1/* 2 * @ubi: UBI device description object 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Authors: Artem Bityutskiy (ÐиÑÑÑкий ÐÑÑÑм), Thomas Gleixner 20 */ 21 22/* 23 * UBI wear-leveling sub-system. 24 * 25 * This sub-system is responsible for wear-leveling. It works in terms of 26 * physical eraseblocks and erase counters and knows nothing about logical 27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 28 * eraseblocks are of two types - used and free. Used physical eraseblocks are 29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 31 * 32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 33 * header. The rest of the physical eraseblock contains only %0xFF bytes. 34 * 35 * When physical eraseblocks are returned to the WL sub-system by means of the 36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 37 * done asynchronously in context of the per-UBI device background thread, 38 * which is also managed by the WL sub-system. 39 * 40 * The wear-leveling is ensured by means of moving the contents of used 41 * physical eraseblocks with low erase counter to free physical eraseblocks 42 * with high erase counter. 43 * 44 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick 45 * an "optimal" physical eraseblock. For example, when it is known that the 46 * physical eraseblock will be "put" soon because it contains short-term data, 47 * the WL sub-system may pick a free physical eraseblock with low erase 48 * counter, and so forth. 49 * 50 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 51 * bad. 52 * 53 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 54 * in a physical eraseblock, it has to be moved. Technically this is the same 55 * as moving it for wear-leveling reasons. 56 * 57 * As it was said, for the UBI sub-system all physical eraseblocks are either 58 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 59 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 60 * RB-trees, as well as (temporarily) in the @wl->pq queue. 61 * 62 * When the WL sub-system returns a physical eraseblock, the physical 63 * eraseblock is protected from being moved for some "time". For this reason, 64 * the physical eraseblock is not directly moved from the @wl->free tree to the 65 * @wl->used tree. There is a protection queue in between where this 66 * physical eraseblock is temporarily stored (@wl->pq). 67 * 68 * All this protection stuff is needed because: 69 * o we don't want to move physical eraseblocks just after we have given them 70 * to the user; instead, we first want to let users fill them up with data; 71 * 72 * o there is a chance that the user will put the physical eraseblock very 73 * soon, so it makes sense not to move it for some time, but wait; this is 74 * especially important in case of "short term" physical eraseblocks. 75 * 76 * Physical eraseblocks stay protected only for limited time. But the "time" is 77 * measured in erase cycles in this case. This is implemented with help of the 78 * protection queue. Eraseblocks are put to the tail of this queue when they 79 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 80 * head of the queue on each erase operation (for any eraseblock). So the 81 * length of the queue defines how may (global) erase cycles PEBs are protected. 82 * 83 * To put it differently, each physical eraseblock has 2 main states: free and 84 * used. The former state corresponds to the @wl->free tree. The latter state 85 * is split up on several sub-states: 86 * o the WL movement is allowed (@wl->used tree); 87 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 88 * erroneous - e.g., there was a read error; 89 * o the WL movement is temporarily prohibited (@wl->pq queue); 90 * o scrubbing is needed (@wl->scrub tree). 91 * 92 * Depending on the sub-state, wear-leveling entries of the used physical 93 * eraseblocks may be kept in one of those structures. 94 * 95 * Note, in this implementation, we keep a small in-RAM object for each physical 96 * eraseblock. This is surely not a scalable solution. But it appears to be good 97 * enough for moderately large flashes and it is simple. In future, one may 98 * re-work this sub-system and make it more scalable. 99 * 100 * At the moment this sub-system does not utilize the sequence number, which 101 * was introduced relatively recently. But it would be wise to do this because 102 * the sequence number of a logical eraseblock characterizes how old is it. For 103 * example, when we move a PEB with low erase counter, and we need to pick the 104 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 105 * pick target PEB with an average EC if our PEB is not very "old". This is a 106 * room for future re-works of the WL sub-system. 107 */ 108 109#include <linux/slab.h> 110#include <linux/crc32.h> 111#include <linux/freezer.h> 112#include <linux/kthread.h> 113#include "ubi.h" 114 115/* Number of physical eraseblocks reserved for wear-leveling purposes */ 116#define WL_RESERVED_PEBS 1 117 118/* 119 * Maximum difference between two erase counters. If this threshold is 120 * exceeded, the WL sub-system starts moving data from used physical 121 * eraseblocks with low erase counter to free physical eraseblocks with high 122 * erase counter. 123 */ 124#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 125 126/* 127 * When a physical eraseblock is moved, the WL sub-system has to pick the target 128 * physical eraseblock to move to. The simplest way would be just to pick the 129 * one with the highest erase counter. But in certain workloads this could lead 130 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 131 * situation when the picked physical eraseblock is constantly erased after the 132 * data is written to it. So, we have a constant which limits the highest erase 133 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 134 * does not pick eraseblocks with erase counter greater than the lowest erase 135 * counter plus %WL_FREE_MAX_DIFF. 136 */ 137#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 138 139/* 140 * Maximum number of consecutive background thread failures which is enough to 141 * switch to read-only mode. 142 */ 143#define WL_MAX_FAILURES 32 144 145/** 146 * struct ubi_work - UBI work description data structure. 