atl1.c revision 9b22c7352b1882e45c7f24fe1575cee1846844cd
1/*
2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
5 *
6 * Derived from Intel e1000 driver
7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22 *
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
25 *
26 * Contact Information:
27 * Xiong Huang <xiong.huang@atheros.com>
28 * Jie Yang <jie.yang@atheros.com>
29 * Chris Snook <csnook@redhat.com>
30 * Jay Cliburn <jcliburn@gmail.com>
31 *
32 * This version is adapted from the Attansic reference driver.
33 *
34 * TODO:
35 * Add more ethtool functions.
36 * Fix abstruse irq enable/disable condition described here:
37 *	http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
38 *
39 * NEEDS TESTING:
40 * VLAN
41 * multicast
42 * promiscuous mode
43 * interrupt coalescing
44 * SMP torture testing
45 */
46
47#include <linux/atomic.h>
48#include <asm/byteorder.h>
49
50#include <linux/compiler.h>
51#include <linux/crc32.h>
52#include <linux/delay.h>
53#include <linux/dma-mapping.h>
54#include <linux/etherdevice.h>
55#include <linux/hardirq.h>
56#include <linux/if_ether.h>
57#include <linux/if_vlan.h>
58#include <linux/in.h>
59#include <linux/interrupt.h>
60#include <linux/ip.h>
61#include <linux/irqflags.h>
62#include <linux/irqreturn.h>
63#include <linux/jiffies.h>
64#include <linux/mii.h>
65#include <linux/module.h>
66#include <linux/moduleparam.h>
67#include <linux/net.h>
68#include <linux/netdevice.h>
69#include <linux/pci.h>
70#include <linux/pci_ids.h>
71#include <linux/pm.h>
72#include <linux/skbuff.h>
73#include <linux/slab.h>
74#include <linux/spinlock.h>
75#include <linux/string.h>
76#include <linux/tcp.h>
77#include <linux/timer.h>
78#include <linux/types.h>
79#include <linux/workqueue.h>
80
81#include <net/checksum.h>
82
83#include "atl1.h"
84
85#define ATLX_DRIVER_VERSION "2.1.3"
86MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
87	      "Chris Snook <csnook@redhat.com>, "
88	      "Jay Cliburn <jcliburn@gmail.com>");
89MODULE_LICENSE("GPL");
90MODULE_VERSION(ATLX_DRIVER_VERSION);
91
92/* Temporary hack for merging atl1 and atl2 */
93#include "atlx.c"
94
95static const struct ethtool_ops atl1_ethtool_ops;
96
97/*
98 * This is the only thing that needs to be changed to adjust the
99 * maximum number of ports that the driver can manage.
100 */
101#define ATL1_MAX_NIC 4
102
103#define OPTION_UNSET    -1
104#define OPTION_DISABLED 0
105#define OPTION_ENABLED  1
106
107#define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
108
109/*
110 * Interrupt Moderate Timer in units of 2 us
111 *
112 * Valid Range: 10-65535
113 *
114 * Default Value: 100 (200us)
115 */
116static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
117static unsigned int num_int_mod_timer;
118module_param_array_named(int_mod_timer, int_mod_timer, int,
119	&num_int_mod_timer, 0);
120MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
121
122#define DEFAULT_INT_MOD_CNT	100	/* 200us */
123#define MAX_INT_MOD_CNT		65000
124#define MIN_INT_MOD_CNT		50
125
126struct atl1_option {
127	enum { enable_option, range_option, list_option } type;
128	char *name;
129	char *err;
130	int def;
131	union {
132		struct {	/* range_option info */
133			int min;
134			int max;
135		} r;
136		struct {	/* list_option info */
137			int nr;
138			struct atl1_opt_list {
139				int i;
140				char *str;
141			} *p;
142		} l;
143	} arg;
144};
145
146static int __devinit atl1_validate_option(int *value, struct atl1_option *opt,
147	struct pci_dev *pdev)
148{
149	if (*value == OPTION_UNSET) {
150		*value = opt->def;
151		return 0;
152	}
153
154	switch (opt->type) {
155	case enable_option:
156		switch (*value) {
157		case OPTION_ENABLED:
158			dev_info(&pdev->dev, "%s enabled\n", opt->name);
159			return 0;
160		case OPTION_DISABLED:
161			dev_info(&pdev->dev, "%s disabled\n", opt->name);
162			return 0;
163		}
164		break;
165	case range_option:
166		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
167			dev_info(&pdev->dev, "%s set to %i\n", opt->name,
168				*value);
169			return 0;
170		}
171		break;
172	case list_option:{
173			int i;
174			struct atl1_opt_list *ent;
175
176			for (i = 0; i < opt->arg.l.nr; i++) {
177				ent = &opt->arg.l.p[i];
178				if (*value == ent->i) {
179					if (ent->str[0] != '\0')
180						dev_info(&pdev->dev, "%s\n",
181							ent->str);
182					return 0;
183				}
184			}
185		}
186		break;
187
188	default:
189		break;
190	}
191
192	dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
193		opt->name, *value, opt->err);
194	*value = opt->def;
195	return -1;
196}
197
198/*
199 * atl1_check_options - Range Checking for Command Line Parameters
200 * @adapter: board private structure
201 *
202 * This routine checks all command line parameters for valid user
203 * input.  If an invalid value is given, or if no user specified
204 * value exists, a default value is used.  The final value is stored
205 * in a variable in the adapter structure.
206 */
207static void __devinit atl1_check_options(struct atl1_adapter *adapter)
208{
209	struct pci_dev *pdev = adapter->pdev;
210	int bd = adapter->bd_number;
211	if (bd >= ATL1_MAX_NIC) {
212		dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
213		dev_notice(&pdev->dev, "using defaults for all values\n");
214	}
215	{			/* Interrupt Moderate Timer */
216		struct atl1_option opt = {
217			.type = range_option,
218			.name = "Interrupt Moderator Timer",
219			.err = "using default of "
220				__MODULE_STRING(DEFAULT_INT_MOD_CNT),
221			.def = DEFAULT_INT_MOD_CNT,
222			.arg = {.r = {.min = MIN_INT_MOD_CNT,
223					.max = MAX_INT_MOD_CNT} }
224		};
225		int val;
226		if (num_int_mod_timer > bd) {
227			val = int_mod_timer[bd];
228			atl1_validate_option(&val, &opt, pdev);
229			adapter->imt = (u16) val;
230		} else
231			adapter->imt = (u16) (opt.def);
232	}
233}
234
235/*
236 * atl1_pci_tbl - PCI Device ID Table
237 */
238static DEFINE_PCI_DEVICE_TABLE(atl1_pci_tbl) = {
239	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
240	/* required last entry */
241	{0,}
242};
243MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
244
245static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
246	NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
247
248static int debug = -1;
249module_param(debug, int, 0);
250MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
251
252/*
253 * Reset the transmit and receive units; mask and clear all interrupts.
254 * hw - Struct containing variables accessed by shared code
255 * return : 0  or  idle status (if error)
256 */
257static s32 atl1_reset_hw(struct atl1_hw *hw)
258{
259	struct pci_dev *pdev = hw->back->pdev;
260	struct atl1_adapter *adapter = hw->back;
261	u32 icr;
262	int i;
263
264	/*
265	 * Clear Interrupt mask to stop board from generating
266	 * interrupts & Clear any pending interrupt events
267	 */
268	/*
269	 * iowrite32(0, hw->hw_addr + REG_IMR);
270	 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
271	 */
272
273	/*
274	 * Issue Soft Reset to the MAC.  This will reset the chip's
275	 * transmit, receive, DMA.  It will not effect
276	 * the current PCI configuration.  The global reset bit is self-
277	 * clearing, and should clear within a microsecond.
278	 */
279	iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
280	ioread32(hw->hw_addr + REG_MASTER_CTRL);
281
282	iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
283	ioread16(hw->hw_addr + REG_PHY_ENABLE);
284
285	/* delay about 1ms */
286	msleep(1);
287
288	/* Wait at least 10ms for All module to be Idle */
289	for (i = 0; i < 10; i++) {
290		icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
291		if (!icr)
292			break;
293		/* delay 1 ms */
294		msleep(1);
295		/* FIXME: still the right way to do this? */
296		cpu_relax();
297	}
298
299	if (icr) {
300		if (netif_msg_hw(adapter))
301			dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
302		return icr;
303	}
304
305	return 0;
306}
307
308/* function about EEPROM
309 *
310 * check_eeprom_exist
311 * return 0 if eeprom exist
312 */
313static int atl1_check_eeprom_exist(struct atl1_hw *hw)
314{
315	u32 value;
316	value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
317	if (value & SPI_FLASH_CTRL_EN_VPD) {
318		value &= ~SPI_FLASH_CTRL_EN_VPD;
319		iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
320	}
321
322	value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
323	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
324}
325
326static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
327{
328	int i;
329	u32 control;
330
331	if (offset & 3)
332		/* address do not align */
333		return false;
334
335	iowrite32(0, hw->hw_addr + REG_VPD_DATA);
336	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
337	iowrite32(control, hw->hw_addr + REG_VPD_CAP);
338	ioread32(hw->hw_addr + REG_VPD_CAP);
339
340	for (i = 0; i < 10; i++) {
341		msleep(2);
342		control = ioread32(hw->hw_addr + REG_VPD_CAP);
343		if (control & VPD_CAP_VPD_FLAG)
344			break;
345	}
346	if (control & VPD_CAP_VPD_FLAG) {
347		*p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
348		return true;
349	}
350	/* timeout */
351	return false;
352}
353
354/*
355 * Reads the value from a PHY register
356 * hw - Struct containing variables accessed by shared code
357 * reg_addr - address of the PHY register to read
358 */
359static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
360{
361	u32 val;
362	int i;
363
364	val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
365		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
366		MDIO_CLK_SEL_SHIFT;
367	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
368	ioread32(hw->hw_addr + REG_MDIO_CTRL);
369
370	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
371		udelay(2);
372		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
373		if (!(val & (MDIO_START | MDIO_BUSY)))
374			break;
375	}
376	if (!(val & (MDIO_START | MDIO_BUSY))) {
377		*phy_data = (u16) val;
378		return 0;
379	}
380	return ATLX_ERR_PHY;
381}
382
383#define CUSTOM_SPI_CS_SETUP	2
384#define CUSTOM_SPI_CLK_HI	2
385#define CUSTOM_SPI_CLK_LO	2
386#define CUSTOM_SPI_CS_HOLD	2
387#define CUSTOM_SPI_CS_HI	3
388
389static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
390{
391	int i;
392	u32 value;
393
394	iowrite32(0, hw->hw_addr + REG_SPI_DATA);
395	iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
396
397	value = SPI_FLASH_CTRL_WAIT_READY |
398	    (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
399	    SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
400					     SPI_FLASH_CTRL_CLK_HI_MASK) <<
401	    SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
402					   SPI_FLASH_CTRL_CLK_LO_MASK) <<
403	    SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
404					   SPI_FLASH_CTRL_CS_HOLD_MASK) <<
405	    SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
406					    SPI_FLASH_CTRL_CS_HI_MASK) <<
407	    SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
408	    SPI_FLASH_CTRL_INS_SHIFT;
409
410	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
411
412	value |= SPI_FLASH_CTRL_START;
413	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
414	ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
415
416	for (i = 0; i < 10; i++) {
417		msleep(1);
418		value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
419		if (!(value & SPI_FLASH_CTRL_START))
420			break;
421	}
422
423	if (value & SPI_FLASH_CTRL_START)
424		return false;
425
426	*buf = ioread32(hw->hw_addr + REG_SPI_DATA);
427
428	return true;
429}
430
431/*
432 * get_permanent_address
433 * return 0 if get valid mac address,
434 */
435static int atl1_get_permanent_address(struct atl1_hw *hw)
436{
437	u32 addr[2];
438	u32 i, control;
439	u16 reg;
440	u8 eth_addr[ETH_ALEN];
441	bool key_valid;
442
443	if (is_valid_ether_addr(hw->perm_mac_addr))
444		return 0;
445
446	/* init */
447	addr[0] = addr[1] = 0;
448
449	if (!atl1_check_eeprom_exist(hw)) {
450		reg = 0;
451		key_valid = false;
452		/* Read out all EEPROM content */
453		i = 0;
454		while (1) {
455			if (atl1_read_eeprom(hw, i + 0x100, &control)) {
456				if (key_valid) {
457					if (reg == REG_MAC_STA_ADDR)
458						addr[0] = control;
459					else if (reg == (REG_MAC_STA_ADDR + 4))
460						addr[1] = control;
461					key_valid = false;
462				} else if ((control & 0xff) == 0x5A) {
463					key_valid = true;
464					reg = (u16) (control >> 16);
465				} else
466					break;
467			} else
468				/* read error */
469				break;
470			i += 4;
471		}
472
473		*(u32 *) &eth_addr[2] = swab32(addr[0]);
474		*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
475		if (is_valid_ether_addr(eth_addr)) {
476			memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
477			return 0;
478		}
479	}
480
481	/* see if SPI FLAGS exist ? */
482	addr[0] = addr[1] = 0;
483	reg = 0;
484	key_valid = false;
485	i = 0;
486	while (1) {
487		if (atl1_spi_read(hw, i + 0x1f000, &control)) {
488			if (key_valid) {
489				if (reg == REG_MAC_STA_ADDR)
490					addr[0] = control;
491				else if (reg == (REG_MAC_STA_ADDR + 4))
492					addr[1] = control;
493				key_valid = false;
494			} else if ((control & 0xff) == 0x5A) {
495				key_valid = true;
496				reg = (u16) (control >> 16);
497			} else
498				/* data end */
499				break;
500		} else
501			/* read error */
502			break;
503		i += 4;
504	}
505
506	*(u32 *) &eth_addr[2] = swab32(addr[0]);
507	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
508	if (is_valid_ether_addr(eth_addr)) {
509		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
510		return 0;
511	}
512
513	/*
514	 * On some motherboards, the MAC address is written by the
515	 * BIOS directly to the MAC register during POST, and is
516	 * not stored in eeprom.  If all else thus far has failed
517	 * to fetch the permanent MAC address, try reading it directly.
