1/*
2 *	Driver for the Macintosh 68K onboard MACE controller with PSC
3 *	driven DMA. The MACE driver code is derived from mace.c. The
4 *	Mac68k theory of operation is courtesy of the MacBSD wizards.
5 *
6 *	This program is free software; you can redistribute it and/or
7 *	modify it under the terms of the GNU General Public License
8 *	as published by the Free Software Foundation; either version
9 *	2 of the License, or (at your option) any later version.
10 *
11 *	Copyright (C) 1996 Paul Mackerras.
12 *	Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
13 *
14 *	Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
15 *
16 *	Copyright (C) 2007 Finn Thain
17 *
18 *	Converted to DMA API, converted to unified driver model,
19 *	sync'd some routines with mace.c and fixed various bugs.
20 */
21
22
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/netdevice.h>
26#include <linux/etherdevice.h>
27#include <linux/delay.h>
28#include <linux/string.h>
29#include <linux/crc32.h>
30#include <linux/bitrev.h>
31#include <linux/dma-mapping.h>
32#include <linux/platform_device.h>
33#include <linux/gfp.h>
34#include <linux/interrupt.h>
35#include <asm/io.h>
36#include <asm/macints.h>
37#include <asm/mac_psc.h>
38#include <asm/page.h>
39#include "mace.h"
40
41static char mac_mace_string[] = "macmace";
42
43#define N_TX_BUFF_ORDER	0
44#define N_TX_RING	(1 << N_TX_BUFF_ORDER)
45#define N_RX_BUFF_ORDER	3
46#define N_RX_RING	(1 << N_RX_BUFF_ORDER)
47
48#define TX_TIMEOUT	HZ
49
50#define MACE_BUFF_SIZE	0x800
51
52/* Chip rev needs workaround on HW & multicast addr change */
53#define BROKEN_ADDRCHG_REV	0x0941
54
55/* The MACE is simply wired down on a Mac68K box */
56
57#define MACE_BASE	(void *)(0x50F1C000)
58#define MACE_PROM	(void *)(0x50F08001)
59
60struct mace_data {
61	volatile struct mace *mace;
62	unsigned char *tx_ring;
63	dma_addr_t tx_ring_phys;
64	unsigned char *rx_ring;
65	dma_addr_t rx_ring_phys;
66	int dma_intr;
67	int rx_slot, rx_tail;
68	int tx_slot, tx_sloti, tx_count;
69	int chipid;
70	struct device *device;
71};
72
73struct mace_frame {
74	u8	rcvcnt;
75	u8	pad1;
76	u8	rcvsts;
77	u8	pad2;
78	u8	rntpc;
79	u8	pad3;
80	u8	rcvcc;
81	u8	pad4;
82	u32	pad5;
83	u32	pad6;
84	u8	data[1];
85	/* And frame continues.. */
86};
87
88#define PRIV_BYTES	sizeof(struct mace_data)
89
90static int mace_open(struct net_device *dev);
91static int mace_close(struct net_device *dev);
92static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
93static void mace_set_multicast(struct net_device *dev);
94static int mace_set_address(struct net_device *dev, void *addr);
95static void mace_reset(struct net_device *dev);
96static irqreturn_t mace_interrupt(int irq, void *dev_id);
97static irqreturn_t mace_dma_intr(int irq, void *dev_id);
98static void mace_tx_timeout(struct net_device *dev);
99static void __mace_set_address(struct net_device *dev, void *addr);
100
101/*
102 * Load a receive DMA channel with a base address and ring length
103 */
104
105static void mace_load_rxdma_base(struct net_device *dev, int set)
106{
107	struct mace_data *mp = netdev_priv(dev);
108
109	psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
110	psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
111	psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
112	psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
113	mp->rx_tail = 0;
114}
115
116/*
117 * Reset the receive DMA subsystem
118 */
119
120static void mace_rxdma_reset(struct net_device *dev)
121{
122	struct mace_data *mp = netdev_priv(dev);
