1/*
2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
5 *
6 * Derived from Intel e1000 driver
7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22 *
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
25 *
26 * Contact Information:
27 * Xiong Huang <xiong.huang@atheros.com>
28 * Jie Yang <jie.yang@atheros.com>
29 * Chris Snook <csnook@redhat.com>
30 * Jay Cliburn <jcliburn@gmail.com>
31 *
32 * This version is adapted from the Attansic reference driver.
33 *
34 * TODO:
35 * Add more ethtool functions.
36 * Fix abstruse irq enable/disable condition described here:
37 *	http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
38 *
39 * NEEDS TESTING:
40 * VLAN
41 * multicast
42 * promiscuous mode
43 * interrupt coalescing
44 * SMP torture testing
45 */
46
47#include <linux/atomic.h>
48#include <asm/byteorder.h>
49
50#include <linux/compiler.h>
51#include <linux/crc32.h>
52#include <linux/delay.h>
53#include <linux/dma-mapping.h>
54#include <linux/etherdevice.h>
55#include <linux/hardirq.h>
56#include <linux/if_ether.h>
57#include <linux/if_vlan.h>
58#include <linux/in.h>
59#include <linux/interrupt.h>
60#include <linux/ip.h>
61#include <linux/irqflags.h>
62#include <linux/irqreturn.h>
63#include <linux/jiffies.h>
64#include <linux/mii.h>
65#include <linux/module.h>
66#include <linux/moduleparam.h>
67#include <linux/net.h>
68#include <linux/netdevice.h>
69#include <linux/pci.h>
70#include <linux/pci_ids.h>
71#include <linux/pm.h>
72#include <linux/skbuff.h>
73#include <linux/slab.h>
74#include <linux/spinlock.h>
75#include <linux/string.h>
76#include <linux/tcp.h>
77#include <linux/timer.h>
78#include <linux/types.h>
79#include <linux/workqueue.h>
80
81#include <net/checksum.h>
82
83#include "atl1.h"
84
85#define ATLX_DRIVER_VERSION "2.1.3"
86MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
87	      "Chris Snook <csnook@redhat.com>, "
88	      "Jay Cliburn <jcliburn@gmail.com>");
89MODULE_LICENSE("GPL");
90MODULE_VERSION(ATLX_DRIVER_VERSION);
91
92/* Temporary hack for merging atl1 and atl2 */
93#include "atlx.c"
94
95static const struct ethtool_ops atl1_ethtool_ops;
96
97/*
98 * This is the only thing that needs to be changed to adjust the
99 * maximum number of ports that the driver can manage.
100 */
101#define ATL1_MAX_NIC 4
102
103#define OPTION_UNSET    -1
104#define OPTION_DISABLED 0
105#define OPTION_ENABLED  1
106
107#define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
108
109/*
110 * Interrupt Moderate Timer in units of 2 us
111 *
112 * Valid Range: 10-65535
113 *
114 * Default Value: 100 (200us)
115 */
116static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
117static unsigned int num_int_mod_timer;
118module_param_array_named(int_mod_timer, int_mod_timer, int,
119	&num_int_mod_timer, 0);
120MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
121
122#define DEFAULT_INT_MOD_CNT	100	/* 200us */
123#define MAX_INT_MOD_CNT		65000
124#define MIN_INT_MOD_CNT		50
125
126struct atl1_option {
127	enum { enable_option, range_option, list_option } type;
128	char *name;
129	char *err;
130	int def;
131	union {
132		struct {	/* range_option info */
133			int min;
134			int max;
135		} r;
136		struct {	/* list_option info */
137			int nr;
138			struct atl1_opt_list {
139				int i;
140				char *str;
141			} *p;
142		} l;
143	} arg;
144};
145
146static int __devinit atl1_validate_option(int *value, struct atl1_option *opt,
147	struct pci_dev *pdev)
148{
149	if (*value == OPTION_UNSET) {
150		*value = opt->def;
151		return 0;
152	}
153
154	switch (opt->type) {
155	case enable_option:
156		switch (*value) {
157		case OPTION_ENABLED:
158			dev_info(&pdev->dev, "%s enabled\n", opt->name);
159			return 0;
160		case OPTION_DISABLED:
161			dev_info(&pdev->dev, "%s disabled\n", opt->name);
162			return 0;
163		}
164		break;
165	case range_option:
166		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
167			dev_info(&pdev->dev, "%s set to %i\n", opt->name,
168				*value);
169			return 0;
170		}
171		break;
172	case list_option:{
173			int i;
174			struct atl1_opt_list *ent;
175
176			for (i = 0; i < opt->arg.l.nr; i++) {
177				ent = &opt->arg.l.p[i];
178				if (*value == ent->i) {
179					if (ent->str[0] != '\0')
180						dev_info(&pdev->dev, "%s\n",
181							ent->str);
182					return 0;
183				}
184			}
185		}
186		break;
187
188	default:
189		break;
190	}
191
192	dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
193		opt->name, *value, opt->err);
194	*value = opt->def;
195	return -1;
196}
197
198/*
199 * atl1_check_options - Range Checking for Command Line Parameters
200 * @adapter: board private structure
201 *
202 * This routine checks all command line parameters for valid user
203 * input.  If an invalid value is given, or if no user specified
204 * value exists, a default value is used.  The final value is stored
205 * in a variable in the adapter structure.
206 */
207static void __devinit atl1_check_options(struct atl1_adapter *adapter)
208{
209	struct pci_dev *pdev = adapter->pdev;
210	int bd = adapter->bd_number;
211	if (bd >= ATL1_MAX_NIC) {
212		dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
213		dev_notice(&pdev->dev, "using defaults for all values\n");
214	}
215	{			/* Interrupt Moderate Timer */
216		struct atl1_option opt = {
217			.type = range_option,
218			.name = "Interrupt Moderator Timer",
219			.err = "using default of "
220				__MODULE_STRING(DEFAULT_INT_MOD_CNT),
221			.def = DEFAULT_INT_MOD_CNT,
222			.arg = {.r = {.min = MIN_INT_MOD_CNT,
223					.max = MAX_INT_MOD_CNT} }
224		};
225		int val;
226		if (num_int_mod_timer > bd) {
227			val = int_mod_timer[bd];
228			atl1_validate_option(&val, &opt, pdev);
229			adapter->imt = (u16) val;
230		} else
231			adapter->imt = (u16) (opt.def);
232	}
233}
234
235/*
236 * atl1_pci_tbl - PCI Device ID Table
237 */
238static DEFINE_PCI_DEVICE_TABLE(atl1_pci_tbl) = {
239	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
240	/* required last entry */
241	{0,}
242};
243MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
244
245static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
246	NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
247
248static int debug = -1;
249module_param(debug, int, 0);
250MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
251
252/*
253 * Reset the transmit and receive units; mask and clear all interrupts.
254 * hw - Struct containing variables accessed by shared code
255 * return : 0  or  idle status (if error)
256 */
257static s32 atl1_reset_hw(struct atl1_hw *hw)
258{
259	struct pci_dev *pdev = hw->back->pdev;
260	struct atl1_adapter *adapter = hw->back;
261	u32 icr;
262	int i;
263
264	/*
265	 * Clear Interrupt mask to stop board from generating
266	 * interrupts & Clear any pending interrupt events
267	 */
268	/*
269	 * iowrite32(0, hw->hw_addr + REG_IMR);
270	 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
271	 */
272
273	/*
274	 * Issue Soft Reset to the MAC.  This will reset the chip's
275	 * transmit, receive, DMA.  It will not effect
276	 * the current PCI configuration.  The global reset bit is self-
277	 * clearing, and should clear within a microsecond.
278	 */
279	iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
280	ioread32(hw->hw_addr + REG_MASTER_CTRL);
281
282	iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
283	ioread16(hw->hw_addr + REG_PHY_ENABLE);
284
285	/* delay about 1ms */
286	msleep(1);
287
288	/* Wait at least 10ms for All module to be Idle */
289	for (i = 0; i < 10; i++) {
290		icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
291		if (!icr)
292			break;
293		/* delay 1 ms */
294		msleep(1);
295		/* FIXME: still the right way to do this? */
296		cpu_relax();
297	}
298
299	if (icr) {
300		if (netif_msg_hw(adapter))
301			dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
302		return icr;
303	}
304
305	return 0;
306}
307
308/* function about EEPROM
309 *
310 * check_eeprom_exist
311 * return 0 if eeprom exist
312 */
313static int atl1_check_eeprom_exist(struct atl1_hw *hw)
314{
315	u32 value;
316	value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
317	if (value & SPI_FLASH_CTRL_EN_VPD) {
318		value &= ~SPI_FLASH_CTRL_EN_VPD;
319		iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
320	}
321
322	value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
323	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
324}
325
326static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
327{
328	int i;
329	u32 control;
330
331	if (offset & 3)
332		/* address do not align */
333		return false;
334
335	iowrite32(0, hw->hw_addr + REG_VPD_DATA);
336	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
337	iowrite32(control, hw->hw_addr + REG_VPD_CAP);
338	ioread32(hw->hw_addr + REG_VPD_CAP);
339
340	for (i = 0; i < 10; i++) {
341		msleep(2);
342		control = ioread32(hw->hw_addr + REG_VPD_CAP);
343		if (control & VPD_CAP_VPD_FLAG)
344			break;
345	}
346	if (control & VPD_CAP_VPD_FLAG) {
347		*p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
348		return true;
349	}
350	/* timeout */
351	return false;
352}
353
354/*
355 * Reads the value from a PHY register
356 * hw - Struct containing variables accessed by shared code
357 * reg_addr - address of the PHY register to read
358 */
359static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
360{
361	u32 val;
362	int i;
363
364	val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
365		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
366		MDIO_CLK_SEL_SHIFT;
367	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
368	ioread32(hw->hw_addr + REG_MDIO_CTRL);
369
370	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
371		udelay(2);
372		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
373		if (!(val & (MDIO_START | MDIO_BUSY)))
374			break;
375	}
376	if (!(val & (MDIO_START | MDIO_BUSY))) {
377		*phy_data = (u16) val;
378		return 0;
379	}
380	return ATLX_ERR_PHY;
381}
382
383#define CUSTOM_SPI_CS_SETUP	2
384#define CUSTOM_SPI_CLK_HI	2
385#define CUSTOM_SPI_CLK_LO	2
386#define CUSTOM_SPI_CS_HOLD	2
387#define CUSTOM_SPI_CS_HI	3
388
389static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
390{
391	int i;
392	u32 value;
393
394	iowrite32(0, hw->hw_addr + REG_SPI_DATA);
395	iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
396
397	value = SPI_FLASH_CTRL_WAIT_READY |
398	    (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
399	    SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
400					     SPI_FLASH_CTRL_CLK_HI_MASK) <<
401	    SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
402					   SPI_FLASH_CTRL_CLK_LO_MASK) <<
403	    SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
404					   SPI_FLASH_CTRL_CS_HOLD_MASK) <<
405	    SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
406					    SPI_FLASH_CTRL_CS_HI_MASK) <<
407	    SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
408	    SPI_FLASH_CTRL_INS_SHIFT;
409
410	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
411
412	value |= SPI_FLASH_CTRL_START;
413	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
414	ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
415
416	for (i = 0; i < 10; i++) {
417		msleep(1);
418		value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
419		if (!(value & SPI_FLASH_CTRL_START))
420			break;
421	}
422
423	if (value & SPI_FLASH_CTRL_START)
424		return false;
425
426	*buf = ioread32(hw->hw_addr + REG_SPI_DATA);
427
428	return true;
429}
430
431/*
432 * get_permanent_address
433 * return 0 if get valid mac address,
434 */
435static int atl1_get_permanent_address(struct atl1_hw *hw)
436{
437	u32 addr[2];
438	u32 i, control;
439	u16 reg;
440	u8 eth_addr[ETH_ALEN];
441	bool key_valid;
442
443	if (is_valid_ether_addr(hw->perm_mac_addr))
444		return 0;
445
446	/* init */
447	addr[0] = addr[1] = 0;
448
449	if (!atl1_check_eeprom_exist(hw)) {
450		reg = 0;
451		key_valid = false;
452		/* Read out all EEPROM content */
453		i = 0;
454		while (1) {
455			if (atl1_read_eeprom(hw, i + 0x100, &control)) {
456				if (key_valid) {
457					if (reg == REG_MAC_STA_ADDR)
458						addr[0] = control;
459					else if (reg == (REG_MAC_STA_ADDR + 4))
460						addr[1] = control;
461					key_valid = false;
462				} else if ((control & 0xff) == 0x5A) {
463					key_valid = true;
464					reg = (u16) (control >> 16);
465				} else
466					break;
467			} else
468				/* read error */
469				break;
470			i += 4;
471		}
472
473		*(u32 *) &eth_addr[2] = swab32(addr[0]);
474		*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
475		if (is_valid_ether_addr(eth_addr)) {
476			memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
477			return 0;
478		}
479	}
480
481	/* see if SPI FLAGS exist ? */
482	addr[0] = addr[1] = 0;
483	reg = 0;
484	key_valid = false;
485	i = 0;
486	while (1) {
487		if (atl1_spi_read(hw, i + 0x1f000, &control)) {
488			if (key_valid) {
489				if (reg == REG_MAC_STA_ADDR)
490					addr[0] = control;
491				else if (reg == (REG_MAC_STA_ADDR + 4))
492					addr[1] = control;
493				key_valid = false;
494			} else if ((control & 0xff) == 0x5A) {
495				key_valid = true;
496				reg = (u16) (control >> 16);
497			} else
498				/* data end */
499				break;
500		} else
501			/* read error */
502			break;
503		i += 4;
504	}
505
506	*(u32 *) &eth_addr[2] = swab32(addr[0]);
507	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
508	if (is_valid_ether_addr(eth_addr)) {
509		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
510		return 0;
511	}
512
513	/*
514	 * On some motherboards, the MAC address is written by the
515	 * BIOS directly to the MAC register during POST, and is
516	 * not stored in eeprom.  If all else thus far has failed
517	 * to fetch the permanent MAC address, try reading it directly.
