1/*
2 *
3 * Alchemy Au1x00 ethernet driver
4 *
5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
11 * ioctls (SIOCGMIIPHY)
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 *  converted to use linux-2.6.x's PHY framework
14 *
15 * Author: MontaVista Software, Inc.
16 *		ppopov@mvista.com or source@mvista.com
17 *
18 * ########################################################################
19 *
20 *  This program is free software; you can distribute it and/or modify it
21 *  under the terms of the GNU General Public License (Version 2) as
22 *  published by the Free Software Foundation.
23 *
24 *  This program is distributed in the hope it will be useful, but WITHOUT
25 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
27 *  for more details.
28 *
29 *  You should have received a copy of the GNU General Public License along
30 *  with this program; if not, write to the Free Software Foundation, Inc.,
31 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
32 *
33 * ########################################################################
34 *
35 *
36 */
37#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38
39#include <linux/capability.h>
40#include <linux/dma-mapping.h>
41#include <linux/module.h>
42#include <linux/kernel.h>
43#include <linux/string.h>
44#include <linux/timer.h>
45#include <linux/errno.h>
46#include <linux/in.h>
47#include <linux/ioport.h>
48#include <linux/bitops.h>
49#include <linux/slab.h>
50#include <linux/interrupt.h>
51#include <linux/init.h>
52#include <linux/netdevice.h>
53#include <linux/etherdevice.h>
54#include <linux/ethtool.h>
55#include <linux/mii.h>
56#include <linux/skbuff.h>
57#include <linux/delay.h>
58#include <linux/crc32.h>
59#include <linux/phy.h>
60#include <linux/platform_device.h>
61#include <linux/cpu.h>
62#include <linux/io.h>
63
64#include <asm/mipsregs.h>
65#include <asm/irq.h>
66#include <asm/processor.h>
67
68#include <au1000.h>
69#include <au1xxx_eth.h>
70#include <prom.h>
71
72#include "au1000_eth.h"
73
74#ifdef AU1000_ETH_DEBUG
75static int au1000_debug = 5;
76#else
77static int au1000_debug = 3;
78#endif
79
80#define AU1000_DEF_MSG_ENABLE	(NETIF_MSG_DRV	| \
81				NETIF_MSG_PROBE	| \
82				NETIF_MSG_LINK)
83
84#define DRV_NAME	"au1000_eth"
85#define DRV_VERSION	"1.7"
86#define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
87#define DRV_DESC	"Au1xxx on-chip Ethernet driver"
88
89MODULE_AUTHOR(DRV_AUTHOR);
90MODULE_DESCRIPTION(DRV_DESC);
91MODULE_LICENSE("GPL");
92MODULE_VERSION(DRV_VERSION);
93
94/*
95 * Theory of operation
96 *
97 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
98 * There are four receive and four transmit descriptors.  These
99 * descriptors are not in memory; rather, they are just a set of
100 * hardware registers.
101 *
102 * Since the Au1000 has a coherent data cache, the receive and
103 * transmit buffers are allocated from the KSEG0 segment. The
104 * hardware registers, however, are still mapped at KSEG1 to
105 * make sure there's no out-of-order writes, and that all writes
106 * complete immediately.
107 */
108
109/*
110 * board-specific configurations
111 *
112 * PHY detection algorithm
113 *
114 * If phy_static_config is undefined, the PHY setup is
115 * autodetected:
116 *
117 * mii_probe() first searches the current MAC's MII bus for a PHY,
118 * selecting the first (or last, if phy_search_highest_addr is
119 * defined) PHY address not already claimed by another netdev.
120 *
121 * If nothing was found that way when searching for the 2nd ethernet
122 * controller's PHY and phy1_search_mac0 is defined, then
123 * the first MII bus is searched as well for an unclaimed PHY; this is
124 * needed in case of a dual-PHY accessible only through the MAC0's MII
125 * bus.
126 *
127 * Finally, if no PHY is found, then the corresponding ethernet
128 * controller is not registered to the network subsystem.