518	 */
519	addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
520	addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
521	*(u32 *) &eth_addr[2] = swab32(addr[0]);
522	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
523	if (is_valid_ether_addr(eth_addr)) {
524		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
525		return 0;
526	}
527
528	return 1;
529}
530
531/*
532 * Reads the adapter's MAC address from the EEPROM
533 * hw - Struct containing variables accessed by shared code
534 */
535static s32 atl1_read_mac_addr(struct atl1_hw *hw)
536{
537	u16 i;
538
539	if (atl1_get_permanent_address(hw))
540		random_ether_addr(hw->perm_mac_addr);
541
542	for (i = 0; i < ETH_ALEN; i++)
543		hw->mac_addr[i] = hw->perm_mac_addr[i];
544	return 0;
545}
546
547/*
548 * Hashes an address to determine its location in the multicast table
549 * hw - Struct containing variables accessed by shared code
550 * mc_addr - the multicast address to hash
551 *
552 * atl1_hash_mc_addr
553 *  purpose
554 *      set hash value for a multicast address
555 *      hash calcu processing :
556 *          1. calcu 32bit CRC for multicast address
557 *          2. reverse crc with MSB to LSB
558 */
559static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
560{
561	u32 crc32, value = 0;
562	int i;
563
564	crc32 = ether_crc_le(6, mc_addr);
565	for (i = 0; i < 32; i++)
566		value |= (((crc32 >> i) & 1) << (31 - i));
567
568	return value;
569}
570
571/*
572 * Sets the bit in the multicast table corresponding to the hash value.
573 * hw - Struct containing variables accessed by shared code
574 * hash_value - Multicast address hash value
575 */
576static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
577{
578	u32 hash_bit, hash_reg;
579	u32 mta;
580
581	/*
582	 * The HASH Table  is a register array of 2 32-bit registers.
583	 * It is treated like an array of 64 bits.  We want to set
584	 * bit BitArray[hash_value]. So we figure out what register
585	 * the bit is in, read it, OR in the new bit, then write
586	 * back the new value.  The register is determined by the
587	 * upper 7 bits of the hash value and the bit within that
588	 * register are determined by the lower 5 bits of the value.
589	 */
590	hash_reg = (hash_value >> 31) & 0x1;
591	hash_bit = (hash_value >> 26) & 0x1F;
592	mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
593	mta |= (1 << hash_bit);
594	iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
595}
596
597/*
598 * Writes a value to a PHY register
599 * hw - Struct containing variables accessed by shared code
600 * reg_addr - address of the PHY register to write
601 * data - data to write to the PHY
602 */
603static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
604{
605	int i;
606	u32 val;
607
608	val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
609	    (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
610	    MDIO_SUP_PREAMBLE |
611	    MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
612	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
613	ioread32(hw->hw_addr + REG_MDIO_CTRL);
614
615	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
616		udelay(2);
617		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
618		if (!(val & (MDIO_START | MDIO_BUSY)))
619			break;
620	}
621
622	if (!(val & (MDIO_START | MDIO_BUSY)))
623		return 0;
624
625	return ATLX_ERR_PHY;
626}
627
628/*
629 * Make L001's PHY out of Power Saving State (bug)
630 * hw - Struct containing variables accessed by shared code
631 * when power on, L001's PHY always on Power saving State
632 * (Gigabit Link forbidden)
633 */
634static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
635{
636	s32 ret;
637	ret = atl1_write_phy_reg(hw, 29, 0x0029);
638	if (ret)
639		return ret;
640	return atl1_write_phy_reg(hw, 30, 0);
641}
642
643/*
644 * Resets the PHY and make all config validate
645 * hw - Struct containing variables accessed by shared code
646 *
647 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
648 */
649static s32 atl1_phy_reset(struct atl1_hw *hw)
650{
651	struct pci_dev *pdev = hw->back->pdev;
652	struct atl1_adapter *adapter = hw->back;
653	s32 ret_val;
654	u16 phy_data;
655
656	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
657	    hw->media_type == MEDIA_TYPE_1000M_FULL)
658		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
659	else {
660		switch (hw->media_type) {
661		case MEDIA_TYPE_100M_FULL:
662			phy_data =
663			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
664			    MII_CR_RESET;
665			break;
666		case MEDIA_TYPE_100M_HALF:
667			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
668			break;
669		case MEDIA_TYPE_10M_FULL:
670			phy_data =
671			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
672			break;
673		default:
674			/* MEDIA_TYPE_10M_HALF: */
675			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
676			break;
677		}
678	}
679
680	ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
681	if (ret_val) {
682		u32 val;
683		int i;
684		/* pcie serdes link may be down! */
685		if (netif_msg_hw(adapter))
686			dev_dbg(&pdev->dev, "pcie phy link down\n");
687
688		for (i = 0; i < 25; i++) {
689			msleep(1);
690			val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
691			if (!(val & (MDIO_START | MDIO_BUSY)))
692				break;
693		}
694
695		if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
696			if (netif_msg_hw(adapter))
697				dev_warn(&pdev->dev,
698					"pcie link down at least 25ms\n");
699			return ret_val;
700		}
701	}
702	return 0;
703}
704
705/*
706 * Configures PHY autoneg and flow control advertisement settings
707 * hw - Struct containing variables accessed by shared code
708 */
709static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
710{
711	s32 ret_val;
712	s16 mii_autoneg_adv_reg;
713	s16 mii_1000t_ctrl_reg;
714
715	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
716	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
717
718	/* Read the MII 1000Base-T Control Register (Address 9). */
719	mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
720
721	/*
722	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
723	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
724	 * the  1000Base-T Control Register (Address 9).
725	 */
726	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
727	mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
728
729	/*
730	 * Need to parse media_type  and set up
731	 * the appropriate PHY registers.
732	 */
733	switch (hw->media_type) {
734	case MEDIA_TYPE_AUTO_SENSOR:
735		mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
736					MII_AR_10T_FD_CAPS |
737					MII_AR_100TX_HD_CAPS |
738					MII_AR_100TX_FD_CAPS);
739		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
740		break;
741
742	case MEDIA_TYPE_1000M_FULL:
743		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
744		break;
745
746	case MEDIA_TYPE_100M_FULL:
747		mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
748		break;
749
750	case MEDIA_TYPE_100M_HALF:
751		mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
752		break;
753
754	case MEDIA_TYPE_10M_FULL:
755		mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
756		break;
757
758	default:
759		mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
760		break;
761	}
762
763	/* flow control fixed to enable all */
764	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
765
766	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
767	hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
768
769	ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
770	if (ret_val)
771		return ret_val;
772
773	ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
774	if (ret_val)
775		return ret_val;
776
777	return 0;
778}
779
780/*
781 * Configures link settings.
782 * hw - Struct containing variables accessed by shared code
783 * Assumes the hardware has previously been reset and the
784 * transmitter and receiver are not enabled.
785 */
786static s32 atl1_setup_link(struct atl1_hw *hw)
787{
788	struct pci_dev *pdev = hw->back->pdev;
789	struct atl1_adapter *adapter = hw->back;
790	s32 ret_val;
791
792	/*
793	 * Options:
794	 *  PHY will advertise value(s) parsed from
795	 *  autoneg_advertised and fc
796	 *  no matter what autoneg is , We will not wait link result.
797	 */
798	ret_val = atl1_phy_setup_autoneg_adv(hw);
799	if (ret_val) {
800		if (netif_msg_link(adapter))
801			dev_dbg(&pdev->dev,
802				"error setting up autonegotiation\n");
803		return ret_val;
804	}
805	/* SW.Reset , En-Auto-Neg if needed */
806	ret_val = atl1_phy_reset(hw);
807	if (ret_val) {
808		if (netif_msg_link(adapter))
809			dev_dbg(&pdev->dev, "error resetting phy\n");
810		return ret_val;
811	}
812	hw->phy_configured = true;
813	return ret_val;
814}
815
816static void atl1_init_flash_opcode(struct atl1_hw *hw)
817{
818	if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
819		/* Atmel */
820		hw->flash_vendor = 0;
821
822	/* Init OP table */
823	iowrite8(flash_table[hw->flash_vendor].cmd_program,
824		hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
825	iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
826		hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
827	iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
828		hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
829	iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
830		hw->hw_addr + REG_SPI_FLASH_OP_RDID);
831	iowrite8(flash_table[hw->flash_vendor].cmd_wren,
832		hw->hw_addr + REG_SPI_FLASH_OP_WREN);
833	iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
834		hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
835	iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
836		hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
837	iowrite8(flash_table[hw->flash_vendor].cmd_read,
838		hw->hw_addr + REG_SPI_FLASH_OP_READ);
839}
840
841/*
842 * Performs basic configuration of the adapter.
843 * hw - Struct containing variables accessed by shared code
844 * Assumes that the controller has previously been reset and is in a
845 * post-reset uninitialized state. Initializes multicast table,
846 * and  Calls routines to setup link
847 * Leaves the transmit and receive units disabled and uninitialized.
848 */
849static s32 atl1_init_hw(struct atl1_hw *hw)
850{
851	u32 ret_val = 0;
852
853	/* Zero out the Multicast HASH table */
854	iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
855	/* clear the old settings from the multicast hash table */
856	iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
857
858	atl1_init_flash_opcode(hw);
859
860	if (!hw->phy_configured) {
861		/* enable GPHY LinkChange Interrrupt */
862		ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
863		if (ret_val)
864			return ret_val;
865		/* make PHY out of power-saving state */
866		ret_val = atl1_phy_leave_power_saving(hw);
867		if (ret_val)
868			return ret_val;
869		/* Call a subroutine to configure the link */
870		ret_val = atl1_setup_link(hw);
871	}
872	return ret_val;
873}
874
875/*
876 * Detects the current speed and duplex settings of the hardware.
877 * hw - Struct containing variables accessed by shared code
878 * speed - Speed of the connection
879 * duplex - Duplex setting of the connection
880 */
881static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
882{
883	struct pci_dev *pdev = hw->back->pdev;
884	struct atl1_adapter *adapter = hw->back;
885	s32 ret_val;
886	u16 phy_data;
887
888	/* ; --- Read   PHY Specific Status Register (17) */
889	ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
890	if (ret_val)
891		return ret_val;
892
893	if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
894		return ATLX_ERR_PHY_RES;
895
896	switch (phy_data & MII_ATLX_PSSR_SPEED) {
897	case MII_ATLX_PSSR_1000MBS:
898		*speed = SPEED_1000;
899		break;
900	case MII_ATLX_PSSR_100MBS:
901		*speed = SPEED_100;
902		break;
903	case MII_ATLX_PSSR_10MBS:
904		*speed = SPEED_10;
905		break;
906	default:
907		if (netif_msg_hw(adapter))
908			dev_dbg(&pdev->dev, "error getting speed\n");
909		return ATLX_ERR_PHY_SPEED;
910		break;
911	}
912	if (phy_data & MII_ATLX_PSSR_DPLX)
913		*duplex = FULL_DUPLEX;
914	else
915		*duplex = HALF_DUPLEX;
916
917	return 0;
918}
919
920static void atl1_set_mac_addr(struct atl1_hw *hw)
921{
922	u32 value;
923	/*
924	 * 00-0B-6A-F6-00-DC
925	 * 0:  6AF600DC   1: 000B
926	 * low dword
927	 */
928	value = (((u32) hw->mac_addr[2]) << 24) |
929	    (((u32) hw->mac_addr[3]) << 16) |
930	    (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
931	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
932	/* high dword */
933	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
934	iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
935}
936
937/*
938 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
939 * @adapter: board private structure to initialize
940 *
941 * atl1_sw_init initializes the Adapter private data structure.
942 * Fields are initialized based on PCI device information and
943 * OS network device settings (MTU size).
944 */
945static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
946{
947	struct atl1_hw *hw = &adapter->hw;
948	struct net_device *netdev = adapter->netdev;
949
950	hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
951	hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
952
953	adapter->wol = 0;
954	device_set_wakeup_enable(&adapter->pdev->dev, false);
955	adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
956	adapter->ict = 50000;		/* 100ms */
957	adapter->link_speed = SPEED_0;	/* hardware init */
958	adapter->link_duplex = FULL_DUPLEX;
959
960	hw->phy_configured = false;
961	hw->preamble_len = 7;
962	hw->ipgt = 0x60;
963	hw->min_ifg = 0x50;
964	hw->ipgr1 = 0x40;
965	hw->ipgr2 = 0x60;
966	hw->max_retry = 0xf;
967	hw->lcol = 0x37;
968	hw->jam_ipg = 7;
969	hw->rfd_burst = 8;
970	hw->rrd_burst = 8;
971	hw->rfd_fetch_gap = 1;
972	hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
973	hw->rx_jumbo_lkah = 1;
974	hw->rrd_ret_timer = 16;
975	hw->tpd_burst = 4;
976	hw->tpd_fetch_th = 16;
977	hw->txf_burst = 0x100;
978	hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
979	hw->tpd_fetch_gap = 1;
980	hw->rcb_value = atl1_rcb_64;
981	hw->dma_ord = atl1_dma_ord_enh;
982	hw->dmar_block = atl1_dma_req_256;
983	hw->dmaw_block = atl1_dma_req_256;
984	hw->cmb_rrd = 4;
985	hw->cmb_tpd = 4;
986	hw->cmb_rx_timer = 1;	/* about 2us */
987	hw->cmb_tx_timer = 1;	/* about 2us */
988	hw->smb_timer = 100000;	/* about 200ms */
989
990	spin_lock_init(&adapter->lock);
991	spin_lock_init(&adapter->mb_lock);
992
993	return 0;
994}
995
996static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
997{
998	struct atl1_adapter *adapter = netdev_priv(netdev);
999	u16 result;
1000
1001	atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
1002
1003	return result;
1004}
1005
1006static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1007	int val)
1008{
1009	struct atl1_adapter *adapter = netdev_priv(netdev);
1010
1011	atl1_write_phy_reg(&adapter->hw, reg_num, val);
1012}
1013
1014/*
1015 * atl1_mii_ioctl -
1016 * @netdev:
1017 * @ifreq:
1018 * @cmd:
1019 */
1020static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1021{
1022	struct atl1_adapter *adapter = netdev_priv(netdev);
1023	unsigned long flags;
1024	int retval;
1025
1026	if (!netif_running(netdev))
1027		return -EINVAL;
1028
1029	spin_lock_irqsave(&adapter->lock, flags);
1030	retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1031	spin_unlock_irqrestore(&adapter->lock, flags);
1032
1033	return retval;
1034}
1035
1036/*
1037 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1038 * @adapter: board private structure
1039 *
1040 * Return 0 on success, negative on failure
1041 */
1042static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1043{
1044	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1045	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1046	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1047	struct atl1_ring_header *ring_header = &adapter->ring_header;
1048	struct pci_dev *pdev = adapter->pdev;
1049	int size;
1050	u8 offset = 0;
1051
1052	size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1053	tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1054	if (unlikely(!tpd_ring->buffer_info)) {
1055		if (netif_msg_drv(adapter))
1056			dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1057				size);
1058		goto err_nomem;
1059	}
1060	rfd_ring->buffer_info =
1061		(struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count);
1062
1063	/*
1064	 * real ring DMA buffer
1065	 * each ring/block may need up to 8 bytes for alignment, hence the
1066	 * additional 40 bytes tacked onto the end.
