto out_cancel;
992	}
993
994	wrk->func = &wear_leveling_worker;
995	schedule_ubi_work(ubi, wrk);
996	return err;
997
998out_cancel:
999	spin_lock(&ubi->wl_lock);
1000	ubi->wl_scheduled = 0;
1001out_unlock:
1002	spin_unlock(&ubi->wl_lock);
1003	return err;
1004}
1005
1006/**
1007 * erase_worker - physical eraseblock erase worker function.
1008 * @ubi: UBI device description object
1009 * @wl_wrk: the work object
1010 * @cancel: non-zero if the worker has to free memory and exit
1011 *
1012 * This function erases a physical eraseblock and perform torture testing if
1013 * needed. It also takes care about marking the physical eraseblock bad if
1014 * needed. Returns zero in case of success and a negative error code in case of
1015 * failure.
1016 */
1017static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1018			int cancel)
1019{
1020	struct ubi_wl_entry *e = wl_wrk->e;
1021	int pnum = e->pnum, err, need;
1022
1023	if (cancel) {
1024		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1025		kfree(wl_wrk);
1026		kmem_cache_free(ubi_wl_entry_slab, e);
1027		return 0;
1028	}
1029
1030	dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1031
1032	err = sync_erase(ubi, e, wl_wrk->torture);
1033	if (!err) {
1034		/* Fine, we've erased it successfully */
1035		kfree(wl_wrk);
1036
1037		spin_lock(&ubi->wl_lock);
1038		wl_tree_add(e, &ubi->free);
1039		spin_unlock(&ubi->wl_lock);
1040
1041		/*
1042		 * One more erase operation has happened, take care about
1043		 * protected physical eraseblocks.
1044		 */
1045		serve_prot_queue(ubi);
1046
1047		/* And take care about wear-leveling */
1048		err = ensure_wear_leveling(ubi);
1049		return err;
1050	}
1051
1052	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1053	kfree(wl_wrk);
1054
1055	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1056	    err == -EBUSY) {
1057		int err1;
1058
1059		/* Re-schedule the LEB for erasure */
1060		err1 = schedule_erase(ubi, e, 0);
1061		if (err1) {
1062			err = err1;
1063			goto out_ro;
1064		}
1065		return err;
1066	}
1067
1068	kmem_cache_free(ubi_wl_entry_slab, e);
1069	if (err != -EIO)
1070		/*
1071		 * If this is not %-EIO, we have no idea what to do. Scheduling
1072		 * this physical eraseblock for erasure again would cause
1073		 * errors again and again. Well, lets switch to R/O mode.
1074		 */
1075		goto out_ro;
1076
1077	/* It is %-EIO, the PEB went bad */
1078
1079	if (!ubi->bad_allowed) {
1080		ubi_err("bad physical eraseblock %d detected", pnum);
1081		goto out_ro;
1082	}
1083
1084	spin_lock(&ubi->volumes_lock);
1085	need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1086	if (need > 0) {
1087		need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1088		ubi->avail_pebs -= need;
1089		ubi->rsvd_pebs += need;
1090		ubi->beb_rsvd_pebs += need;
1091		if (need > 0)
1092			ubi_msg("reserve more %d PEBs", need);
1093	}
1094
1095	if (ubi->beb_rsvd_pebs == 0) {
1096		spin_unlock(&ubi->volumes_lock);
1097		ubi_err("no reserved physical eraseblocks");
1098		goto out_ro;
1099	}
1100	spin_unlock(&ubi->volumes_lock);
1101
1102	ubi_msg("mark PEB %d as bad", pnum);
1103	err = ubi_io_mark_bad(ubi, pnum);
1104	if (err)
1105		goto out_ro;
1106
1107	spin_lock(&ubi->volumes_lock);
1108	ubi->beb_rsvd_pebs -= 1;
1109	ubi->bad_peb_count += 1;
1110	ubi->good_peb_count -= 1;
1111	ubi_calculate_reserved(ubi);
1112	if (ubi->beb_rsvd_pebs)
1113		ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1114	else
1115		ubi_warn("last PEB from the reserved pool was used");
1116	spin_unlock(&ubi->volumes_lock);
1117
1118	return err;
1119
1120out_ro:
1121	ubi_ro_mode(ubi);
1122	return err;
1123}
1124
1125/**
1126 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1127 * @ubi: UBI device description object
1128 * @pnum: physical eraseblock to return
1129 * @torture: if this physical eraseblock has to be tortured
1130 *
1131 * This function is called to return physical eraseblock @pnum to the pool of
1132 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1133 * occurred to this @pnum and it has to be tested. This function returns zero
1134 * in case of success, and a negative error code in case of failure.