129 */
130
131/* autodetection defaults: phy1_search_mac0 */
132
133/* static PHY setup
134 *
135 * most boards PHY setup should be detectable properly with the
136 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
137 * you have a switch attached, or want to use the PHY's interrupt
138 * notification capabilities) you can provide a static PHY
139 * configuration here
140 *
141 * IRQs may only be set, if a PHY address was configured
142 * If a PHY address is given, also a bus id is required to be set
143 *
144 * ps: make sure the used irqs are configured properly in the board
145 * specific irq-map
146 */
147
148static void au1000_enable_mac(struct net_device *dev, int force_reset)
149{
150	unsigned long flags;
151	struct au1000_private *aup = netdev_priv(dev);
152
153	spin_lock_irqsave(&aup->lock, flags);
154
155	if (force_reset || (!aup->mac_enabled)) {
156		writel(MAC_EN_CLOCK_ENABLE, aup->enable);
157		au_sync_delay(2);
158		writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
159				| MAC_EN_CLOCK_ENABLE), aup->enable);
160		au_sync_delay(2);
161
162		aup->mac_enabled = 1;
163	}
164
165	spin_unlock_irqrestore(&aup->lock, flags);
166}
167
168/*
169 * MII operations
170 */
171static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
172{
173	struct au1000_private *aup = netdev_priv(dev);
174	u32 *const mii_control_reg = &aup->mac->mii_control;
175	u32 *const mii_data_reg = &aup->mac->mii_data;
176	u32 timedout = 20;
177	u32 mii_control;
178
179	while (readl(mii_control_reg) & MAC_MII_BUSY) {
180		mdelay(1);
181		if (--timedout == 0) {
182			netdev_err(dev, "read_MII busy timeout!!\n");
183			return -1;
184		}
185	}
186
187	mii_control = MAC_SET_MII_SELECT_REG(reg) |
188		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
189
190	writel(mii_control, mii_control_reg);
191
192	timedout = 20;
193	while (readl(mii_control_reg) & MAC_MII_BUSY) {
194		mdelay(1);
195		if (--timedout == 0) {
196			netdev_err(dev, "mdio_read busy timeout!!\n");
197			return -1;
198		}
199	}
200	return readl(mii_data_reg);
201}
202
203static void au1000_mdio_write(struct net_device *dev, int phy_addr,
204			      int reg, u16 value)
205{
206	struct au1000_private *aup = netdev_priv(dev);
207	u32 *const mii_control_reg = &aup->mac->mii_control;
208	u32 *const mii_data_reg = &aup->mac->mii_data;
209	u32 timedout = 20;
210	u32 mii_control;
211
212	while (readl(mii_control_reg) & MAC_MII_BUSY) {
213		mdelay(1);
214		if (--timedout == 0) {
215			netdev_err(dev, "mdio_write busy timeout!!\n");
216			return;
217		}
218	}
219
220	mii_control = MAC_SET_MII_SELECT_REG(reg) |
221		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
222
223	writel(value, mii_data_reg);
224	writel(mii_control, mii_control_reg);
225}
226
227static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
228{
229	/* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
230	 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus)
231	 */
232	struct net_device *const dev = bus->priv;
233
234	/* make sure the MAC associated with this
235	 * mii_bus is enabled
236	 */
237	au1000_enable_mac(dev, 0);
238
239	return au1000_mdio_read(dev, phy_addr, regnum);
240}
241
242static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
243				u16 value)
244{
245	struct net_device *const dev = bus->priv;
246
247	/* make sure the MAC associated with this
248	 * mii_bus is enabled
249	 */
250	au1000_enable_mac(dev, 0);
251
252	au1000_mdio_write(dev, phy_addr, regnum, value);
253	return 0;
254}
255
256static int au1000_mdiobus_reset(struct mii_bus *bus)
257{
258	struct net_device *const dev = bus->priv;
259
260	/* make sure the MAC associated with this
261	 * mii_bus is enabled
262	 */
263	au1000_enable_mac(dev, 0);
264
265	return 0;
266}
267
268static void au1000_hard_stop(struct net_device *dev)
269{
270	struct au1000_private *aup = netdev_priv(dev);
271	u32 reg;
272
273	netif_dbg(aup, drv, dev, "hard stop\n");
274
275	reg = readl(&aup->mac->control);
276	reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
277	writel(reg, &aup->mac->control);
278	au_sync_delay(10);
279}
280
281static void au1000_enable_rx_tx(struct net_device *dev)
282{
283	struct au1000_private *aup = netdev_priv(dev);
284	u32 reg;
285
286	netif_dbg(aup, hw, dev, "enable_rx_tx\n");
287
288	reg = readl(&aup->mac->control);
289	reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
290	writel(reg, &aup->mac->control);
291	au_sync_delay(10);
292}
293
294static void
295au1000_adjust_link(struct net_device *dev)
296{
297	struct au1000_private *aup = netdev_priv(dev);
298	struct phy_device *phydev = aup->phy_dev;
299	unsigned long flags;
300	u32 reg;
301
302	int status_change = 0;
303
304	BUG_ON(!aup->phy_dev);
305
306	spin_lock_irqsave(&aup->lock, flags);
307
308	if (phydev->link && (aup->old_speed != phydev->speed)) {
309		/* speed changed */
310
311		switch (phydev->speed) {
312		case SPEED_10:
313		case SPEED_100:
314			break;
315		default:
316			netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
317							phydev->speed);
318			break;
319		}
320
321		aup->old_speed = phydev->speed;
322
323		status_change = 1;
324	}
325
326	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
327		/* duplex mode changed */
328
329		/* switching duplex mode requires to disable rx and tx! */
330		au1000_hard_stop(dev);
331
332		reg = readl(&aup->mac->control);
333		if (DUPLEX_FULL == phydev->duplex) {