1067	 */
1068	ring_header->size = size =
1069		sizeof(struct tx_packet_desc) * tpd_ring->count
1070		+ sizeof(struct rx_free_desc) * rfd_ring->count
1071		+ sizeof(struct rx_return_desc) * rrd_ring->count
1072		+ sizeof(struct coals_msg_block)
1073		+ sizeof(struct stats_msg_block)
1074		+ 40;
1075
1076	ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1077		&ring_header->dma);
1078	if (unlikely(!ring_header->desc)) {
1079		if (netif_msg_drv(adapter))
1080			dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1081		goto err_nomem;
1082	}
1083
1084	memset(ring_header->desc, 0, ring_header->size);
1085
1086	/* init TPD ring */
1087	tpd_ring->dma = ring_header->dma;
1088	offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1089	tpd_ring->dma += offset;
1090	tpd_ring->desc = (u8 *) ring_header->desc + offset;
1091	tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1092
1093	/* init RFD ring */
1094	rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1095	offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1096	rfd_ring->dma += offset;
1097	rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1098	rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1099
1100
1101	/* init RRD ring */
1102	rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1103	offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1104	rrd_ring->dma += offset;
1105	rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1106	rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1107
1108
1109	/* init CMB */
1110	adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1111	offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1112	adapter->cmb.dma += offset;
1113	adapter->cmb.cmb = (struct coals_msg_block *)
1114		((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1115
1116	/* init SMB */
1117	adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1118	offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1119	adapter->smb.dma += offset;
1120	adapter->smb.smb = (struct stats_msg_block *)
1121		((u8 *) adapter->cmb.cmb +
1122		(sizeof(struct coals_msg_block) + offset));
1123
1124	return 0;
1125
1126err_nomem:
1127	kfree(tpd_ring->buffer_info);
1128	return -ENOMEM;
1129}
1130
1131static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1132{
1133	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1134	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1135	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1136
1137	atomic_set(&tpd_ring->next_to_use, 0);
1138	atomic_set(&tpd_ring->next_to_clean, 0);
1139
1140	rfd_ring->next_to_clean = 0;
1141	atomic_set(&rfd_ring->next_to_use, 0);
1142
1143	rrd_ring->next_to_use = 0;
1144	atomic_set(&rrd_ring->next_to_clean, 0);
1145}
1146
1147/*
1148 * atl1_clean_rx_ring - Free RFD Buffers
1149 * @adapter: board private structure
1150 */
1151static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1152{
1153	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1154	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1155	struct atl1_buffer *buffer_info;
1156	struct pci_dev *pdev = adapter->pdev;
1157	unsigned long size;
1158	unsigned int i;
1159
1160	/* Free all the Rx ring sk_buffs */
1161	for (i = 0; i < rfd_ring->count; i++) {
1162		buffer_info = &rfd_ring->buffer_info[i];
1163		if (buffer_info->dma) {
1164			pci_unmap_page(pdev, buffer_info->dma,
1165				buffer_info->length, PCI_DMA_FROMDEVICE);
1166			buffer_info->dma = 0;
1167		}
1168		if (buffer_info->skb) {
1169			dev_kfree_skb(buffer_info->skb);
1170			buffer_info->skb = NULL;
1171		}
1172	}
1173
1174	size = sizeof(struct atl1_buffer) * rfd_ring->count;
1175	memset(rfd_ring->buffer_info, 0, size);
1176
1177	/* Zero out the descriptor ring */
1178	memset(rfd_ring->desc, 0, rfd_ring->size);
1179
1180	rfd_ring->next_to_clean = 0;
1181	atomic_set(&rfd_ring->next_to_use, 0);
1182
1183	rrd_ring->next_to_use = 0;
1184	atomic_set(&rrd_ring->next_to_clean, 0);
1185}
1186
1187/*
1188 * atl1_clean_tx_ring - Free Tx Buffers
1189 * @adapter: board private structure
1190 */
1191static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1192{
1193	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1194	struct atl1_buffer *buffer_info;
1195	struct pci_dev *pdev = adapter->pdev;
1196	unsigned long size;
1197	unsigned int i;
1198
1199	/* Free all the Tx ring sk_buffs */
1200	for (i = 0; i < tpd_ring->count; i++) {
1201		buffer_info = &tpd_ring->buffer_info[i];
1202		if (buffer_info->dma) {
1203			pci_unmap_page(pdev, buffer_info->dma,
1204				buffer_info->length, PCI_DMA_TODEVICE);
1205			buffer_info->dma = 0;
1206		}
1207	}
1208
1209	for (i = 0; i < tpd_ring->count; i++) {
1210		buffer_info = &tpd_ring->buffer_info[i];
1211		if (buffer_info->skb) {
1212			dev_kfree_skb_any(buffer_info->skb);
1213			buffer_info->skb = NULL;
1214		}
1215	}
1216
1217	size = sizeof(struct atl1_buffer) * tpd_ring->count;
1218	memset(tpd_ring->buffer_info, 0, size);
1219
1220	/* Zero out the descriptor ring */
1221	memset(tpd_ring->desc, 0, tpd_ring->size);
1222
1223	atomic_set(&tpd_ring->next_to_use, 0);
1224	atomic_set(&tpd_ring->next_to_clean, 0);
1225}
1226
1227/*
1228 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1229 * @adapter: board private structure
1230 *
1231 * Free all transmit software resources
1232 */
1233static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1234{
1235	struct pci_dev *pdev = adapter->pdev;
1236	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1237	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1238	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1239	struct atl1_ring_header *ring_header = &adapter->ring_header;
1240
1241	atl1_clean_tx_ring(adapter);
1242	atl1_clean_rx_ring(adapter);
1243
1244	kfree(tpd_ring->buffer_info);
1245	pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1246		ring_header->dma);
1247
1248	tpd_ring->buffer_info = NULL;
1249	tpd_ring->desc = NULL;
1250	tpd_ring->dma = 0;
1251
1252	rfd_ring->buffer_info = NULL;
1253	rfd_ring->desc = NULL;
1254	rfd_ring->dma = 0;
1255
1256	rrd_ring->desc = NULL;
1257	rrd_ring->dma = 0;
1258
1259	adapter->cmb.dma = 0;
1260	adapter->cmb.cmb = NULL;
1261
1262	adapter->smb.dma = 0;
1263	adapter->smb.smb = NULL;
1264}
1265
1266static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1267{
1268	u32 value;
1269	struct atl1_hw *hw = &adapter->hw;
1270	struct net_device *netdev = adapter->netdev;
1271	/* Config MAC CTRL Register */
1272	value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1273	/* duplex */
1274	if (FULL_DUPLEX == adapter->link_duplex)
1275		value |= MAC_CTRL_DUPLX;
1276	/* speed */
1277	value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1278			 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1279		  MAC_CTRL_SPEED_SHIFT);
1280	/* flow control */
1281	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1282	/* PAD & CRC */
1283	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1284	/* preamble length */
1285	value |= (((u32) adapter->hw.preamble_len
1286		   & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1287	/* vlan */
1288	__atlx_vlan_mode(netdev->features, &value);
1289	/* rx checksum
1290	   if (adapter->rx_csum)
1291	   value |= MAC_CTRL_RX_CHKSUM_EN;
1292	 */
1293	/* filter mode */
1294	value |= MAC_CTRL_BC_EN;
1295	if (netdev->flags & IFF_PROMISC)
1296		value |= MAC_CTRL_PROMIS_EN;
1297	else if (netdev->flags & IFF_ALLMULTI)
1298		value |= MAC_CTRL_MC_ALL_EN;
1299	/* value |= MAC_CTRL_LOOPBACK; */
1300	iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1301}
1302
1303static u32 atl1_check_link(struct atl1_adapter *adapter)
1304{
1305	struct atl1_hw *hw = &adapter->hw;
1306	struct net_device *netdev = adapter->netdev;
1307	u32 ret_val;
1308	u16 speed, duplex, phy_data;
1309	int reconfig = 0;
1310
1311	/* MII_BMSR must read twice */
1312	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1313	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1314	if (!(phy_data & BMSR_LSTATUS)) {
1315		/* link down */
1316		if (netif_carrier_ok(netdev)) {
1317			/* old link state: Up */
1318			if (netif_msg_link(adapter))
1319				dev_info(&adapter->pdev->dev, "link is down\n");
1320			adapter->link_speed = SPEED_0;
1321			netif_carrier_off(netdev);
1322		}
1323		return 0;
1324	}
1325
1326	/* Link Up */
1327	ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1328	if (ret_val)
1329		return ret_val;
1330
1331	switch (hw->media_type) {
1332	case MEDIA_TYPE_1000M_FULL:
1333		if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1334			reconfig = 1;
1335		break;
1336	case MEDIA_TYPE_100M_FULL:
1337		if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1338			reconfig = 1;
1339		break;
1340	case MEDIA_TYPE_100M_HALF:
1341		if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1342			reconfig = 1;
1343		break;
1344	case MEDIA_TYPE_10M_FULL:
1345		if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1346			reconfig = 1;
1347		break;
1348	case MEDIA_TYPE_10M_HALF:
1349		if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1350			reconfig = 1;
1351		break;
1352	}
1353
1354	/* link result is our setting */
1355	if (!reconfig) {
1356		if (adapter->link_speed != speed ||
1357		    adapter->link_duplex != duplex) {
1358			adapter->link_speed = speed;
1359			adapter->link_duplex = duplex;
1360			atl1_setup_mac_ctrl(adapter);
1361			if (netif_msg_link(adapter))
1362				dev_info(&adapter->pdev->dev,
1363					"%s link is up %d Mbps %s\n",
1364					netdev->name, adapter->link_speed,
1365					adapter->link_duplex == FULL_DUPLEX ?
1366					"full duplex" : "half duplex");
1367		}
1368		if (!netif_carrier_ok(netdev)) {
1369			/* Link down -> Up */
1370			netif_carrier_on(netdev);
1371		}
1372		return 0;
1373	}
1374
1375	/* change original link status */
1376	if (netif_carrier_ok(netdev)) {
1377		adapter->link_speed = SPEED_0;
1378		netif_carrier_off(netdev);
1379		netif_stop_queue(netdev);
1380	}
1381
1382	if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1383	    hw->media_type != MEDIA_TYPE_1000M_FULL) {
1384		switch (hw->media_type) {
1385		case MEDIA_TYPE_100M_FULL:
1386			phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1387			           MII_CR_RESET;
1388			break;
1389		case MEDIA_TYPE_100M_HALF:
1390			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1391			break;
1392		case MEDIA_TYPE_10M_FULL:
1393			phy_data =
1394			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1395			break;
1396		default:
1397			/* MEDIA_TYPE_10M_HALF: */
1398			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1399			break;
1400		}
1401		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1402		return 0;
1403	}
1404
1405	/* auto-neg, insert timer to re-config phy */
1406	if (!adapter->phy_timer_pending) {
1407		adapter->phy_timer_pending = true;
1408		mod_timer(&adapter->phy_config_timer,
1409			  round_jiffies(jiffies + 3 * HZ));
1410	}
1411
1412	return 0;
1413}
1414
1415static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1416{
1417	u32 hi, lo, value;
1418
1419	/* RFD Flow Control */
1420	value = adapter->rfd_ring.count;
1421	hi = value / 16;
1422	if (hi < 2)
1423		hi = 2;
1424	lo = value * 7 / 8;
1425
1426	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1427		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1428	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1429
1430	/* RRD Flow Control */
1431	value = adapter->rrd_ring.count;
1432	lo = value / 16;
1433	hi = value * 7 / 8;
1434	if (lo < 2)
1435		lo = 2;
1436	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1437		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1438	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1439}
1440
1441static void set_flow_ctrl_new(struct atl1_hw *hw)
1442{
1443	u32 hi, lo, value;
1444
1445	/* RXF Flow Control */
1446	value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1447	lo = value / 16;
1448	if (lo < 192)
1449		lo = 192;
1450	hi = value * 7 / 8;
1451	if (hi < lo)
1452		hi = lo + 16;
1453	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1454		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1455	iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1456
1457	/* RRD Flow Control */
1458	value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1459	lo = value / 8;
1460	hi = value * 7 / 8;
1461	if (lo < 2)
1462		lo = 2;
1463	if (hi < lo)
1464		hi = lo + 3;
1465	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1466		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1467	iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1468}
1469
1470/*
1471 * atl1_configure - Configure Transmit&Receive Unit after Reset
1472 * @adapter: board private structure
1473 *
1474 * Configure the Tx /Rx unit of the MAC after a reset.