1135 */
1136int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1137{
1138	int err;
1139	struct ubi_wl_entry *e;
1140
1141	dbg_wl("PEB %d", pnum);
1142	ubi_assert(pnum >= 0);
1143	ubi_assert(pnum < ubi->peb_count);
1144
1145retry:
1146	spin_lock(&ubi->wl_lock);
1147	e = ubi->lookuptbl[pnum];
1148	if (e == ubi->move_from) {
1149		/*
1150		 * User is putting the physical eraseblock which was selected to
1151		 * be moved. It will be scheduled for erasure in the
1152		 * wear-leveling worker.
1153		 */
1154		dbg_wl("PEB %d is being moved, wait", pnum);
1155		spin_unlock(&ubi->wl_lock);
1156
1157		/* Wait for the WL worker by taking the @ubi->move_mutex */
1158		mutex_lock(&ubi->move_mutex);
1159		mutex_unlock(&ubi->move_mutex);
1160		goto retry;
1161	} else if (e == ubi->move_to) {
1162		/*
1163		 * User is putting the physical eraseblock which was selected
1164		 * as the target the data is moved to. It may happen if the EBA
1165		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1166		 * but the WL sub-system has not put the PEB to the "used" tree
1167		 * yet, but it is about to do this. So we just set a flag which
1168		 * will tell the WL worker that the PEB is not needed anymore
1169		 * and should be scheduled for erasure.
1170		 */
1171		dbg_wl("PEB %d is the target of data moving", pnum);
1172		ubi_assert(!ubi->move_to_put);
1173		ubi->move_to_put = 1;
1174		spin_unlock(&ubi->wl_lock);
1175		return 0;
1176	} else {
1177		if (in_wl_tree(e, &ubi->used)) {
1178			paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1179			rb_erase(&e->u.rb, &ubi->used);
1180		} else if (in_wl_tree(e, &ubi->scrub)) {
1181			paranoid_check_in_wl_tree(ubi, e, &ubi->scrub);
1182			rb_erase(&e->u.rb, &ubi->scrub);
1183		} else if (in_wl_tree(e, &ubi->erroneous)) {
1184			paranoid_check_in_wl_tree(ubi, e, &ubi->erroneous);
1185			rb_erase(&e->u.rb, &ubi->erroneous);
1186			ubi->erroneous_peb_count -= 1;
1187			ubi_assert(ubi->erroneous_peb_count >= 0);
1188			/* Erroneous PEBs should be tortured */
1189			torture = 1;
1190		} else {
1191			err = prot_queue_del(ubi, e->pnum);
1192			if (err) {
1193				ubi_err("PEB %d not found", pnum);
1194				ubi_ro_mode(ubi);
1195				spin_unlock(&ubi->wl_lock);
1196				return err;
1197			}
1198		}
1199	}
1200	spin_unlock(&ubi->wl_lock);
1201
1202	err = schedule_erase(ubi, e, torture);
1203	if (err) {
1204		spin_lock(&ubi->wl_lock);
1205		wl_tree_add(e, &ubi->used);
1206		spin_unlock(&ubi->wl_lock);
1207	}
1208
1209	return err;
1210}
1211
1212/**
1213 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1214 * @ubi: UBI device description object
1215 * @pnum: the physical eraseblock to schedule
1216 *
1217 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1218 * needs scrubbing. This function schedules a physical eraseblock for
1219 * scrubbing which is done in background. This function returns zero in case of
1220 * success and a negative error code in case of failure.
1221 */
1222int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1223{
1224	struct ubi_wl_entry *e;
1225
1226	dbg_msg("schedule PEB %d for scrubbing", pnum);
1227
1228retry:
1229	spin_lock(&ubi->wl_lock);
1230	e = ubi->lookuptbl[pnum];
1231	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1232				   in_wl_tree(e, &ubi->erroneous)) {
1233		spin_unlock(&ubi->wl_lock);
1234		return 0;
1235	}
1236
1237	if (e == ubi->move_to) {
1238		/*
1239		 * This physical eraseblock was used to move data to. The data
1240		 * was moved but the PEB was not yet inserted to the proper
1241		 * tree. We should just wait a little and let the WL worker
1242		 * proceed.