123	volatile struct mace *mace = mp->mace;
124	u8 maccc = mace->maccc;
125
126	mace->maccc = maccc & ~ENRCV;
127
128	psc_write_word(PSC_ENETRD_CTL, 0x8800);
129	mace_load_rxdma_base(dev, 0x00);
130	psc_write_word(PSC_ENETRD_CTL, 0x0400);
131
132	psc_write_word(PSC_ENETRD_CTL, 0x8800);
133	mace_load_rxdma_base(dev, 0x10);
134	psc_write_word(PSC_ENETRD_CTL, 0x0400);
135
136	mace->maccc = maccc;
137	mp->rx_slot = 0;
138
139	psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
140	psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
141}
142
143/*
144 * Reset the transmit DMA subsystem
145 */
146
147static void mace_txdma_reset(struct net_device *dev)
148{
149	struct mace_data *mp = netdev_priv(dev);
150	volatile struct mace *mace = mp->mace;
151	u8 maccc;
152
153	psc_write_word(PSC_ENETWR_CTL, 0x8800);
154
155	maccc = mace->maccc;
156	mace->maccc = maccc & ~ENXMT;
157
158	mp->tx_slot = mp->tx_sloti = 0;
159	mp->tx_count = N_TX_RING;
160
161	psc_write_word(PSC_ENETWR_CTL, 0x0400);
162	mace->maccc = maccc;
163}
164
165/*
166 * Disable DMA
167 */
168
169static void mace_dma_off(struct net_device *dev)
170{
171	psc_write_word(PSC_ENETRD_CTL, 0x8800);
172	psc_write_word(PSC_ENETRD_CTL, 0x1000);
173	psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
174	psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
175
176	psc_write_word(PSC_ENETWR_CTL, 0x8800);
177	psc_write_word(PSC_ENETWR_CTL, 0x1000);
178	psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
179	psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
180}
181
182static const struct net_device_ops mace_netdev_ops = {
183	.ndo_open		= mace_open,
184	.ndo_stop		= mace_close,
185	.ndo_start_xmit		= mace_xmit_start,
186	.ndo_tx_timeout		= mace_tx_timeout,
187	.ndo_set_rx_mode	= mace_set_multicast,
188	.ndo_set_mac_address	= mace_set_address,
189	.ndo_change_mtu		= eth_change_mtu,
190	.ndo_validate_addr	= eth_validate_addr,
191};
192
193/*
194 * Not really much of a probe. The hardware table tells us if this
195 * model of Macintrash has a MACE (AV macintoshes)
196 */
197
198static int __devinit mace_probe(struct platform_device *pdev)
199{
200	int j;
201	struct mace_data *mp;
202	unsigned char *addr;
203	struct net_device *dev;
204	unsigned char checksum = 0;
205	int err;
206
207	dev = alloc_etherdev(PRIV_BYTES);
208	if (!dev)
209		return -ENOMEM;
210
211	mp = netdev_priv(dev);
212
213	mp->device = &pdev->dev;
214	SET_NETDEV_DEV(dev, &pdev->dev);
215
216	dev->base_addr = (u32)MACE_BASE;
217	mp->mace = MACE_BASE;
218
219	dev->irq = IRQ_MAC_MACE;
220	mp->dma_intr = IRQ_MAC_MACE_DMA;
221
222	mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
223
224	/*
225	 * The PROM contains 8 bytes which total 0xFF when XOR'd
226	 * together. Due to the usual peculiar apple brain damage
227	 * the bytes are spaced out in a strange boundary and the
228	 * bits are reversed.
229	 */
230
231	addr = (void *)MACE_PROM;
232
233	for (j = 0; j < 6; ++j) {
234		u8 v = bitrev8(addr[j<<4]);
235		checksum ^= v;
236		dev->dev_addr[j] = v;
237	}
238	for (; j < 8; ++j) {
239		checksum ^= bitrev8(addr[j<<4]);
240	}
241
242	if (checksum != 0xFF) {
243		free_netdev(dev);
244		return -ENODEV;
245	}
246
247	dev->netdev_ops		= &mace_netdev_ops;
248	dev->watchdog_timeo	= TX_TIMEOUT;
249
250	printk(KERN_INFO "%s: 68K MACE, hardware address %pM\n",
251	       dev->name, dev->dev_addr);
252
253	err = register_netdev(dev);
254	if (!err)
255		return 0;
256
257	free_netdev(dev);
258	return err;
259}
260
261/*
262 * Reset the chip.