147 * @list: a link in the list of pending works 148 * @func: worker function 149 * @e: physical eraseblock to erase 150 * @torture: if the physical eraseblock has to be tortured 151 * 152 * The @func pointer points to the worker function. If the @cancel argument is 153 * not zero, the worker has to free the resources and exit immediately. The 154 * worker has to return zero in case of success and a negative error code in 155 * case of failure. 156 */ 157struct ubi_work { 158 struct list_head list; 159 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); 160 /* The below fields are only relevant to erasure works */ 161 struct ubi_wl_entry *e; 162 int torture; 163}; 164 165#ifdef CONFIG_MTD_UBI_DEBUG 166static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec); 167static int paranoid_check_in_wl_tree(const struct ubi_device *ubi, 168 struct ubi_wl_entry *e, 169 struct rb_root *root); 170static int paranoid_check_in_pq(const struct ubi_device *ubi, 171 struct ubi_wl_entry *e); 172#else 173#define paranoid_check_ec(ubi, pnum, ec) 0 174#define paranoid_check_in_wl_tree(ubi, e, root) 175#define paranoid_check_in_pq(ubi, e) 0 176#endif 177 178/** 179 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 180 * @e: the wear-leveling entry to add 181 * @root: the root of the tree 182 * 183 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 184 * the @ubi->used and @ubi->free RB-trees. 185 */ 186static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 187{ 188 struct rb_node **p, *parent = NULL; 189 190 p = &root->rb_node; 191 while (*p) { 192 struct ubi_wl_entry *e1; 193 194 parent = *p; 195 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 196 197 if (e->ec < e1->ec) 198 p = &(*p)->rb_left; 199 else if (e->ec > e1->ec) 200 p = &(*p)->rb_right; 201 else { 202 ubi_assert(e->pnum != e1->pnum); 203 if (e->pnum < e1->pnum) 204 p = &(*p)->rb_left; 205 else 206 p = &(*p)->rb_right; 207 } 208 } 209 210 rb_link_node(&e->u.rb, parent, p); 211 rb_insert_color(&e->u.rb, root); 212} 213 214/** 215 * do_work - do one pending work. 216 * @ubi: UBI device description object 217 * 218 * This function returns zero in case of success and a negative error code in 219 * case of failure. 220 */ 221static int do_work(struct ubi_device *ubi) 222{ 223 int err; 224 struct ubi_work *wrk; 225 226 cond_resched(); 227 228 /* 229 * @ubi->work_sem is used to synchronize with the workers. Workers take 230 * it in read mode, so many of them may be doing works at a time. But 231 * the queue flush code has to be sure the whole queue of works is 232 * done, and it takes the mutex in write mode. 233 */ 234 down_read(&ubi->work_sem); 235 spin_lock(&ubi->wl_lock); 236 if (list_empty(&ubi->works)) { 237 spin_unlock(&ubi->wl_lock); 238 up_read(&ubi->work_sem); 239 return 0; 240 } 241 242 wrk = list_entry(ubi->works.next, struct ubi_work, list); 243 list_del(&wrk->list); 244 ubi->works_count -= 1; 245 ubi_assert(ubi->works_count >= 0); 246 spin_unlock(&ubi->wl_lock); 247 248 /* 249 * Call the worker function. Do not touch the work structure 250 * after this call as it will have been freed or reused by that 251 * time by the worker function. 252 */ 253 err = wrk->func(ubi, wrk, 0); 254 if (err) 255 ubi_err("work failed with error code %d", err); 256 up_read(&ubi->work_sem); 257 258 return err; 259} 260 261/** 262 * produce_free_peb - produce a free physical eraseblock. 263 * @ubi: UBI device description object 264 * 265 * This function tries to make a free PEB by means of synchronous execution of 266 * pending works. This may be needed if, for example the background thread is 267 * disabled. Returns zero in case of success and a negative error code in case 268 * of failure. 269 */ 270static int produce_free_peb(struct ubi_device *ubi) 271{ 272 int err; 273 274 spin_lock(&ubi->wl_lock); 275 while (!ubi->free.rb_node) { 276 spin_unlock(&ubi->wl_lock); 277 278 dbg_wl("do one work synchronously"); 279 err = do_work(ubi); 280 if (err) 281 return err; 282 283 spin_lock(&ubi->wl_lock); 284 } 285 spin_unlock(&ubi->wl_lock); 286 287 return 0; 288} 289 290/** 291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 292 * @e: the wear-leveling entry to check 293 * @root: the root of the tree 294 * 295 * This function returns non-zero if @e is in the @root RB-tree and zero if it 296 * is not. 297 */ 298static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 299{ 300 struct rb_node *p; 301 302 p = root->rb_node; 303 while (p) { 304 struct ubi_wl_entry *e1; 305 306 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 307 308 if (e->pnum == e1->pnum) { 309 ubi_assert(e == e1); 310 return 1; 311 } 312 313 if (e->ec < e1->ec) 314 p = p->rb_left; 315 else if (e->ec > e1->ec) 316 p = p->rb_right; 317 else { 318 ubi_assert(e->pnum != e1->pnum); 319 if (e->pnum < e1->pnum) 320 p = p->rb_left; 321 else 322 p = p->rb_right; 323 } 324 } 325 326 return 0; 327} 328 329/** 330 * prot_queue_add - add physical eraseblock to the protection queue. 331 * @ubi: UBI device description object 332 * @e: the physical eraseblock to add 333 * 334 * This function adds @e to the tail of the protection queue @ubi->pq, where 335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 337 * be locked. 338 */ 339static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 340{ 341 int pq_tail = ubi->pq_head - 1; 342 343 if (pq_tail < 0) 344 pq_tail = UBI_PROT_QUEUE_LEN - 1; 345 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 346 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 347 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 348} 349 350/** 351 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 352 * @root: the RB-tree where to look for 353 * @diff: maximum possible difference from the smallest erase counter 354 * 355 * This function looks for a wear leveling entry with erase counter closest to 356 * min + @diff, where min is the smallest erase counter. 