1475 */
1476static u32 atl1_configure(struct atl1_adapter *adapter)
1477{
1478	struct atl1_hw *hw = &adapter->hw;
1479	u32 value;
1480
1481	/* clear interrupt status */
1482	iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1483
1484	/* set MAC Address */
1485	value = (((u32) hw->mac_addr[2]) << 24) |
1486		(((u32) hw->mac_addr[3]) << 16) |
1487		(((u32) hw->mac_addr[4]) << 8) |
1488		(((u32) hw->mac_addr[5]));
1489	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1490	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1491	iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1492
1493	/* tx / rx ring */
1494
1495	/* HI base address */
1496	iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1497		hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1498	/* LO base address */
1499	iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1500		hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1501	iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1502		hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1503	iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1504		hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1505	iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1506		hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1507	iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1508		hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1509
1510	/* element count */
1511	value = adapter->rrd_ring.count;
1512	value <<= 16;
1513	value += adapter->rfd_ring.count;
1514	iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1515	iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1516		REG_DESC_TPD_RING_SIZE);
1517
1518	/* Load Ptr */
1519	iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1520
1521	/* config Mailbox */
1522	value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1523		  & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1524		((atomic_read(&adapter->rrd_ring.next_to_clean)
1525		& MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1526		((atomic_read(&adapter->rfd_ring.next_to_use)
1527		& MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1528	iowrite32(value, hw->hw_addr + REG_MAILBOX);
1529
1530	/* config IPG/IFG */
1531	value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1532		 << MAC_IPG_IFG_IPGT_SHIFT) |
1533		(((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1534		<< MAC_IPG_IFG_MIFG_SHIFT) |
1535		(((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1536		<< MAC_IPG_IFG_IPGR1_SHIFT) |
1537		(((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1538		<< MAC_IPG_IFG_IPGR2_SHIFT);
1539	iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1540
1541	/* config  Half-Duplex Control */
1542	value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1543		(((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1544		<< MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1545		MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1546		(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1547		(((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1548		<< MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1549	iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1550
1551	/* set Interrupt Moderator Timer */
1552	iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1553	iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1554
1555	/* set Interrupt Clear Timer */
1556	iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1557
1558	/* set max frame size hw will accept */
1559	iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1560
1561	/* jumbo size & rrd retirement timer */
1562	value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1563		 << RXQ_JMBOSZ_TH_SHIFT) |
1564		(((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1565		<< RXQ_JMBO_LKAH_SHIFT) |
1566		(((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1567		<< RXQ_RRD_TIMER_SHIFT);
1568	iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1569
1570	/* Flow Control */
1571	switch (hw->dev_rev) {
1572	case 0x8001:
1573	case 0x9001:
1574	case 0x9002:
1575	case 0x9003:
1576		set_flow_ctrl_old(adapter);
1577		break;
1578	default:
1579		set_flow_ctrl_new(hw);
1580		break;
1581	}
1582
1583	/* config TXQ */
1584	value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1585		 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1586		(((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1587		<< TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1588		(((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1589		<< TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1590		TXQ_CTRL_EN;
1591	iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1592
1593	/* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1594	value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1595		<< TX_JUMBO_TASK_TH_SHIFT) |
1596		(((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1597		<< TX_TPD_MIN_IPG_SHIFT);
1598	iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1599
1600	/* config RXQ */
1601	value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1602		<< RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1603		(((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1604		<< RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1605		(((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1606		<< RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1607		RXQ_CTRL_EN;
1608	iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1609
1610	/* config DMA Engine */
1611	value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1612		<< DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1613		((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1614		<< DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1615		DMA_CTRL_DMAW_EN;
1616	value |= (u32) hw->dma_ord;
1617	if (atl1_rcb_128 == hw->rcb_value)
1618		value |= DMA_CTRL_RCB_VALUE;
1619	iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1620
1621	/* config CMB / SMB */
1622	value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1623		hw->cmb_tpd : adapter->tpd_ring.count;
1624	value <<= 16;
1625	value |= hw->cmb_rrd;
1626	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1627	value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1628	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1629	iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1630
1631	/* --- enable CMB / SMB */
1632	value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1633	iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1634
1635	value = ioread32(adapter->hw.hw_addr + REG_ISR);
1636	if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1637		value = 1;	/* config failed */
1638	else
1639		value = 0;
1640
1641	/* clear all interrupt status */
1642	iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1643	iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1644	return value;
1645}
1646
1647/*
1648 * atl1_pcie_patch - Patch for PCIE module
1649 */
1650static void atl1_pcie_patch(struct atl1_adapter *adapter)
1651{
1652	u32 value;
1653
1654	/* much vendor magic here */
1655	value = 0x6500;
1656	iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1657	/* pcie flow control mode change */
1658	value = ioread32(adapter->hw.hw_addr + 0x1008);
1659	value |= 0x8000;
1660	iowrite32(value, adapter->hw.hw_addr + 0x1008);
1661}
1662
1663/*
1664 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1665 * on PCI Command register is disable.
1666 * The function enable this bit.
1667 * Brackett, 2006/03/15
1668 */
1669static void atl1_via_workaround(struct atl1_adapter *adapter)
1670{
1671	unsigned long value;
1672
1673	value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1674	if (value & PCI_COMMAND_INTX_DISABLE)
1675		value &= ~PCI_COMMAND_INTX_DISABLE;
1676	iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1677}
1678
1679static void atl1_inc_smb(struct atl1_adapter *adapter)
1680{
1681	struct net_device *netdev = adapter->netdev;
1682	struct stats_msg_block *smb = adapter->smb.smb;
1683
1684	/* Fill out the OS statistics structure */
1685	adapter->soft_stats.rx_packets += smb->rx_ok;
1686	adapter->soft_stats.tx_packets += smb->tx_ok;
1687	adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1688	adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1689	adapter->soft_stats.multicast += smb->rx_mcast;
1690	adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 +
1691		smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry);
1692
1693	/* Rx Errors */
1694	adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err +
1695		smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov +
1696		smb->rx_rrd_ov + smb->rx_align_err);
1697	adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1698	adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1699	adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1700	adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1701	adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
1702		smb->rx_rxf_ov);
1703
1704	adapter->soft_stats.rx_pause += smb->rx_pause;
1705	adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1706	adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1707
1708	/* Tx Errors */
1709	adapter->soft_stats.tx_errors += (smb->tx_late_col +
1710		smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc);
1711	adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1712	adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1713	adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1714
1715	adapter->soft_stats.excecol += smb->tx_abort_col;
1716	adapter->soft_stats.deffer += smb->tx_defer;
1717	adapter->soft_stats.scc += smb->tx_1_col;
1718	adapter->soft_stats.mcc += smb->tx_2_col;
1719	adapter->soft_stats.latecol += smb->tx_late_col;
1720	adapter->soft_stats.tx_underun += smb->tx_underrun;
1721	adapter->soft_stats.tx_trunc += smb->tx_trunc;
1722	adapter->soft_stats.tx_pause += smb->tx_pause;
1723
1724	netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1725	netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1726	netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1727	netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1728	netdev->stats.multicast = adapter->soft_stats.multicast;
1729	netdev->stats.collisions = adapter->soft_stats.collisions;
1730	netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1731	netdev->stats.rx_over_errors =
1732		adapter->soft_stats.rx_missed_errors;
1733	netdev->stats.rx_length_errors =
1734		adapter->soft_stats.rx_length_errors;
1735	netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1736	netdev->stats.rx_frame_errors =
1737		adapter->soft_stats.rx_frame_errors;
1738	netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1739	netdev->stats.rx_missed_errors =
1740		adapter->soft_stats.rx_missed_errors;
1741	netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1742	netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1743	netdev->stats.tx_aborted_errors =
1744		adapter->soft_stats.tx_aborted_errors;
1745	netdev->stats.tx_window_errors =
1746		adapter->soft_stats.tx_window_errors;
1747	netdev->stats.tx_carrier_errors =
1748		adapter->soft_stats.tx_carrier_errors;
1749}
1750
1751static void atl1_update_mailbox(struct atl1_adapter *adapter)
1752{
1753	unsigned long flags;
1754	u32 tpd_next_to_use;
1755	u32 rfd_next_to_use;
1756	u32 rrd_next_to_clean;
1757	u32 value;
1758
1759	spin_lock_irqsave(&adapter->mb_lock, flags);
1760
1761	tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1762	rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1763	rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1764
1765	value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1766		MB_RFD_PROD_INDX_SHIFT) |
1767		((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1768		MB_RRD_CONS_INDX_SHIFT) |
1769		((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1770		MB_TPD_PROD_INDX_SHIFT);
1771	iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1772
1773	spin_unlock_irqrestore(&adapter->mb_lock, flags);
1774}
1775
1776static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1777	struct rx_return_desc *rrd, u16 offset)
1778{
1779	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1780
1781	while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1782		rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1783		if (++rfd_ring->next_to_clean == rfd_ring->count) {
1784			rfd_ring->next_to_clean = 0;
1785		}
1786	}
1787}
1788
1789static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1790	struct rx_return_desc *rrd)
1791{
1792	u16 num_buf;
1793
1794	num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1795		adapter->rx_buffer_len;
1796	if (rrd->num_buf == num_buf)
1797		/* clean alloc flag for bad rrd */
1798		atl1_clean_alloc_flag(adapter, rrd, num_buf);
1799}
1800
1801static void atl1_rx_checksum(struct atl1_adapter *adapter,
1802	struct rx_return_desc *rrd, struct sk_buff *skb)
1803{
1804	struct pci_dev *pdev = adapter->pdev;
1805
1806	/*
1807	 * The L1 hardware contains a bug that erroneously sets the
1808	 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1809	 * fragmented IP packet is received, even though the packet
1810	 * is perfectly valid and its checksum is correct. There's
1811	 * no way to distinguish between one of these good packets
1812	 * and a packet that actually contains a TCP/UDP checksum
1813	 * error, so all we can do is allow it to be handed up to
1814	 * the higher layers and let it be sorted out there.
1815	 */
1816
1817	skb_checksum_none_assert(skb);
1818
1819	if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1820		if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1821					ERR_FLAG_CODE | ERR_FLAG_OV)) {
1822			adapter->hw_csum_err++;
1823			if (netif_msg_rx_err(adapter))
1824				dev_printk(KERN_DEBUG, &pdev->dev,
1825					"rx checksum error\n");
1826			return;
1827		}
1828	}
1829
1830	/* not IPv4 */
1831	if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1832		/* checksum is invalid, but it's not an IPv4 pkt, so ok */
1833		return;
1834
1835	/* IPv4 packet */
1836	if (likely(!(rrd->err_flg &
1837		(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1838		skb->ip_summed = CHECKSUM_UNNECESSARY;
1839		adapter->hw_csum_good++;
1840		return;
1841	}
1842}
1843
1844/*
1845 * atl1_alloc_rx_buffers - Replace used receive buffers
1846 * @adapter: address of board private structure
1847 */
1848static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1849{
1850	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1851	struct pci_dev *pdev = adapter->pdev;
1852	struct page *page;
1853	unsigned long offset;
1854	struct atl1_buffer *buffer_info, *next_info;
1855	struct sk_buff *skb;
1856	u16 num_alloc = 0;
1857	u16 rfd_next_to_use, next_next;
1858	struct rx_free_desc *rfd_desc;
1859
1860	next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1861	if (++next_next == rfd_ring->count)
1862		next_next = 0;
1863	buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1864	next_info = &rfd_ring->buffer_info[next_next];
1865
1866	while (!buffer_info->alloced && !next_info->alloced) {
1867		if (buffer_info->skb) {
1868			buffer_info->alloced = 1;
1869			goto next;
1870		}
1871
1872		rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1873
1874		skb = netdev_alloc_skb_ip_align(adapter->netdev,
1875						adapter->rx_buffer_len);
1876		if (unlikely(!skb)) {
1877			/* Better luck next round */
1878			adapter->netdev->stats.rx_dropped++;
1879			break;
1880		}
1881
1882		buffer_info->alloced = 1;
1883		buffer_info->skb = skb;
1884		buffer_info->length = (u16) adapter->rx_buffer_len;
1885		page = virt_to_page(skb->data);
1886		offset = (unsigned long)skb->data & ~PAGE_MASK;
1887		buffer_info->dma = pci_map_page(pdev, page, offset,
1888						adapter->rx_buffer_len,
1889						PCI_DMA_FROMDEVICE);
1890		rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1891		rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1892		rfd_desc->coalese = 0;
1893
1894next:
1895		rfd_next_to_use = next_next;
1896		if (unlikely(++next_next == rfd_ring->count))
1897			next_next = 0;
1898
1899		buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1900		next_info = &rfd_ring->buffer_info[next_next];
1901		num_alloc++;
1902	}
1903
1904	if (num_alloc) {
1905		/*
1906		 * Force memory writes to complete before letting h/w
1907		 * know there are new descriptors to fetch.  (Only
1908		 * applicable for weak-ordered memory model archs,
1909		 * such as IA-64).