1243		 */
1244		spin_unlock(&ubi->wl_lock);
1245		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1246		yield();
1247		goto retry;
1248	}
1249
1250	if (in_wl_tree(e, &ubi->used)) {
1251		paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1252		rb_erase(&e->u.rb, &ubi->used);
1253	} else {
1254		int err;
1255
1256		err = prot_queue_del(ubi, e->pnum);
1257		if (err) {
1258			ubi_err("PEB %d not found", pnum);
1259			ubi_ro_mode(ubi);
1260			spin_unlock(&ubi->wl_lock);
1261			return err;
1262		}
1263	}
1264
1265	wl_tree_add(e, &ubi->scrub);
1266	spin_unlock(&ubi->wl_lock);
1267
1268	/*
1269	 * Technically scrubbing is the same as wear-leveling, so it is done
1270	 * by the WL worker.
1271	 */
1272	return ensure_wear_leveling(ubi);
1273}
1274
1275/**
1276 * ubi_wl_flush - flush all pending works.
1277 * @ubi: UBI device description object
1278 *
1279 * This function returns zero in case of success and a negative error code in
1280 * case of failure.
1281 */
1282int ubi_wl_flush(struct ubi_device *ubi)
1283{
1284	int err;
1285
1286	/*
1287	 * Erase while the pending works queue is not empty, but not more than
1288	 * the number of currently pending works.
1289	 */
1290	dbg_wl("flush (%d pending works)", ubi->works_count);
1291	while (ubi->works_count) {
1292		err = do_work(ubi);
1293		if (err)
1294			return err;
1295	}
1296
1297	/*
1298	 * Make sure all the works which have been done in parallel are
1299	 * finished.
1300	 */
1301	down_write(&ubi->work_sem);
1302	up_write(&ubi->work_sem);
1303
1304	/*
1305	 * And in case last was the WL worker and it canceled the LEB
1306	 * movement, flush again.
1307	 */
1308	while (ubi->works_count) {
1309		dbg_wl("flush more (%d pending works)", ubi->works_count);
1310		err = do_work(ubi);
1311		if (err)
1312			return err;
1313	}
1314
1315	return 0;
1316}
1317
1318/**
1319 * tree_destroy - destroy an RB-tree.
1320 * @root: the root of the tree to destroy
1321 */
1322static void tree_destroy(struct rb_root *root)
1323{
1324	struct rb_node *rb;
1325	struct ubi_wl_entry *e;
1326
1327	rb = root->rb_node;
1328	while (rb) {
1329		if (rb->rb_left)
1330			rb = rb->rb_left;
1331		else if (rb->rb_right)
1332			rb = rb->rb_right;
1333		else {
1334			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1335
1336			rb = rb_parent(rb);
1337			if (rb) {
1338				if (rb->rb_left == &e->u.rb)
1339					rb->rb_left = NULL;
1340				else
1341					rb->rb_right = NULL;
1342			}
1343
1344			kmem_cache_free(ubi_wl_entry_slab, e);
1345		}
1346	}
1347}
1348
1349/**
1350 * ubi_thread - UBI background thread.
1351 * @u: the UBI device description object pointer
1352 */
1353int ubi_thread(void *u)
1354{
1355	int failures = 0;
1356	struct ubi_device *ubi = u;
1357
1358	ubi_msg("background thread \"%s\" started, PID %d",
1359		ubi->bgt_name, task_pid_nr(current));
1360
1361	set_freezable();
1362	for (;;) {
1363		int err;
1364
1365		if (kthread_should_stop())
1366			break;
1367
1368		if (try_to_freeze())
1369			continue;
1370
1371		spin_lock(&ubi->wl_lock);
1372		if (list_empty(&ubi->works) || ubi->ro_mode ||
1373		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1374			set_current_state(TASK_INTERRUPTIBLE);
1375			spin_unlock(&ubi->wl_lock);
1376			schedule();
1377			continue;
1378		}
1379		spin_unlock(&ubi->wl_lock);
1380
1381		err = do_work(ubi);
1382		if (err) {
1383			ubi_err("%s: work failed with error code %d",
1384				ubi->bgt_name, err);
1385			if (failures++ > WL_MAX_FAILURES) {
1386				/*
1387				 * Too many failures, disable the thread and
1388				 * switch to read-only mode.