357 */ 358static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int diff) 359{ 360 struct rb_node *p; 361 struct ubi_wl_entry *e; 362 int max; 363 364 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 365 max = e->ec + diff; 366 367 p = root->rb_node; 368 while (p) { 369 struct ubi_wl_entry *e1; 370 371 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 372 if (e1->ec >= max) 373 p = p->rb_left; 374 else { 375 p = p->rb_right; 376 e = e1; 377 } 378 } 379 380 return e; 381} 382 383/** 384 * ubi_wl_get_peb - get a physical eraseblock. 385 * @ubi: UBI device description object 386 * @dtype: type of data which will be stored in this physical eraseblock 387 * 388 * This function returns a physical eraseblock in case of success and a 389 * negative error code in case of failure. Might sleep. 390 */ 391int ubi_wl_get_peb(struct ubi_device *ubi, int dtype) 392{ 393 int err; 394 struct ubi_wl_entry *e, *first, *last; 395 396 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM || 397 dtype == UBI_UNKNOWN); 398 399retry: 400 spin_lock(&ubi->wl_lock); 401 if (!ubi->free.rb_node) { 402 if (ubi->works_count == 0) { 403 ubi_assert(list_empty(&ubi->works)); 404 ubi_err("no free eraseblocks"); 405 spin_unlock(&ubi->wl_lock); 406 return -ENOSPC; 407 } 408 spin_unlock(&ubi->wl_lock); 409 410 err = produce_free_peb(ubi); 411 if (err < 0) 412 return err; 413 goto retry; 414 } 415 416 switch (dtype) { 417 case UBI_LONGTERM: 418 /* 419 * For long term data we pick a physical eraseblock with high 420 * erase counter. But the highest erase counter we can pick is 421 * bounded by the the lowest erase counter plus 422 * %WL_FREE_MAX_DIFF. 423 */ 424 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 425 break; 426 case UBI_UNKNOWN: 427 /* 428 * For unknown data we pick a physical eraseblock with medium 429 * erase counter. But we by no means can pick a physical 430 * eraseblock with erase counter greater or equivalent than the 431 * lowest erase counter plus %WL_FREE_MAX_DIFF/2. 432 */ 433 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, 434 u.rb); 435 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb); 436 437 if (last->ec - first->ec < WL_FREE_MAX_DIFF) 438 e = rb_entry(ubi->free.rb_node, 439 struct ubi_wl_entry, u.rb); 440 else 441 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF/2); 442 break; 443 case UBI_SHORTTERM: 444 /* 445 * For short term data we pick a physical eraseblock with the 446 * lowest erase counter as we expect it will be erased soon. 447 */ 448 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb); 449 break; 450 default: 451 BUG(); 452 } 453 454 paranoid_check_in_wl_tree(ubi, e, &ubi->free); 455 456 /* 457 * Move the physical eraseblock to the protection queue where it will 458 * be protected from being moved for some time. 459 */ 460 rb_erase(&e->u.rb, &ubi->free); 461 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 462 prot_queue_add(ubi, e); 463 spin_unlock(&ubi->wl_lock); 464 465 err = ubi_dbg_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 466 ubi->peb_size - ubi->vid_hdr_aloffset); 467 if (err) { 468 ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum); 469 return err; 470 } 471 472 return e->pnum; 473} 474 475/** 476 * prot_queue_del - remove a physical eraseblock from the protection queue. 477 * @ubi: UBI device description object 478 * @pnum: the physical eraseblock to remove 479 * 480 * This function deletes PEB @pnum from the protection queue and returns zero 481 * in case of success and %-ENODEV if the PEB was not found. 482 */ 483static int prot_queue_del(struct ubi_device *ubi, int pnum) 484{ 485 struct ubi_wl_entry *e; 486 487 e = ubi->lookuptbl[pnum]; 488 if (!e) 489 return -ENODEV; 490 491 if (paranoid_check_in_pq(ubi, e)) 492 return -ENODEV; 493 494 list_del(&e->u.list); 495 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 496 return 0; 497} 498 499/** 500 * sync_erase - synchronously erase a physical eraseblock. 501 * @ubi: UBI device description object 502 * @e: the the physical eraseblock to erase 503 * @torture: if the physical eraseblock has to be tortured 504 * 505 * This function returns zero in case of success and a negative error code in 506 * case of failure. 507 */ 508static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 509 int torture) 510{ 511 int err; 512 struct ubi_ec_hdr *ec_hdr; 513 unsigned long long ec = e->ec; 514 515 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 516 517 err = paranoid_check_ec(ubi, e->pnum, e->ec); 518 if (err) 519 return -EINVAL; 520 521 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 522 if (!ec_hdr) 523 return -ENOMEM; 524 525 err = ubi_io_sync_erase(ubi, e->pnum, torture); 526 if (err < 0) 527 goto out_free; 528 529 ec += err; 530 if (ec > UBI_MAX_ERASECOUNTER) { 531 /* 532 * Erase counter overflow. Upgrade UBI and use 64-bit 533 * erase counters internally. 534 */ 535 ubi_err("erase counter overflow at PEB %d, EC %llu", 536 e->pnum, ec); 537 err = -EINVAL; 538 goto out_free; 539 } 540 541 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 542 543 ec_hdr->ec = cpu_to_be64(ec); 544 545 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 546 if (err) 547 goto out_free; 548 549 e->ec = ec; 550 spin_lock(&ubi->wl_lock); 551 if (e->ec > ubi->max_ec) 552 ubi->max_ec = e->ec; 553 spin_unlock(&ubi->wl_lock); 554 555out_free: 556 kfree(ec_hdr); 557 return err; 558} 559 560/** 561 * serve_prot_queue - check if it is time to stop protecting PEBs. 562 * @ubi: UBI device description object 563 * 564 * This function is called after each erase operation and removes PEBs from the 565 * tail of the protection queue. These PEBs have been protected for long enough 566 * and should be moved to the used tree. 567 */ 568static void serve_prot_queue(struct ubi_device *ubi) 569{ 570 struct ubi_wl_entry *e, *tmp; 571 int count; 572 573 /* 574 * There may be several protected physical eraseblock to remove, 575 * process them all. 576 */ 577repeat: 578 count = 0; 579 spin_lock(&ubi->wl_lock); 580 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 581 dbg_wl("PEB %d EC %d protection over, move to used tree", 582 e->pnum, e->ec); 583 584 list_del(&e->u.list); 