518	 */
519	addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
520	addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
521	*(u32 *) &eth_addr[2] = swab32(addr[0]);
522	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
523	if (is_valid_ether_addr(eth_addr)) {
524		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
525		return 0;
526	}
527
528	return 1;
529}
530
531/*
532 * Reads the adapter's MAC address from the EEPROM
533 * hw - Struct containing variables accessed by shared code
534 */
535static s32 atl1_read_mac_addr(struct atl1_hw *hw)
536{
537	s32 ret = 0;
538	u16 i;
539
540	if (atl1_get_permanent_address(hw)) {
541		random_ether_addr(hw->perm_mac_addr);
542		ret = 1;
543	}
544
545	for (i = 0; i < ETH_ALEN; i++)
546		hw->mac_addr[i] = hw->perm_mac_addr[i];
547	return ret;
548}
549
550/*
551 * Hashes an address to determine its location in the multicast table
552 * hw - Struct containing variables accessed by shared code
553 * mc_addr - the multicast address to hash
554 *
555 * atl1_hash_mc_addr
556 *  purpose
557 *      set hash value for a multicast address
558 *      hash calcu processing :
559 *          1. calcu 32bit CRC for multicast address
560 *          2. reverse crc with MSB to LSB
561 */
562static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
563{
564	u32 crc32, value = 0;
565	int i;
566
567	crc32 = ether_crc_le(6, mc_addr);
568	for (i = 0; i < 32; i++)
569		value |= (((crc32 >> i) & 1) << (31 - i));
570
571	return value;
572}
573
574/*
575 * Sets the bit in the multicast table corresponding to the hash value.
576 * hw - Struct containing variables accessed by shared code
577 * hash_value - Multicast address hash value
578 */
579static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
580{
581	u32 hash_bit, hash_reg;
582	u32 mta;
583
584	/*
585	 * The HASH Table  is a register array of 2 32-bit registers.
586	 * It is treated like an array of 64 bits.  We want to set
587	 * bit BitArray[hash_value]. So we figure out what register
588	 * the bit is in, read it, OR in the new bit, then write
589	 * back the new value.  The register is determined by the
590	 * upper 7 bits of the hash value and the bit within that
591	 * register are determined by the lower 5 bits of the value.
592	 */
593	hash_reg = (hash_value >> 31) & 0x1;
594	hash_bit = (hash_value >> 26) & 0x1F;
595	mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
596	mta |= (1 << hash_bit);
597	iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
598}
599
600/*
601 * Writes a value to a PHY register
602 * hw - Struct containing variables accessed by shared code
603 * reg_addr - address of the PHY register to write
604 * data - data to write to the PHY
605 */
606static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
607{
608	int i;
609	u32 val;
610
611	val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
612	    (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
613	    MDIO_SUP_PREAMBLE |
614	    MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
615	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
616	ioread32(hw->hw_addr + REG_MDIO_CTRL);
617
618	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
619		udelay(2);
620		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
621		if (!(val & (MDIO_START | MDIO_BUSY)))
622			break;
623	}
624
625	if (!(val & (MDIO_START | MDIO_BUSY)))
626		return 0;
627
628	return ATLX_ERR_PHY;
629}
630
631/*
632 * Make L001's PHY out of Power Saving State (bug)
633 * hw - Struct containing variables accessed by shared code
634 * when power on, L001's PHY always on Power saving State
635 * (Gigabit Link forbidden)
636 */
637static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
638{
639	s32 ret;
640	ret = atl1_write_phy_reg(hw, 29, 0x0029);
641	if (ret)
642		return ret;
643	return atl1_write_phy_reg(hw, 30, 0);
644}
645
646/*
647 * Resets the PHY and make all config validate
648 * hw - Struct containing variables accessed by shared code
649 *
650 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
651 */
652static s32 atl1_phy_reset(struct atl1_hw *hw)
653{
654	struct pci_dev *pdev = hw->back->pdev;
655	struct atl1_adapter *adapter = hw->back;
656	s32 ret_val;
657	u16 phy_data;
658
659	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
660	    hw->media_type == MEDIA_TYPE_1000M_FULL)
661		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
662	else {
663		switch (hw->media_type) {
664		case MEDIA_TYPE_100M_FULL:
665			phy_data =
666			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
667			    MII_CR_RESET;
668			break;
669		case MEDIA_TYPE_100M_HALF:
670			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
671			break;
672		case MEDIA_TYPE_10M_FULL:
673			phy_data =
674			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
675			break;
676		default:
677			/* MEDIA_TYPE_10M_HALF: */
678			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
679			break;
680		}
681	}
682
683	ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
684	if (ret_val) {
685		u32 val;
686		int i;
687		/* pcie serdes link may be down! */
688		if (netif_msg_hw(adapter))
689			dev_dbg(&pdev->dev, "pcie phy link down\n");
690
691		for (i = 0; i < 25; i++) {
692			msleep(1);
693			val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
694			if (!(val & (MDIO_START | MDIO_BUSY)))
695				break;
696		}
697
698		if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
699			if (netif_msg_hw(adapter))
700				dev_warn(&pdev->dev,
701					"pcie link down at least 25ms\n");
702			return ret_val;
703		}
704	}
705	return 0;
706}
707
708/*
709 * Configures PHY autoneg and flow control advertisement settings
710 * hw - Struct containing variables accessed by shared code
711 */
712static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
713{
714	s32 ret_val;
715	s16 mii_autoneg_adv_reg;
716	s16 mii_1000t_ctrl_reg;
717
718	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
719	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
720
721	/* Read the MII 1000Base-T Control Register (Address 9). */
722	mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
723
724	/*
725	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
726	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
727	 * the  1000Base-T Control Register (Address 9).
728	 */
729	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
730	mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
731
732	/*
733	 * Need to parse media_type  and set up
734	 * the appropriate PHY registers.
735	 */
736	switch (hw->media_type) {
737	case MEDIA_TYPE_AUTO_SENSOR:
738		mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
739					MII_AR_10T_FD_CAPS |
740					MII_AR_100TX_HD_CAPS |
741					MII_AR_100TX_FD_CAPS);
742		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
743		break;
744
745	case MEDIA_TYPE_1000M_FULL:
746		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
747		break;
748
749	case MEDIA_TYPE_100M_FULL:
750		mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
751		break;
752
753	case MEDIA_TYPE_100M_HALF:
754		mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
755		break;
756
757	case MEDIA_TYPE_10M_FULL:
758		mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
759		break;
760
761	default:
762		mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
763		break;
764	}
765
766	/* flow control fixed to enable all */
767	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
768
769	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
770	hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
771
772	ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
773	if (ret_val)
774		return ret_val;
775
776	ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
777	if (ret_val)
778		return ret_val;
779
780	return 0;
781}
782
783/*
784 * Configures link settings.
785 * hw - Struct containing variables accessed by shared code
786 * Assumes the hardware has previously been reset and the
787 * transmitter and receiver are not enabled.
788 */
789static s32 atl1_setup_link(struct atl1_hw *hw)
790{
791	struct pci_dev *pdev = hw->back->pdev;
792	struct atl1_adapter *adapter = hw->back;
793	s32 ret_val;
794
795	/*
796	 * Options:
797	 *  PHY will advertise value(s) parsed from
798	 *  autoneg_advertised and fc
799	 *  no matter what autoneg is , We will not wait link result.
800	 */
801	ret_val = atl1_phy_setup_autoneg_adv(hw);
802	if (ret_val) {
803		if (netif_msg_link(adapter))
804			dev_dbg(&pdev->dev,
805				"error setting up autonegotiation\n");
806		return ret_val;
807	}
808	/* SW.Reset , En-Auto-Neg if needed */
809	ret_val = atl1_phy_reset(hw);
810	if (ret_val) {
811		if (netif_msg_link(adapter))
812			dev_dbg(&pdev->dev, "error resetting phy\n");
813		return ret_val;
814	}
815	hw->phy_configured = true;
816	return ret_val;
817}
818
819static void atl1_init_flash_opcode(struct atl1_hw *hw)
820{
821	if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
822		/* Atmel */
823		hw->flash_vendor = 0;
824
825	/* Init OP table */
826	iowrite8(flash_table[hw->flash_vendor].cmd_program,
827		hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
828	iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
829		hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
830	iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
831		hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
832	iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
833		hw->hw_addr + REG_SPI_FLASH_OP_RDID);
834	iowrite8(flash_table[hw->flash_vendor].cmd_wren,
835		hw->hw_addr + REG_SPI_FLASH_OP_WREN);
836	iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
837		hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
838	iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
839		hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
840	iowrite8(flash_table[hw->flash_vendor].cmd_read,
841		hw->hw_addr + REG_SPI_FLASH_OP_READ);
842}
843
844/*
845 * Performs basic configuration of the adapter.
846 * hw - Struct containing variables accessed by shared code
847 * Assumes that the controller has previously been reset and is in a
848 * post-reset uninitialized state. Initializes multicast table,
849 * and  Calls routines to setup link
850 * Leaves the transmit and receive units disabled and uninitialized.
851 */
852static s32 atl1_init_hw(struct atl1_hw *hw)
853{
854	u32 ret_val = 0;
855
856	/* Zero out the Multicast HASH table */
857	iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
858	/* clear the old settings from the multicast hash table */
859	iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
860
861	atl1_init_flash_opcode(hw);
862
863	if (!hw->phy_configured) {
864		/* enable GPHY LinkChange Interrupt */
865		ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
866		if (ret_val)
867			return ret_val;
868		/* make PHY out of power-saving state */
869		ret_val = atl1_phy_leave_power_saving(hw);
870		if (ret_val)
871			return ret_val;
872		/* Call a subroutine to configure the link */
873		ret_val = atl1_setup_link(hw);
874	}
875	return ret_val;
876}
877
878/*
879 * Detects the current speed and duplex settings of the hardware.
880 * hw - Struct containing variables accessed by shared code
881 * speed - Speed of the connection
882 * duplex - Duplex setting of the connection
883 */
884static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
885{
886	struct pci_dev *pdev = hw->back->pdev;
887	struct atl1_adapter *adapter = hw->back;
888	s32 ret_val;
889	u16 phy_data;
890
891	/* ; --- Read   PHY Specific Status Register (17) */
892	ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
893	if (ret_val)
894		return ret_val;
895
896	if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
897		return ATLX_ERR_PHY_RES;
898
899	switch (phy_data & MII_ATLX_PSSR_SPEED) {
900	case MII_ATLX_PSSR_1000MBS:
901		*speed = SPEED_1000;
902		break;
903	case MII_ATLX_PSSR_100MBS:
904		*speed = SPEED_100;
905		break;
906	case MII_ATLX_PSSR_10MBS:
907		*speed = SPEED_10;
908		break;
909	default:
910		if (netif_msg_hw(adapter))
911			dev_dbg(&pdev->dev, "error getting speed\n");
912		return ATLX_ERR_PHY_SPEED;
913		break;
914	}
915	if (phy_data & MII_ATLX_PSSR_DPLX)
916		*duplex = FULL_DUPLEX;
917	else
918		*duplex = HALF_DUPLEX;
919
920	return 0;
921}
922
923static void atl1_set_mac_addr(struct atl1_hw *hw)
924{
925	u32 value;
926	/*
927	 * 00-0B-6A-F6-00-DC
928	 * 0:  6AF600DC   1: 000B
929	 * low dword
930	 */
931	value = (((u32) hw->mac_addr[2]) << 24) |
932	    (((u32) hw->mac_addr[3]) << 16) |
933	    (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
934	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
935	/* high dword */
936	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
937	iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
938}
939
940/*
941 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
942 * @adapter: board private structure to initialize
943 *
944 * atl1_sw_init initializes the Adapter private data structure.
945 * Fields are initialized based on PCI device information and
946 * OS network device settings (MTU size).
947 */
948static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
949{
950	struct atl1_hw *hw = &adapter->hw;
951	struct net_device *netdev = adapter->netdev;
952
953	hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
954	hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
955
956	adapter->wol = 0;
957	device_set_wakeup_enable(&adapter->pdev->dev, false);
958	adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
959	adapter->ict = 50000;		/* 100ms */
960	adapter->link_speed = SPEED_0;	/* hardware init */
961	adapter->link_duplex = FULL_DUPLEX;
962
963	hw->phy_configured = false;
964	hw->preamble_len = 7;
965	hw->ipgt = 0x60;
966	hw->min_ifg = 0x50;
967	hw->ipgr1 = 0x40;
968	hw->ipgr2 = 0x60;
969	hw->max_retry = 0xf;
970	hw->lcol = 0x37;
971	hw->jam_ipg = 7;
972	hw->rfd_burst = 8;
973	hw->rrd_burst = 8;
974	hw->rfd_fetch_gap = 1;
975	hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
976	hw->rx_jumbo_lkah = 1;
977	hw->rrd_ret_timer = 16;
978	hw->tpd_burst = 4;
979	hw->tpd_fetch_th = 16;
980	hw->txf_burst = 0x100;
981	hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
982	hw->tpd_fetch_gap = 1;
983	hw->rcb_value = atl1_rcb_64;
984	hw->dma_ord = atl1_dma_ord_enh;
985	hw->dmar_block = atl1_dma_req_256;
986	hw->dmaw_block = atl1_dma_req_256;
987	hw->cmb_rrd = 4;
988	hw->cmb_tpd = 4;
989	hw->cmb_rx_timer = 1;	/* about 2us */
990	hw->cmb_tx_timer = 1;	/* about 2us */
991	hw->smb_timer = 100000;	/* about 200ms */
992
993	spin_lock_init(&adapter->lock);
994	spin_lock_init(&adapter->mb_lock);
995
996	return 0;
997}
998
999static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
1000{
1001	struct atl1_adapter *adapter = netdev_priv(netdev);
1002	u16 result;
1003
1004	atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
1005
1006	return result;
1007}
1008
1009static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1010	int val)
1011{
1012	struct atl1_adapter *adapter = netdev_priv(netdev);
1013
1014	atl1_write_phy_reg(&adapter->hw, reg_num, val);
1015}
1016
1017/*
1018 * atl1_mii_ioctl -
1019 * @netdev:
1020 * @ifreq:
1021 * @cmd:
1022 */
1023static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1024{
1025	struct atl1_adapter *adapter = netdev_priv(netdev);
1026	unsigned long flags;
1027	int retval;
1028
1029	if (!netif_running(netdev))
1030		return -EINVAL;
1031
1032	spin_lock_irqsave(&adapter->lock, flags);
1033	retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1034	spin_unlock_irqrestore(&adapter->lock, flags);
1035
1036	return retval;
1037}
1038
1039/*
1040 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1041 * @adapter: board private structure
1042 *
1043 * Return 0 on success, negative on failure
1044 */
1045static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1046{
1047	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1048	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1049	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1050	struct atl1_ring_header *ring_header = &adapter->ring_header;
1051	struct pci_dev *pdev = adapter->pdev;
1052	int size;
1053	u8 offset = 0;
1054
1055	size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1056	tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1057	if (unlikely(!tpd_ring->buffer_info)) {
1058		if (netif_msg_drv(adapter))
1059			dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1060				size);
1061		goto err_nomem;
1062	}
1063	rfd_ring->buffer_info =
1064		(struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count);
1065
1066	/*
1067	 * real ring DMA buffer
1068	 * each ring/block may need up to 8 bytes for alignment, hence the
1069	 * additional 40 bytes tacked onto the end.