263 */
264
265static void mace_reset(struct net_device *dev)
266{
267	struct mace_data *mp = netdev_priv(dev);
268	volatile struct mace *mb = mp->mace;
269	int i;
270
271	/* soft-reset the chip */
272	i = 200;
273	while (--i) {
274		mb->biucc = SWRST;
275		if (mb->biucc & SWRST) {
276			udelay(10);
277			continue;
278		}
279		break;
280	}
281	if (!i) {
282		printk(KERN_ERR "macmace: cannot reset chip!\n");
283		return;
284	}
285
286	mb->maccc = 0;	/* turn off tx, rx */
287	mb->imr = 0xFF;	/* disable all intrs for now */
288	i = mb->ir;
289
290	mb->biucc = XMTSP_64;
291	mb->utr = RTRD;
292	mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
293
294	mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
295	mb->rcvfc = 0;
296
297	/* load up the hardware address */
298	__mace_set_address(dev, dev->dev_addr);
299
300	/* clear the multicast filter */
301	if (mp->chipid == BROKEN_ADDRCHG_REV)
302		mb->iac = LOGADDR;
303	else {
304		mb->iac = ADDRCHG | LOGADDR;
305		while ((mb->iac & ADDRCHG) != 0)
306			;
307	}
308	for (i = 0; i < 8; ++i)
309		mb->ladrf = 0;
310
311	/* done changing address */
312	if (mp->chipid != BROKEN_ADDRCHG_REV)
313		mb->iac = 0;
314
315	mb->plscc = PORTSEL_AUI;
316}
317
318/*
319 * Load the address on a mace controller.
320 */
321
322static void __mace_set_address(struct net_device *dev, void *addr)
323{
324	struct mace_data *mp = netdev_priv(dev);
325	volatile struct mace *mb = mp->mace;
326	unsigned char *p = addr;
327	int i;
328
329	/* load up the hardware address */
330	if (mp->chipid == BROKEN_ADDRCHG_REV)
331		mb->iac = PHYADDR;
332	else {
333		mb->iac = ADDRCHG | PHYADDR;
334		while ((mb->iac & ADDRCHG) != 0)
335			;
336	}
337	for (i = 0; i < 6; ++i)
338		mb->padr = dev->dev_addr[i] = p[i];
339	if (mp->chipid != BROKEN_ADDRCHG_REV)
340		mb->iac = 0;
341}
342
343static int mace_set_address(struct net_device *dev, void *addr)
344{
345	struct mace_data *mp = netdev_priv(dev);
346	volatile struct mace *mb = mp->mace;
347	unsigned long flags;
348	u8 maccc;
349
350	local_irq_save(flags);
351
352	maccc = mb->maccc;
353
354	__mace_set_address(dev, addr);
355
356	mb->maccc = maccc;
357
358	local_irq_restore(flags);
359
360	return 0;
361}
362
363/*
364 * Open the Macintosh MACE. Most of this is playing with the DMA
365 * engine. The ethernet chip is quite friendly.