334			reg |= MAC_FULL_DUPLEX;
335			reg &= ~MAC_DISABLE_RX_OWN;
336		} else {
337			reg &= ~MAC_FULL_DUPLEX;
338			reg |= MAC_DISABLE_RX_OWN;
339		}
340		writel(reg, &aup->mac->control);
341		au_sync_delay(1);
342
343		au1000_enable_rx_tx(dev);
344		aup->old_duplex = phydev->duplex;
345
346		status_change = 1;
347	}
348
349	if (phydev->link != aup->old_link) {
350		/* link state changed */
351
352		if (!phydev->link) {
353			/* link went down */
354			aup->old_speed = 0;
355			aup->old_duplex = -1;
356		}
357
358		aup->old_link = phydev->link;
359		status_change = 1;
360	}
361
362	spin_unlock_irqrestore(&aup->lock, flags);
363
364	if (status_change) {
365		if (phydev->link)
366			netdev_info(dev, "link up (%d/%s)\n",
367			       phydev->speed,
368			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
369		else
370			netdev_info(dev, "link down\n");
371	}
372}
373
374static int au1000_mii_probe(struct net_device *dev)
375{
376	struct au1000_private *const aup = netdev_priv(dev);
377	struct phy_device *phydev = NULL;
378	int phy_addr;
379
380	if (aup->phy_static_config) {
381		BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
382
383		if (aup->phy_addr)
384			phydev = aup->mii_bus->phy_map[aup->phy_addr];
385		else
386			netdev_info(dev, "using PHY-less setup\n");
387		return 0;
388	}
389
390	/* find the first (lowest address) PHY
391	 * on the current MAC's MII bus
392	 */
393	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
394		if (aup->mii_bus->phy_map[phy_addr]) {
395			phydev = aup->mii_bus->phy_map[phy_addr];
396			if (!aup->phy_search_highest_addr)
397				/* break out with first one found */
398				break;
399		}
400
401	if (aup->phy1_search_mac0) {
402		/* try harder to find a PHY */
403		if (!phydev && (aup->mac_id == 1)) {
404			/* no PHY found, maybe we have a dual PHY? */
405			dev_info(&dev->dev, ": no PHY found on MAC1, "
406				"let's see if it's attached to MAC0...\n");
407
408			/* find the first (lowest address) non-attached
409			 * PHY on the MAC0 MII bus
410			 */
411			for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
412				struct phy_device *const tmp_phydev =
413					aup->mii_bus->phy_map[phy_addr];
414
415				if (aup->mac_id == 1)
416					break;
417
418				/* no PHY here... */
419				if (!tmp_phydev)
420					continue;
421
422				/* already claimed by MAC0 */
423				if (tmp_phydev->attached_dev)
424					continue;
425
426				phydev = tmp_phydev;
427				break; /* found it */
428			}
429		}
430	}
431
432	if (!phydev) {
433		netdev_err(dev, "no PHY found\n");
434		return -1;
435	}
436
437	/* now we are supposed to have a proper phydev, to attach to... */
438	BUG_ON(phydev->attached_dev);
439
440	phydev = phy_connect(dev, dev_name(&phydev->dev), &au1000_adjust_link,
441			0, PHY_INTERFACE_MODE_MII);
442
443	if (IS_ERR(phydev)) {
444		netdev_err(dev, "Could not attach to PHY\n");
445		return PTR_ERR(phydev);
446	}
447
448	/* mask with MAC supported features */
449	phydev->supported &= (SUPPORTED_10baseT_Half
450			      | SUPPORTED_10baseT_Full
451			      | SUPPORTED_100baseT_Half
452			      | SUPPORTED_100baseT_Full
453			      | SUPPORTED_Autoneg
454			      /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
455			      | SUPPORTED_MII
456			      | SUPPORTED_TP);
457
458	phydev->advertising = phydev->supported;
459
460	aup->old_link = 0;
461	aup->old_speed = 0;
462	aup->old_duplex = -1;
463	aup->phy_dev = phydev;
464
465	netdev_info(dev, "attached PHY driver [%s] "
466	       "(mii_bus:phy_addr=%s, irq=%d)\n",
467	       phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
468
469	return 0;
470}
471
472
473/*
474 * Buffer allocation/deallocation routines. The buffer descriptor returned
475 * has the virtual and dma address of a buffer suitable for
476 * both, receive and transmit operations.
477 */
478static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
479{
480	struct db_dest *pDB;
481	pDB = aup->pDBfree;
482
483	if (pDB)
484		aup->pDBfree = pDB->pnext;
485
486	return pDB;
487}
488
489void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
490{
491	struct db_dest *pDBfree = aup->pDBfree;
492	if (pDBfree)
493		pDBfree->pnext = pDB;
494	aup->pDBfree = pDB;
495}
496
497static void au1000_reset_mac_unlocked(struct net_device *dev)
498{
499	struct au1000_private *const aup = netdev_priv(dev);
500	int i;
501
502	au1000_hard_stop(dev);
503
504	writel(MAC_EN_CLOCK_ENABLE, aup->enable);
505	au_sync_delay(2);
506	writel(0, aup->enable);
507	au_sync_delay(2);
508
509	aup->tx_full = 0;
510	for (i = 0; i < NUM_RX_DMA; i++) {
511		/* reset control bits */
512		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
513	}
514	for (i = 0; i < NUM_TX_DMA; i++) {
515		/* reset control bits */
516		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
517	}
518
519	aup->mac_enabled = 0;
520
521}
522
523static void au1000_reset_mac(struct net_device *dev)
524{
525	struct au1000_private *const aup = netdev_priv(dev);
526	unsigned long flags;
527
528	netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
529					(unsigned)aup);
530
531	spin_lock_irqsave(&aup->lock, flags);
532
533	au1000_reset_mac_unlocked(dev);
534
535	spin_unlock_irqrestore(&aup->lock, flags);
536}
537
538/*
539 * Setup the receive and transmit "rings".  These pointers are the addresses
540 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
541 * these are not descriptors sitting in memory.