1910		 */
1911		wmb();
1912		atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1913	}
1914	return num_alloc;
1915}
1916
1917static void atl1_intr_rx(struct atl1_adapter *adapter)
1918{
1919	int i, count;
1920	u16 length;
1921	u16 rrd_next_to_clean;
1922	u32 value;
1923	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1924	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1925	struct atl1_buffer *buffer_info;
1926	struct rx_return_desc *rrd;
1927	struct sk_buff *skb;
1928
1929	count = 0;
1930
1931	rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1932
1933	while (1) {
1934		rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1935		i = 1;
1936		if (likely(rrd->xsz.valid)) {	/* packet valid */
1937chk_rrd:
1938			/* check rrd status */
1939			if (likely(rrd->num_buf == 1))
1940				goto rrd_ok;
1941			else if (netif_msg_rx_err(adapter)) {
1942				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1943					"unexpected RRD buffer count\n");
1944				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1945					"rx_buf_len = %d\n",
1946					adapter->rx_buffer_len);
1947				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1948					"RRD num_buf = %d\n",
1949					rrd->num_buf);
1950				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1951					"RRD pkt_len = %d\n",
1952					rrd->xsz.xsum_sz.pkt_size);
1953				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1954					"RRD pkt_flg = 0x%08X\n",
1955					rrd->pkt_flg);
1956				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1957					"RRD err_flg = 0x%08X\n",
1958					rrd->err_flg);
1959				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1960					"RRD vlan_tag = 0x%08X\n",
1961					rrd->vlan_tag);
1962			}
1963
1964			/* rrd seems to be bad */
1965			if (unlikely(i-- > 0)) {
1966				/* rrd may not be DMAed completely */
1967				udelay(1);
1968				goto chk_rrd;
1969			}
1970			/* bad rrd */
1971			if (netif_msg_rx_err(adapter))
1972				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1973					"bad RRD\n");
1974			/* see if update RFD index */
1975			if (rrd->num_buf > 1)
1976				atl1_update_rfd_index(adapter, rrd);
1977
1978			/* update rrd */
1979			rrd->xsz.valid = 0;
1980			if (++rrd_next_to_clean == rrd_ring->count)
1981				rrd_next_to_clean = 0;
1982			count++;
1983			continue;
1984		} else {	/* current rrd still not be updated */
1985
1986			break;
1987		}
1988rrd_ok:
1989		/* clean alloc flag for bad rrd */
1990		atl1_clean_alloc_flag(adapter, rrd, 0);
1991
1992		buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1993		if (++rfd_ring->next_to_clean == rfd_ring->count)
1994			rfd_ring->next_to_clean = 0;
1995
1996		/* update rrd next to clean */
1997		if (++rrd_next_to_clean == rrd_ring->count)
1998			rrd_next_to_clean = 0;
1999		count++;
2000
2001		if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
2002			if (!(rrd->err_flg &
2003				(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2004				| ERR_FLAG_LEN))) {
2005				/* packet error, don't need upstream */
2006				buffer_info->alloced = 0;
2007				rrd->xsz.valid = 0;
2008				continue;
2009			}
2010		}
2011
2012		/* Good Receive */
2013		pci_unmap_page(adapter->pdev, buffer_info->dma,
2014			       buffer_info->length, PCI_DMA_FROMDEVICE);
2015		buffer_info->dma = 0;
2016		skb = buffer_info->skb;
2017		length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2018
2019		skb_put(skb, length - ETH_FCS_LEN);
2020
2021		/* Receive Checksum Offload */
2022		atl1_rx_checksum(adapter, rrd, skb);
2023		skb->protocol = eth_type_trans(skb, adapter->netdev);
2024
2025		if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2026			u16 vlan_tag = (rrd->vlan_tag >> 4) |
2027					((rrd->vlan_tag & 7) << 13) |
2028					((rrd->vlan_tag & 8) << 9);
2029
2030			__vlan_hwaccel_put_tag(skb, vlan_tag);
2031		}
2032		netif_rx(skb);
2033
2034		/* let protocol layer free skb */
2035		buffer_info->skb = NULL;
2036		buffer_info->alloced = 0;
2037		rrd->xsz.valid = 0;
2038	}
2039
2040	atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2041
2042	atl1_alloc_rx_buffers(adapter);
2043
2044	/* update mailbox ? */
2045	if (count) {
2046		u32 tpd_next_to_use;
2047		u32 rfd_next_to_use;
2048
2049		spin_lock(&adapter->mb_lock);
2050
2051		tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2052		rfd_next_to_use =
2053		    atomic_read(&adapter->rfd_ring.next_to_use);
2054		rrd_next_to_clean =
2055		    atomic_read(&adapter->rrd_ring.next_to_clean);
2056		value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2057			MB_RFD_PROD_INDX_SHIFT) |
2058                        ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2059			MB_RRD_CONS_INDX_SHIFT) |
2060                        ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2061			MB_TPD_PROD_INDX_SHIFT);
2062		iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2063		spin_unlock(&adapter->mb_lock);
2064	}
2065}
2066
2067static void atl1_intr_tx(struct atl1_adapter *adapter)
2068{
2069	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2070	struct atl1_buffer *buffer_info;
2071	u16 sw_tpd_next_to_clean;
2072	u16 cmb_tpd_next_to_clean;
2073
2074	sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2075	cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2076
2077	while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2078		buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2079		if (buffer_info->dma) {
2080			pci_unmap_page(adapter->pdev, buffer_info->dma,
2081				       buffer_info->length, PCI_DMA_TODEVICE);
2082			buffer_info->dma = 0;
2083		}
2084
2085		if (buffer_info->skb) {
2086			dev_kfree_skb_irq(buffer_info->skb);
2087			buffer_info->skb = NULL;
2088		}
2089
2090		if (++sw_tpd_next_to_clean == tpd_ring->count)
2091			sw_tpd_next_to_clean = 0;
2092	}
2093	atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2094
2095	if (netif_queue_stopped(adapter->netdev) &&
2096	    netif_carrier_ok(adapter->netdev))
2097		netif_wake_queue(adapter->netdev);
2098}
2099
2100static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2101{
2102	u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2103	u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2104	return (next_to_clean > next_to_use) ?
2105		next_to_clean - next_to_use - 1 :
2106		tpd_ring->count + next_to_clean - next_to_use - 1;
2107}
2108
2109static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2110	struct tx_packet_desc *ptpd)
2111{
2112	u8 hdr_len, ip_off;
2113	u32 real_len;
2114	int err;
2115
2116	if (skb_shinfo(skb)->gso_size) {
2117		if (skb_header_cloned(skb)) {
2118			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2119			if (unlikely(err))
2120				return -1;
2121		}
2122
2123		if (skb->protocol == htons(ETH_P_IP)) {
2124			struct iphdr *iph = ip_hdr(skb);
2125
2126			real_len = (((unsigned char *)iph - skb->data) +
2127				ntohs(iph->tot_len));
2128			if (real_len < skb->len)
2129				pskb_trim(skb, real_len);
2130			hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2131			if (skb->len == hdr_len) {
2132				iph->check = 0;
2133				tcp_hdr(skb)->check =
2134					~csum_tcpudp_magic(iph->saddr,
2135					iph->daddr, tcp_hdrlen(skb),
2136					IPPROTO_TCP, 0);
2137				ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2138					TPD_IPHL_SHIFT;
2139				ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2140					TPD_TCPHDRLEN_MASK) <<
2141					TPD_TCPHDRLEN_SHIFT;
2142				ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2143				ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2144				return 1;
2145			}
2146
2147			iph->check = 0;
2148			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2149					iph->daddr, 0, IPPROTO_TCP, 0);
2150			ip_off = (unsigned char *)iph -
2151				(unsigned char *) skb_network_header(skb);
2152			if (ip_off == 8) /* 802.3-SNAP frame */
2153				ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2154			else if (ip_off != 0)
2155				return -2;
2156
2157			ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2158				TPD_IPHL_SHIFT;
2159			ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2160				TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2161			ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2162				TPD_MSS_MASK) << TPD_MSS_SHIFT;
2163			ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2164			return 3;
2165		}
2166	}
2167	return false;
2168}
2169
2170static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2171	struct tx_packet_desc *ptpd)
2172{
2173	u8 css, cso;
2174
2175	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2176		css = skb_checksum_start_offset(skb);
2177		cso = css + (u8) skb->csum_offset;
2178		if (unlikely(css & 0x1)) {
2179			/* L1 hardware requires an even number here */
2180			if (netif_msg_tx_err(adapter))
2181				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2182					"payload offset not an even number\n");
2183			return -1;
2184		}
2185		ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2186			TPD_PLOADOFFSET_SHIFT;
2187		ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2188			TPD_CCSUMOFFSET_SHIFT;
2189		ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2190		return true;
2191	}
2192	return 0;
2193}
2194
2195static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2196	struct tx_packet_desc *ptpd)
2197{
2198	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2199	struct atl1_buffer *buffer_info;
2200	u16 buf_len = skb->len;
2201	struct page *page;
2202	unsigned long offset;
2203	unsigned int nr_frags;
2204	unsigned int f;
2205	int retval;
2206	u16 next_to_use;
2207	u16 data_len;
2208	u8 hdr_len;
2209
2210	buf_len -= skb->data_len;
2211	nr_frags = skb_shinfo(skb)->nr_frags;
2212	next_to_use = atomic_read(&tpd_ring->next_to_use);
2213	buffer_info = &tpd_ring->buffer_info[next_to_use];
2214	BUG_ON(buffer_info->skb);
2215	/* put skb in last TPD */
2216	buffer_info->skb = NULL;
2217
2218	retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2219	if (retval) {
2220		/* TSO */
2221		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2222		buffer_info->length = hdr_len;
2223		page = virt_to_page(skb->data);
2224		offset = (unsigned long)skb->data & ~PAGE_MASK;
2225		buffer_info->dma = pci_map_page(adapter->pdev, page,
2226						offset, hdr_len,
2227						PCI_DMA_TODEVICE);
2228
2229		if (++next_to_use == tpd_ring->count)
2230			next_to_use = 0;
2231
2232		if (buf_len > hdr_len) {
2233			int i, nseg;
2234
2235			data_len = buf_len - hdr_len;
2236			nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2237				ATL1_MAX_TX_BUF_LEN;
2238			for (i = 0; i < nseg; i++) {
2239				buffer_info =
2240				    &tpd_ring->buffer_info[next_to_use];
2241				buffer_info->skb = NULL;
2242				buffer_info->length =
2243				    (ATL1_MAX_TX_BUF_LEN >=
2244				     data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2245				data_len -= buffer_info->length;
2246				page = virt_to_page(skb->data +
2247					(hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2248				offset = (unsigned long)(skb->data +
2249					(hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
2250					~PAGE_MASK;
2251				buffer_info->dma = pci_map_page(adapter->pdev,
2252					page, offset, buffer_info->length,
2253					PCI_DMA_TODEVICE);
2254				if (++next_to_use == tpd_ring->count)
2255					next_to_use = 0;
2256			}
2257		}
2258	} else {
2259		/* not TSO */
2260		buffer_info->length = buf_len;
2261		page = virt_to_page(skb->data);
2262		offset = (unsigned long)skb->data & ~PAGE_MASK;
2263		buffer_info->dma = pci_map_page(adapter->pdev, page,
2264			offset, buf_len, PCI_DMA_TODEVICE);
2265		if (++next_to_use == tpd_ring->count)
2266			next_to_use = 0;
2267	}
2268
2269	for (f = 0; f < nr_frags; f++) {
2270		struct skb_frag_struct *frag;
2271		u16 i, nseg;
2272
2273		frag = &skb_shinfo(skb)->frags[f];
2274		buf_len = frag->size;
2275
2276		nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2277			ATL1_MAX_TX_BUF_LEN;
2278		for (i = 0; i < nseg; i++) {
2279			buffer_info = &tpd_ring->buffer_info[next_to_use];
2280			BUG_ON(buffer_info->skb);
2281
2282			buffer_info->skb = NULL;
2283			buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2284				ATL1_MAX_TX_BUF_LEN : buf_len;
2285			buf_len -= buffer_info->length;
2286			buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2287				frag, i * ATL1_MAX_TX_BUF_LEN,
2288				buffer_info->length, PCI_DMA_TODEVICE);
2289
2290			if (++next_to_use == tpd_ring->count)
2291				next_to_use = 0;
2292		}
2293	}
2294
2295	/* last tpd's buffer-info */
2296	buffer_info->skb = skb;
2297}
2298
2299static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2300       struct tx_packet_desc *ptpd)
2301{
2302	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2303	struct atl1_buffer *buffer_info;
2304	struct tx_packet_desc *tpd;
2305	u16 j;
2306	u32 val;
2307	u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2308
2309	for (j = 0; j < count; j++) {
2310		buffer_info = &tpd_ring->buffer_info[next_to_use];
2311		tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2312		if (tpd != ptpd)
2313			memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2314		tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2315		tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2316		tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2317			TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2318
2319		/*
2320		 * if this is the first packet in a TSO chain, set
2321		 * TPD_HDRFLAG, otherwise, clear it.
2322		 */
2323		val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2324			TPD_SEGMENT_EN_MASK;
2325		if (val) {
2326			if (!j)
2327				tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2328			else
2329				tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2330		}
2331
2332		if (j == (count - 1))
2333			tpd->word3 |= 1 << TPD_EOP_SHIFT;
2334
2335		if (++next_to_use == tpd_ring->count)
2336			next_to_use = 0;
2337	}
2338	/*
2339	 * Force memory writes to complete before letting h/w
2340	 * know there are new descriptors to fetch.  (Only
2341	 * applicable for weak-ordered memory model archs,
2342	 * such as IA-64).