1070	 */
1071	ring_header->size = size =
1072		sizeof(struct tx_packet_desc) * tpd_ring->count
1073		+ sizeof(struct rx_free_desc) * rfd_ring->count
1074		+ sizeof(struct rx_return_desc) * rrd_ring->count
1075		+ sizeof(struct coals_msg_block)
1076		+ sizeof(struct stats_msg_block)
1077		+ 40;
1078
1079	ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1080		&ring_header->dma);
1081	if (unlikely(!ring_header->desc)) {
1082		if (netif_msg_drv(adapter))
1083			dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1084		goto err_nomem;
1085	}
1086
1087	memset(ring_header->desc, 0, ring_header->size);
1088
1089	/* init TPD ring */
1090	tpd_ring->dma = ring_header->dma;
1091	offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1092	tpd_ring->dma += offset;
1093	tpd_ring->desc = (u8 *) ring_header->desc + offset;
1094	tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1095
1096	/* init RFD ring */
1097	rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1098	offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1099	rfd_ring->dma += offset;
1100	rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1101	rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1102
1103
1104	/* init RRD ring */
1105	rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1106	offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1107	rrd_ring->dma += offset;
1108	rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1109	rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1110
1111
1112	/* init CMB */
1113	adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1114	offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1115	adapter->cmb.dma += offset;
1116	adapter->cmb.cmb = (struct coals_msg_block *)
1117		((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1118
1119	/* init SMB */
1120	adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1121	offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1122	adapter->smb.dma += offset;
1123	adapter->smb.smb = (struct stats_msg_block *)
1124		((u8 *) adapter->cmb.cmb +
1125		(sizeof(struct coals_msg_block) + offset));
1126
1127	return 0;
1128
1129err_nomem:
1130	kfree(tpd_ring->buffer_info);
1131	return -ENOMEM;
1132}
1133
1134static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1135{
1136	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1137	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1138	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1139
1140	atomic_set(&tpd_ring->next_to_use, 0);
1141	atomic_set(&tpd_ring->next_to_clean, 0);
1142
1143	rfd_ring->next_to_clean = 0;
1144	atomic_set(&rfd_ring->next_to_use, 0);
1145
1146	rrd_ring->next_to_use = 0;
1147	atomic_set(&rrd_ring->next_to_clean, 0);
1148}
1149
1150/*
1151 * atl1_clean_rx_ring - Free RFD Buffers
1152 * @adapter: board private structure
1153 */
1154static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1155{
1156	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1157	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1158	struct atl1_buffer *buffer_info;
1159	struct pci_dev *pdev = adapter->pdev;
1160	unsigned long size;
1161	unsigned int i;
1162
1163	/* Free all the Rx ring sk_buffs */
1164	for (i = 0; i < rfd_ring->count; i++) {
1165		buffer_info = &rfd_ring->buffer_info[i];
1166		if (buffer_info->dma) {
1167			pci_unmap_page(pdev, buffer_info->dma,
1168				buffer_info->length, PCI_DMA_FROMDEVICE);
1169			buffer_info->dma = 0;
1170		}
1171		if (buffer_info->skb) {
1172			dev_kfree_skb(buffer_info->skb);
1173			buffer_info->skb = NULL;
1174		}
1175	}
1176
1177	size = sizeof(struct atl1_buffer) * rfd_ring->count;
1178	memset(rfd_ring->buffer_info, 0, size);
1179
1180	/* Zero out the descriptor ring */
1181	memset(rfd_ring->desc, 0, rfd_ring->size);
1182
1183	rfd_ring->next_to_clean = 0;
1184	atomic_set(&rfd_ring->next_to_use, 0);
1185
1186	rrd_ring->next_to_use = 0;
1187	atomic_set(&rrd_ring->next_to_clean, 0);
1188}
1189
1190/*
1191 * atl1_clean_tx_ring - Free Tx Buffers
1192 * @adapter: board private structure
1193 */
1194static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1195{
1196	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1197	struct atl1_buffer *buffer_info;
1198	struct pci_dev *pdev = adapter->pdev;
1199	unsigned long size;
1200	unsigned int i;
1201
1202	/* Free all the Tx ring sk_buffs */
1203	for (i = 0; i < tpd_ring->count; i++) {
1204		buffer_info = &tpd_ring->buffer_info[i];
1205		if (buffer_info->dma) {
1206			pci_unmap_page(pdev, buffer_info->dma,
1207				buffer_info->length, PCI_DMA_TODEVICE);
1208			buffer_info->dma = 0;
1209		}
1210	}
1211
1212	for (i = 0; i < tpd_ring->count; i++) {
1213		buffer_info = &tpd_ring->buffer_info[i];
1214		if (buffer_info->skb) {
1215			dev_kfree_skb_any(buffer_info->skb);
1216			buffer_info->skb = NULL;
1217		}
1218	}
1219
1220	size = sizeof(struct atl1_buffer) * tpd_ring->count;
1221	memset(tpd_ring->buffer_info, 0, size);
1222
1223	/* Zero out the descriptor ring */
1224	memset(tpd_ring->desc, 0, tpd_ring->size);
1225
1226	atomic_set(&tpd_ring->next_to_use, 0);
1227	atomic_set(&tpd_ring->next_to_clean, 0);
1228}
1229
1230/*
1231 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1232 * @adapter: board private structure
1233 *
1234 * Free all transmit software resources
1235 */
1236static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1237{
1238	struct pci_dev *pdev = adapter->pdev;
1239	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1240	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1241	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1242	struct atl1_ring_header *ring_header = &adapter->ring_header;
1243
1244	atl1_clean_tx_ring(adapter);
1245	atl1_clean_rx_ring(adapter);
1246
1247	kfree(tpd_ring->buffer_info);
1248	pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1249		ring_header->dma);
1250
1251	tpd_ring->buffer_info = NULL;
1252	tpd_ring->desc = NULL;
1253	tpd_ring->dma = 0;
1254
1255	rfd_ring->buffer_info = NULL;
1256	rfd_ring->desc = NULL;
1257	rfd_ring->dma = 0;
1258
1259	rrd_ring->desc = NULL;
1260	rrd_ring->dma = 0;
1261
1262	adapter->cmb.dma = 0;
1263	adapter->cmb.cmb = NULL;
1264
1265	adapter->smb.dma = 0;
1266	adapter->smb.smb = NULL;
1267}
1268
1269static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1270{
1271	u32 value;
1272	struct atl1_hw *hw = &adapter->hw;
1273	struct net_device *netdev = adapter->netdev;
1274	/* Config MAC CTRL Register */
1275	value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1276	/* duplex */
1277	if (FULL_DUPLEX == adapter->link_duplex)
1278		value |= MAC_CTRL_DUPLX;
1279	/* speed */
1280	value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1281			 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1282		  MAC_CTRL_SPEED_SHIFT);
1283	/* flow control */
1284	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1285	/* PAD & CRC */
1286	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1287	/* preamble length */
1288	value |= (((u32) adapter->hw.preamble_len
1289		   & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1290	/* vlan */
1291	__atlx_vlan_mode(netdev->features, &value);
1292	/* rx checksum
1293	   if (adapter->rx_csum)
1294	   value |= MAC_CTRL_RX_CHKSUM_EN;
1295	 */
1296	/* filter mode */
1297	value |= MAC_CTRL_BC_EN;
1298	if (netdev->flags & IFF_PROMISC)
1299		value |= MAC_CTRL_PROMIS_EN;
1300	else if (netdev->flags & IFF_ALLMULTI)
1301		value |= MAC_CTRL_MC_ALL_EN;
1302	/* value |= MAC_CTRL_LOOPBACK; */
1303	iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1304}
1305
1306static u32 atl1_check_link(struct atl1_adapter *adapter)
1307{
1308	struct atl1_hw *hw = &adapter->hw;
1309	struct net_device *netdev = adapter->netdev;
1310	u32 ret_val;
1311	u16 speed, duplex, phy_data;
1312	int reconfig = 0;
1313
1314	/* MII_BMSR must read twice */
1315	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1316	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1317	if (!(phy_data & BMSR_LSTATUS)) {
1318		/* link down */
1319		if (netif_carrier_ok(netdev)) {
1320			/* old link state: Up */
1321			if (netif_msg_link(adapter))
1322				dev_info(&adapter->pdev->dev, "link is down\n");
1323			adapter->link_speed = SPEED_0;
1324			netif_carrier_off(netdev);
1325		}
1326		return 0;
1327	}
1328
1329	/* Link Up */
1330	ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1331	if (ret_val)
1332		return ret_val;
1333
1334	switch (hw->media_type) {
1335	case MEDIA_TYPE_1000M_FULL:
1336		if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1337			reconfig = 1;
1338		break;
1339	case MEDIA_TYPE_100M_FULL:
1340		if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1341			reconfig = 1;
1342		break;
1343	case MEDIA_TYPE_100M_HALF:
1344		if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1345			reconfig = 1;
1346		break;
1347	case MEDIA_TYPE_10M_FULL:
1348		if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1349			reconfig = 1;
1350		break;
1351	case MEDIA_TYPE_10M_HALF:
1352		if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1353			reconfig = 1;
1354		break;
1355	}
1356
1357	/* link result is our setting */
1358	if (!reconfig) {
1359		if (adapter->link_speed != speed ||
1360		    adapter->link_duplex != duplex) {
1361			adapter->link_speed = speed;
1362			adapter->link_duplex = duplex;
1363			atl1_setup_mac_ctrl(adapter);
1364			if (netif_msg_link(adapter))
1365				dev_info(&adapter->pdev->dev,
1366					"%s link is up %d Mbps %s\n",
1367					netdev->name, adapter->link_speed,
1368					adapter->link_duplex == FULL_DUPLEX ?
1369					"full duplex" : "half duplex");
1370		}
1371		if (!netif_carrier_ok(netdev)) {
1372			/* Link down -> Up */
1373			netif_carrier_on(netdev);
1374		}
1375		return 0;
1376	}
1377
1378	/* change original link status */
1379	if (netif_carrier_ok(netdev)) {
1380		adapter->link_speed = SPEED_0;
1381		netif_carrier_off(netdev);
1382		netif_stop_queue(netdev);
1383	}
1384
1385	if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1386	    hw->media_type != MEDIA_TYPE_1000M_FULL) {
1387		switch (hw->media_type) {
1388		case MEDIA_TYPE_100M_FULL:
1389			phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1390			           MII_CR_RESET;
1391			break;
1392		case MEDIA_TYPE_100M_HALF:
1393			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1394			break;
1395		case MEDIA_TYPE_10M_FULL:
1396			phy_data =
1397			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1398			break;
1399		default:
1400			/* MEDIA_TYPE_10M_HALF: */
1401			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1402			break;
1403		}
1404		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1405		return 0;
1406	}
1407
1408	/* auto-neg, insert timer to re-config phy */
1409	if (!adapter->phy_timer_pending) {
1410		adapter->phy_timer_pending = true;
1411		mod_timer(&adapter->phy_config_timer,
1412			  round_jiffies(jiffies + 3 * HZ));
1413	}
1414
1415	return 0;
1416}
1417
1418static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1419{
1420	u32 hi, lo, value;
1421
1422	/* RFD Flow Control */
1423	value = adapter->rfd_ring.count;
1424	hi = value / 16;
1425	if (hi < 2)
1426		hi = 2;
1427	lo = value * 7 / 8;
1428
1429	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1430		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1431	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1432
1433	/* RRD Flow Control */
1434	value = adapter->rrd_ring.count;
1435	lo = value / 16;
1436	hi = value * 7 / 8;
1437	if (lo < 2)
1438		lo = 2;
1439	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1440		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1441	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1442}
1443
1444static void set_flow_ctrl_new(struct atl1_hw *hw)
1445{
1446	u32 hi, lo, value;
1447
1448	/* RXF Flow Control */
1449	value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1450	lo = value / 16;
1451	if (lo < 192)
1452		lo = 192;
1453	hi = value * 7 / 8;
1454	if (hi < lo)
1455		hi = lo + 16;
1456	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1457		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1458	iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1459
1460	/* RRD Flow Control */
1461	value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1462	lo = value / 8;
1463	hi = value * 7 / 8;
1464	if (lo < 2)
1465		lo = 2;
1466	if (hi < lo)
1467		hi = lo + 3;
1468	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1469		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1470	iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1471}
1472
1473/*
1474 * atl1_configure - Configure Transmit&Receive Unit after Reset
1475 * @adapter: board private structure
1476 *
1477 * Configure the Tx /Rx unit of the MAC after a reset.