542 */
543static void
544au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
545{
546	int i;
547
548	for (i = 0; i < NUM_RX_DMA; i++) {
549		aup->rx_dma_ring[i] = (struct rx_dma *)
550			(tx_base + 0x100 + sizeof(struct rx_dma) * i);
551	}
552	for (i = 0; i < NUM_TX_DMA; i++) {
553		aup->tx_dma_ring[i] = (struct tx_dma *)
554			(tx_base + sizeof(struct tx_dma) * i);
555	}
556}
557
558/*
559 * ethtool operations
560 */
561
562static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
563{
564	struct au1000_private *aup = netdev_priv(dev);
565
566	if (aup->phy_dev)
567		return phy_ethtool_gset(aup->phy_dev, cmd);
568
569	return -EINVAL;
570}
571
572static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
573{
574	struct au1000_private *aup = netdev_priv(dev);
575
576	if (!capable(CAP_NET_ADMIN))
577		return -EPERM;
578
579	if (aup->phy_dev)
580		return phy_ethtool_sset(aup->phy_dev, cmd);
581
582	return -EINVAL;
583}
584
585static void
586au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
587{
588	struct au1000_private *aup = netdev_priv(dev);
589
590	strcpy(info->driver, DRV_NAME);
591	strcpy(info->version, DRV_VERSION);
592	info->fw_version[0] = '\0';
593	sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
594	info->regdump_len = 0;
595}
596
597static void au1000_set_msglevel(struct net_device *dev, u32 value)
598{
599	struct au1000_private *aup = netdev_priv(dev);
600	aup->msg_enable = value;
601}
602
603static u32 au1000_get_msglevel(struct net_device *dev)
604{
605	struct au1000_private *aup = netdev_priv(dev);
606	return aup->msg_enable;
607}
608
609static const struct ethtool_ops au1000_ethtool_ops = {
610	.get_settings = au1000_get_settings,
611	.set_settings = au1000_set_settings,
612	.get_drvinfo = au1000_get_drvinfo,
613	.get_link = ethtool_op_get_link,
614	.get_msglevel = au1000_get_msglevel,
615	.set_msglevel = au1000_set_msglevel,
616};
617
618
619/*
620 * Initialize the interface.
621 *
622 * When the device powers up, the clocks are disabled and the
623 * mac is in reset state.  When the interface is closed, we
624 * do the same -- reset the device and disable the clocks to
625 * conserve power. Thus, whenever au1000_init() is called,
626 * the device should already be in reset state.
627 */
628static int au1000_init(struct net_device *dev)
629{
630	struct au1000_private *aup = netdev_priv(dev);
631	unsigned long flags;
632	int i;
633	u32 control;
634
635	netif_dbg(aup, hw, dev, "au1000_init\n");
636
637	/* bring the device out of reset */
638	au1000_enable_mac(dev, 1);
639
640	spin_lock_irqsave(&aup->lock, flags);
641
642	writel(0, &aup->mac->control);
643	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
644	aup->tx_tail = aup->tx_head;
645	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
646
647	writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
648					&aup->mac->mac_addr_high);
649	writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
650		dev->dev_addr[1]<<8 | dev->dev_addr[0],
651					&aup->mac->mac_addr_low);
652
653
654	for (i = 0; i < NUM_RX_DMA; i++)
655		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
656
657	au_sync();
658
659	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
660#ifndef CONFIG_CPU_LITTLE_ENDIAN
661	control |= MAC_BIG_ENDIAN;
662#endif
663	if (aup->phy_dev) {
664		if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
665			control |= MAC_FULL_DUPLEX;
666		else
667			control |= MAC_DISABLE_RX_OWN;
668	} else { /* PHY-less op, assume full-duplex */
669		control |= MAC_FULL_DUPLEX;
670	}
671
672	writel(control, &aup->mac->control);
673	writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
674	au_sync();
675
676	spin_unlock_irqrestore(&aup->lock, flags);
677	return 0;
678}
679
680static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
681{
682	struct net_device_stats *ps = &dev->stats;
683
684	ps->rx_packets++;
685	if (status & RX_MCAST_FRAME)
686		ps->multicast++;
687
688	if (status & RX_ERROR) {
689		ps->rx_errors++;
690		if (status & RX_MISSED_FRAME)
691			ps->rx_missed_errors++;
692		if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
693			ps->rx_length_errors++;
694		if (status & RX_CRC_ERROR)
695			ps->rx_crc_errors++;
696		if (status & RX_COLL)
697			ps->collisions++;
698	} else
699		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
700
701}
702
703/*
704 * Au1000 receive routine.