2343	 */
2344	wmb();
2345
2346	atomic_set(&tpd_ring->next_to_use, next_to_use);
2347}
2348
2349static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2350					 struct net_device *netdev)
2351{
2352	struct atl1_adapter *adapter = netdev_priv(netdev);
2353	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2354	int len;
2355	int tso;
2356	int count = 1;
2357	int ret_val;
2358	struct tx_packet_desc *ptpd;
2359	u16 frag_size;
2360	u16 vlan_tag;
2361	unsigned int nr_frags = 0;
2362	unsigned int mss = 0;
2363	unsigned int f;
2364	unsigned int proto_hdr_len;
2365
2366	len = skb_headlen(skb);
2367
2368	if (unlikely(skb->len <= 0)) {
2369		dev_kfree_skb_any(skb);
2370		return NETDEV_TX_OK;
2371	}
2372
2373	nr_frags = skb_shinfo(skb)->nr_frags;
2374	for (f = 0; f < nr_frags; f++) {
2375		frag_size = skb_shinfo(skb)->frags[f].size;
2376		if (frag_size)
2377			count += (frag_size + ATL1_MAX_TX_BUF_LEN - 1) /
2378				ATL1_MAX_TX_BUF_LEN;
2379	}
2380
2381	mss = skb_shinfo(skb)->gso_size;
2382	if (mss) {
2383		if (skb->protocol == htons(ETH_P_IP)) {
2384			proto_hdr_len = (skb_transport_offset(skb) +
2385					 tcp_hdrlen(skb));
2386			if (unlikely(proto_hdr_len > len)) {
2387				dev_kfree_skb_any(skb);
2388				return NETDEV_TX_OK;
2389			}
2390			/* need additional TPD ? */
2391			if (proto_hdr_len != len)
2392				count += (len - proto_hdr_len +
2393					ATL1_MAX_TX_BUF_LEN - 1) /
2394					ATL1_MAX_TX_BUF_LEN;
2395		}
2396	}
2397
2398	if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2399		/* not enough descriptors */
2400		netif_stop_queue(netdev);
2401		if (netif_msg_tx_queued(adapter))
2402			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2403				"tx busy\n");
2404		return NETDEV_TX_BUSY;
2405	}
2406
2407	ptpd = ATL1_TPD_DESC(tpd_ring,
2408		(u16) atomic_read(&tpd_ring->next_to_use));
2409	memset(ptpd, 0, sizeof(struct tx_packet_desc));
2410
2411	if (vlan_tx_tag_present(skb)) {
2412		vlan_tag = vlan_tx_tag_get(skb);
2413		vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2414			((vlan_tag >> 9) & 0x8);
2415		ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2416		ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2417			TPD_VLANTAG_SHIFT;
2418	}
2419
2420	tso = atl1_tso(adapter, skb, ptpd);
2421	if (tso < 0) {
2422		dev_kfree_skb_any(skb);
2423		return NETDEV_TX_OK;
2424	}
2425
2426	if (!tso) {
2427		ret_val = atl1_tx_csum(adapter, skb, ptpd);
2428		if (ret_val < 0) {
2429			dev_kfree_skb_any(skb);
2430			return NETDEV_TX_OK;
2431		}
2432	}
2433
2434	atl1_tx_map(adapter, skb, ptpd);
2435	atl1_tx_queue(adapter, count, ptpd);
2436	atl1_update_mailbox(adapter);
2437	mmiowb();
2438	return NETDEV_TX_OK;
2439}
2440
2441/*
2442 * atl1_intr - Interrupt Handler
2443 * @irq: interrupt number
2444 * @data: pointer to a network interface device structure
2445 * @pt_regs: CPU registers structure
2446 */
2447static irqreturn_t atl1_intr(int irq, void *data)
2448{
2449	struct atl1_adapter *adapter = netdev_priv(data);
2450	u32 status;
2451	int max_ints = 10;
2452
2453	status = adapter->cmb.cmb->int_stats;
2454	if (!status)
2455		return IRQ_NONE;
2456
2457	do {
2458		/* clear CMB interrupt status at once */
2459		adapter->cmb.cmb->int_stats = 0;
2460
2461		if (status & ISR_GPHY)	/* clear phy status */
2462			atlx_clear_phy_int(adapter);
2463
2464		/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2465		iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2466
2467		/* check if SMB intr */
2468		if (status & ISR_SMB)
2469			atl1_inc_smb(adapter);
2470
2471		/* check if PCIE PHY Link down */
2472		if (status & ISR_PHY_LINKDOWN) {
2473			if (netif_msg_intr(adapter))
2474				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2475					"pcie phy link down %x\n", status);
2476			if (netif_running(adapter->netdev)) {	/* reset MAC */
2477				iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2478				schedule_work(&adapter->pcie_dma_to_rst_task);
2479				return IRQ_HANDLED;
2480			}
2481		}
2482
2483		/* check if DMA read/write error ? */
2484		if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2485			if (netif_msg_intr(adapter))
2486				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2487					"pcie DMA r/w error (status = 0x%x)\n",
2488					status);
2489			iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2490			schedule_work(&adapter->pcie_dma_to_rst_task);
2491			return IRQ_HANDLED;
2492		}
2493
2494		/* link event */
2495		if (status & ISR_GPHY) {
2496			adapter->soft_stats.tx_carrier_errors++;
2497			atl1_check_for_link(adapter);
2498		}
2499
2500		/* transmit event */
2501		if (status & ISR_CMB_TX)
2502			atl1_intr_tx(adapter);
2503
2504		/* rx exception */
2505		if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2506			ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2507			ISR_HOST_RRD_OV | ISR_CMB_RX))) {
2508			if (status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2509				ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2510				ISR_HOST_RRD_OV))
2511				if (netif_msg_intr(adapter))
2512					dev_printk(KERN_DEBUG,
2513						&adapter->pdev->dev,
2514						"rx exception, ISR = 0x%x\n",
2515						status);
2516			atl1_intr_rx(adapter);
2517		}
2518
2519		if (--max_ints < 0)
2520			break;
2521
2522	} while ((status = adapter->cmb.cmb->int_stats));
2523
2524	/* re-enable Interrupt */
2525	iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2526	return IRQ_HANDLED;
2527}
2528
2529
2530/*
2531 * atl1_phy_config - Timer Call-back
2532 * @data: pointer to netdev cast into an unsigned long
2533 */
2534static void atl1_phy_config(unsigned long data)
2535{
2536	struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2537	struct atl1_hw *hw = &adapter->hw;
2538	unsigned long flags;
2539
2540	spin_lock_irqsave(&adapter->lock, flags);
2541	adapter->phy_timer_pending = false;
2542	atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2543	atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2544	atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2545	spin_unlock_irqrestore(&adapter->lock, flags);
2546}
2547
2548/*
2549 * Orphaned vendor comment left intact here:
2550 * <vendor comment>
2551 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2552 * will assert. We do soft reset <0x1400=1> according
2553 * with the SPEC. BUT, it seemes that PCIE or DMA
2554 * state-machine will not be reset. DMAR_TO_INT will
2555 * assert again and again.
2556 * </vendor comment>
2557 */
2558
2559static int atl1_reset(struct atl1_adapter *adapter)
2560{
2561	int ret;
2562	ret = atl1_reset_hw(&adapter->hw);
2563	if (ret)
2564		return ret;
2565	return atl1_init_hw(&adapter->hw);
2566}
2567
2568static s32 atl1_up(struct atl1_adapter *adapter)
2569{
2570	struct net_device *netdev = adapter->netdev;
2571	int err;
2572	int irq_flags = 0;
2573
2574	/* hardware has been reset, we need to reload some things */
2575	atlx_set_multi(netdev);
2576	atl1_init_ring_ptrs(adapter);
2577	atlx_restore_vlan(adapter);
2578	err = atl1_alloc_rx_buffers(adapter);
2579	if (unlikely(!err))
2580		/* no RX BUFFER allocated */
2581		return -ENOMEM;
2582
2583	if (unlikely(atl1_configure(adapter))) {
2584		err = -EIO;
2585		goto err_up;
2586	}
2587
2588	err = pci_enable_msi(adapter->pdev);
2589	if (err) {
2590		if (netif_msg_ifup(adapter))
2591			dev_info(&adapter->pdev->dev,
2592				"Unable to enable MSI: %d\n", err);
2593		irq_flags |= IRQF_SHARED;
2594	}
2595
2596	err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2597			netdev->name, netdev);
2598	if (unlikely(err))
2599		goto err_up;
2600
2601	atlx_irq_enable(adapter);
2602	atl1_check_link(adapter);
2603	netif_start_queue(netdev);
2604	return 0;
2605
2606err_up:
2607	pci_disable_msi(adapter->pdev);
2608	/* free rx_buffers */
2609	atl1_clean_rx_ring(adapter);
2610	return err;
2611}
2612
2613static void atl1_down(struct atl1_adapter *adapter)
2614{
2615	struct net_device *netdev = adapter->netdev;
2616
2617	netif_stop_queue(netdev);
2618	del_timer_sync(&adapter->phy_config_timer);
2619	adapter->phy_timer_pending = false;
2620
2621	atlx_irq_disable(adapter);
2622	free_irq(adapter->pdev->irq, netdev);
2623	pci_disable_msi(adapter->pdev);
2624	atl1_reset_hw(&adapter->hw);
2625	adapter->cmb.cmb->int_stats = 0;
2626
2627	adapter->link_speed = SPEED_0;
2628	adapter->link_duplex = -1;
2629	netif_carrier_off(netdev);
2630
2631	atl1_clean_tx_ring(adapter);
2632	atl1_clean_rx_ring(adapter);
2633}
2634
2635static void atl1_tx_timeout_task(struct work_struct *work)
2636{
2637	struct atl1_adapter *adapter =
2638		container_of(work, struct atl1_adapter, tx_timeout_task);
2639	struct net_device *netdev = adapter->netdev;
2640
2641	netif_device_detach(netdev);
2642	atl1_down(adapter);
2643	atl1_up(adapter);
2644	netif_device_attach(netdev);
2645}
2646
2647/*
2648 * atl1_change_mtu - Change the Maximum Transfer Unit
2649 * @netdev: network interface device structure
2650 * @new_mtu: new value for maximum frame size
2651 *
2652 * Returns 0 on success, negative on failure
2653 */
2654static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2655{
2656	struct atl1_adapter *adapter = netdev_priv(netdev);
2657	int old_mtu = netdev->mtu;
2658	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2659
2660	if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2661	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2662		if (netif_msg_link(adapter))
2663			dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
2664		return -EINVAL;
2665	}
2666
2667	adapter->hw.max_frame_size = max_frame;
2668	adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2669	adapter->rx_buffer_len = (max_frame + 7) & ~7;
2670	adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2671
2672	netdev->mtu = new_mtu;
2673	if ((old_mtu != new_mtu) && netif_running(netdev)) {
2674		atl1_down(adapter);
2675		atl1_up(adapter);
2676	}
2677
2678	return 0;
2679}
2680
2681/*
2682 * atl1_open - Called when a network interface is made active
2683 * @netdev: network interface device structure
2684 *
2685 * Returns 0 on success, negative value on failure
2686 *
2687 * The open entry point is called when a network interface is made
2688 * active by the system (IFF_UP).  At this point all resources needed
2689 * for transmit and receive operations are allocated, the interrupt
2690 * handler is registered with the OS, the watchdog timer is started,
2691 * and the stack is notified that the interface is ready.
2692 */
2693static int atl1_open(struct net_device *netdev)
2694{
2695	struct atl1_adapter *adapter = netdev_priv(netdev);
2696	int err;
2697
2698	netif_carrier_off(netdev);
2699
2700	/* allocate transmit descriptors */
2701	err = atl1_setup_ring_resources(adapter);
2702	if (err)
2703		return err;
2704
2705	err = atl1_up(adapter);
2706	if (err)
2707		goto err_up;
2708
2709	return 0;
2710
2711err_up:
2712	atl1_reset(adapter);
2713	return err;
2714}
2715
2716/*
2717 * atl1_close - Disables a network interface
2718 * @netdev: network interface device structure
2719 *
2720 * Returns 0, this is not allowed to fail
2721 *
2722 * The close entry point is called when an interface is de-activated
2723 * by the OS.  The hardware is still under the drivers control, but
2724 * needs to be disabled.  A global MAC reset is issued to stop the
2725 * hardware, and all transmit and receive resources are freed.
2726 */
2727static int atl1_close(struct net_device *netdev)
2728{
2729	struct atl1_adapter *adapter = netdev_priv(netdev);
2730	atl1_down(adapter);
2731	atl1_free_ring_resources(adapter);
2732	return 0;
2733}
2734
2735#ifdef CONFIG_PM
2736static int atl1_suspend(struct device *dev)
2737{
2738	struct pci_dev *pdev = to_pci_dev(dev);
2739	struct net_device *netdev = pci_get_drvdata(pdev);
2740	struct atl1_adapter *adapter = netdev_priv(netdev);
2741	struct atl1_hw *hw = &adapter->hw;
2742	u32 ctrl = 0;
2743	u32 wufc = adapter->wol;
2744	u32 val;
2745	u16 speed;
2746	u16 duplex;
2747
2748	netif_device_detach(netdev);
2749	if (netif_running(netdev))
2750		atl1_down(adapter);
2751
2752	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2753	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2754	val = ctrl & BMSR_LSTATUS;
2755	if (val)
2756		wufc &= ~ATLX_WUFC_LNKC;
2757	if (!wufc)
2758		goto disable_wol;
2759
2760	if (val) {
2761		val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2762		if (val) {
2763			if (netif_msg_ifdown(adapter))
2764				dev_printk(KERN_DEBUG, &pdev->dev,
2765					"error getting speed/duplex\n");
2766			goto disable_wol;
2767		}
2768
2769		ctrl = 0;
2770
2771		/* enable magic packet WOL */
2772		if (wufc & ATLX_WUFC_MAG)
2773			ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2774		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2775		ioread32(hw->hw_addr + REG_WOL_CTRL);
2776
2777		/* configure the mac */
2778		ctrl = MAC_CTRL_RX_EN;
2779		ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2780			MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2781		if (duplex == FULL_DUPLEX)
2782			ctrl |= MAC_CTRL_DUPLX;
2783		ctrl |= (((u32)adapter->hw.preamble_len &
2784			MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2785		__atlx_vlan_mode(netdev->features, &ctrl);
2786		if (wufc & ATLX_WUFC_MAG)
2787			ctrl |= MAC_CTRL_BC_EN;
2788		iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2789		ioread32(hw->hw_addr + REG_MAC_CTRL);
2790
2791		/* poke the PHY */
2792		ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2793		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2794		iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2795		ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2796	} else {
2797		ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2798		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2799		ioread32(hw->hw_addr + REG_WOL_CTRL);
2800		iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2801		ioread32(hw->hw_addr + REG_MAC_CTRL);
2802		hw->phy_configured = false;
2803	}
2804
2805	return 0;
2806
2807 disable_wol:
2808	iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2809	ioread32(hw->hw_addr + REG_WOL_CTRL);
2810	ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2811	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2812	iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2813	ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2814	hw->phy_configured = false;
2815
2816	return 0;
2817}
2818
2819static int atl1_resume(struct device *dev)
2820{
2821	struct pci_dev *pdev = to_pci_dev(dev);
2822	struct net_device *netdev = pci_get_drvdata(pdev);
2823	struct atl1_adapter *adapter = netdev_priv(netdev);
2824
2825	iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2826
2827	atl1_reset_hw(&adapter->hw);
2828
2829	if (netif_running(netdev)) {
2830		adapter->cmb.cmb->int_stats = 0;
2831		atl1_up(adapter);
2832	}
2833	netif_device_attach(netdev);
2834
2835	return 0;
2836}
2837
2838static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2839#define ATL1_PM_OPS	(&atl1_pm_ops)
2840
2841#else
2842
2843static int atl1_suspend(struct device *dev) { return 0; }
2844
2845#define ATL1_PM_OPS	NULL
2846#endif
2847
2848static void atl1_shutdown(struct pci_dev *pdev)
2849{
2850	struct net_device *netdev = pci_get_drvdata(pdev);
2851	struct atl1_adapter *adapter = netdev_priv(netdev);
2852
2853	atl1_suspend(&pdev->dev);
2854	pci_wake_from_d3(pdev, adapter->wol);
2855	pci_set_power_state(pdev, PCI_D3hot);
2856}
2857
2858#ifdef CONFIG_NET_POLL_CONTROLLER
2859static void atl1_poll_controller(struct net_device *netdev)
2860{
2861	disable_irq(netdev->irq);
2862	atl1_intr(netdev->irq, netdev);
2863	enable_irq(netdev->irq);
2864}
2865#endif
2866
2867static const struct net_device_ops atl1_netdev_ops = {
2868	.ndo_open		= atl1_open,
2869	.ndo_stop		= atl1_close,
2870	.ndo_start_xmit		= atl1_xmit_frame,
2871	.ndo_set_rx_mode	= atlx_set_multi,
2872	.ndo_validate_addr	= eth_validate_addr,
2873	.ndo_set_mac_address	= atl1_set_mac,
2874	.ndo_change_mtu		= atl1_change_mtu,
2875	.ndo_fix_features	= atlx_fix_features,
2876	.ndo_set_features	= atlx_set_features,
2877	.ndo_do_ioctl		= atlx_ioctl,
2878	.ndo_tx_timeout		= atlx_tx_timeout,
2879#ifdef CONFIG_NET_POLL_CONTROLLER
2880	.ndo_poll_controller	= atl1_poll_controller,
2881#endif
2882};
2883
2884/*
2885 * atl1_probe - Device Initialization Routine
2886 * @pdev: PCI device information struct
2887 * @ent: entry in atl1_pci_tbl
2888 *
2889 * Returns 0 on success, negative on failure
2890 *
2891 * atl1_probe initializes an adapter identified by a pci_dev structure.