1478 */
1479static u32 atl1_configure(struct atl1_adapter *adapter)
1480{
1481	struct atl1_hw *hw = &adapter->hw;
1482	u32 value;
1483
1484	/* clear interrupt status */
1485	iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1486
1487	/* set MAC Address */
1488	value = (((u32) hw->mac_addr[2]) << 24) |
1489		(((u32) hw->mac_addr[3]) << 16) |
1490		(((u32) hw->mac_addr[4]) << 8) |
1491		(((u32) hw->mac_addr[5]));
1492	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1493	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1494	iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1495
1496	/* tx / rx ring */
1497
1498	/* HI base address */
1499	iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1500		hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1501	/* LO base address */
1502	iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1503		hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1504	iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1505		hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1506	iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1507		hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1508	iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1509		hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1510	iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1511		hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1512
1513	/* element count */
1514	value = adapter->rrd_ring.count;
1515	value <<= 16;
1516	value += adapter->rfd_ring.count;
1517	iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1518	iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1519		REG_DESC_TPD_RING_SIZE);
1520
1521	/* Load Ptr */
1522	iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1523
1524	/* config Mailbox */
1525	value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1526		  & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1527		((atomic_read(&adapter->rrd_ring.next_to_clean)
1528		& MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1529		((atomic_read(&adapter->rfd_ring.next_to_use)
1530		& MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1531	iowrite32(value, hw->hw_addr + REG_MAILBOX);
1532
1533	/* config IPG/IFG */
1534	value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1535		 << MAC_IPG_IFG_IPGT_SHIFT) |
1536		(((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1537		<< MAC_IPG_IFG_MIFG_SHIFT) |
1538		(((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1539		<< MAC_IPG_IFG_IPGR1_SHIFT) |
1540		(((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1541		<< MAC_IPG_IFG_IPGR2_SHIFT);
1542	iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1543
1544	/* config  Half-Duplex Control */
1545	value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1546		(((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1547		<< MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1548		MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1549		(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1550		(((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1551		<< MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1552	iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1553
1554	/* set Interrupt Moderator Timer */
1555	iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1556	iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1557
1558	/* set Interrupt Clear Timer */
1559	iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1560
1561	/* set max frame size hw will accept */
1562	iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1563
1564	/* jumbo size & rrd retirement timer */
1565	value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1566		 << RXQ_JMBOSZ_TH_SHIFT) |
1567		(((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1568		<< RXQ_JMBO_LKAH_SHIFT) |
1569		(((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1570		<< RXQ_RRD_TIMER_SHIFT);
1571	iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1572
1573	/* Flow Control */
1574	switch (hw->dev_rev) {
1575	case 0x8001:
1576	case 0x9001:
1577	case 0x9002:
1578	case 0x9003:
1579		set_flow_ctrl_old(adapter);
1580		break;
1581	default:
1582		set_flow_ctrl_new(hw);
1583		break;
1584	}
1585
1586	/* config TXQ */
1587	value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1588		 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1589		(((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1590		<< TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1591		(((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1592		<< TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1593		TXQ_CTRL_EN;
1594	iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1595
1596	/* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1597	value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1598		<< TX_JUMBO_TASK_TH_SHIFT) |
1599		(((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1600		<< TX_TPD_MIN_IPG_SHIFT);
1601	iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1602
1603	/* config RXQ */
1604	value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1605		<< RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1606		(((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1607		<< RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1608		(((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1609		<< RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1610		RXQ_CTRL_EN;
1611	iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1612
1613	/* config DMA Engine */
1614	value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1615		<< DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1616		((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1617		<< DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1618		DMA_CTRL_DMAW_EN;
1619	value |= (u32) hw->dma_ord;
1620	if (atl1_rcb_128 == hw->rcb_value)
1621		value |= DMA_CTRL_RCB_VALUE;
1622	iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1623
1624	/* config CMB / SMB */
1625	value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1626		hw->cmb_tpd : adapter->tpd_ring.count;
1627	value <<= 16;
1628	value |= hw->cmb_rrd;
1629	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1630	value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1631	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1632	iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1633
1634	/* --- enable CMB / SMB */
1635	value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1636	iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1637
1638	value = ioread32(adapter->hw.hw_addr + REG_ISR);
1639	if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1640		value = 1;	/* config failed */
1641	else
1642		value = 0;
1643
1644	/* clear all interrupt status */
1645	iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1646	iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1647	return value;
1648}
1649
1650/*
1651 * atl1_pcie_patch - Patch for PCIE module
1652 */
1653static void atl1_pcie_patch(struct atl1_adapter *adapter)
1654{
1655	u32 value;
1656
1657	/* much vendor magic here */
1658	value = 0x6500;
1659	iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1660	/* pcie flow control mode change */
1661	value = ioread32(adapter->hw.hw_addr + 0x1008);
1662	value |= 0x8000;
1663	iowrite32(value, adapter->hw.hw_addr + 0x1008);
1664}
1665
1666/*
1667 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1668 * on PCI Command register is disable.
1669 * The function enable this bit.
1670 * Brackett, 2006/03/15
1671 */
1672static void atl1_via_workaround(struct atl1_adapter *adapter)
1673{
1674	unsigned long value;
1675
1676	value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1677	if (value & PCI_COMMAND_INTX_DISABLE)
1678		value &= ~PCI_COMMAND_INTX_DISABLE;
1679	iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1680}
1681
1682static void atl1_inc_smb(struct atl1_adapter *adapter)
1683{
1684	struct net_device *netdev = adapter->netdev;
1685	struct stats_msg_block *smb = adapter->smb.smb;
1686
1687	/* Fill out the OS statistics structure */
1688	adapter->soft_stats.rx_packets += smb->rx_ok;
1689	adapter->soft_stats.tx_packets += smb->tx_ok;
1690	adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1691	adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1692	adapter->soft_stats.multicast += smb->rx_mcast;
1693	adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 +
1694		smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry);
1695
1696	/* Rx Errors */
1697	adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err +
1698		smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov +
1699		smb->rx_rrd_ov + smb->rx_align_err);
1700	adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1701	adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1702	adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1703	adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1704	adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
1705		smb->rx_rxf_ov);
1706
1707	adapter->soft_stats.rx_pause += smb->rx_pause;
1708	adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1709	adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1710
1711	/* Tx Errors */
1712	adapter->soft_stats.tx_errors += (smb->tx_late_col +
1713		smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc);
1714	adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1715	adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1716	adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1717
1718	adapter->soft_stats.excecol += smb->tx_abort_col;
1719	adapter->soft_stats.deffer += smb->tx_defer;
1720	adapter->soft_stats.scc += smb->tx_1_col;
1721	adapter->soft_stats.mcc += smb->tx_2_col;
1722	adapter->soft_stats.latecol += smb->tx_late_col;
1723	adapter->soft_stats.tx_underun += smb->tx_underrun;
1724	adapter->soft_stats.tx_trunc += smb->tx_trunc;
1725	adapter->soft_stats.tx_pause += smb->tx_pause;
1726
1727	netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1728	netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1729	netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1730	netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1731	netdev->stats.multicast = adapter->soft_stats.multicast;
1732	netdev->stats.collisions = adapter->soft_stats.collisions;
1733	netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1734	netdev->stats.rx_over_errors =
1735		adapter->soft_stats.rx_missed_errors;
1736	netdev->stats.rx_length_errors =
1737		adapter->soft_stats.rx_length_errors;
1738	netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1739	netdev->stats.rx_frame_errors =
1740		adapter->soft_stats.rx_frame_errors;
1741	netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1742	netdev->stats.rx_missed_errors =
1743		adapter->soft_stats.rx_missed_errors;
1744	netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1745	netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1746	netdev->stats.tx_aborted_errors =
1747		adapter->soft_stats.tx_aborted_errors;
1748	netdev->stats.tx_window_errors =
1749		adapter->soft_stats.tx_window_errors;
1750	netdev->stats.tx_carrier_errors =
1751		adapter->soft_stats.tx_carrier_errors;
1752}
1753
1754static void atl1_update_mailbox(struct atl1_adapter *adapter)
1755{
1756	unsigned long flags;
1757	u32 tpd_next_to_use;
1758	u32 rfd_next_to_use;
1759	u32 rrd_next_to_clean;
1760	u32 value;
1761
1762	spin_lock_irqsave(&adapter->mb_lock, flags);
1763
1764	tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1765	rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1766	rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1767
1768	value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1769		MB_RFD_PROD_INDX_SHIFT) |
1770		((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1771		MB_RRD_CONS_INDX_SHIFT) |
1772		((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1773		MB_TPD_PROD_INDX_SHIFT);
1774	iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1775
1776	spin_unlock_irqrestore(&adapter->mb_lock, flags);
1777}
1778
1779static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1780	struct rx_return_desc *rrd, u16 offset)
1781{
1782	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1783
1784	while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1785		rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1786		if (++rfd_ring->next_to_clean == rfd_ring->count) {
1787			rfd_ring->next_to_clean = 0;
1788		}
1789	}
1790}
1791
1792static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1793	struct rx_return_desc *rrd)
1794{
1795	u16 num_buf;
1796
1797	num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1798		adapter->rx_buffer_len;
1799	if (rrd->num_buf == num_buf)
1800		/* clean alloc flag for bad rrd */
1801		atl1_clean_alloc_flag(adapter, rrd, num_buf);
1802}
1803
1804static void atl1_rx_checksum(struct atl1_adapter *adapter,
1805	struct rx_return_desc *rrd, struct sk_buff *skb)
1806{
1807	struct pci_dev *pdev = adapter->pdev;
1808
1809	/*
1810	 * The L1 hardware contains a bug that erroneously sets the
1811	 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1812	 * fragmented IP packet is received, even though the packet
1813	 * is perfectly valid and its checksum is correct. There's
1814	 * no way to distinguish between one of these good packets
1815	 * and a packet that actually contains a TCP/UDP checksum
1816	 * error, so all we can do is allow it to be handed up to
1817	 * the higher layers and let it be sorted out there.
1818	 */
1819
1820	skb_checksum_none_assert(skb);
1821
1822	if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1823		if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1824					ERR_FLAG_CODE | ERR_FLAG_OV)) {
1825			adapter->hw_csum_err++;
1826			if (netif_msg_rx_err(adapter))
1827				dev_printk(KERN_DEBUG, &pdev->dev,
1828					"rx checksum error\n");
1829			return;
1830		}
1831	}
1832
1833	/* not IPv4 */
1834	if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1835		/* checksum is invalid, but it's not an IPv4 pkt, so ok */
1836		return;
1837
1838	/* IPv4 packet */
1839	if (likely(!(rrd->err_flg &
1840		(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1841		skb->ip_summed = CHECKSUM_UNNECESSARY;
1842		adapter->hw_csum_good++;
1843		return;
1844	}
1845}
1846
1847/*
1848 * atl1_alloc_rx_buffers - Replace used receive buffers
1849 * @adapter: address of board private structure
1850 */
1851static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1852{
1853	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1854	struct pci_dev *pdev = adapter->pdev;
1855	struct page *page;
1856	unsigned long offset;
1857	struct atl1_buffer *buffer_info, *next_info;
1858	struct sk_buff *skb;
1859	u16 num_alloc = 0;
1860	u16 rfd_next_to_use, next_next;
1861	struct rx_free_desc *rfd_desc;
1862
1863	next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1864	if (++next_next == rfd_ring->count)
1865		next_next = 0;
1866	buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1867	next_info = &rfd_ring->buffer_info[next_next];
1868
1869	while (!buffer_info->alloced && !next_info->alloced) {
1870		if (buffer_info->skb) {
1871			buffer_info->alloced = 1;
1872			goto next;
1873		}
1874
1875		rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1876
1877		skb = netdev_alloc_skb_ip_align(adapter->netdev,
1878						adapter->rx_buffer_len);
1879		if (unlikely(!skb)) {
1880			/* Better luck next round */
1881			adapter->netdev->stats.rx_dropped++;
1882			break;
1883		}
1884
1885		buffer_info->alloced = 1;
1886		buffer_info->skb = skb;
1887		buffer_info->length = (u16) adapter->rx_buffer_len;
1888		page = virt_to_page(skb->data);
1889		offset = (unsigned long)skb->data & ~PAGE_MASK;
1890		buffer_info->dma = pci_map_page(pdev, page, offset,
1891						adapter->rx_buffer_len,
1892						PCI_DMA_FROMDEVICE);
1893		rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1894		rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1895		rfd_desc->coalese = 0;
1896
1897next:
1898		rfd_next_to_use = next_next;
1899		if (unlikely(++next_next == rfd_ring->count))
1900			next_next = 0;
1901
1902		buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1903		next_info = &rfd_ring->buffer_info[next_next];
1904		num_alloc++;
1905	}
1906
1907	if (num_alloc) {
1908		/*
1909		 * Force memory writes to complete before letting h/w
1910		 * know there are new descriptors to fetch.  (Only
1911		 * applicable for weak-ordered memory model archs,
1912		 * such as IA-64).