705 */
706static int au1000_rx(struct net_device *dev)
707{
708	struct au1000_private *aup = netdev_priv(dev);
709	struct sk_buff *skb;
710	struct rx_dma *prxd;
711	u32 buff_stat, status;
712	struct db_dest *pDB;
713	u32	frmlen;
714
715	netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
716
717	prxd = aup->rx_dma_ring[aup->rx_head];
718	buff_stat = prxd->buff_stat;
719	while (buff_stat & RX_T_DONE)  {
720		status = prxd->status;
721		pDB = aup->rx_db_inuse[aup->rx_head];
722		au1000_update_rx_stats(dev, status);
723		if (!(status & RX_ERROR))  {
724
725			/* good frame */
726			frmlen = (status & RX_FRAME_LEN_MASK);
727			frmlen -= 4; /* Remove FCS */
728			skb = netdev_alloc_skb(dev, frmlen + 2);
729			if (skb == NULL) {
730				netdev_err(dev, "Memory squeeze, dropping packet.\n");
731				dev->stats.rx_dropped++;
732				continue;
733			}
734			skb_reserve(skb, 2);	/* 16 byte IP header align */
735			skb_copy_to_linear_data(skb,
736				(unsigned char *)pDB->vaddr, frmlen);
737			skb_put(skb, frmlen);
738			skb->protocol = eth_type_trans(skb, dev);
739			netif_rx(skb);	/* pass the packet to upper layers */
740		} else {
741			if (au1000_debug > 4) {
742				pr_err("rx_error(s):");
743				if (status & RX_MISSED_FRAME)
744					pr_cont(" miss");
745				if (status & RX_WDOG_TIMER)
746					pr_cont(" wdog");
747				if (status & RX_RUNT)
748					pr_cont(" runt");
749				if (status & RX_OVERLEN)
750					pr_cont(" overlen");
751				if (status & RX_COLL)
752					pr_cont(" coll");
753				if (status & RX_MII_ERROR)
754					pr_cont(" mii error");
755				if (status & RX_CRC_ERROR)
756					pr_cont(" crc error");
757				if (status & RX_LEN_ERROR)
758					pr_cont(" len error");
759				if (status & RX_U_CNTRL_FRAME)
760					pr_cont(" u control frame");
761				pr_cont("\n");
762			}
763		}
764		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
765		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
766		au_sync();
767
768		/* next descriptor */
769		prxd = aup->rx_dma_ring[aup->rx_head];
770		buff_stat = prxd->buff_stat;
771	}
772	return 0;
773}
774
775static void au1000_update_tx_stats(struct net_device *dev, u32 status)
776{
777	struct au1000_private *aup = netdev_priv(dev);
778	struct net_device_stats *ps = &dev->stats;
779
780	if (status & TX_FRAME_ABORTED) {
781		if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
782			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
783				/* any other tx errors are only valid
784				 * in half duplex mode
785				 */
786				ps->tx_errors++;
787				ps->tx_aborted_errors++;
788			}
789		} else {
790			ps->tx_errors++;
791			ps->tx_aborted_errors++;
792			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
793				ps->tx_carrier_errors++;
794		}
795	}
796}
797
798/*
799 * Called from the interrupt service routine to acknowledge
800 * the TX DONE bits.  This is a must if the irq is setup as
801 * edge triggered.
802 */
803static void au1000_tx_ack(struct net_device *dev)
804{
805	struct au1000_private *aup = netdev_priv(dev);
806	struct tx_dma *ptxd;
807
808	ptxd = aup->tx_dma_ring[aup->tx_tail];
809
810	while (ptxd->buff_stat & TX_T_DONE) {
811		au1000_update_tx_stats(dev, ptxd->status);
812		ptxd->buff_stat &= ~TX_T_DONE;
813		ptxd->len = 0;
814		au_sync();
815
816		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
817		ptxd = aup->tx_dma_ring[aup->tx_tail];
818
819		if (aup->tx_full) {
820			aup->tx_full = 0;
821			netif_wake_queue(dev);
822		}
823	}
824}
825
826/*
827 * Au1000 interrupt service routine.
828 */
829static irqreturn_t au1000_interrupt(int irq, void *dev_id)
830{
831	struct net_device *dev = dev_id;
832
833	/* Handle RX interrupts first to minimize chance of overrun */
834
835	au1000_rx(dev);
836	au1000_tx_ack(dev);
837	return IRQ_RETVAL(1);
838}
839
840static int au1000_open(struct net_device *dev)
841{
842	int retval;
843	struct au1000_private *aup = netdev_priv(dev);
844
845	netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
846
847	retval = request_irq(dev->irq, au1000_interrupt, 0,
848					dev->name, dev);
849	if (retval) {
850		netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
851		return retval;
852	}
853
854	retval = au1000_init(dev);
855	if (retval) {
856		netdev_err(dev, "error in au1000_init\n");
857		free_irq(dev->irq, dev);
858		return retval;
859	}
860
861	if (aup->phy_dev) {
862		/* cause the PHY state machine to schedule a link state check */
863		aup->phy_dev->state = PHY_CHANGELINK;
864		phy_start(aup->phy_dev);
865	}
866
867	netif_start_queue(dev);
868
869	netif_dbg(aup, drv, dev, "open: Initialization done.\n");
870
871	return 0;
872}
873
874static int au1000_close(struct net_device *dev)
875{
876	unsigned long flags;
877	struct au1000_private *const aup = netdev_priv(dev);
878
879	netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
880
881	if (aup->phy_dev)
882		phy_stop(aup->phy_dev);
883
884	spin_lock_irqsave(&aup->lock, flags);
885
886	au1000_reset_mac_unlocked(dev);
887
888	/* stop the device */
889	netif_stop_queue(dev);
890
891	/* disable the interrupt */
892	free_irq(dev->irq, dev);
893	spin_unlock_irqrestore(&aup->lock, flags);
894
895	return 0;
896}
897
898/*
899 * Au1000 transmit routine.