1389				 */
1390				ubi_msg("%s: %d consecutive failures",
1391					ubi->bgt_name, WL_MAX_FAILURES);
1392				ubi_ro_mode(ubi);
1393				ubi->thread_enabled = 0;
1394				continue;
1395			}
1396		} else
1397			failures = 0;
1398
1399		cond_resched();
1400	}
1401
1402	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1403	return 0;
1404}
1405
1406/**
1407 * cancel_pending - cancel all pending works.
1408 * @ubi: UBI device description object
1409 */
1410static void cancel_pending(struct ubi_device *ubi)
1411{
1412	while (!list_empty(&ubi->works)) {
1413		struct ubi_work *wrk;
1414
1415		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1416		list_del(&wrk->list);
1417		wrk->func(ubi, wrk, 1);
1418		ubi->works_count -= 1;
1419		ubi_assert(ubi->works_count >= 0);
1420	}
1421}
1422
1423/**
1424 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1425 * @ubi: UBI device description object
1426 * @si: scanning information
1427 *
1428 * This function returns zero in case of success, and a negative error code in
1429 * case of failure.
1430 */
1431int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1432{
1433	int err, i;
1434	struct rb_node *rb1, *rb2;
1435	struct ubi_scan_volume *sv;
1436	struct ubi_scan_leb *seb, *tmp;
1437	struct ubi_wl_entry *e;
1438
1439	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1440	spin_lock_init(&ubi->wl_lock);
1441	mutex_init(&ubi->move_mutex);
1442	init_rwsem(&ubi->work_sem);
1443	ubi->max_ec = si->max_ec;
1444	INIT_LIST_HEAD(&ubi->works);
1445
1446	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1447
1448	err = -ENOMEM;
1449	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1450	if (!ubi->lookuptbl)
1451		return err;
1452
1453	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1454		INIT_LIST_HEAD(&ubi->pq[i]);
1455	ubi->pq_head = 0;
1456
1457	list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1458		cond_resched();
1459
1460		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1461		if (!e)
1462			goto out_free;
1463
1464		e->pnum = seb->pnum;
1465		e->ec = seb->ec;
1466		ubi->lookuptbl[e->pnum] = e;
1467		if (schedule_erase(ubi, e, 0)) {
1468			kmem_cache_free(ubi_wl_entry_slab, e);
1469			goto out_free;
1470		}
1471	}
1472
1473	list_for_each_entry(seb, &si->free, u.list) {
1474		cond_resched();
1475
1476		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1477		if (!e)
1478			goto out_free;
1479
1480		e->pnum = seb->pnum;
1481		e->ec = seb->ec;
1482		ubi_assert(e->ec >= 0);
1483		wl_tree_add(e, &ubi->free);
1484		ubi->lookuptbl[e->pnum] = e;
1485	}
1486
1487	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1488		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1489			cond_resched();
1490
1491			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1492			if (!e)
1493				goto out_free;
1494
1495			e->pnum = seb->pnum;
1496			e->ec = seb->ec;
1497			ubi->lookuptbl[e->pnum] = e;
1498			if (!seb->scrub) {
1499				dbg_wl("add PEB %d EC %d to the used tree",
1500				       e->pnum, e->ec);
1501				wl_tree_add(e, &ubi->used);
1502			} else {
1503				dbg_wl("add PEB %d EC %d to the scrub tree",
1504				       e->pnum, e->ec);
1505				wl_tree_add(e, &ubi->scrub);
1506			}
1507		}
1508	}
1509
1510	if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1511		ubi_err("no enough physical eraseblocks (%d, need %d)",
1512			ubi->avail_pebs, WL_RESERVED_PEBS);
1513		if (ubi->corr_peb_count)
1514			ubi_err("%d PEBs are corrupted and not used",
1515				ubi->corr_peb_count);
1516		goto out_free;
1517	}
1518	ubi->avail_pebs -= WL_RESERVED_PEBS;
1519	ubi->rsvd_pebs += WL_RESERVED_PEBS;
1520
1521	/* Schedule wear-leveling if needed */
1522	err = ensure_wear_leveling(ubi);
1523	if (err)
1524		goto out_free;
1525
1526	return 0;
1527
1528out_free:
1529	cancel_pending(ubi);
1530	tree_destroy(&ubi->used);
1531	tree_destroy(&ubi->free);
1532	tree_destroy(&ubi->scrub);
1533	kfree(ubi->lookuptbl);
1534	return err;
1535}
1536
1537/**
1538 * protection_queue_destroy - destroy the protection queue.