1913		 */
1914		wmb();
1915		atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1916	}
1917	return num_alloc;
1918}
1919
1920static void atl1_intr_rx(struct atl1_adapter *adapter)
1921{
1922	int i, count;
1923	u16 length;
1924	u16 rrd_next_to_clean;
1925	u32 value;
1926	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1927	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1928	struct atl1_buffer *buffer_info;
1929	struct rx_return_desc *rrd;
1930	struct sk_buff *skb;
1931
1932	count = 0;
1933
1934	rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1935
1936	while (1) {
1937		rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1938		i = 1;
1939		if (likely(rrd->xsz.valid)) {	/* packet valid */
1940chk_rrd:
1941			/* check rrd status */
1942			if (likely(rrd->num_buf == 1))
1943				goto rrd_ok;
1944			else if (netif_msg_rx_err(adapter)) {
1945				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1946					"unexpected RRD buffer count\n");
1947				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1948					"rx_buf_len = %d\n",
1949					adapter->rx_buffer_len);
1950				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1951					"RRD num_buf = %d\n",
1952					rrd->num_buf);
1953				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1954					"RRD pkt_len = %d\n",
1955					rrd->xsz.xsum_sz.pkt_size);
1956				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1957					"RRD pkt_flg = 0x%08X\n",
1958					rrd->pkt_flg);
1959				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1960					"RRD err_flg = 0x%08X\n",
1961					rrd->err_flg);
1962				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1963					"RRD vlan_tag = 0x%08X\n",
1964					rrd->vlan_tag);
1965			}
1966
1967			/* rrd seems to be bad */
1968			if (unlikely(i-- > 0)) {
1969				/* rrd may not be DMAed completely */
1970				udelay(1);
1971				goto chk_rrd;
1972			}
1973			/* bad rrd */
1974			if (netif_msg_rx_err(adapter))
1975				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1976					"bad RRD\n");
1977			/* see if update RFD index */
1978			if (rrd->num_buf > 1)
1979				atl1_update_rfd_index(adapter, rrd);
1980
1981			/* update rrd */
1982			rrd->xsz.valid = 0;
1983			if (++rrd_next_to_clean == rrd_ring->count)
1984				rrd_next_to_clean = 0;
1985			count++;
1986			continue;
1987		} else {	/* current rrd still not be updated */
1988
1989			break;
1990		}
1991rrd_ok:
1992		/* clean alloc flag for bad rrd */
1993		atl1_clean_alloc_flag(adapter, rrd, 0);
1994
1995		buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1996		if (++rfd_ring->next_to_clean == rfd_ring->count)
1997			rfd_ring->next_to_clean = 0;
1998
1999		/* update rrd next to clean */
2000		if (++rrd_next_to_clean == rrd_ring->count)
2001			rrd_next_to_clean = 0;
2002		count++;
2003
2004		if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
2005			if (!(rrd->err_flg &
2006				(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2007				| ERR_FLAG_LEN))) {
2008				/* packet error, don't need upstream */
2009				buffer_info->alloced = 0;
2010				rrd->xsz.valid = 0;
2011				continue;
2012			}
2013		}
2014
2015		/* Good Receive */
2016		pci_unmap_page(adapter->pdev, buffer_info->dma,
2017			       buffer_info->length, PCI_DMA_FROMDEVICE);
2018		buffer_info->dma = 0;
2019		skb = buffer_info->skb;
2020		length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2021
2022		skb_put(skb, length - ETH_FCS_LEN);
2023
2024		/* Receive Checksum Offload */
2025		atl1_rx_checksum(adapter, rrd, skb);
2026		skb->protocol = eth_type_trans(skb, adapter->netdev);
2027
2028		if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2029			u16 vlan_tag = (rrd->vlan_tag >> 4) |
2030					((rrd->vlan_tag & 7) << 13) |
2031					((rrd->vlan_tag & 8) << 9);
2032
2033			__vlan_hwaccel_put_tag(skb, vlan_tag);
2034		}
2035		netif_rx(skb);
2036
2037		/* let protocol layer free skb */
2038		buffer_info->skb = NULL;
2039		buffer_info->alloced = 0;
2040		rrd->xsz.valid = 0;
2041	}
2042
2043	atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2044
2045	atl1_alloc_rx_buffers(adapter);
2046
2047	/* update mailbox ? */
2048	if (count) {
2049		u32 tpd_next_to_use;
2050		u32 rfd_next_to_use;
2051
2052		spin_lock(&adapter->mb_lock);
2053
2054		tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2055		rfd_next_to_use =
2056		    atomic_read(&adapter->rfd_ring.next_to_use);
2057		rrd_next_to_clean =
2058		    atomic_read(&adapter->rrd_ring.next_to_clean);
2059		value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2060			MB_RFD_PROD_INDX_SHIFT) |
2061                        ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2062			MB_RRD_CONS_INDX_SHIFT) |
2063                        ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2064			MB_TPD_PROD_INDX_SHIFT);
2065		iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2066		spin_unlock(&adapter->mb_lock);
2067	}
2068}
2069
2070static void atl1_intr_tx(struct atl1_adapter *adapter)
2071{
2072	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2073	struct atl1_buffer *buffer_info;
2074	u16 sw_tpd_next_to_clean;
2075	u16 cmb_tpd_next_to_clean;
2076
2077	sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2078	cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2079
2080	while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2081		buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2082		if (buffer_info->dma) {
2083			pci_unmap_page(adapter->pdev, buffer_info->dma,
2084				       buffer_info->length, PCI_DMA_TODEVICE);
2085			buffer_info->dma = 0;
2086		}
2087
2088		if (buffer_info->skb) {
2089			dev_kfree_skb_irq(buffer_info->skb);
2090			buffer_info->skb = NULL;
2091		}
2092
2093		if (++sw_tpd_next_to_clean == tpd_ring->count)
2094			sw_tpd_next_to_clean = 0;
2095	}
2096	atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2097
2098	if (netif_queue_stopped(adapter->netdev) &&
2099	    netif_carrier_ok(adapter->netdev))
2100		netif_wake_queue(adapter->netdev);
2101}
2102
2103static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2104{
2105	u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2106	u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2107	return (next_to_clean > next_to_use) ?
2108		next_to_clean - next_to_use - 1 :
2109		tpd_ring->count + next_to_clean - next_to_use - 1;
2110}
2111
2112static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2113	struct tx_packet_desc *ptpd)
2114{
2115	u8 hdr_len, ip_off;
2116	u32 real_len;
2117	int err;
2118
2119	if (skb_shinfo(skb)->gso_size) {
2120		if (skb_header_cloned(skb)) {
2121			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2122			if (unlikely(err))
2123				return -1;
2124		}
2125
2126		if (skb->protocol == htons(ETH_P_IP)) {
2127			struct iphdr *iph = ip_hdr(skb);
2128
2129			real_len = (((unsigned char *)iph - skb->data) +
2130				ntohs(iph->tot_len));
2131			if (real_len < skb->len)
2132				pskb_trim(skb, real_len);
2133			hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2134			if (skb->len == hdr_len) {
2135				iph->check = 0;
2136				tcp_hdr(skb)->check =
2137					~csum_tcpudp_magic(iph->saddr,
2138					iph->daddr, tcp_hdrlen(skb),
2139					IPPROTO_TCP, 0);
2140				ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2141					TPD_IPHL_SHIFT;
2142				ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2143					TPD_TCPHDRLEN_MASK) <<
2144					TPD_TCPHDRLEN_SHIFT;
2145				ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2146				ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2147				return 1;
2148			}
2149
2150			iph->check = 0;
2151			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2152					iph->daddr, 0, IPPROTO_TCP, 0);
2153			ip_off = (unsigned char *)iph -
2154				(unsigned char *) skb_network_header(skb);
2155			if (ip_off == 8) /* 802.3-SNAP frame */
2156				ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2157			else if (ip_off != 0)
2158				return -2;
2159
2160			ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2161				TPD_IPHL_SHIFT;
2162			ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2163				TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2164			ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2165				TPD_MSS_MASK) << TPD_MSS_SHIFT;
2166			ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2167			return 3;
2168		}
2169	}
2170	return false;
2171}
2172
2173static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2174	struct tx_packet_desc *ptpd)
2175{
2176	u8 css, cso;
2177
2178	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2179		css = skb_checksum_start_offset(skb);
2180		cso = css + (u8) skb->csum_offset;
2181		if (unlikely(css & 0x1)) {
2182			/* L1 hardware requires an even number here */
2183			if (netif_msg_tx_err(adapter))
2184				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2185					"payload offset not an even number\n");
2186			return -1;
2187		}
2188		ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2189			TPD_PLOADOFFSET_SHIFT;
2190		ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2191			TPD_CCSUMOFFSET_SHIFT;
2192		ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2193		return true;
2194	}
2195	return 0;
2196}
2197
2198static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2199	struct tx_packet_desc *ptpd)
2200{
2201	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2202	struct atl1_buffer *buffer_info;
2203	u16 buf_len = skb->len;
2204	struct page *page;
2205	unsigned long offset;
2206	unsigned int nr_frags;
2207	unsigned int f;
2208	int retval;
2209	u16 next_to_use;
2210	u16 data_len;
2211	u8 hdr_len;
2212
2213	buf_len -= skb->data_len;
2214	nr_frags = skb_shinfo(skb)->nr_frags;
2215	next_to_use = atomic_read(&tpd_ring->next_to_use);
2216	buffer_info = &tpd_ring->buffer_info[next_to_use];
2217	BUG_ON(buffer_info->skb);
2218	/* put skb in last TPD */
2219	buffer_info->skb = NULL;
2220
2221	retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2222	if (retval) {
2223		/* TSO */
2224		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2225		buffer_info->length = hdr_len;
2226		page = virt_to_page(skb->data);
2227		offset = (unsigned long)skb->data & ~PAGE_MASK;
2228		buffer_info->dma = pci_map_page(adapter->pdev, page,
2229						offset, hdr_len,
2230						PCI_DMA_TODEVICE);
2231
2232		if (++next_to_use == tpd_ring->count)
2233			next_to_use = 0;
2234
2235		if (buf_len > hdr_len) {
2236			int i, nseg;
2237
2238			data_len = buf_len - hdr_len;
2239			nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2240				ATL1_MAX_TX_BUF_LEN;
2241			for (i = 0; i < nseg; i++) {
2242				buffer_info =
2243				    &tpd_ring->buffer_info[next_to_use];
2244				buffer_info->skb = NULL;
2245				buffer_info->length =
2246				    (ATL1_MAX_TX_BUF_LEN >=
2247				     data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2248				data_len -= buffer_info->length;
2249				page = virt_to_page(skb->data +
2250					(hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2251				offset = (unsigned long)(skb->data +
2252					(hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
2253					~PAGE_MASK;
2254				buffer_info->dma = pci_map_page(adapter->pdev,
2255					page, offset, buffer_info->length,
2256					PCI_DMA_TODEVICE);
2257				if (++next_to_use == tpd_ring->count)
2258					next_to_use = 0;
2259			}
2260		}
2261	} else {
2262		/* not TSO */
2263		buffer_info->length = buf_len;
2264		page = virt_to_page(skb->data);
2265		offset = (unsigned long)skb->data & ~PAGE_MASK;
2266		buffer_info->dma = pci_map_page(adapter->pdev, page,
2267			offset, buf_len, PCI_DMA_TODEVICE);
2268		if (++next_to_use == tpd_ring->count)
2269			next_to_use = 0;
2270	}
2271
2272	for (f = 0; f < nr_frags; f++) {
2273		const struct skb_frag_struct *frag;
2274		u16 i, nseg;
2275
2276		frag = &skb_shinfo(skb)->frags[f];
2277		buf_len = skb_frag_size(frag);
2278
2279		nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2280			ATL1_MAX_TX_BUF_LEN;
2281		for (i = 0; i < nseg; i++) {
2282			buffer_info = &tpd_ring->buffer_info[next_to_use];
2283			BUG_ON(buffer_info->skb);
2284
2285			buffer_info->skb = NULL;
2286			buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2287				ATL1_MAX_TX_BUF_LEN : buf_len;
2288			buf_len -= buffer_info->length;
2289			buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2290				frag, i * ATL1_MAX_TX_BUF_LEN,
2291				buffer_info->length, DMA_TO_DEVICE);
2292
2293			if (++next_to_use == tpd_ring->count)
2294				next_to_use = 0;
2295		}
2296	}
2297
2298	/* last tpd's buffer-info */
2299	buffer_info->skb = skb;
2300}
2301
2302static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2303       struct tx_packet_desc *ptpd)
2304{
2305	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2306	struct atl1_buffer *buffer_info;
2307	struct tx_packet_desc *tpd;
2308	u16 j;
2309	u32 val;
2310	u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2311
2312	for (j = 0; j < count; j++) {
2313		buffer_info = &tpd_ring->buffer_info[next_to_use];
2314		tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2315		if (tpd != ptpd)
2316			memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2317		tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2318		tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2319		tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2320			TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2321
2322		/*
2323		 * if this is the first packet in a TSO chain, set
2324		 * TPD_HDRFLAG, otherwise, clear it.
2325		 */
2326		val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2327			TPD_SEGMENT_EN_MASK;
2328		if (val) {
2329			if (!j)
2330				tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2331			else
2332				tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2333		}
2334
2335		if (j == (count - 1))
2336			tpd->word3 |= 1 << TPD_EOP_SHIFT;
2337
2338		if (++next_to_use == tpd_ring->count)
2339			next_to_use = 0;
2340	}
2341	/*
2342	 * Force memory writes to complete before letting h/w
2343	 * know there are new descriptors to fetch.  (Only
2344	 * applicable for weak-ordered memory model archs,
2345	 * such as IA-64).