900 */
901static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
902{
903	struct au1000_private *aup = netdev_priv(dev);
904	struct net_device_stats *ps = &dev->stats;
905	struct tx_dma *ptxd;
906	u32 buff_stat;
907	struct db_dest *pDB;
908	int i;
909
910	netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
911				(unsigned)aup, skb->len,
912				skb->data, aup->tx_head);
913
914	ptxd = aup->tx_dma_ring[aup->tx_head];
915	buff_stat = ptxd->buff_stat;
916	if (buff_stat & TX_DMA_ENABLE) {
917		/* We've wrapped around and the transmitter is still busy */
918		netif_stop_queue(dev);
919		aup->tx_full = 1;
920		return NETDEV_TX_BUSY;
921	} else if (buff_stat & TX_T_DONE) {
922		au1000_update_tx_stats(dev, ptxd->status);
923		ptxd->len = 0;
924	}
925
926	if (aup->tx_full) {
927		aup->tx_full = 0;
928		netif_wake_queue(dev);
929	}
930
931	pDB = aup->tx_db_inuse[aup->tx_head];
932	skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
933	if (skb->len < ETH_ZLEN) {
934		for (i = skb->len; i < ETH_ZLEN; i++)
935			((char *)pDB->vaddr)[i] = 0;
936
937		ptxd->len = ETH_ZLEN;
938	} else
939		ptxd->len = skb->len;
940
941	ps->tx_packets++;
942	ps->tx_bytes += ptxd->len;
943
944	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
945	au_sync();
946	dev_kfree_skb(skb);
947	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
948	return NETDEV_TX_OK;
949}
950
951/*
952 * The Tx ring has been full longer than the watchdog timeout
953 * value. The transmitter must be hung?
954 */
955static void au1000_tx_timeout(struct net_device *dev)
956{
957	netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
958	au1000_reset_mac(dev);
959	au1000_init(dev);
960	dev->trans_start = jiffies; /* prevent tx timeout */
961	netif_wake_queue(dev);
962}
963
964static void au1000_multicast_list(struct net_device *dev)
965{
966	struct au1000_private *aup = netdev_priv(dev);
967	u32 reg;
968
969	netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
970	reg = readl(&aup->mac->control);
971	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
972		reg |= MAC_PROMISCUOUS;
973	} else if ((dev->flags & IFF_ALLMULTI)  ||
974			   netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
975		reg |= MAC_PASS_ALL_MULTI;
976		reg &= ~MAC_PROMISCUOUS;
977		netdev_info(dev, "Pass all multicast\n");
978	} else {
979		struct netdev_hw_addr *ha;
980		u32 mc_filter[2];	/* Multicast hash filter */
981
982		mc_filter[1] = mc_filter[0] = 0;
983		netdev_for_each_mc_addr(ha, dev)
984			set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
985					(long *)mc_filter);
986		writel(mc_filter[1], &aup->mac->multi_hash_high);
987		writel(mc_filter[0], &aup->mac->multi_hash_low);
988		reg &= ~MAC_PROMISCUOUS;
989		reg |= MAC_HASH_MODE;
990	}
991	writel(reg, &aup->mac->control);
992}
993
994static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
995{
996	struct au1000_private *aup = netdev_priv(dev);
997
998	if (!netif_running(dev))
999		return -EINVAL;
1000
1001	if (!aup->phy_dev)
1002		return -EINVAL; /* PHY not controllable */
1003
1004	return phy_mii_ioctl(aup->phy_dev, rq, cmd);
1005}
1006
1007static const struct net_device_ops au1000_netdev_ops = {
1008	.ndo_open		= au1000_open,
1009	.ndo_stop		= au1000_close,
1010	.ndo_start_xmit		= au1000_tx,
1011	.ndo_set_rx_mode	= au1000_multicast_list,
1012	.ndo_do_ioctl		= au1000_ioctl,
1013	.ndo_tx_timeout		= au1000_tx_timeout,
1014	.ndo_set_mac_address	= eth_mac_addr,
1015	.ndo_validate_addr	= eth_validate_addr,
1016	.ndo_change_mtu		= eth_change_mtu,
1017};
1018
1019static int __devinit au1000_probe(struct platform_device *pdev)
1020{
1021	static unsigned version_printed;
1022	struct au1000_private *aup = NULL;
1023	struct au1000_eth_platform_data *pd;
1024	struct net_device *dev = NULL;
1025	struct db_dest *pDB, *pDBfree;
1026	int irq, i, err = 0;
1027	struct resource *base, *macen, *macdma;
1028
1029	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1030	if (!base) {
1031		dev_err(&pdev->dev, "failed to retrieve base register\n");
1032		err = -ENODEV;
1033		goto out;
1034	}
1035
1036	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1037	if (!macen) {
1038		dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1039		err = -ENODEV;
1040		goto out;
1041	}
1042
1043	irq = platform_get_irq(pdev, 0);
1044	if (irq < 0) {
1045		dev_err(&pdev->dev, "failed to retrieve IRQ\n");
1046		err = -ENODEV;
1047		goto out;
1048	}
1049