585 wl_tree_add(e, &ubi->used); 586 if (count++ > 32) { 587 /* 588 * Let's be nice and avoid holding the spinlock for 589 * too long. 590 */ 591 spin_unlock(&ubi->wl_lock); 592 cond_resched(); 593 goto repeat; 594 } 595 } 596 597 ubi->pq_head += 1; 598 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 599 ubi->pq_head = 0; 600 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 601 spin_unlock(&ubi->wl_lock); 602} 603 604/** 605 * schedule_ubi_work - schedule a work. 606 * @ubi: UBI device description object 607 * @wrk: the work to schedule 608 * 609 * This function adds a work defined by @wrk to the tail of the pending works 610 * list. 611 */ 612static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 613{ 614 spin_lock(&ubi->wl_lock); 615 list_add_tail(&wrk->list, &ubi->works); 616 ubi_assert(ubi->works_count >= 0); 617 ubi->works_count += 1; 618 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 619 wake_up_process(ubi->bgt_thread); 620 spin_unlock(&ubi->wl_lock); 621} 622 623static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 624 int cancel); 625 626/** 627 * schedule_erase - schedule an erase work. 628 * @ubi: UBI device description object 629 * @e: the WL entry of the physical eraseblock to erase 630 * @torture: if the physical eraseblock has to be tortured 631 * 632 * This function returns zero in case of success and a %-ENOMEM in case of 633 * failure. 634 */ 635static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 636 int torture) 637{ 638 struct ubi_work *wl_wrk; 639 640 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 641 e->pnum, e->ec, torture); 642 643 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 644 if (!wl_wrk) 645 return -ENOMEM; 646 647 wl_wrk->func = &erase_worker; 648 wl_wrk->e = e; 649 wl_wrk->torture = torture; 650 651 schedule_ubi_work(ubi, wl_wrk); 652 return 0; 653} 654 655/** 656 * wear_leveling_worker - wear-leveling worker function. 657 * @ubi: UBI device description object 658 * @wrk: the work object 659 * @cancel: non-zero if the worker has to free memory and exit 660 * 661 * This function copies a more worn out physical eraseblock to a less worn out 662 * one. Returns zero in case of success and a negative error code in case of 663 * failure. 664 */ 665static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 666 int cancel) 667{ 668 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 669 int vol_id = -1, uninitialized_var(lnum); 670 struct ubi_wl_entry *e1, *e2; 671 struct ubi_vid_hdr *vid_hdr; 672 673 kfree(wrk); 674 if (cancel) 675 return 0; 676 677 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 678 if (!vid_hdr) 679 return -ENOMEM; 680 681 mutex_lock(&ubi->move_mutex); 682 spin_lock(&ubi->wl_lock); 683 ubi_assert(!ubi->move_from && !ubi->move_to); 684 ubi_assert(!ubi->move_to_put); 685 686 if (!ubi->free.rb_node || 687 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 688 /* 689 * No free physical eraseblocks? Well, they must be waiting in 690 * the queue to be erased. Cancel movement - it will be 691 * triggered again when a free physical eraseblock appears. 692 * 693 * No used physical eraseblocks? They must be temporarily 694 * protected from being moved. They will be moved to the 695 * @ubi->used tree later and the wear-leveling will be 696 * triggered again. 697 */ 698 dbg_wl("cancel WL, a list is empty: free %d, used %d", 699 !ubi->free.rb_node, !ubi->used.rb_node); 700 goto out_cancel; 701 } 702 703 if (!ubi->scrub.rb_node) { 704 /* 705 * Now pick the least worn-out used physical eraseblock and a 706 * highly worn-out free physical eraseblock. If the erase 707 * counters differ much enough, start wear-leveling. 708 */ 709 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 710 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 711 712 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 713 dbg_wl("no WL needed: min used EC %d, max free EC %d", 714 e1->ec, e2->ec); 715 goto out_cancel; 716 } 717 paranoid_check_in_wl_tree(ubi, e1, &ubi->used); 718 rb_erase(&e1->u.rb, &ubi->used); 719 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 720 e1->pnum, e1->ec, e2->pnum, e2->ec); 721 } else { 722 /* Perform scrubbing */ 723 scrubbing = 1; 724 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 725 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 726 paranoid_check_in_wl_tree(ubi, e1, &ubi->scrub); 727 rb_erase(&e1->u.rb, &ubi->scrub); 728 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 729 } 730 731 paranoid_check_in_wl_tree(ubi, e2, &ubi->free); 732 rb_erase(&e2->u.rb, &ubi->free); 733 ubi->move_from = e1; 734 ubi->move_to = e2; 735 spin_unlock(&ubi->wl_lock); 736 737 /* 738 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 739 * We so far do not know which logical eraseblock our physical 740 * eraseblock (@e1) belongs to. We have to read the volume identifier 741 * header first. 742 * 743 * Note, we are protected from this PEB being unmapped and erased. The 744 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 745 * which is being moved was unmapped. 746 */ 747 748 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 749 if (err && err != UBI_IO_BITFLIPS) { 750 if (err == UBI_IO_FF) { 751 /* 752 * We are trying to move PEB without a VID header. UBI 753 * always write VID headers shortly after the PEB was 754 * given, so we have a situation when it has not yet 755 * had a chance to write it, because it was preempted. 756 * So add this PEB to the protection queue so far, 757 * because presumably more data will be written there 758 * (including the missing VID header), and then we'll 759 * move it. 760 */ 761 dbg_wl("PEB %d has no VID header", e1->pnum); 762 protect = 1; 763 goto out_not_moved; 764 } else if (err == UBI_IO_FF_BITFLIPS) { 765 /* 766 * The same situation as %UBI_IO_FF, but bit-flips were 767 * detected. It is better to schedule this PEB for 768 * scrubbing. 