2346	 */
2347	wmb();
2348
2349	atomic_set(&tpd_ring->next_to_use, next_to_use);
2350}
2351
2352static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2353					 struct net_device *netdev)
2354{
2355	struct atl1_adapter *adapter = netdev_priv(netdev);
2356	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2357	int len;
2358	int tso;
2359	int count = 1;
2360	int ret_val;
2361	struct tx_packet_desc *ptpd;
2362	u16 vlan_tag;
2363	unsigned int nr_frags = 0;
2364	unsigned int mss = 0;
2365	unsigned int f;
2366	unsigned int proto_hdr_len;
2367
2368	len = skb_headlen(skb);
2369
2370	if (unlikely(skb->len <= 0)) {
2371		dev_kfree_skb_any(skb);
2372		return NETDEV_TX_OK;
2373	}
2374
2375	nr_frags = skb_shinfo(skb)->nr_frags;
2376	for (f = 0; f < nr_frags; f++) {
2377		unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2378		count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2379			 ATL1_MAX_TX_BUF_LEN;
2380	}
2381
2382	mss = skb_shinfo(skb)->gso_size;
2383	if (mss) {
2384		if (skb->protocol == htons(ETH_P_IP)) {
2385			proto_hdr_len = (skb_transport_offset(skb) +
2386					 tcp_hdrlen(skb));
2387			if (unlikely(proto_hdr_len > len)) {
2388				dev_kfree_skb_any(skb);
2389				return NETDEV_TX_OK;
2390			}
2391			/* need additional TPD ? */
2392			if (proto_hdr_len != len)
2393				count += (len - proto_hdr_len +
2394					ATL1_MAX_TX_BUF_LEN - 1) /
2395					ATL1_MAX_TX_BUF_LEN;
2396		}
2397	}
2398
2399	if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2400		/* not enough descriptors */
2401		netif_stop_queue(netdev);
2402		if (netif_msg_tx_queued(adapter))
2403			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2404				"tx busy\n");
2405		return NETDEV_TX_BUSY;
2406	}
2407
2408	ptpd = ATL1_TPD_DESC(tpd_ring,
2409		(u16) atomic_read(&tpd_ring->next_to_use));
2410	memset(ptpd, 0, sizeof(struct tx_packet_desc));
2411
2412	if (vlan_tx_tag_present(skb)) {
2413		vlan_tag = vlan_tx_tag_get(skb);
2414		vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2415			((vlan_tag >> 9) & 0x8);
2416		ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2417		ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2418			TPD_VLANTAG_SHIFT;
2419	}
2420
2421	tso = atl1_tso(adapter, skb, ptpd);
2422	if (tso < 0) {
2423		dev_kfree_skb_any(skb);
2424		return NETDEV_TX_OK;
2425	}
2426
2427	if (!tso) {
2428		ret_val = atl1_tx_csum(adapter, skb, ptpd);
2429		if (ret_val < 0) {
2430			dev_kfree_skb_any(skb);
2431			return NETDEV_TX_OK;
2432		}
2433	}
2434
2435	atl1_tx_map(adapter, skb, ptpd);
2436	atl1_tx_queue(adapter, count, ptpd);
2437	atl1_update_mailbox(adapter);
2438	mmiowb();
2439	return NETDEV_TX_OK;
2440}
2441
2442/*
2443 * atl1_intr - Interrupt Handler
2444 * @irq: interrupt number
2445 * @data: pointer to a network interface device structure
2446 * @pt_regs: CPU registers structure
2447 */
2448static irqreturn_t atl1_intr(int irq, void *data)
2449{
2450	struct atl1_adapter *adapter = netdev_priv(data);
2451	u32 status;
2452	int max_ints = 10;
2453
2454	status = adapter->cmb.cmb->int_stats;
2455	if (!status)
2456		return IRQ_NONE;
2457
2458	do {
2459		/* clear CMB interrupt status at once */
2460		adapter->cmb.cmb->int_stats = 0;
2461
2462		if (status & ISR_GPHY)	/* clear phy status */
2463			atlx_clear_phy_int(adapter);
2464
2465		/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2466		iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2467
2468		/* check if SMB intr */
2469		if (status & ISR_SMB)
2470			atl1_inc_smb(adapter);
2471
2472		/* check if PCIE PHY Link down */
2473		if (status & ISR_PHY_LINKDOWN) {
2474			if (netif_msg_intr(adapter))
2475				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2476					"pcie phy link down %x\n", status);
2477			if (netif_running(adapter->netdev)) {	/* reset MAC */
2478				iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2479				schedule_work(&adapter->reset_dev_task);
2480				return IRQ_HANDLED;
2481			}
2482		}
2483
2484		/* check if DMA read/write error ? */
2485		if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2486			if (netif_msg_intr(adapter))
2487				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2488					"pcie DMA r/w error (status = 0x%x)\n",
2489					status);
2490			iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2491			schedule_work(&adapter->reset_dev_task);
2492			return IRQ_HANDLED;
2493		}
2494
2495		/* link event */
2496		if (status & ISR_GPHY) {
2497			adapter->soft_stats.tx_carrier_errors++;
2498			atl1_check_for_link(adapter);
2499		}
2500
2501		/* transmit event */
2502		if (status & ISR_CMB_TX)
2503			atl1_intr_tx(adapter);
2504
2505		/* rx exception */
2506		if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2507			ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2508			ISR_HOST_RRD_OV | ISR_CMB_RX))) {
2509			if (status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2510				ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2511				ISR_HOST_RRD_OV))
2512				if (netif_msg_intr(adapter))
2513					dev_printk(KERN_DEBUG,
2514						&adapter->pdev->dev,
2515						"rx exception, ISR = 0x%x\n",
2516						status);
2517			atl1_intr_rx(adapter);
2518		}
2519
2520		if (--max_ints < 0)
2521			break;
2522
2523	} while ((status = adapter->cmb.cmb->int_stats));
2524
2525	/* re-enable Interrupt */
2526	iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2527	return IRQ_HANDLED;
2528}
2529
2530
2531/*
2532 * atl1_phy_config - Timer Call-back
2533 * @data: pointer to netdev cast into an unsigned long
2534 */
2535static void atl1_phy_config(unsigned long data)
2536{
2537	struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2538	struct atl1_hw *hw = &adapter->hw;
2539	unsigned long flags;
2540
2541	spin_lock_irqsave(&adapter->lock, flags);
2542	adapter->phy_timer_pending = false;
2543	atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2544	atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2545	atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2546	spin_unlock_irqrestore(&adapter->lock, flags);
2547}
2548
2549/*
2550 * Orphaned vendor comment left intact here:
2551 * <vendor comment>
2552 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2553 * will assert. We do soft reset <0x1400=1> according
2554 * with the SPEC. BUT, it seemes that PCIE or DMA
2555 * state-machine will not be reset. DMAR_TO_INT will
2556 * assert again and again.
2557 * </vendor comment>
2558 */
2559
2560static int atl1_reset(struct atl1_adapter *adapter)
2561{
2562	int ret;
2563	ret = atl1_reset_hw(&adapter->hw);
2564	if (ret)
2565		return ret;
2566	return atl1_init_hw(&adapter->hw);
2567}
2568
2569static s32 atl1_up(struct atl1_adapter *adapter)
2570{
2571	struct net_device *netdev = adapter->netdev;
2572	int err;
2573	int irq_flags = 0;
2574
2575	/* hardware has been reset, we need to reload some things */
2576	atlx_set_multi(netdev);
2577	atl1_init_ring_ptrs(adapter);
2578	atlx_restore_vlan(adapter);
2579	err = atl1_alloc_rx_buffers(adapter);
2580	if (unlikely(!err))
2581		/* no RX BUFFER allocated */
2582		return -ENOMEM;
2583
2584	if (unlikely(atl1_configure(adapter))) {
2585		err = -EIO;
2586		goto err_up;
2587	}
2588
2589	err = pci_enable_msi(adapter->pdev);
2590	if (err) {
2591		if (netif_msg_ifup(adapter))
2592			dev_info(&adapter->pdev->dev,
2593				"Unable to enable MSI: %d\n", err);
2594		irq_flags |= IRQF_SHARED;
2595	}
2596
2597	err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2598			netdev->name, netdev);
2599	if (unlikely(err))
2600		goto err_up;
2601
2602	atlx_irq_enable(adapter);
2603	atl1_check_link(adapter);
2604	netif_start_queue(netdev);
2605	return 0;
2606
2607err_up:
2608	pci_disable_msi(adapter->pdev);
2609	/* free rx_buffers */
2610	atl1_clean_rx_ring(adapter);
2611	return err;
2612}
2613
2614static void atl1_down(struct atl1_adapter *adapter)
2615{
2616	struct net_device *netdev = adapter->netdev;
2617
2618	netif_stop_queue(netdev);
2619	del_timer_sync(&adapter->phy_config_timer);
2620	adapter->phy_timer_pending = false;
2621
2622	atlx_irq_disable(adapter);
2623	free_irq(adapter->pdev->irq, netdev);
2624	pci_disable_msi(adapter->pdev);
2625	atl1_reset_hw(&adapter->hw);
2626	adapter->cmb.cmb->int_stats = 0;
2627
2628	adapter->link_speed = SPEED_0;
2629	adapter->link_duplex = -1;
2630	netif_carrier_off(netdev);
2631
2632	atl1_clean_tx_ring(adapter);
2633	atl1_clean_rx_ring(adapter);
2634}
2635
2636static void atl1_reset_dev_task(struct work_struct *work)
2637{
2638	struct atl1_adapter *adapter =
2639		container_of(work, struct atl1_adapter, reset_dev_task);
2640	struct net_device *netdev = adapter->netdev;
2641
2642	netif_device_detach(netdev);
2643	atl1_down(adapter);
2644	atl1_up(adapter);
2645	netif_device_attach(netdev);
2646}
2647
2648/*
2649 * atl1_change_mtu - Change the Maximum Transfer Unit
2650 * @netdev: network interface device structure
2651 * @new_mtu: new value for maximum frame size
2652 *
2653 * Returns 0 on success, negative on failure
2654 */
2655static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2656{
2657	struct atl1_adapter *adapter = netdev_priv(netdev);
2658	int old_mtu = netdev->mtu;
2659	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2660
2661	if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2662	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2663		if (netif_msg_link(adapter))
2664			dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
2665		return -EINVAL;
2666	}
2667
2668	adapter->hw.max_frame_size = max_frame;
2669	adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2670	adapter->rx_buffer_len = (max_frame + 7) & ~7;
2671	adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2672
2673	netdev->mtu = new_mtu;
2674	if ((old_mtu != new_mtu) && netif_running(netdev)) {
2675		atl1_down(adapter);
2676		atl1_up(adapter);
2677	}
2678
2679	return 0;
2680}
2681
2682/*
2683 * atl1_open - Called when a network interface is made active
2684 * @netdev: network interface device structure
2685 *
2686 * Returns 0 on success, negative value on failure
2687 *
2688 * The open entry point is called when a network interface is made
2689 * active by the system (IFF_UP).  At this point all resources needed
2690 * for transmit and receive operations are allocated, the interrupt
2691 * handler is registered with the OS, the watchdog timer is started,
2692 * and the stack is notified that the interface is ready.
2693 */
2694static int atl1_open(struct net_device *netdev)
2695{
2696	struct atl1_adapter *adapter = netdev_priv(netdev);
2697	int err;
2698
2699	netif_carrier_off(netdev);
2700
2701	/* allocate transmit descriptors */
2702	err = atl1_setup_ring_resources(adapter);
2703	if (err)
2704		return err;
2705
2706	err = atl1_up(adapter);
2707	if (err)
2708		goto err_up;
2709
2710	return 0;
2711
2712err_up:
2713	atl1_reset(adapter);
2714	return err;
2715}
2716
2717/*
2718 * atl1_close - Disables a network interface
2719 * @netdev: network interface device structure
2720 *
2721 * Returns 0, this is not allowed to fail
2722 *
2723 * The close entry point is called when an interface is de-activated
2724 * by the OS.  The hardware is still under the drivers control, but
2725 * needs to be disabled.  A global MAC reset is issued to stop the
2726 * hardware, and all transmit and receive resources are freed.
2727 */
2728static int atl1_close(struct net_device *netdev)
2729{
2730	struct atl1_adapter *adapter = netdev_priv(netdev);
2731	atl1_down(adapter);
2732	atl1_free_ring_resources(adapter);
2733	return 0;
2734}
2735
2736#ifdef CONFIG_PM
2737static int atl1_suspend(struct device *dev)
2738{
2739	struct pci_dev *pdev = to_pci_dev(dev);
2740	struct net_device *netdev = pci_get_drvdata(pdev);
2741	struct atl1_adapter *adapter = netdev_priv(netdev);
2742	struct atl1_hw *hw = &adapter->hw;
2743	u32 ctrl = 0;
2744	u32 wufc = adapter->wol;
2745	u32 val;
2746	u16 speed;
2747	u16 duplex;
2748
2749	netif_device_detach(netdev);
2750	if (netif_running(netdev))
2751		atl1_down(adapter);
2752
2753	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2754	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2755	val = ctrl & BMSR_LSTATUS;
2756	if (val)
2757		wufc &= ~ATLX_WUFC_LNKC;
2758	if (!wufc)
2759		goto disable_wol;
2760
2761	if (val) {
2762		val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2763		if (val) {
2764			if (netif_msg_ifdown(adapter))
2765				dev_printk(KERN_DEBUG, &pdev->dev,
2766					"error getting speed/duplex\n");
2767			goto disable_wol;
2768		}
2769
2770		ctrl = 0;
2771
2772		/* enable magic packet WOL */
2773		if (wufc & ATLX_WUFC_MAG)
2774			ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2775		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2776		ioread32(hw->hw_addr + REG_WOL_CTRL);
2777
2778		/* configure the mac */
2779		ctrl = MAC_CTRL_RX_EN;
2780		ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2781			MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2782		if (duplex == FULL_DUPLEX)
2783			ctrl |= MAC_CTRL_DUPLX;
2784		ctrl |= (((u32)adapter->hw.preamble_len &
2785			MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2786		__atlx_vlan_mode(netdev->features, &ctrl);
2787		if (wufc & ATLX_WUFC_MAG)
2788			ctrl |= MAC_CTRL_BC_EN;
2789		iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2790		ioread32(hw->hw_addr + REG_MAC_CTRL);
2791
2792		/* poke the PHY */
2793		ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2794		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2795		iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2796		ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2797	} else {
2798		ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2799		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2800		ioread32(hw->hw_addr + REG_WOL_CTRL);
2801		iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2802		ioread32(hw->hw_addr + REG_MAC_CTRL);
2803		hw->phy_configured = false;
2804	}
2805
2806	return 0;
2807
2808 disable_wol:
2809	iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2810	ioread32(hw->hw_addr + REG_WOL_CTRL);
2811	ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2812	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2813	iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2814	ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2815	hw->phy_configured = false;
2816
2817	return 0;
2818}
2819
2820static int atl1_resume(struct device *dev)
2821{
2822	struct pci_dev *pdev = to_pci_dev(dev);
2823	struct net_device *netdev = pci_get_drvdata(pdev);
2824	struct atl1_adapter *adapter = netdev_priv(netdev);
2825
2826	iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2827
2828	atl1_reset_hw(&adapter->hw);
2829
2830	if (netif_running(netdev)) {
2831		adapter->cmb.cmb->int_stats = 0;
2832		atl1_up(adapter);
2833	}
2834	netif_device_attach(netdev);
2835
2836	return 0;
2837}
2838
2839static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2840#define ATL1_PM_OPS	(&atl1_pm_ops)
2841
2842#else
2843
2844static int atl1_suspend(struct device *dev) { return 0; }
2845
2846#define ATL1_PM_OPS	NULL
2847#endif
2848
2849static void atl1_shutdown(struct pci_dev *pdev)
2850{
2851	struct net_device *netdev = pci_get_drvdata(pdev);
2852	struct atl1_adapter *adapter = netdev_priv(netdev);
2853
2854	atl1_suspend(&pdev->dev);
2855	pci_wake_from_d3(pdev, adapter->wol);
2856	pci_set_power_state(pdev, PCI_D3hot);
2857}
2858
2859#ifdef CONFIG_NET_POLL_CONTROLLER
2860static void atl1_poll_controller(struct net_device *netdev)
2861{
2862	disable_irq(netdev->irq);
2863	atl1_intr(netdev->irq, netdev);
2864	enable_irq(netdev->irq);
2865}
2866#endif
2867
2868static const struct net_device_ops atl1_netdev_ops = {
2869	.ndo_open		= atl1_open,
2870	.ndo_stop		= atl1_close,
2871	.ndo_start_xmit		= atl1_xmit_frame,
2872	.ndo_set_rx_mode	= atlx_set_multi,
2873	.ndo_validate_addr	= eth_validate_addr,
2874	.ndo_set_mac_address	= atl1_set_mac,
2875	.ndo_change_mtu		= atl1_change_mtu,
2876	.ndo_fix_features	= atlx_fix_features,
2877	.ndo_set_features	= atlx_set_features,
2878	.ndo_do_ioctl		= atlx_ioctl,
2879	.ndo_tx_timeout		= atlx_tx_timeout,
2880#ifdef CONFIG_NET_POLL_CONTROLLER
2881	.ndo_poll_controller	= atl1_poll_controller,
2882#endif
2883};
2884
2885/*
2886 * atl1_probe - Device Initialization Routine
2887 * @pdev: PCI device information struct
2888 * @ent: entry in atl1_pci_tbl
2889 *
2890 * Returns 0 on success, negative on failure
2891 *
2892 * atl1_probe initializes an adapter identified by a pci_dev structure.