1539 * @ubi: UBI device description object
1540 */
1541static void protection_queue_destroy(struct ubi_device *ubi)
1542{
1543	int i;
1544	struct ubi_wl_entry *e, *tmp;
1545
1546	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1547		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1548			list_del(&e->u.list);
1549			kmem_cache_free(ubi_wl_entry_slab, e);
1550		}
1551	}
1552}
1553
1554/**
1555 * ubi_wl_close - close the wear-leveling sub-system.
1556 * @ubi: UBI device description object
1557 */
1558void ubi_wl_close(struct ubi_device *ubi)
1559{
1560	dbg_wl("close the WL sub-system");
1561	cancel_pending(ubi);
1562	protection_queue_destroy(ubi);
1563	tree_destroy(&ubi->used);
1564	tree_destroy(&ubi->erroneous);
1565	tree_destroy(&ubi->free);
1566	tree_destroy(&ubi->scrub);
1567	kfree(ubi->lookuptbl);
1568}
1569
1570#ifdef CONFIG_MTD_UBI_DEBUG
1571
1572/**
1573 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1574 * @ubi: UBI device description object
1575 * @pnum: the physical eraseblock number to check
1576 * @ec: the erase counter to check
1577 *
1578 * This function returns zero if the erase counter of physical eraseblock @pnum
1579 * is equivalent to @ec, and a negative error code if not or if an error
1580 * occurred.
1581 */
1582static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1583{
1584	int err;
1585	long long read_ec;
1586	struct ubi_ec_hdr *ec_hdr;
1587
1588	if (!ubi->dbg->chk_gen)
1589		return 0;
1590
1591	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1592	if (!ec_hdr)
1593		return -ENOMEM;
1594
1595	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1596	if (err && err != UBI_IO_BITFLIPS) {
1597		/* The header does not have to exist */
1598		err = 0;
1599		goto out_free;
1600	}
1601
1602	read_ec = be64_to_cpu(ec_hdr->ec);
1603	if (ec != read_ec) {
1604		ubi_err("paranoid check failed for PEB %d", pnum);
1605		ubi_err("read EC is %lld, should be %d", read_ec, ec);
1606		ubi_dbg_dump_stack();
1607		err = 1;
1608	} else
1609		err = 0;
1610
1611out_free:
1612	kfree(ec_hdr);
1613	return err;
1614}
1615
1616/**
1617 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1618 * @ubi: UBI device description object
1619 * @e: the wear-leveling entry to check
1620 * @root: the root of the tree
1621 *
1622 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1623 * is not.
1624 */
1625static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
1626				     struct ubi_wl_entry *e,
1627				     struct rb_root *root)
1628{
1629	if (!ubi->dbg->chk_gen)
1630		return 0;
1631
1632	if (in_wl_tree(e, root))
1633		return 0;
1634
1635	ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1636		e->pnum, e->ec, root);
1637	ubi_dbg_dump_stack();
1638	return -EINVAL;
1639}
1640
1641/**
1642 * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1643 *                        queue.
1644 * @ubi: UBI device description object
1645 * @e: the wear-leveling entry to check
1646 *
1647 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1648 */
1649static int paranoid_check_in_pq(const struct ubi_device *ubi,
1650				struct ubi_wl_entry *e)
1651{
1652	struct ubi_wl_entry *p;
1653	int i;
1654
1655	if (!ubi->dbg->chk_gen)
1656		return 0;
1657
1658	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1659		list_for_each_entry(p, &ubi->pq[i], u.list)
1660			if (p == e)
1661				return 0;
1662
1663	ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1664		e->pnum, e->ec);
1665	ubi_dbg_dump_stack();
1666	return -EINVAL;
1667}
1668
1669#endif /* CONFIG_MTD_UBI_DEBUG */
1670