769 */ 770 dbg_wl("PEB %d has no VID header but has bit-flips", 771 e1->pnum); 772 scrubbing = 1; 773 goto out_not_moved; 774 } 775 776 ubi_err("error %d while reading VID header from PEB %d", 777 err, e1->pnum); 778 goto out_error; 779 } 780 781 vol_id = be32_to_cpu(vid_hdr->vol_id); 782 lnum = be32_to_cpu(vid_hdr->lnum); 783 784 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 785 if (err) { 786 if (err == MOVE_CANCEL_RACE) { 787 /* 788 * The LEB has not been moved because the volume is 789 * being deleted or the PEB has been put meanwhile. We 790 * should prevent this PEB from being selected for 791 * wear-leveling movement again, so put it to the 792 * protection queue. 793 */ 794 protect = 1; 795 goto out_not_moved; 796 } 797 if (err == MOVE_RETRY) { 798 scrubbing = 1; 799 goto out_not_moved; 800 } 801 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 802 err == MOVE_TARGET_RD_ERR) { 803 /* 804 * Target PEB had bit-flips or write error - torture it. 805 */ 806 torture = 1; 807 goto out_not_moved; 808 } 809 810 if (err == MOVE_SOURCE_RD_ERR) { 811 /* 812 * An error happened while reading the source PEB. Do 813 * not switch to R/O mode in this case, and give the 814 * upper layers a possibility to recover from this, 815 * e.g. by unmapping corresponding LEB. Instead, just 816 * put this PEB to the @ubi->erroneous list to prevent 817 * UBI from trying to move it over and over again. 818 */ 819 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 820 ubi_err("too many erroneous eraseblocks (%d)", 821 ubi->erroneous_peb_count); 822 goto out_error; 823 } 824 erroneous = 1; 825 goto out_not_moved; 826 } 827 828 if (err < 0) 829 goto out_error; 830 831 ubi_assert(0); 832 } 833 834 /* The PEB has been successfully moved */ 835 if (scrubbing) 836 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 837 e1->pnum, vol_id, lnum, e2->pnum); 838 ubi_free_vid_hdr(ubi, vid_hdr); 839 840 spin_lock(&ubi->wl_lock); 841 if (!ubi->move_to_put) { 842 wl_tree_add(e2, &ubi->used); 843 e2 = NULL; 844 } 845 ubi->move_from = ubi->move_to = NULL; 846 ubi->move_to_put = ubi->wl_scheduled = 0; 847 spin_unlock(&ubi->wl_lock); 848 849 err = schedule_erase(ubi, e1, 0); 850 if (err) { 851 kmem_cache_free(ubi_wl_entry_slab, e1); 852 if (e2) 853 kmem_cache_free(ubi_wl_entry_slab, e2); 854 goto out_ro; 855 } 856 857 if (e2) { 858 /* 859 * Well, the target PEB was put meanwhile, schedule it for 860 * erasure. 861 */ 862 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 863 e2->pnum, vol_id, lnum); 864 err = schedule_erase(ubi, e2, 0); 865 if (err) { 866 kmem_cache_free(ubi_wl_entry_slab, e2); 867 goto out_ro; 868 } 869 } 870 871 dbg_wl("done"); 872 mutex_unlock(&ubi->move_mutex); 873 return 0; 874 875 /* 876 * For some reasons the LEB was not moved, might be an error, might be 877 * something else. @e1 was not changed, so return it back. @e2 might 878 * have been changed, schedule it for erasure. 879 */ 880out_not_moved: 881 if (vol_id != -1) 882 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 883 e1->pnum, vol_id, lnum, e2->pnum, err); 884 else 885 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 886 e1->pnum, e2->pnum, err); 887 spin_lock(&ubi->wl_lock); 888 if (protect) 889 prot_queue_add(ubi, e1); 890 else if (erroneous) { 891 wl_tree_add(e1, &ubi->erroneous); 892 ubi->erroneous_peb_count += 1; 893 } else if (scrubbing) 894 wl_tree_add(e1, &ubi->scrub); 895 else 896 wl_tree_add(e1, &ubi->used); 897 ubi_assert(!ubi->move_to_put); 898 ubi->move_from = ubi->move_to = NULL; 899 ubi->wl_scheduled = 0; 900 spin_unlock(&ubi->wl_lock); 901 902 ubi_free_vid_hdr(ubi, vid_hdr); 903 err = schedule_erase(ubi, e2, torture); 904 if (err) { 905 kmem_cache_free(ubi_wl_entry_slab, e2); 906 goto out_ro; 907 } 908 mutex_unlock(&ubi->move_mutex); 909 return 0; 910 911out_error: 912 if (vol_id != -1) 913 ubi_err("error %d while moving PEB %d to PEB %d", 914 err, e1->pnum, e2->pnum); 915 else 916 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d", 917 err, e1->pnum, vol_id, lnum, e2->pnum); 918 spin_lock(&ubi->wl_lock); 919 ubi->move_from = ubi->move_to = NULL; 920 ubi->move_to_put = ubi->wl_scheduled = 0; 921 spin_unlock(&ubi->wl_lock); 922 923 ubi_free_vid_hdr(ubi, vid_hdr); 924 kmem_cache_free(ubi_wl_entry_slab, e1); 925 kmem_cache_free(ubi_wl_entry_slab, e2); 926 927out_ro: 928 ubi_ro_mode(ubi); 929 mutex_unlock(&ubi->move_mutex); 930 ubi_assert(err != 0); 931 return err < 0 ? err : -EIO; 932 933out_cancel: 934 ubi->wl_scheduled = 0; 935 spin_unlock(&ubi->wl_lock); 936 mutex_unlock(&ubi->move_mutex); 937 ubi_free_vid_hdr(ubi, vid_hdr); 938 return 0; 939} 940 941/** 942 * ensure_wear_leveling - schedule wear-leveling if it is needed. 943 * @ubi: UBI device description object 944 * 945 * This function checks if it is time to start wear-leveling and schedules it 946 * if yes. This function returns zero in case of success and a negative error 947 * code in case of failure. 948 */ 949static int ensure_wear_leveling(struct ubi_device *ubi) 950{ 951 int err = 0; 952 struct ubi_wl_entry *e1; 953 struct ubi_wl_entry *e2; 954 struct ubi_work *wrk; 955 956 spin_lock(&ubi->wl_lock); 957 if (ubi->wl_scheduled) 958 /* Wear-leveling is already in the work queue */ 959 goto out_unlock; 960 961 /* 962 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 963 * the WL worker has to be scheduled anyway. 964 */ 965 if (!ubi->scrub.rb_node) { 966 if (!ubi->used.rb_node || !ubi->free.rb_node) 967 /* No physical eraseblocks - no deal */ 968 goto out_unlock; 969 970 /* 971 * We schedule wear-leveling only if the difference between the 972 * lowest erase counter of used physical eraseblocks and a high 973 * erase counter of free physical eraseblocks is greater than 974 * %UBI_WL_THRESHOLD. 975 */ 976 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 977 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 978 979 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 980 goto out_unlock; 981 dbg_wl("schedule wear-leveling"); 982 } else 983 dbg_wl("schedule scrubbing"); 984 985 ubi->wl_scheduled = 1; 986 spin_unlock(&ubi->wl_lock); 987 988 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 989 if (!wrk) { 990 err = -ENOMEM; 991 goto out_cancel; 992 } 993 994 wrk->func = &wear_leveling_worker; 995 schedule_ubi_work(ubi, wrk); 996 return err; 997 998out_cancel: 999 spin_lock(&ubi->wl_lock); 1000 ubi->wl_scheduled = 0; 1001out_unlock: 1002 spin_unlock(&ubi->wl_lock); 1003 return err; 1004} 1005 1006/** 1007 * erase_worker - physical eraseblock erase worker function. 