2893 * The OS initialization, configuring of the adapter private structure,
2894 * and a hardware reset occur.
2895 */
2896static int __devinit atl1_probe(struct pci_dev *pdev,
2897	const struct pci_device_id *ent)
2898{
2899	struct net_device *netdev;
2900	struct atl1_adapter *adapter;
2901	static int cards_found = 0;
2902	int err;
2903
2904	err = pci_enable_device(pdev);
2905	if (err)
2906		return err;
2907
2908	/*
2909	 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2910	 * shared register for the high 32 bits, so only a single, aligned,
2911	 * 4 GB physical address range can be used at a time.
2912	 *
2913	 * Supporting 64-bit DMA on this hardware is more trouble than it's
2914	 * worth.  It is far easier to limit to 32-bit DMA than update
2915	 * various kernel subsystems to support the mechanics required by a
2916	 * fixed-high-32-bit system.
2917	 */
2918	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2919	if (err) {
2920		dev_err(&pdev->dev, "no usable DMA configuration\n");
2921		goto err_dma;
2922	}
2923	/*
2924	 * Mark all PCI regions associated with PCI device
2925	 * pdev as being reserved by owner atl1_driver_name
2926	 */
2927	err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2928	if (err)
2929		goto err_request_regions;
2930
2931	/*
2932	 * Enables bus-mastering on the device and calls
2933	 * pcibios_set_master to do the needed arch specific settings
2934	 */
2935	pci_set_master(pdev);
2936
2937	netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2938	if (!netdev) {
2939		err = -ENOMEM;
2940		goto err_alloc_etherdev;
2941	}
2942	SET_NETDEV_DEV(netdev, &pdev->dev);
2943
2944	pci_set_drvdata(pdev, netdev);
2945	adapter = netdev_priv(netdev);
2946	adapter->netdev = netdev;
2947	adapter->pdev = pdev;
2948	adapter->hw.back = adapter;
2949	adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2950
2951	adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2952	if (!adapter->hw.hw_addr) {
2953		err = -EIO;
2954		goto err_pci_iomap;
2955	}
2956	/* get device revision number */
2957	adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2958		(REG_MASTER_CTRL + 2));
2959	if (netif_msg_probe(adapter))
2960		dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
2961
2962	/* set default ring resource counts */
2963	adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2964	adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2965
2966	adapter->mii.dev = netdev;
2967	adapter->mii.mdio_read = mdio_read;
2968	adapter->mii.mdio_write = mdio_write;
2969	adapter->mii.phy_id_mask = 0x1f;
2970	adapter->mii.reg_num_mask = 0x1f;
2971
2972	netdev->netdev_ops = &atl1_netdev_ops;
2973	netdev->watchdog_timeo = 5 * HZ;
2974
2975	netdev->ethtool_ops = &atl1_ethtool_ops;
2976	adapter->bd_number = cards_found;
2977
2978	/* setup the private structure */
2979	err = atl1_sw_init(adapter);
2980	if (err)
2981		goto err_common;
2982
2983	netdev->features = NETIF_F_HW_CSUM;
2984	netdev->features |= NETIF_F_SG;
2985	netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
2986
2987	netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
2988			      NETIF_F_HW_VLAN_RX;
2989
2990	/* is this valid? see atl1_setup_mac_ctrl() */
2991	netdev->features |= NETIF_F_RXCSUM;
2992
2993	/*
2994	 * patch for some L1 of old version,
2995	 * the final version of L1 may not need these
2996	 * patches
2997	 */
2998	/* atl1_pcie_patch(adapter); */
2999
3000	/* really reset GPHY core */
3001	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3002
3003	/*
3004	 * reset the controller to
3005	 * put the device in a known good starting state
3006	 */
3007	if (atl1_reset_hw(&adapter->hw)) {
3008		err = -EIO;
3009		goto err_common;
3010	}
3011
3012	/* copy the MAC address out of the EEPROM */
3013	if (atl1_read_mac_addr(&adapter->hw)) {
3014		/* mark random mac */
3015		netdev->addr_assign_type |= NET_ADDR_RANDOM;
3016	}
3017	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3018
3019	if (!is_valid_ether_addr(netdev->dev_addr)) {
3020		err = -EIO;
3021		goto err_common;
3022	}
3023
3024	atl1_check_options(adapter);
3025
3026	/* pre-init the MAC, and setup link */
3027	err = atl1_init_hw(&adapter->hw);
3028	if (err) {
3029		err = -EIO;
3030		goto err_common;
3031	}
3032
3033	atl1_pcie_patch(adapter);
3034	/* assume we have no link for now */
3035	netif_carrier_off(netdev);
3036
3037	setup_timer(&adapter->phy_config_timer, atl1_phy_config,
3038		    (unsigned long)adapter);
3039	adapter->phy_timer_pending = false;
3040
3041	INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
3042
3043	INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3044
3045	err = register_netdev(netdev);
3046	if (err)
3047		goto err_common;
3048
3049	cards_found++;
3050	atl1_via_workaround(adapter);
3051	return 0;
3052
3053err_common:
3054	pci_iounmap(pdev, adapter->hw.hw_addr);
3055err_pci_iomap:
3056	free_netdev(netdev);
3057err_alloc_etherdev:
3058	pci_release_regions(pdev);
3059err_dma:
3060err_request_regions:
3061	pci_disable_device(pdev);
3062	return err;
3063}
3064
3065/*
3066 * atl1_remove - Device Removal Routine
3067 * @pdev: PCI device information struct
3068 *
3069 * atl1_remove is called by the PCI subsystem to alert the driver
3070 * that it should release a PCI device.  The could be caused by a
3071 * Hot-Plug event, or because the driver is going to be removed from
3072 * memory.
3073 */
3074static void __devexit atl1_remove(struct pci_dev *pdev)
3075{
3076	struct net_device *netdev = pci_get_drvdata(pdev);
3077	struct atl1_adapter *adapter;
3078	/* Device not available. Return. */
3079	if (!netdev)
3080		return;
3081
3082	adapter = netdev_priv(netdev);
3083
3084	/*
3085	 * Some atl1 boards lack persistent storage for their MAC, and get it
3086	 * from the BIOS during POST.  If we've been messing with the MAC
3087	 * address, we need to save the permanent one.
3088	 */
3089	if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) {
3090		memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3091			ETH_ALEN);
3092		atl1_set_mac_addr(&adapter->hw);
3093	}
3094
3095	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3096	unregister_netdev(netdev);
3097	pci_iounmap(pdev, adapter->hw.hw_addr);
3098	pci_release_regions(pdev);
3099	free_netdev(netdev);
3100	pci_disable_device(pdev);
3101}
3102
3103static struct pci_driver atl1_driver = {
3104	.name = ATLX_DRIVER_NAME,
3105	.id_table = atl1_pci_tbl,
3106	.probe = atl1_probe,
3107	.remove = __devexit_p(atl1_remove),
3108	.shutdown = atl1_shutdown,
3109	.driver.pm = ATL1_PM_OPS,
3110};
3111
3112/*
3113 * atl1_exit_module - Driver Exit Cleanup Routine
3114 *
3115 * atl1_exit_module is called just before the driver is removed
3116 * from memory.
3117 */
3118static void __exit atl1_exit_module(void)
3119{
3120	pci_unregister_driver(&atl1_driver);
3121}
3122
3123/*
3124 * atl1_init_module - Driver Registration Routine
3125 *
3126 * atl1_init_module is the first routine called when the driver is
3127 * loaded. All it does is register with the PCI subsystem.
3128 */
3129static int __init atl1_init_module(void)
3130{
3131	return pci_register_driver(&atl1_driver);
3132}
3133
3134module_init(atl1_init_module);
3135module_exit(atl1_exit_module);
3136
3137struct atl1_stats {
3138	char stat_string[ETH_GSTRING_LEN];
3139	int sizeof_stat;
3140	int stat_offset;
3141};
3142
3143#define ATL1_STAT(m) \
3144	sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3145
3146static struct atl1_stats atl1_gstrings_stats[] = {
3147	{"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3148	{"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3149	{"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3150	{"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3151	{"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3152	{"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3153	{"multicast", ATL1_STAT(soft_stats.multicast)},
3154	{"collisions", ATL1_STAT(soft_stats.collisions)},
3155	{"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3156	{"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3157	{"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3158	{"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3159	{"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3160	{"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3161	{"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3162	{"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3163	{"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3164	{"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3165	{"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3166	{"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3167	{"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3168	{"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3169	{"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3170	{"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3171	{"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3172	{"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3173	{"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3174	{"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3175	{"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3176};
3177
3178static void atl1_get_ethtool_stats(struct net_device *netdev,
3179	struct ethtool_stats *stats, u64 *data)
3180{
3181	struct atl1_adapter *adapter = netdev_priv(netdev);
3182	int i;
3183	char *p;
3184
3185	for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3186		p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3187		data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3188			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3189	}
3190
3191}
3192
3193static int atl1_get_sset_count(struct net_device *netdev, int sset)
3194{
3195	switch (sset) {
3196	case ETH_SS_STATS:
3197		return ARRAY_SIZE(atl1_gstrings_stats);
3198	default:
3199		return -EOPNOTSUPP;
3200	}
3201}
3202
3203static int atl1_get_settings(struct net_device *netdev,
3204	struct ethtool_cmd *ecmd)
3205{
3206	struct atl1_adapter *adapter = netdev_priv(netdev);
3207	struct atl1_hw *hw = &adapter->hw;
3208
3209	ecmd->supported = (SUPPORTED_10baseT_Half |
3210			   SUPPORTED_10baseT_Full |
3211			   SUPPORTED_100baseT_Half |
3212			   SUPPORTED_100baseT_Full |
3213			   SUPPORTED_1000baseT_Full |
3214			   SUPPORTED_Autoneg | SUPPORTED_TP);
3215	ecmd->advertising = ADVERTISED_TP;
3216	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3217	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3218		ecmd->advertising |= ADVERTISED_Autoneg;
3219		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3220			ecmd->advertising |= ADVERTISED_Autoneg;
3221			ecmd->advertising |=
3222			    (ADVERTISED_10baseT_Half |
3223			     ADVERTISED_10baseT_Full |
3224			     ADVERTISED_100baseT_Half |
3225			     ADVERTISED_100baseT_Full |
3226			     ADVERTISED_1000baseT_Full);
3227		} else
3228			ecmd->advertising |= (ADVERTISED_1000baseT_Full);
3229	}
3230	ecmd->port = PORT_TP;
3231	ecmd->phy_address = 0;
3232	ecmd->transceiver = XCVR_INTERNAL;
3233
3234	if (netif_carrier_ok(adapter->netdev)) {
3235		u16 link_speed, link_duplex;
3236		atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3237		ethtool_cmd_speed_set(ecmd, link_speed);
3238		if (link_duplex == FULL_DUPLEX)
3239			ecmd->duplex = DUPLEX_FULL;
3240		else
3241			ecmd->duplex = DUPLEX_HALF;
3242	} else {
3243		ethtool_cmd_speed_set(ecmd, -1);
3244		ecmd->duplex = -1;
3245	}
3246	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3247	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3248		ecmd->autoneg = AUTONEG_ENABLE;
3249	else
3250		ecmd->autoneg = AUTONEG_DISABLE;
3251
3252	return 0;
3253}
3254
3255static int atl1_set_settings(struct net_device *netdev,
3256	struct ethtool_cmd *ecmd)
3257{
3258	struct atl1_adapter *adapter = netdev_priv(netdev);
3259	struct atl1_hw *hw = &adapter->hw;
3260	u16 phy_data;
3261	int ret_val = 0;
3262	u16 old_media_type = hw->media_type;
3263
3264	if (netif_running(adapter->netdev)) {
3265		if (netif_msg_link(adapter))