1050	macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1051	if (!macdma) {
1052		dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1053		err = -ENODEV;
1054		goto out;
1055	}
1056
1057	if (!request_mem_region(base->start, resource_size(base),
1058							pdev->name)) {
1059		dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1060		err = -ENXIO;
1061		goto out;
1062	}
1063
1064	if (!request_mem_region(macen->start, resource_size(macen),
1065							pdev->name)) {
1066		dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1067		err = -ENXIO;
1068		goto err_request;
1069	}
1070
1071	if (!request_mem_region(macdma->start, resource_size(macdma),
1072							pdev->name)) {
1073		dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1074		err = -ENXIO;
1075		goto err_macdma;
1076	}
1077
1078	dev = alloc_etherdev(sizeof(struct au1000_private));
1079	if (!dev) {
1080		err = -ENOMEM;
1081		goto err_alloc;
1082	}
1083
1084	SET_NETDEV_DEV(dev, &pdev->dev);
1085	platform_set_drvdata(pdev, dev);
1086	aup = netdev_priv(dev);
1087
1088	spin_lock_init(&aup->lock);
1089	aup->msg_enable = (au1000_debug < 4 ?
1090				AU1000_DEF_MSG_ENABLE : au1000_debug);
1091
1092	/* Allocate the data buffers
1093	 * Snooping works fine with eth on all au1xxx
1094	 */
1095	aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
1096						(NUM_TX_BUFFS + NUM_RX_BUFFS),
1097						&aup->dma_addr,	0);
1098	if (!aup->vaddr) {
1099		dev_err(&pdev->dev, "failed to allocate data buffers\n");
1100		err = -ENOMEM;
1101		goto err_vaddr;
1102	}
1103
1104	/* aup->mac is the base address of the MAC's registers */
1105	aup->mac = (struct mac_reg *)
1106			ioremap_nocache(base->start, resource_size(base));
1107	if (!aup->mac) {
1108		dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1109		err = -ENXIO;
1110		goto err_remap1;
1111	}
1112
1113	/* Setup some variables for quick register address access */
1114	aup->enable = (u32 *)ioremap_nocache(macen->start,
1115						resource_size(macen));
1116	if (!aup->enable) {
1117		dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1118		err = -ENXIO;
1119		goto err_remap2;
1120	}
1121	aup->mac_id = pdev->id;
1122
1123	aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma));
1124	if (!aup->macdma) {
1125		dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1126		err = -ENXIO;
1127		goto err_remap3;
1128	}
1129
1130	au1000_setup_hw_rings(aup, aup->macdma);
1131
1132	writel(0, aup->enable);
1133	aup->mac_enabled = 0;
1134
1135	pd = pdev->dev.platform_data;
1136	if (!pd) {
1137		dev_info(&pdev->dev, "no platform_data passed,"
1138					" PHY search on MAC0\n");
1139		aup->phy1_search_mac0 = 1;
1140	} else {
1141		if (is_valid_ether_addr(pd->mac)) {
1142			memcpy(dev->dev_addr, pd->mac, 6);
1143		} else {
1144			/* Set a random MAC since no valid provided by platform_data. */
1145			eth_hw_addr_random(dev);
1146		}
1147
1148		aup->phy_static_config = pd->phy_static_config;
1149		aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1150		aup->phy1_search_mac0 = pd->phy1_search_mac0;
1151		aup->phy_addr = pd->phy_addr;
1152		aup->phy_busid = pd->phy_busid;
1153		aup->phy_irq = pd->phy_irq;
1154	}
1155
1156	if (aup->phy_busid && aup->phy_busid > 0) {
1157		dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1158		err = -ENODEV;
1159		goto err_mdiobus_alloc;
1160	}
1161
1162	aup->mii_bus = mdiobus_alloc();
1163	if (aup->mii_bus == NULL) {
1164		dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1165		err = -ENOMEM;
1166		goto err_mdiobus_alloc;
1167	}
1168
1169	aup->mii_bus->priv = dev;
1170	aup->mii_bus->read = au1000_mdiobus_read;
1171	aup->mii_bus->write = au1000_mdiobus_write;
1172	aup->mii_bus->reset = au1000_mdiobus_reset;
1173	aup->mii_bus->name = "au1000_eth_mii";
1174	snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1175		pdev->name, aup->mac_id);
1176	aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
1177	if (aup->mii_bus->irq == NULL)
1178		goto err_out;
1179
1180	for (i = 0; i < PHY_MAX_ADDR; ++i)
1181		aup->mii_bus->irq[i] = PHY_POLL;
1182	/* if known, set corresponding PHY IRQs */
1183	if (aup->phy_static_config)
1184		if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1185			aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1186
1187	err = mdiobus_register(aup->mii_bus);
1188	if (err) {
1189		dev_err(&pdev->dev, "failed to register MDIO bus\n");
1190		goto err_mdiobus_reg;
1191	}
1192
1193	if (au1000_mii_probe(dev) != 0)
1194		goto err_out;
1195