1008 * @ubi: UBI device description object 1009 * @wl_wrk: the work object 1010 * @cancel: non-zero if the worker has to free memory and exit 1011 * 1012 * This function erases a physical eraseblock and perform torture testing if 1013 * needed. It also takes care about marking the physical eraseblock bad if 1014 * needed. Returns zero in case of success and a negative error code in case of 1015 * failure. 1016 */ 1017static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1018 int cancel) 1019{ 1020 struct ubi_wl_entry *e = wl_wrk->e; 1021 int pnum = e->pnum, err, need; 1022 1023 if (cancel) { 1024 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1025 kfree(wl_wrk); 1026 kmem_cache_free(ubi_wl_entry_slab, e); 1027 return 0; 1028 } 1029 1030 dbg_wl("erase PEB %d EC %d", pnum, e->ec); 1031 1032 err = sync_erase(ubi, e, wl_wrk->torture); 1033 if (!err) { 1034 /* Fine, we've erased it successfully */ 1035 kfree(wl_wrk); 1036 1037 spin_lock(&ubi->wl_lock); 1038 wl_tree_add(e, &ubi->free); 1039 spin_unlock(&ubi->wl_lock); 1040 1041 /* 1042 * One more erase operation has happened, take care about 1043 * protected physical eraseblocks. 1044 */ 1045 serve_prot_queue(ubi); 1046 1047 /* And take care about wear-leveling */ 1048 err = ensure_wear_leveling(ubi); 1049 return err; 1050 } 1051 1052 ubi_err("failed to erase PEB %d, error %d", pnum, err); 1053 kfree(wl_wrk); 1054 1055 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1056 err == -EBUSY) { 1057 int err1; 1058 1059 /* Re-schedule the LEB for erasure */ 1060 err1 = schedule_erase(ubi, e, 0); 1061 if (err1) { 1062 err = err1; 1063 goto out_ro; 1064 } 1065 return err; 1066 } 1067 1068 kmem_cache_free(ubi_wl_entry_slab, e); 1069 if (err != -EIO) 1070 /* 1071 * If this is not %-EIO, we have no idea what to do. Scheduling 1072 * this physical eraseblock for erasure again would cause 1073 * errors again and again. Well, lets switch to R/O mode. 1074 */ 1075 goto out_ro; 1076 1077 /* It is %-EIO, the PEB went bad */ 1078 1079 if (!ubi->bad_allowed) { 1080 ubi_err("bad physical eraseblock %d detected", pnum); 1081 goto out_ro; 1082 } 1083 1084 spin_lock(&ubi->volumes_lock); 1085 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1; 1086 if (need > 0) { 1087 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs; 1088 ubi->avail_pebs -= need; 1089 ubi->rsvd_pebs += need; 1090 ubi->beb_rsvd_pebs += need; 1091 if (need > 0) 1092 ubi_msg("reserve more %d PEBs", need); 1093 } 1094 1095 if (ubi->beb_rsvd_pebs == 0) { 1096 spin_unlock(&ubi->volumes_lock); 1097 ubi_err("no reserved physical eraseblocks"); 1098 goto out_ro; 1099 } 1100 spin_unlock(&ubi->volumes_lock); 1101 1102 ubi_msg("mark PEB %d as bad", pnum); 1103 err = ubi_io_mark_bad(ubi, pnum); 1104 if (err) 1105 goto out_ro; 1106 1107 spin_lock(&ubi->volumes_lock); 1108 ubi->beb_rsvd_pebs -= 1; 1109 ubi->bad_peb_count += 1; 1110 ubi->good_peb_count -= 1; 1111 ubi_calculate_reserved(ubi); 1112 if (ubi->beb_rsvd_pebs) 1113 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs); 1114 else 1115 ubi_warn("last PEB from the reserved pool was used"); 1116 spin_unlock(&ubi->volumes_lock); 1117 1118 return err; 1119 1120out_ro: 1121 ubi_ro_mode(ubi); 1122 return err; 1123} 1124 1125/** 1126 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1127 * @ubi: UBI device description object 1128 * @pnum: physical eraseblock to return 1129 * @torture: if this physical eraseblock has to be tortured 1130 * 1131 * This function is called to return physical eraseblock @pnum to the pool of 1132 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1133 * occurred to this @pnum and it has to be tested. This function returns zero 1134 * in case of success, and a negative error code in case of failure. 1135 */ 1136int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture) 1137{ 1138 int err; 1139 struct ubi_wl_entry *e; 1140 1141 dbg_wl("PEB %d", pnum); 1142 ubi_assert(pnum >= 0); 1143 ubi_assert(pnum < ubi->peb_count); 1144 1145retry: 1146 spin_lock(&ubi->wl_lock); 1147 e = ubi->lookuptbl[pnum]; 1148 if (e == ubi->move_from) { 1149 /* 1150 * User is putting the physical eraseblock which was selected to 1151 * be moved. It will be scheduled for erasure in the 1152 * wear-leveling worker. 1153 */ 1154 dbg_wl("PEB %d is being moved, wait", pnum); 1155 spin_unlock(&ubi->wl_lock); 1156 1157 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1158 mutex_lock(&ubi->move_mutex); 1159 mutex_unlock(&ubi->move_mutex); 1160 goto retry; 1161 } else if (e == ubi->move_to) { 1162 /* 1163 * User is putting the physical eraseblock which was selected 1164 * as the target the data is moved to. It may happen if the EBA 1165 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1166 * but the WL sub-system has not put the PEB to the "used" tree 1167 * yet, but it is about to do this. So we just set a flag which 1168 * will tell the WL worker that the PEB is not needed anymore 1169 * and should be scheduled for erasure. 1170 */ 1171 dbg_wl("PEB %d is the target of data moving", pnum); 1172 ubi_assert(!ubi->move_to_put); 1173 ubi->move_to_put = 1; 1174 spin_unlock(&ubi->wl_lock); 1175 return 0; 1176 } else { 1177 if (in_wl_tree(e, &ubi->used)) { 1178 paranoid_check_in_wl_tree(ubi, e, &ubi->used); 1179 rb_erase(&e->u.rb, &ubi->used); 1180 } else if (in_wl_tree(e, &ubi->scrub)) { 1181 paranoid_check_in_wl_tree(ubi, e, &ubi->scrub); 1182 rb_erase(&e->u.rb, &ubi->scrub); 1183 } else if (in_wl_tree(e, &ubi->erroneous)) { 1184 paranoid_check_in_wl_tree(ubi, e, &ubi->erroneous); 1185 rb_erase(&e->u.rb, &ubi->erroneous); 1186 ubi->erroneous_peb_count -= 1; 1187 ubi_assert(ubi->erroneous_peb_count >= 0); 1188 /* Erroneous PEBs should be tortured */ 1189 torture = 1; 1190 } else { 1191 err = prot_queue_del(ubi, e->pnum); 1192 if (err) { 1193 ubi_err("PEB %d not found", pnum); 1194 ubi_ro_mode(ubi); 1195 spin_unlock(&ubi->wl_lock); 1196 return err; 1197 } 1198 } 1199 } 1200 spin_unlock(&ubi->wl_lock); 1201 1202 err = schedule_erase(ubi, e, torture); 1203 if (err) { 1204 spin_lock(&ubi->wl_lock); 1205 wl_tree_add(e, &ubi->used); 1206 spin_unlock(&ubi->wl_lock); 1207 } 1208 1209 return err; 1210} 1211 1212/** 1213 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1214 * @ubi: UBI device description object 1215 * @pnum: the physical eraseblock to schedule 1216 * 1217 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1218 * needs scrubbing. This function schedules a physical eraseblock for 1219 * scrubbing which is done in background. This function returns zero in case of 1220 * success and a negative error code in case of failure. 