3266			dev_dbg(&adapter->pdev->dev,
3267				"ethtool shutting down adapter\n");
3268		atl1_down(adapter);
3269	}
3270
3271	if (ecmd->autoneg == AUTONEG_ENABLE)
3272		hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3273	else {
3274		u32 speed = ethtool_cmd_speed(ecmd);
3275		if (speed == SPEED_1000) {
3276			if (ecmd->duplex != DUPLEX_FULL) {
3277				if (netif_msg_link(adapter))
3278					dev_warn(&adapter->pdev->dev,
3279						"1000M half is invalid\n");
3280				ret_val = -EINVAL;
3281				goto exit_sset;
3282			}
3283			hw->media_type = MEDIA_TYPE_1000M_FULL;
3284		} else if (speed == SPEED_100) {
3285			if (ecmd->duplex == DUPLEX_FULL)
3286				hw->media_type = MEDIA_TYPE_100M_FULL;
3287			else
3288				hw->media_type = MEDIA_TYPE_100M_HALF;
3289		} else {
3290			if (ecmd->duplex == DUPLEX_FULL)
3291				hw->media_type = MEDIA_TYPE_10M_FULL;
3292			else
3293				hw->media_type = MEDIA_TYPE_10M_HALF;
3294		}
3295	}
3296	switch (hw->media_type) {
3297	case MEDIA_TYPE_AUTO_SENSOR:
3298		ecmd->advertising =
3299		    ADVERTISED_10baseT_Half |
3300		    ADVERTISED_10baseT_Full |
3301		    ADVERTISED_100baseT_Half |
3302		    ADVERTISED_100baseT_Full |
3303		    ADVERTISED_1000baseT_Full |
3304		    ADVERTISED_Autoneg | ADVERTISED_TP;
3305		break;
3306	case MEDIA_TYPE_1000M_FULL:
3307		ecmd->advertising =
3308		    ADVERTISED_1000baseT_Full |
3309		    ADVERTISED_Autoneg | ADVERTISED_TP;
3310		break;
3311	default:
3312		ecmd->advertising = 0;
3313		break;
3314	}
3315	if (atl1_phy_setup_autoneg_adv(hw)) {
3316		ret_val = -EINVAL;
3317		if (netif_msg_link(adapter))
3318			dev_warn(&adapter->pdev->dev,
3319				"invalid ethtool speed/duplex setting\n");
3320		goto exit_sset;
3321	}
3322	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3323	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3324		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3325	else {
3326		switch (hw->media_type) {
3327		case MEDIA_TYPE_100M_FULL:
3328			phy_data =
3329			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3330			    MII_CR_RESET;
3331			break;
3332		case MEDIA_TYPE_100M_HALF:
3333			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3334			break;
3335		case MEDIA_TYPE_10M_FULL:
3336			phy_data =
3337			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3338			break;
3339		default:
3340			/* MEDIA_TYPE_10M_HALF: */
3341			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3342			break;
3343		}
3344	}
3345	atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3346exit_sset:
3347	if (ret_val)
3348		hw->media_type = old_media_type;
3349
3350	if (netif_running(adapter->netdev)) {
3351		if (netif_msg_link(adapter))
3352			dev_dbg(&adapter->pdev->dev,
3353				"ethtool starting adapter\n");
3354		atl1_up(adapter);
3355	} else if (!ret_val) {
3356		if (netif_msg_link(adapter))
3357			dev_dbg(&adapter->pdev->dev,
3358				"ethtool resetting adapter\n");
3359		atl1_reset(adapter);
3360	}
3361	return ret_val;
3362}
3363
3364static void atl1_get_drvinfo(struct net_device *netdev,
3365	struct ethtool_drvinfo *drvinfo)
3366{
3367	struct atl1_adapter *adapter = netdev_priv(netdev);
3368
3369	strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3370	strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3371		sizeof(drvinfo->version));
3372	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3373		sizeof(drvinfo->bus_info));
3374	drvinfo->eedump_len = ATL1_EEDUMP_LEN;
3375}
3376
3377static void atl1_get_wol(struct net_device *netdev,
3378	struct ethtool_wolinfo *wol)
3379{
3380	struct atl1_adapter *adapter = netdev_priv(netdev);
3381
3382	wol->supported = WAKE_MAGIC;
3383	wol->wolopts = 0;
3384	if (adapter->wol & ATLX_WUFC_MAG)
3385		wol->wolopts |= WAKE_MAGIC;
3386}
3387
3388static int atl1_set_wol(struct net_device *netdev,
3389	struct ethtool_wolinfo *wol)
3390{
3391	struct atl1_adapter *adapter = netdev_priv(netdev);
3392
3393	if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3394		WAKE_ARP | WAKE_MAGICSECURE))
3395		return -EOPNOTSUPP;
3396	adapter->wol = 0;
3397	if (wol->wolopts & WAKE_MAGIC)
3398		adapter->wol |= ATLX_WUFC_MAG;
3399
3400	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3401
3402	return 0;
3403}
3404
3405static u32 atl1_get_msglevel(struct net_device *netdev)
3406{
3407	struct atl1_adapter *adapter = netdev_priv(netdev);
3408	return adapter->msg_enable;
3409}
3410
3411static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3412{
3413	struct atl1_adapter *adapter = netdev_priv(netdev);
3414	adapter->msg_enable = value;
3415}
3416
3417static int atl1_get_regs_len(struct net_device *netdev)
3418{
3419	return ATL1_REG_COUNT * sizeof(u32);
3420}
3421
3422static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3423	void *p)
3424{
3425	struct atl1_adapter *adapter = netdev_priv(netdev);
3426	struct atl1_hw *hw = &adapter->hw;
3427	unsigned int i;
3428	u32 *regbuf = p;
3429
3430	for (i = 0; i < ATL1_REG_COUNT; i++) {
3431		/*
3432		 * This switch statement avoids reserved regions
3433		 * of register space.
3434		 */
3435		switch (i) {
3436		case 6 ... 9:
3437		case 14:
3438		case 29 ... 31:
3439		case 34 ... 63:
3440		case 75 ... 127:
3441		case 136 ... 1023:
3442		case 1027 ... 1087:
3443		case 1091 ... 1151:
3444		case 1194 ... 1195:
3445		case 1200 ... 1201:
3446		case 1206 ... 1213:
3447		case 1216 ... 1279:
3448		case 1290 ... 1311:
3449		case 1323 ... 1343:
3450		case 1358 ... 1359:
3451		case 1368 ... 1375:
3452		case 1378 ... 1383:
3453		case 1388 ... 1391:
3454		case 1393 ... 1395:
3455		case 1402 ... 1403:
3456		case 1410 ... 1471:
3457		case 1522 ... 1535:
3458			/* reserved region; don't read it */
3459			regbuf[i] = 0;
3460			break;
3461		default:
3462			/* unreserved region */
3463			regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3464		}
3465	}
3466}
3467
3468static void atl1_get_ringparam(struct net_device *netdev,
3469	struct ethtool_ringparam *ring)
3470{
3471	struct atl1_adapter *adapter = netdev_priv(netdev);
3472	struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3473	struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3474
3475	ring->rx_max_pending = ATL1_MAX_RFD;
3476	ring->tx_max_pending = ATL1_MAX_TPD;
3477	ring->rx_pending = rxdr->count;
3478	ring->tx_pending = txdr->count;
3479}
3480
3481static int atl1_set_ringparam(struct net_device *netdev,
3482	struct ethtool_ringparam *ring)
3483{
3484	struct atl1_adapter *adapter = netdev_priv(netdev);
3485	struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3486	struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3487	struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3488
3489	struct atl1_tpd_ring tpd_old, tpd_new;
3490	struct atl1_rfd_ring rfd_old, rfd_new;
3491	struct atl1_rrd_ring rrd_old, rrd_new;
3492	struct atl1_ring_header rhdr_old, rhdr_new;
3493	struct atl1_smb smb;
3494	struct atl1_cmb cmb;
3495	int err;
3496
3497	tpd_old = adapter->tpd_ring;
3498	rfd_old = adapter->rfd_ring;
3499	rrd_old = adapter->rrd_ring;
3500	rhdr_old = adapter->ring_header;
3501
3502	if (netif_running(adapter->netdev))
3503		atl1_down(adapter);
3504
3505	rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3506	rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3507			rfdr->count;
3508	rfdr->count = (rfdr->count + 3) & ~3;
3509	rrdr->count = rfdr->count;
3510
3511	tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3512	tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3513			tpdr->count;
3514	tpdr->count = (tpdr->count + 3) & ~3;
3515
3516	if (netif_running(adapter->netdev)) {
3517		/* try to get new resources before deleting old */
3518		err = atl1_setup_ring_resources(adapter);
3519		if (err)
3520			goto err_setup_ring;
3521
3522		/*
3523		 * save the new, restore the old in order to free it,
3524		 * then restore the new back again
3525		 */
3526
3527		rfd_new = adapter->rfd_ring;
3528		rrd_new = adapter->rrd_ring;
3529		tpd_new = adapter->tpd_ring;
3530		rhdr_new = adapter->ring_header;
3531		adapter->rfd_ring = rfd_old;
3532		adapter->rrd_ring = rrd_old;
3533		adapter->tpd_ring = tpd_old;
3534		adapter->ring_header = rhdr_old;
3535		/*
3536		 * Save SMB and CMB, since atl1_free_ring_resources
3537		 * will clear them.
3538		 */
3539		smb = adapter->smb;
3540		cmb = adapter->cmb;
3541		atl1_free_ring_resources(adapter);
3542		adapter->rfd_ring = rfd_new;
3543		adapter->rrd_ring = rrd_new;
3544		adapter->tpd_ring = tpd_new;
3545		adapter->ring_header = rhdr_new;
3546		adapter->smb = smb;
3547		adapter->cmb = cmb;
3548
3549		err = atl1_up(adapter);
3550		if (err)
3551			return err;
3552	}
3553	return 0;
3554
3555err_setup_ring:
3556	adapter->rfd_ring = rfd_old;
3557	adapter->rrd_ring = rrd_old;
3558	adapter->tpd_ring = tpd_old;
3559	adapter->ring_header = rhdr_old;
3560	atl1_up(adapter);
3561	return err;
3562}
3563
3564static void atl1_get_pauseparam(struct net_device *netdev,
3565	struct ethtool_pauseparam *epause)
3566{
3567	struct atl1_adapter *adapter = netdev_priv(netdev);
3568	struct atl1_hw *hw = &adapter->hw;
3569
3570	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3571	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3572		epause->autoneg = AUTONEG_ENABLE;
3573	} else {
3574		epause->autoneg = AUTONEG_DISABLE;
3575	}
3576	epause->rx_pause = 1;
3577	epause->tx_pause = 1;
3578}
3579
3580static int atl1_set_pauseparam(struct net_device *netdev,
3581	struct ethtool_pauseparam *epause)
3582{
3583	struct atl1_adapter *adapter = netdev_priv(netdev);
3584	struct atl1_hw *hw = &adapter->hw;
3585
3586	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3587	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3588		epause->autoneg = AUTONEG_ENABLE;
3589	} else {
3590		epause->autoneg = AUTONEG_DISABLE;
3591	}
3592
3593	epause->rx_pause = 1;
3594	epause->tx_pause = 1;
3595
3596	return 0;
3597}
3598
3599static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3600	u8 *data)
3601{
3602	u8 *p = data;
3603	int i;
3604
3605	switch (stringset) {
3606	case ETH_SS_STATS:
3607		for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3608			memcpy(p, atl1_gstrings_stats[i].stat_string,
3609				ETH_GSTRING_LEN);
3610			p += ETH_GSTRING_LEN;
3611		}
3612		break;
3613	}
3614}
3615
3616static int atl1_nway_reset(struct net_device *netdev)
3617{
3618	struct atl1_adapter *adapter = netdev_priv(netdev);
3619	struct atl1_hw *hw = &adapter->hw;
3620
3621	if (netif_running(netdev)) {
3622		u16 phy_data;
3623		atl1_down(adapter);
3624
3625		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3626			hw->media_type == MEDIA_TYPE_1000M_FULL) {
3627			phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3628		} else {
3629			switch (hw->media_type) {
3630			case MEDIA_TYPE_100M_FULL:
3631				phy_data = MII_CR_FULL_DUPLEX |
3632					MII_CR_SPEED_100 | MII_CR_RESET;
3633				break;
3634			case MEDIA_TYPE_100M_HALF:
3635				phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3636				break;
3637			case MEDIA_TYPE_10M_FULL:
3638				phy_data = MII_CR_FULL_DUPLEX |
3639					MII_CR_SPEED_10 | MII_CR_RESET;
3640				break;
3641			default:
3642				/* MEDIA_TYPE_10M_HALF */
3643				phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3644			}
3645		}
3646		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3647		atl1_up(adapter);
3648	}
3649	return 0;
3650}
3651
3652static const struct ethtool_ops atl1_ethtool_ops = {
3653	.get_settings		= atl1_get_settings,
3654	.set_settings		= atl1_set_settings,
3655	.get_drvinfo		= atl1_get_drvinfo,
3656	.get_wol		= atl1_get_wol,
3657	.set_wol		= atl1_set_wol,
3658	.get_msglevel		= atl1_get_msglevel,
3659	.set_msglevel		= atl1_set_msglevel,
3660	.get_regs_len		= atl1_get_regs_len,
3661	.get_regs		= atl1_get_regs,
3662	.get_ringparam		= atl1_get_ringparam,
3663	.set_ringparam		= atl1_set_ringparam,
3664	.get_pauseparam		= atl1_get_pauseparam,
3665	.set_pauseparam		= atl1_set_pauseparam,
3666	.get_link		= ethtool_op_get_link,
3667	.get_strings		= atl1_get_strings,
3668	.nway_reset		= atl1_nway_reset,
3669	.get_ethtool_stats	= atl1_get_ethtool_stats,
3670	.get_sset_count		= atl1_get_sset_count,
3671};
3672