1196	pDBfree = NULL;
1197	/* setup the data buffer descriptors and attach a buffer to each one */
1198	pDB = aup->db;
1199	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1200		pDB->pnext = pDBfree;
1201		pDBfree = pDB;
1202		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1203		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1204		pDB++;
1205	}
1206	aup->pDBfree = pDBfree;
1207
1208	for (i = 0; i < NUM_RX_DMA; i++) {
1209		pDB = au1000_GetFreeDB(aup);
1210		if (!pDB)
1211			goto err_out;
1212
1213		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1214		aup->rx_db_inuse[i] = pDB;
1215	}
1216	for (i = 0; i < NUM_TX_DMA; i++) {
1217		pDB = au1000_GetFreeDB(aup);
1218		if (!pDB)
1219			goto err_out;
1220
1221		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1222		aup->tx_dma_ring[i]->len = 0;
1223		aup->tx_db_inuse[i] = pDB;
1224	}
1225
1226	dev->base_addr = base->start;
1227	dev->irq = irq;
1228	dev->netdev_ops = &au1000_netdev_ops;
1229	SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
1230	dev->watchdog_timeo = ETH_TX_TIMEOUT;
1231
1232	/*
1233	 * The boot code uses the ethernet controller, so reset it to start
1234	 * fresh.  au1000_init() expects that the device is in reset state.
1235	 */
1236	au1000_reset_mac(dev);
1237
1238	err = register_netdev(dev);
1239	if (err) {
1240		netdev_err(dev, "Cannot register net device, aborting.\n");
1241		goto err_out;
1242	}
1243
1244	netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1245			(unsigned long)base->start, irq);
1246	if (version_printed++ == 0)
1247		pr_info("%s version %s %s\n",
1248					DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1249
1250	return 0;
1251
1252err_out:
1253	if (aup->mii_bus != NULL)
1254		mdiobus_unregister(aup->mii_bus);
1255
1256	/* here we should have a valid dev plus aup-> register addresses
1257	 * so we can reset the mac properly.
1258	 */
1259	au1000_reset_mac(dev);
1260
1261	for (i = 0; i < NUM_RX_DMA; i++) {
1262		if (aup->rx_db_inuse[i])
1263			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1264	}
1265	for (i = 0; i < NUM_TX_DMA; i++) {
1266		if (aup->tx_db_inuse[i])
1267			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1268	}
1269err_mdiobus_reg:
1270	mdiobus_free(aup->mii_bus);
1271err_mdiobus_alloc:
1272	iounmap(aup->macdma);
1273err_remap3:
1274	iounmap(aup->enable);
1275err_remap2:
1276	iounmap(aup->mac);
1277err_remap1:
1278	dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1279			     (void *)aup->vaddr, aup->dma_addr);
1280err_vaddr:
1281	free_netdev(dev);
1282err_alloc:
1283	release_mem_region(macdma->start, resource_size(macdma));
1284err_macdma:
1285	release_mem_region(macen->start, resource_size(macen));
1286err_request:
1287	release_mem_region(base->start, resource_size(base));
1288out:
1289	return err;
1290}
1291
1292static int __devexit au1000_remove(struct platform_device *pdev)
1293{
1294	struct net_device *dev = platform_get_drvdata(pdev);
1295	struct au1000_private *aup = netdev_priv(dev);
1296	int i;
1297	struct resource *base, *macen;
1298
1299	platform_set_drvdata(pdev, NULL);
1300
1301	unregister_netdev(dev);
1302	mdiobus_unregister(aup->mii_bus);
1303	mdiobus_free(aup->mii_bus);
1304
1305	for (i = 0; i < NUM_RX_DMA; i++)
1306		if (aup->rx_db_inuse[i])
1307			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1308
1309	for (i = 0; i < NUM_TX_DMA; i++)
1310		if (aup->tx_db_inuse[i])
1311			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1312
1313	dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1314			(NUM_TX_BUFFS + NUM_RX_BUFFS),
1315			(void *)aup->vaddr, aup->dma_addr);
1316
1317	iounmap(aup->macdma);
1318	iounmap(aup->mac);
1319	iounmap(aup->enable);
1320
1321	base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1322	release_mem_region(base->start, resource_size(base));
1323
1324	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1325	release_mem_region(base->start, resource_size(base));
1326
1327	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1328	release_mem_region(macen->start, resource_size(macen));
1329
1330	free_netdev(dev);
1331
1332	return 0;
1333}
1334
1335static struct platform_driver au1000_eth_driver = {
1336	.probe  = au1000_probe,
1337	.remove = __devexit_p(au1000_remove),
1338	.driver = {
1339		.name   = "au1000-eth",
1340		.owner  = THIS_MODULE,
1341	},
1342};
1343
1344module_platform_driver(au1000_eth_driver);
1345
1346MODULE_ALIAS("platform:au1000-eth");
1347