1221 */ 1222int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1223{ 1224 struct ubi_wl_entry *e; 1225 1226 dbg_msg("schedule PEB %d for scrubbing", pnum); 1227 1228retry: 1229 spin_lock(&ubi->wl_lock); 1230 e = ubi->lookuptbl[pnum]; 1231 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1232 in_wl_tree(e, &ubi->erroneous)) { 1233 spin_unlock(&ubi->wl_lock); 1234 return 0; 1235 } 1236 1237 if (e == ubi->move_to) { 1238 /* 1239 * This physical eraseblock was used to move data to. The data 1240 * was moved but the PEB was not yet inserted to the proper 1241 * tree. We should just wait a little and let the WL worker 1242 * proceed. 1243 */ 1244 spin_unlock(&ubi->wl_lock); 1245 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1246 yield(); 1247 goto retry; 1248 } 1249 1250 if (in_wl_tree(e, &ubi->used)) { 1251 paranoid_check_in_wl_tree(ubi, e, &ubi->used); 1252 rb_erase(&e->u.rb, &ubi->used); 1253 } else { 1254 int err; 1255 1256 err = prot_queue_del(ubi, e->pnum); 1257 if (err) { 1258 ubi_err("PEB %d not found", pnum); 1259 ubi_ro_mode(ubi); 1260 spin_unlock(&ubi->wl_lock); 1261 return err; 1262 } 1263 } 1264 1265 wl_tree_add(e, &ubi->scrub); 1266 spin_unlock(&ubi->wl_lock); 1267 1268 /* 1269 * Technically scrubbing is the same as wear-leveling, so it is done 1270 * by the WL worker. 1271 */ 1272 return ensure_wear_leveling(ubi); 1273} 1274 1275/** 1276 * ubi_wl_flush - flush all pending works. 1277 * @ubi: UBI device description object 1278 * 1279 * This function returns zero in case of success and a negative error code in 1280 * case of failure. 1281 */ 1282int ubi_wl_flush(struct ubi_device *ubi) 1283{ 1284 int err; 1285 1286 /* 1287 * Erase while the pending works queue is not empty, but not more than 1288 * the number of currently pending works. 1289 */ 1290 dbg_wl("flush (%d pending works)", ubi->works_count); 1291 while (ubi->works_count) { 1292 err = do_work(ubi); 1293 if (err) 1294 return err; 1295 } 1296 1297 /* 1298 * Make sure all the works which have been done in parallel are 1299 * finished. 1300 */ 1301 down_write(&ubi->work_sem); 1302 up_write(&ubi->work_sem); 1303 1304 /* 1305 * And in case last was the WL worker and it canceled the LEB 1306 * movement, flush again. 1307 */ 1308 while (ubi->works_count) { 1309 dbg_wl("flush more (%d pending works)", ubi->works_count); 1310 err = do_work(ubi); 1311 if (err) 1312 return err; 1313 } 1314 1315 return 0; 1316} 1317 1318/** 1319 * tree_destroy - destroy an RB-tree. 1320 * @root: the root of the tree to destroy 1321 */ 1322static void tree_destroy(struct rb_root *root) 1323{ 1324 struct rb_node *rb; 1325 struct ubi_wl_entry *e; 1326 1327 rb = root->rb_node; 1328 while (rb) { 1329 if (rb->rb_left) 1330 rb = rb->rb_left; 1331 else if (rb->rb_right) 1332 rb = rb->rb_right; 1333 else { 1334 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1335 1336 rb = rb_parent(rb); 1337 if (rb) { 1338 if (rb->rb_left == &e->u.rb) 1339 rb->rb_left = NULL; 1340 else 1341 rb->rb_right = NULL; 1342 } 1343 1344 kmem_cache_free(ubi_wl_entry_slab, e); 1345 } 1346 } 1347} 1348 1349/** 1350 * ubi_thread - UBI background thread. 1351 * @u: the UBI device description object pointer 1352 */ 1353int ubi_thread(void *u) 1354{ 1355 int failures = 0; 1356 struct ubi_device *ubi = u; 1357 1358 ubi_msg("background thread \"%s\" started, PID %d", 1359 ubi->bgt_name, task_pid_nr(current)); 1360 1361 set_freezable(); 1362 for (;;) { 1363 int err; 1364 1365 if (kthread_should_stop()) 1366 break; 1367 1368 if (try_to_freeze()) 1369 continue; 1370 1371 spin_lock(&ubi->wl_lock); 1372 if (list_empty(&ubi->works) || ubi->ro_mode || 1373 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1374 set_current_state(TASK_INTERRUPTIBLE); 1375 spin_unlock(&ubi->wl_lock); 1376 schedule(); 1377 continue; 1378 } 1379 spin_unlock(&ubi->wl_lock); 1380 1381 err = do_work(ubi); 1382 if (err) { 1383 ubi_err("%s: work failed with error code %d", 1384 ubi->bgt_name, err); 1385 if (failures++ > WL_MAX_FAILURES) { 1386 /* 1387 * Too many failures, disable the thread and 1388 * switch to read-only mode. 1389 */ 1390 ubi_msg("%s: %d consecutive failures", 1391 ubi->bgt_name, WL_MAX_FAILURES); 1392 ubi_ro_mode(ubi); 1393 ubi->thread_enabled = 0; 1394 continue; 1395 } 1396 } else 1397 failures = 0; 1398 1399 cond_resched(); 1400 } 1401 1402 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1403 return 0; 1404} 1405 1406/** 1407 * cancel_pending - cancel all pending works. 1408 * @ubi: UBI device description object 1409 */ 1410static void cancel_pending(struct ubi_device *ubi) 1411{ 1412 while (!list_empty(&ubi->works)) { 1413 struct ubi_work *wrk; 1414 1415 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1416 list_del(&wrk->list); 1417 wrk->func(ubi, wrk, 1); 1418 ubi->works_count -= 1; 1419 ubi_assert(ubi->works_count >= 0); 1420 } 1421} 1422 1423/** 1424 * ubi_wl_init_scan - initialize the WL sub-system using scanning information. 1425 * @ubi: UBI device description object 1426 * @si: scanning information 1427 * 1428 * This function returns zero in case of success, and a negative error code in 1429 * case of failure. 