366 */
367
368static int mace_open(struct net_device *dev)
369{
370	struct mace_data *mp = netdev_priv(dev);
371	volatile struct mace *mb = mp->mace;
372
373	/* reset the chip */
374	mace_reset(dev);
375
376	if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
377		printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
378		return -EAGAIN;
379	}
380	if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
381		printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
382		free_irq(dev->irq, dev);
383		return -EAGAIN;
384	}
385
386	/* Allocate the DMA ring buffers */
387
388	mp->tx_ring = dma_alloc_coherent(mp->device,
389			N_TX_RING * MACE_BUFF_SIZE,
390			&mp->tx_ring_phys, GFP_KERNEL);
391	if (mp->tx_ring == NULL) {
392		printk(KERN_ERR "%s: unable to allocate DMA tx buffers\n", dev->name);
393		goto out1;
394	}
395
396	mp->rx_ring = dma_alloc_coherent(mp->device,
397			N_RX_RING * MACE_BUFF_SIZE,
398			&mp->rx_ring_phys, GFP_KERNEL);
399	if (mp->rx_ring == NULL) {
400		printk(KERN_ERR "%s: unable to allocate DMA rx buffers\n", dev->name);
401		goto out2;
402	}
403
404	mace_dma_off(dev);
405
406	/* Not sure what these do */
407
408	psc_write_word(PSC_ENETWR_CTL, 0x9000);
409	psc_write_word(PSC_ENETRD_CTL, 0x9000);
410	psc_write_word(PSC_ENETWR_CTL, 0x0400);
411	psc_write_word(PSC_ENETRD_CTL, 0x0400);
412
413	mace_rxdma_reset(dev);
414	mace_txdma_reset(dev);
415
416	/* turn it on! */
417	mb->maccc = ENXMT | ENRCV;
418	/* enable all interrupts except receive interrupts */
419	mb->imr = RCVINT;
420	return 0;
421
422out2:
423	dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
424	                  mp->tx_ring, mp->tx_ring_phys);
425out1:
426	free_irq(dev->irq, dev);
427	free_irq(mp->dma_intr, dev);
428	return -ENOMEM;
429}
430
431/*
432 * Shut down the mace and its interrupt channel
433 */
434
435static int mace_close(struct net_device *dev)
436{
437	struct mace_data *mp = netdev_priv(dev);
438	volatile struct mace *mb = mp->mace;
439
440	mb->maccc = 0;		/* disable rx and tx	 */
441	mb->imr = 0xFF;		/* disable all irqs	 */
442	mace_dma_off(dev);	/* disable rx and tx dma */
443
444	return 0;
445}
446
447/*
448 * Transmit a frame
449 */
450
451static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
452{
453	struct mace_data *mp = netdev_priv(dev);
454	unsigned long flags;
455
456	/* Stop the queue since there's only the one buffer */
457
458	local_irq_save(flags);
459	netif_stop_queue(dev);
460	if (!mp->tx_count) {
461		printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
462		local_irq_restore(flags);
463		return NETDEV_TX_BUSY;
464	}
465	mp->tx_count--;
466	local_irq_restore(flags);
467
468	dev->stats.tx_packets++;
469	dev->stats.tx_bytes += skb->len;
470
471	/* We need to copy into our xmit buffer to take care of alignment and caching issues */
472	skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
473
474	/* load the Tx DMA and fire it off */
475
476	psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32)  mp->tx_ring_phys);
477	psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
478	psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
479
480	mp->tx_slot ^= 0x10;
481
482	dev_kfree_skb(skb);
483
484	return NETDEV_TX_OK;
485}
486
487static void mace_set_multicast(struct net_device *dev)
488{
489	struct mace_data *mp = netdev_priv(dev);
490	volatile struct mace *mb = mp->mace;
491	int i;
492	u32 crc;
493	u8 maccc;
494	unsigned long flags;
495
496	local_irq_save(flags);
497	maccc = mb->maccc;
498	mb->maccc &= ~PROM;
499
500	if (dev->flags & IFF_PROMISC) {
501		mb->maccc |= PROM;
502	} else {
503		unsigned char multicast_filter[8];
504		struct netdev_hw_addr *ha;
505
506		if (dev->flags & IFF_ALLMULTI) {
507			for (i = 0; i < 8; i++) {
508				multicast_filter[i] = 0xFF;
509			}
510		} else {
511			for (i = 0; i < 8; i++)
512				multicast_filter[i] = 0;
513			netdev_for_each_mc_addr(ha, dev) {
514				crc = ether_crc_le(6, ha->addr);
515				/* bit number in multicast_filter */
516				i = crc >> 26;
517				multicast_filter[i >> 3] |= 1 << (i & 7);
518			}
519		}
520
521		if (mp->chipid == BROKEN_ADDRCHG_REV)
522			mb->iac = LOGADDR;
523		else {
524			mb->iac = ADDRCHG | LOGADDR;
525			while ((mb->iac & ADDRCHG) != 0)