2892 * The OS initialization, configuring of the adapter private structure,
2893 * and a hardware reset occur.
2894 */
2895static int __devinit atl1_probe(struct pci_dev *pdev,
2896	const struct pci_device_id *ent)
2897{
2898	struct net_device *netdev;
2899	struct atl1_adapter *adapter;
2900	static int cards_found = 0;
2901	int err;
2902
2903	err = pci_enable_device(pdev);
2904	if (err)
2905		return err;
2906
2907	/*
2908	 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2909	 * shared register for the high 32 bits, so only a single, aligned,
2910	 * 4 GB physical address range can be used at a time.
2911	 *
2912	 * Supporting 64-bit DMA on this hardware is more trouble than it's
2913	 * worth.  It is far easier to limit to 32-bit DMA than update
2914	 * various kernel subsystems to support the mechanics required by a
2915	 * fixed-high-32-bit system.
2916	 */
2917	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2918	if (err) {
2919		dev_err(&pdev->dev, "no usable DMA configuration\n");
2920		goto err_dma;
2921	}
2922	/*
2923	 * Mark all PCI regions associated with PCI device
2924	 * pdev as being reserved by owner atl1_driver_name
2925	 */
2926	err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2927	if (err)
2928		goto err_request_regions;
2929
2930	/*
2931	 * Enables bus-mastering on the device and calls
2932	 * pcibios_set_master to do the needed arch specific settings
2933	 */
2934	pci_set_master(pdev);
2935
2936	netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2937	if (!netdev) {
2938		err = -ENOMEM;
2939		goto err_alloc_etherdev;
2940	}
2941	SET_NETDEV_DEV(netdev, &pdev->dev);
2942
2943	pci_set_drvdata(pdev, netdev);
2944	adapter = netdev_priv(netdev);
2945	adapter->netdev = netdev;
2946	adapter->pdev = pdev;
2947	adapter->hw.back = adapter;
2948	adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2949
2950	adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2951	if (!adapter->hw.hw_addr) {
2952		err = -EIO;
2953		goto err_pci_iomap;
2954	}
2955	/* get device revision number */
2956	adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2957		(REG_MASTER_CTRL + 2));
2958	if (netif_msg_probe(adapter))
2959		dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
2960
2961	/* set default ring resource counts */
2962	adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2963	adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2964
2965	adapter->mii.dev = netdev;
2966	adapter->mii.mdio_read = mdio_read;
2967	adapter->mii.mdio_write = mdio_write;
2968	adapter->mii.phy_id_mask = 0x1f;
2969	adapter->mii.reg_num_mask = 0x1f;
2970
2971	netdev->netdev_ops = &atl1_netdev_ops;
2972	netdev->watchdog_timeo = 5 * HZ;
2973
2974	netdev->ethtool_ops = &atl1_ethtool_ops;
2975	adapter->bd_number = cards_found;
2976
2977	/* setup the private structure */
2978	err = atl1_sw_init(adapter);
2979	if (err)
2980		goto err_common;
2981
2982	netdev->features = NETIF_F_HW_CSUM;
2983	netdev->features |= NETIF_F_SG;
2984	netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
2985
2986	netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
2987			      NETIF_F_HW_VLAN_RX;
2988
2989	/* is this valid? see atl1_setup_mac_ctrl() */
2990	netdev->features |= NETIF_F_RXCSUM;
2991
2992	/*
2993	 * patch for some L1 of old version,
2994	 * the final version of L1 may not need these
2995	 * patches
2996	 */
2997	/* atl1_pcie_patch(adapter); */
2998
2999	/* really reset GPHY core */
3000	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3001
3002	/*
3003	 * reset the controller to
3004	 * put the device in a known good starting state
3005	 */
3006	if (atl1_reset_hw(&adapter->hw)) {
3007		err = -EIO;
3008		goto err_common;
3009	}
3010
3011	/* copy the MAC address out of the EEPROM */
3012	atl1_read_mac_addr(&adapter->hw);
3013	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3014
3015	if (!is_valid_ether_addr(netdev->dev_addr)) {
3016		err = -EIO;
3017		goto err_common;
3018	}
3019
3020	atl1_check_options(adapter);
3021
3022	/* pre-init the MAC, and setup link */
3023	err = atl1_init_hw(&adapter->hw);
3024	if (err) {
3025		err = -EIO;
3026		goto err_common;
3027	}
3028
3029	atl1_pcie_patch(adapter);
3030	/* assume we have no link for now */
3031	netif_carrier_off(netdev);
3032
3033	setup_timer(&adapter->phy_config_timer, atl1_phy_config,
3034		    (unsigned long)adapter);
3035	adapter->phy_timer_pending = false;
3036
3037	INIT_WORK(&adapter->tx_timeout_task, atl1_tx_timeout_task);
3038
3039	INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3040
3041	INIT_WORK(&adapter->pcie_dma_to_rst_task, atl1_tx_timeout_task);
3042
3043	err = register_netdev(netdev);
3044	if (err)
3045		goto err_common;
3046
3047	cards_found++;
3048	atl1_via_workaround(adapter);
3049	return 0;
3050
3051err_common:
3052	pci_iounmap(pdev, adapter->hw.hw_addr);
3053err_pci_iomap:
3054	free_netdev(netdev);
3055err_alloc_etherdev:
3056	pci_release_regions(pdev);
3057err_dma:
3058err_request_regions:
3059	pci_disable_device(pdev);
3060	return err;
3061}
3062
3063/*
3064 * atl1_remove - Device Removal Routine
3065 * @pdev: PCI device information struct
3066 *
3067 * atl1_remove is called by the PCI subsystem to alert the driver
3068 * that it should release a PCI device.  The could be caused by a
3069 * Hot-Plug event, or because the driver is going to be removed from
3070 * memory.
3071 */
3072static void __devexit atl1_remove(struct pci_dev *pdev)
3073{
3074	struct net_device *netdev = pci_get_drvdata(pdev);
3075	struct atl1_adapter *adapter;
3076	/* Device not available. Return. */
3077	if (!netdev)
3078		return;
3079
3080	adapter = netdev_priv(netdev);
3081
3082	/*
3083	 * Some atl1 boards lack persistent storage for their MAC, and get it
3084	 * from the BIOS during POST.  If we've been messing with the MAC
3085	 * address, we need to save the permanent one.
3086	 */
3087	if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) {
3088		memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3089			ETH_ALEN);
3090		atl1_set_mac_addr(&adapter->hw);
3091	}
3092
3093	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3094	unregister_netdev(netdev);
3095	pci_iounmap(pdev, adapter->hw.hw_addr);
3096	pci_release_regions(pdev);
3097	free_netdev(netdev);
3098	pci_disable_device(pdev);
3099}
3100
3101static struct pci_driver atl1_driver = {
3102	.name = ATLX_DRIVER_NAME,
3103	.id_table = atl1_pci_tbl,
3104	.probe = atl1_probe,
3105	.remove = __devexit_p(atl1_remove),
3106	.shutdown = atl1_shutdown,
3107	.driver.pm = ATL1_PM_OPS,
3108};
3109
3110/*
3111 * atl1_exit_module - Driver Exit Cleanup Routine
3112 *
3113 * atl1_exit_module is called just before the driver is removed
3114 * from memory.
3115 */
3116static void __exit atl1_exit_module(void)
3117{
3118	pci_unregister_driver(&atl1_driver);
3119}
3120
3121/*
3122 * atl1_init_module - Driver Registration Routine
3123 *
3124 * atl1_init_module is the first routine called when the driver is
3125 * loaded. All it does is register with the PCI subsystem.