1430 */ 1431int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) 1432{ 1433 int err, i; 1434 struct rb_node *rb1, *rb2; 1435 struct ubi_scan_volume *sv; 1436 struct ubi_scan_leb *seb, *tmp; 1437 struct ubi_wl_entry *e; 1438 1439 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1440 spin_lock_init(&ubi->wl_lock); 1441 mutex_init(&ubi->move_mutex); 1442 init_rwsem(&ubi->work_sem); 1443 ubi->max_ec = si->max_ec; 1444 INIT_LIST_HEAD(&ubi->works); 1445 1446 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1447 1448 err = -ENOMEM; 1449 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1450 if (!ubi->lookuptbl) 1451 return err; 1452 1453 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1454 INIT_LIST_HEAD(&ubi->pq[i]); 1455 ubi->pq_head = 0; 1456 1457 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) { 1458 cond_resched(); 1459 1460 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1461 if (!e) 1462 goto out_free; 1463 1464 e->pnum = seb->pnum; 1465 e->ec = seb->ec; 1466 ubi->lookuptbl[e->pnum] = e; 1467 if (schedule_erase(ubi, e, 0)) { 1468 kmem_cache_free(ubi_wl_entry_slab, e); 1469 goto out_free; 1470 } 1471 } 1472 1473 list_for_each_entry(seb, &si->free, u.list) { 1474 cond_resched(); 1475 1476 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1477 if (!e) 1478 goto out_free; 1479 1480 e->pnum = seb->pnum; 1481 e->ec = seb->ec; 1482 ubi_assert(e->ec >= 0); 1483 wl_tree_add(e, &ubi->free); 1484 ubi->lookuptbl[e->pnum] = e; 1485 } 1486 1487 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1488 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1489 cond_resched(); 1490 1491 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1492 if (!e) 1493 goto out_free; 1494 1495 e->pnum = seb->pnum; 1496 e->ec = seb->ec; 1497 ubi->lookuptbl[e->pnum] = e; 1498 if (!seb->scrub) { 1499 dbg_wl("add PEB %d EC %d to the used tree", 1500 e->pnum, e->ec); 1501 wl_tree_add(e, &ubi->used); 1502 } else { 1503 dbg_wl("add PEB %d EC %d to the scrub tree", 1504 e->pnum, e->ec); 1505 wl_tree_add(e, &ubi->scrub); 1506 } 1507 } 1508 } 1509 1510 if (ubi->avail_pebs < WL_RESERVED_PEBS) { 1511 ubi_err("no enough physical eraseblocks (%d, need %d)", 1512 ubi->avail_pebs, WL_RESERVED_PEBS); 1513 if (ubi->corr_peb_count) 1514 ubi_err("%d PEBs are corrupted and not used", 1515 ubi->corr_peb_count); 1516 goto out_free; 1517 } 1518 ubi->avail_pebs -= WL_RESERVED_PEBS; 1519 ubi->rsvd_pebs += WL_RESERVED_PEBS; 1520 1521 /* Schedule wear-leveling if needed */ 1522 err = ensure_wear_leveling(ubi); 1523 if (err) 1524 goto out_free; 1525 1526 return 0; 1527 1528out_free: 1529 cancel_pending(ubi); 1530 tree_destroy(&ubi->used); 1531 tree_destroy(&ubi->free); 1532 tree_destroy(&ubi->scrub); 1533 kfree(ubi->lookuptbl); 1534 return err; 1535} 1536 1537/** 1538 * protection_queue_destroy - destroy the protection queue. 1539 * @ubi: UBI device description object 1540 */ 1541static void protection_queue_destroy(struct ubi_device *ubi) 1542{ 1543 int i; 1544 struct ubi_wl_entry *e, *tmp; 1545 1546 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1547 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1548 list_del(&e->u.list); 1549 kmem_cache_free(ubi_wl_entry_slab, e); 1550 } 1551 } 1552} 1553 1554/** 1555 * ubi_wl_close - close the wear-leveling sub-system. 1556 * @ubi: UBI device description object 1557 */ 1558void ubi_wl_close(struct ubi_device *ubi) 1559{ 1560 dbg_wl("close the WL sub-system"); 1561 cancel_pending(ubi); 1562 protection_queue_destroy(ubi); 1563 tree_destroy(&ubi->used); 1564 tree_destroy(&ubi->erroneous); 1565 tree_destroy(&ubi->free); 1566 tree_destroy(&ubi->scrub); 1567 kfree(ubi->lookuptbl); 1568} 1569 1570#ifdef CONFIG_MTD_UBI_DEBUG 1571 1572/** 1573 * paranoid_check_ec - make sure that the erase counter of a PEB is correct. 1574 * @ubi: UBI device description object 1575 * @pnum: the physical eraseblock number to check 1576 * @ec: the erase counter to check 1577 * 1578 * This function returns zero if the erase counter of physical eraseblock @pnum 1579 * is equivalent to @ec, and a negative error code if not or if an error 1580 * occurred. 1581 */ 1582static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec) 1583{ 1584 int err; 1585 long long read_ec; 1586 struct ubi_ec_hdr *ec_hdr; 1587 1588 if (!ubi->dbg->chk_gen) 1589 return 0; 1590 1591 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1592 if (!ec_hdr) 1593 return -ENOMEM; 1594 1595 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1596 if (err && err != UBI_IO_BITFLIPS) { 1597 /* The header does not have to exist */ 1598 err = 0; 1599 goto out_free; 1600 } 1601 1602 read_ec = be64_to_cpu(ec_hdr->ec); 1603 if (ec != read_ec) { 1604 ubi_err("paranoid check failed for PEB %d", pnum); 1605 ubi_err("read EC is %lld, should be %d", read_ec, ec); 1606 ubi_dbg_dump_stack(); 1607 err = 1; 1608 } else 1609 err = 0; 1610 1611out_free: 1612 kfree(ec_hdr); 1613 return err; 1614} 1615 1616/** 1617 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1618 * @ubi: UBI device description object 1619 * @e: the wear-leveling entry to check 1620 * @root: the root of the tree 1621 * 1622 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 1623 * is not. 1624 */ 1625static int paranoid_check_in_wl_tree(const struct ubi_device *ubi, 1626 struct ubi_wl_entry *e, 1627 struct rb_root *root) 1628{ 1629 if (!ubi->dbg->chk_gen) 1630 return 0; 1631 1632 if (in_wl_tree(e, root)) 1633 return 0; 1634 1635 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ", 1636 e->pnum, e->ec, root); 1637 ubi_dbg_dump_stack(); 1638 return -EINVAL; 1639} 1640 1641/** 1642 * paranoid_check_in_pq - check if wear-leveling entry is in the protection 1643 * queue. 1644 * @ubi: UBI device description object 1645 * @e: the wear-leveling entry to check 1646 * 1647 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 1648 */ 1649static int paranoid_check_in_pq(const struct ubi_device *ubi, 1650 struct ubi_wl_entry *e) 1651{ 1652 struct ubi_wl_entry *p; 1653 int i; 1654 1655 if (!ubi->dbg->chk_gen) 1656 return 0; 1657 1658 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 1659 list_for_each_entry(p, &ubi->pq[i], u.list) 1660 if (p == e) 1661 return 0; 1662 1663 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue", 1664 e->pnum, e->ec); 1665 ubi_dbg_dump_stack(); 1666 return -EINVAL; 1667} 1668 1669#endif /* CONFIG_MTD_UBI_DEBUG */ 1670