526				;
527		}
528		for (i = 0; i < 8; ++i)
529			mb->ladrf = multicast_filter[i];
530		if (mp->chipid != BROKEN_ADDRCHG_REV)
531			mb->iac = 0;
532	}
533
534	mb->maccc = maccc;
535	local_irq_restore(flags);
536}
537
538static void mace_handle_misc_intrs(struct net_device *dev, int intr)
539{
540	struct mace_data *mp = netdev_priv(dev);
541	volatile struct mace *mb = mp->mace;
542	static int mace_babbles, mace_jabbers;
543
544	if (intr & MPCO)
545		dev->stats.rx_missed_errors += 256;
546	dev->stats.rx_missed_errors += mb->mpc;   /* reading clears it */
547	if (intr & RNTPCO)
548		dev->stats.rx_length_errors += 256;
549	dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
550	if (intr & CERR)
551		++dev->stats.tx_heartbeat_errors;
552	if (intr & BABBLE)
553		if (mace_babbles++ < 4)
554			printk(KERN_DEBUG "macmace: babbling transmitter\n");
555	if (intr & JABBER)
556		if (mace_jabbers++ < 4)
557			printk(KERN_DEBUG "macmace: jabbering transceiver\n");
558}
559
560static irqreturn_t mace_interrupt(int irq, void *dev_id)
561{
562	struct net_device *dev = (struct net_device *) dev_id;
563	struct mace_data *mp = netdev_priv(dev);
564	volatile struct mace *mb = mp->mace;
565	int intr, fs;
566	unsigned long flags;
567
568	/* don't want the dma interrupt handler to fire */
569	local_irq_save(flags);
570
571	intr = mb->ir; /* read interrupt register */
572	mace_handle_misc_intrs(dev, intr);
573
574	if (intr & XMTINT) {
575		fs = mb->xmtfs;
576		if ((fs & XMTSV) == 0) {
577			printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
578			mace_reset(dev);
579			/*
580			 * XXX mace likes to hang the machine after a xmtfs error.
581			 * This is hard to reproduce, reseting *may* help
582			 */
583		}
584		/* dma should have finished */
585		if (!mp->tx_count) {
586			printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
587		}
588		/* Update stats */
589		if (fs & (UFLO|LCOL|LCAR|RTRY)) {
590			++dev->stats.tx_errors;
591			if (fs & LCAR)
592				++dev->stats.tx_carrier_errors;
593			else if (fs & (UFLO|LCOL|RTRY)) {
594				++dev->stats.tx_aborted_errors;
595				if (mb->xmtfs & UFLO) {
596					printk(KERN_ERR "%s: DMA underrun.\n", dev->name);
597					dev->stats.tx_fifo_errors++;
598					mace_txdma_reset(dev);
599				}
600			}
601		}
602	}
603
604	if (mp->tx_count)
605		netif_wake_queue(dev);
606
607	local_irq_restore(flags);
608
609	return IRQ_HANDLED;
610}
611
612static void mace_tx_timeout(struct net_device *dev)
613{
614	struct mace_data *mp = netdev_priv(dev);
615	volatile struct mace *mb = mp->mace;
616	unsigned long flags;
617
618	local_irq_save(flags);
619
620	/* turn off both tx and rx and reset the chip */
621	mb->maccc = 0;
622	printk(KERN_ERR "macmace: transmit timeout - resetting\n");
623	mace_txdma_reset(dev);
624	mace_reset(dev);
625
626	/* restart rx dma */
627	mace_rxdma_reset(dev);
628
629	mp->tx_count = N_TX_RING;
630	netif_wake_queue(dev);
631
632	/* turn it on! */
633	mb->maccc = ENXMT | ENRCV;
634	/* enable all interrupts except receive interrupts */
635	mb->imr = RCVINT;
636
637	local_irq_restore(flags);
638}
639
640/*
641 * Handle a newly arrived frame
642 */
643
644static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
645{
646	struct sk_buff *skb;
647	unsigned int frame_status = mf->rcvsts;
648
649	if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
650		dev->stats.rx_errors++;
651		if (frame_status & RS_OFLO) {
652			printk(KERN_DEBUG "%s: fifo overflow.\n", dev->name);
653			dev->stats.rx_fifo_errors++;
654		}
655		if (frame_status & RS_CLSN)
656			dev->stats.collisions++;
657		if (frame_status & RS_FRAMERR)
658			dev->stats.rx_frame_errors++;
659		if (frame_status & RS_FCSERR)
660			dev->stats.rx_crc_errors++;
661	} else {
662		unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
663
664		skb = netdev_alloc_skb(dev, frame_length + 2);
665		if (!skb) {
666			dev->stats.rx_dropped++;
667			return;
668		}
669		skb_reserve(skb, 2);
670		memcpy(skb_put(skb, frame_length), mf->data, frame_length);
671
672		skb->protocol = eth_type_trans(skb, dev);
673		netif_rx(skb);
674		dev->stats.rx_packets++;
675		dev->stats.rx_bytes += frame_length;
676	}
677}
678
679/*
680 * The PSC has passed us a DMA interrupt event.
681 */
682
683static irqreturn_t mace_dma_intr(int irq, void *dev_id)
684{
685	struct net_device *dev = (struct net_device *) dev_id;
686	struct mace_data *mp = netdev_priv(dev);
687	int left, head;
688	u16 status;
689	u32 baka;
690
691	/* Not sure what this does */
692
693	while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
694	if (!(baka & 0x60000000)) return IRQ_NONE;
695
696	/*
697	 * Process the read queue
698	 */
699
700	status = psc_read_word(PSC_ENETRD_CTL);
701
702	if (status & 0x2000) {
703		mace_rxdma_reset(dev);
704	} else if (status & 0x0100) {
705		psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
706
707		left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
708		head = N_RX_RING - left;
709
710		/* Loop through the ring buffer and process new packages */
711
712		while (mp->rx_tail < head) {
713			mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
714				+ (mp->rx_tail * MACE_BUFF_SIZE)));
715			mp->rx_tail++;
716		}
717
718		/* If we're out of buffers in this ring then switch to */
719		/* the other set, otherwise just reactivate this one.  */
720
721		if (!left) {
722			mace_load_rxdma_base(dev, mp->rx_slot);
723			mp->rx_slot ^= 0x10;
724		} else {
725			psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
726		}
727	}
728
729	/*
730	 * Process the write queue
731	 */
732
733	status = psc_read_word(PSC_ENETWR_CTL);
734
735	if (status & 0x2000) {
736		mace_txdma_reset(dev);
737	} else if (status & 0x0100) {
738		psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
739		mp->tx_sloti ^= 0x10;
740		mp->tx_count++;
741	}
742	return IRQ_HANDLED;
743}
744
745MODULE_LICENSE("GPL");
746MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
747MODULE_ALIAS("platform:macmace");
748
749static int __devexit mac_mace_device_remove (struct platform_device *pdev)
750{
751	struct net_device *dev = platform_get_drvdata(pdev);
752	struct mace_data *mp = netdev_priv(dev);
753
754	unregister_netdev(dev);
755
756	free_irq(dev->irq, dev);
757	free_irq(IRQ_MAC_MACE_DMA, dev);
758
759	dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE,
760	                  mp->rx_ring, mp->rx_ring_phys);
761	dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
762	                  mp->tx_ring, mp->tx_ring_phys);
763
764	free_netdev(dev);
765
766	return 0;
767}
768
769static struct platform_driver mac_mace_driver = {
770	.probe  = mace_probe,
771	.remove = __devexit_p(mac_mace_device_remove),
772	.driver	= {
773		.name	= mac_mace_string,
774		.owner	= THIS_MODULE,
775	},
776};
777
778static int __init mac_mace_init_module(void)
779{
780	if (!MACH_IS_MAC)
781		return -ENODEV;
782
783	return platform_driver_register(&mac_mace_driver);
784}
785
786static void __exit mac_mace_cleanup_module(void)
787{
788	platform_driver_unregister(&mac_mace_driver);
789}
790
791module_init(mac_mace_init_module);
792module_exit(mac_mace_cleanup_module);
793