3126 */
3127static int __init atl1_init_module(void)
3128{
3129	return pci_register_driver(&atl1_driver);
3130}
3131
3132module_init(atl1_init_module);
3133module_exit(atl1_exit_module);
3134
3135struct atl1_stats {
3136	char stat_string[ETH_GSTRING_LEN];
3137	int sizeof_stat;
3138	int stat_offset;
3139};
3140
3141#define ATL1_STAT(m) \
3142	sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3143
3144static struct atl1_stats atl1_gstrings_stats[] = {
3145	{"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3146	{"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3147	{"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3148	{"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3149	{"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3150	{"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3151	{"multicast", ATL1_STAT(soft_stats.multicast)},
3152	{"collisions", ATL1_STAT(soft_stats.collisions)},
3153	{"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3154	{"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3155	{"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3156	{"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3157	{"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3158	{"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3159	{"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3160	{"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3161	{"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3162	{"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3163	{"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3164	{"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3165	{"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3166	{"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3167	{"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3168	{"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3169	{"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3170	{"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3171	{"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3172	{"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3173	{"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3174};
3175
3176static void atl1_get_ethtool_stats(struct net_device *netdev,
3177	struct ethtool_stats *stats, u64 *data)
3178{
3179	struct atl1_adapter *adapter = netdev_priv(netdev);
3180	int i;
3181	char *p;
3182
3183	for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3184		p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3185		data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3186			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3187	}
3188
3189}
3190
3191static int atl1_get_sset_count(struct net_device *netdev, int sset)
3192{
3193	switch (sset) {
3194	case ETH_SS_STATS:
3195		return ARRAY_SIZE(atl1_gstrings_stats);
3196	default:
3197		return -EOPNOTSUPP;
3198	}
3199}
3200
3201static int atl1_get_settings(struct net_device *netdev,
3202	struct ethtool_cmd *ecmd)
3203{
3204	struct atl1_adapter *adapter = netdev_priv(netdev);
3205	struct atl1_hw *hw = &adapter->hw;
3206
3207	ecmd->supported = (SUPPORTED_10baseT_Half |
3208			   SUPPORTED_10baseT_Full |
3209			   SUPPORTED_100baseT_Half |
3210			   SUPPORTED_100baseT_Full |
3211			   SUPPORTED_1000baseT_Full |
3212			   SUPPORTED_Autoneg | SUPPORTED_TP);
3213	ecmd->advertising = ADVERTISED_TP;
3214	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3215	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3216		ecmd->advertising |= ADVERTISED_Autoneg;
3217		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3218			ecmd->advertising |= ADVERTISED_Autoneg;
3219			ecmd->advertising |=
3220			    (ADVERTISED_10baseT_Half |
3221			     ADVERTISED_10baseT_Full |
3222			     ADVERTISED_100baseT_Half |
3223			     ADVERTISED_100baseT_Full |
3224			     ADVERTISED_1000baseT_Full);
3225		} else
3226			ecmd->advertising |= (ADVERTISED_1000baseT_Full);
3227	}
3228	ecmd->port = PORT_TP;
3229	ecmd->phy_address = 0;
3230	ecmd->transceiver = XCVR_INTERNAL;
3231
3232	if (netif_carrier_ok(adapter->netdev)) {
3233		u16 link_speed, link_duplex;
3234		atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3235		ethtool_cmd_speed_set(ecmd, link_speed);
3236		if (link_duplex == FULL_DUPLEX)
3237			ecmd->duplex = DUPLEX_FULL;
3238		else
3239			ecmd->duplex = DUPLEX_HALF;
3240	} else {
3241		ethtool_cmd_speed_set(ecmd, -1);
3242		ecmd->duplex = -1;
3243	}
3244	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3245	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3246		ecmd->autoneg = AUTONEG_ENABLE;
3247	else
3248		ecmd->autoneg = AUTONEG_DISABLE;
3249
3250	return 0;
3251}
3252
3253static int atl1_set_settings(struct net_device *netdev,
3254	struct ethtool_cmd *ecmd)
3255{
3256	struct atl1_adapter *adapter = netdev_priv(netdev);
3257	struct atl1_hw *hw = &adapter->hw;
3258	u16 phy_data;
3259	int ret_val = 0;
3260	u16 old_media_type = hw->media_type;
3261
3262	if (netif_running(adapter->netdev)) {
3263		if (netif_msg_link(adapter))
3264			dev_dbg(&adapter->pdev->dev,
3265				"ethtool shutting down adapter\n");
3266		atl1_down(adapter);
3267	}
3268
3269	if (ecmd->autoneg == AUTONEG_ENABLE)
3270		hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3271	else {
3272		u32 speed = ethtool_cmd_speed(ecmd);
3273		if (speed == SPEED_1000) {
3274			if (ecmd->duplex != DUPLEX_FULL) {
3275				if (netif_msg_link(adapter))
3276					dev_warn(&adapter->pdev->dev,
3277						"1000M half is invalid\n");
3278				ret_val = -EINVAL;
3279				goto exit_sset;
3280			}
3281			hw->media_type = MEDIA_TYPE_1000M_FULL;
3282		} else if (speed == SPEED_100) {
3283			if (ecmd->duplex == DUPLEX_FULL)
3284				hw->media_type = MEDIA_TYPE_100M_FULL;
3285			else
3286				hw->media_type = MEDIA_TYPE_100M_HALF;
3287		} else {
3288			if (ecmd->duplex == DUPLEX_FULL)
3289				hw->media_type = MEDIA_TYPE_10M_FULL;
3290			else
3291				hw->media_type = MEDIA_TYPE_10M_HALF;
3292		}
3293	}
3294	switch (hw->media_type) {
3295	case MEDIA_TYPE_AUTO_SENSOR:
3296		ecmd->advertising =
3297		    ADVERTISED_10baseT_Half |
3298		    ADVERTISED_10baseT_Full |
3299		    ADVERTISED_100baseT_Half |
3300		    ADVERTISED_100baseT_Full |
3301		    ADVERTISED_1000baseT_Full |
3302		    ADVERTISED_Autoneg | ADVERTISED_TP;
3303		break;
3304	case MEDIA_TYPE_1000M_FULL:
3305		ecmd->advertising =
3306		    ADVERTISED_1000baseT_Full |
3307		    ADVERTISED_Autoneg | ADVERTISED_TP;
3308		break;
3309	default:
3310		ecmd->advertising = 0;
3311		break;
3312	}
3313	if (atl1_phy_setup_autoneg_adv(hw)) {
3314		ret_val = -EINVAL;
3315		if (netif_msg_link(adapter))
3316			dev_warn(&adapter->pdev->dev,
3317				"invalid ethtool speed/duplex setting\n");
3318		goto exit_sset;
3319	}
3320	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3321	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3322		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3323	else {
3324		switch (hw->media_type) {
3325		case MEDIA_TYPE_100M_FULL:
3326			phy_data =
3327			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3328			    MII_CR_RESET;
3329			break;
3330		case MEDIA_TYPE_100M_HALF:
3331			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3332			break;
3333		case MEDIA_TYPE_10M_FULL:
3334			phy_data =
3335			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3336			break;
3337		default:
3338			/* MEDIA_TYPE_10M_HALF: */
3339			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3340			break;
3341		}
3342	}
3343	atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3344exit_sset:
3345	if (ret_val)
3346		hw->media_type = old_media_type;
3347
3348	if (netif_running(adapter->netdev)) {
3349		if (netif_msg_link(adapter))
3350			dev_dbg(&adapter->pdev->dev,
3351				"ethtool starting adapter\n");
3352		atl1_up(adapter);
3353	} else if (!ret_val) {
3354		if (netif_msg_link(adapter))
3355			dev_dbg(&adapter->pdev->dev,
3356				"ethtool resetting adapter\n");
3357		atl1_reset(adapter);
3358	}
3359	return ret_val;
3360}
3361
3362static void atl1_get_drvinfo(struct net_device *netdev,
3363	struct ethtool_drvinfo *drvinfo)
3364{
3365	struct atl1_adapter *adapter = netdev_priv(netdev);
3366
3367	strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3368	strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3369		sizeof(drvinfo->version));
3370	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
3371	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3372		sizeof(drvinfo->bus_info));
3373	drvinfo->eedump_len = ATL1_EEDUMP_LEN;
3374}
3375
3376static void atl1_get_wol(struct net_device *netdev,
3377	struct ethtool_wolinfo *wol)
3378{
3379	struct atl1_adapter *adapter = netdev_priv(netdev);
3380
3381	wol->supported = WAKE_MAGIC;
3382	wol->wolopts = 0;
3383	if (adapter->wol & ATLX_WUFC_MAG)
3384		wol->wolopts |= WAKE_MAGIC;
3385}
3386
3387static int atl1_set_wol(struct net_device *netdev,
3388	struct ethtool_wolinfo *wol)
3389{
3390	struct atl1_adapter *adapter = netdev_priv(netdev);
3391
3392	if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3393		WAKE_ARP | WAKE_MAGICSECURE))
3394		return -EOPNOTSUPP;
3395	adapter->wol = 0;
3396	if (wol->wolopts & WAKE_MAGIC)
3397		adapter->wol |= ATLX_WUFC_MAG;
3398
3399	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3400
3401	return 0;
3402}
3403
3404static u32 atl1_get_msglevel(struct net_device *netdev)
3405{
3406	struct atl1_adapter *adapter = netdev_priv(netdev);
3407	return adapter->msg_enable;
3408}
3409
3410static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3411{
3412	struct atl1_adapter *adapter = netdev_priv(netdev);
3413	adapter->msg_enable = value;
3414}
3415
3416static int atl1_get_regs_len(struct net_device *netdev)
3417{
3418	return ATL1_REG_COUNT * sizeof(u32);
3419}
3420
3421static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3422	void *p)
3423{
3424	struct atl1_adapter *adapter = netdev_priv(netdev);
3425	struct atl1_hw *hw = &adapter->hw;
3426	unsigned int i;
3427	u32 *regbuf = p;
3428
3429	for (i = 0; i < ATL1_REG_COUNT; i++) {
3430		/*
3431		 * This switch statement avoids reserved regions
3432		 * of register space.
3433		 */
3434		switch (i) {
3435		case 6 ... 9:
3436		case 14:
3437		case 29 ... 31:
3438		case 34 ... 63:
3439		case 75 ... 127:
3440		case 136 ... 1023:
3441		case 1027 ... 1087:
3442		case 1091 ... 1151:
3443		case 1194 ... 1195:
3444		case 1200 ... 1201:
3445		case 1206 ... 1213:
3446		case 1216 ... 1279:
3447		case 1290 ... 1311:
3448		case 1323 ... 1343:
3449		case 1358 ... 1359:
3450		case 1368 ... 1375:
3451		case 1378 ... 1383:
3452		case 1388 ... 1391:
3453		case 1393 ... 1395:
3454		case 1402 ... 1403:
3455		case 1410 ... 1471:
3456		case 1522 ... 1535:
3457			/* reserved region; don't read it */
3458			regbuf[i] = 0;
3459			break;
3460		default:
3461			/* unreserved region */
3462			regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3463		}
3464	}
3465}
3466
3467static void atl1_get_ringparam(struct net_device *netdev,
3468	struct ethtool_ringparam *ring)
3469{
3470	struct atl1_adapter *adapter = netdev_priv(netdev);
3471	struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3472	struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3473
3474	ring->rx_max_pending = ATL1_MAX_RFD;
3475	ring->tx_max_pending = ATL1_MAX_TPD;
3476	ring->rx_mini_max_pending = 0;
3477	ring->rx_jumbo_max_pending = 0;
3478	ring->rx_pending = rxdr->count;
3479	ring->tx_pending = txdr->count;
3480	ring->rx_mini_pending = 0;
3481	ring->rx_jumbo_pending = 0;
3482}
3483
3484static int atl1_set_ringparam(struct net_device *netdev,
3485	struct ethtool_ringparam *ring)
3486{
3487	struct atl1_adapter *adapter = netdev_priv(netdev);
3488	struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3489	struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3490	struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3491
3492	struct atl1_tpd_ring tpd_old, tpd_new;
3493	struct atl1_rfd_ring rfd_old, rfd_new;
3494	struct atl1_rrd_ring rrd_old, rrd_new;
3495	struct atl1_ring_header rhdr_old, rhdr_new;
3496	struct atl1_smb smb;
3497	struct atl1_cmb cmb;
3498	int err;
3499
3500	tpd_old = adapter->tpd_ring;
3501	rfd_old = adapter->rfd_ring;
3502	rrd_old = adapter->rrd_ring;
3503	rhdr_old = adapter->ring_header;
3504
3505	if (netif_running(adapter->netdev))
3506		atl1_down(adapter);
3507
3508	rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3509	rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3510			rfdr->count;
3511	rfdr->count = (rfdr->count + 3) & ~3;
3512	rrdr->count = rfdr->count;
3513
3514	tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3515	tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3516			tpdr->count;
3517	tpdr->count = (tpdr->count + 3) & ~3;
3518
3519	if (netif_running(adapter->netdev)) {
3520		/* try to get new resources before deleting old */
3521		err = atl1_setup_ring_resources(adapter);
3522		if (err)
3523			goto err_setup_ring;
3524
3525		/*
3526		 * save the new, restore the old in order to free it,
3527		 * then restore the new back again
3528		 */
3529
3530		rfd_new = adapter->rfd_ring;
3531		rrd_new = adapter->rrd_ring;
3532		tpd_new = adapter->tpd_ring;
3533		rhdr_new = adapter->ring_header;
3534		adapter->rfd_ring = rfd_old;
3535		adapter->rrd_ring = rrd_old;
3536		adapter->tpd_ring = tpd_old;
3537		adapter->ring_header = rhdr_old;
3538		/*
3539		 * Save SMB and CMB, since atl1_free_ring_resources
3540		 * will clear them.
3541		 */
3542		smb = adapter->smb;
3543		cmb = adapter->cmb;
3544		atl1_free_ring_resources(adapter);
3545		adapter->rfd_ring = rfd_new;
3546		adapter->rrd_ring = rrd_new;
3547		adapter->tpd_ring = tpd_new;
3548		adapter->ring_header = rhdr_new;
3549		adapter->smb = smb;
3550		adapter->cmb = cmb;
3551
3552		err = atl1_up(adapter);
3553		if (err)
3554			return err;
3555	}
3556	return 0;
3557
3558err_setup_ring:
3559	adapter->rfd_ring = rfd_old;
3560	adapter->rrd_ring = rrd_old;
3561	adapter->tpd_ring = tpd_old;
3562	adapter->ring_header = rhdr_old;
3563	atl1_up(adapter);
3564	return err;
3565}
3566
3567static void atl1_get_pauseparam(struct net_device *netdev,
3568	struct ethtool_pauseparam *epause)
3569{
3570	struct atl1_adapter *adapter = netdev_priv(netdev);
3571	struct atl1_hw *hw = &adapter->hw;
3572
3573	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3574	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3575		epause->autoneg = AUTONEG_ENABLE;
3576	} else {
3577		epause->autoneg = AUTONEG_DISABLE;
3578	}
3579	epause->rx_pause = 1;
3580	epause->tx_pause = 1;
3581}
3582
3583static int atl1_set_pauseparam(struct net_device *netdev,
3584	struct ethtool_pauseparam *epause)
3585{
3586	struct atl1_adapter *adapter = netdev_priv(netdev);
3587	struct atl1_hw *hw = &adapter->hw;
3588
3589	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3590	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3591		epause->autoneg = AUTONEG_ENABLE;
3592	} else {
3593		epause->autoneg = AUTONEG_DISABLE;
3594	}
3595
3596	epause->rx_pause = 1;
3597	epause->tx_pause = 1;
3598
3599	return 0;
3600}
3601
3602static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3603	u8 *data)
3604{
3605	u8 *p = data;
3606	int i;
3607
3608	switch (stringset) {
3609	case ETH_SS_STATS:
3610		for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3611			memcpy(p, atl1_gstrings_stats[i].stat_string,
3612				ETH_GSTRING_LEN);
3613			p += ETH_GSTRING_LEN;
3614		}
3615		break;
3616	}
3617}
3618
3619static int atl1_nway_reset(struct net_device *netdev)
3620{
3621	struct atl1_adapter *adapter = netdev_priv(netdev);
3622	struct atl1_hw *hw = &adapter->hw;
3623
3624	if (netif_running(netdev)) {
3625		u16 phy_data;
3626		atl1_down(adapter);
3627
3628		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3629			hw->media_type == MEDIA_TYPE_1000M_FULL) {
3630			phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3631		} else {
3632			switch (hw->media_type) {
3633			case MEDIA_TYPE_100M_FULL:
3634				phy_data = MII_CR_FULL_DUPLEX |
3635					MII_CR_SPEED_100 | MII_CR_RESET;
3636				break;
3637			case MEDIA_TYPE_100M_HALF:
3638				phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3639				break;
3640			case MEDIA_TYPE_10M_FULL:
3641				phy_data = MII_CR_FULL_DUPLEX |
3642					MII_CR_SPEED_10 | MII_CR_RESET;
3643				break;
3644			default:
3645				/* MEDIA_TYPE_10M_HALF */
3646				phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3647			}
3648		}
3649		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3650		atl1_up(adapter);
3651	}
3652	return 0;
3653}
3654
3655static const struct ethtool_ops atl1_ethtool_ops = {
3656	.get_settings		= atl1_get_settings,
3657	.set_settings		= atl1_set_settings,
3658	.get_drvinfo		= atl1_get_drvinfo,
3659	.get_wol		= atl1_get_wol,
3660	.set_wol		= atl1_set_wol,
3661	.get_msglevel		= atl1_get_msglevel,
3662	.set_msglevel		= atl1_set_msglevel,
3663	.get_regs_len		= atl1_get_regs_len,
3664	.get_regs		= atl1_get_regs,
3665	.get_ringparam		= atl1_get_ringparam,
3666	.set_ringparam		= atl1_set_ringparam,
3667	.get_pauseparam		= atl1_get_pauseparam,
3668	.set_pauseparam		= atl1_set_pauseparam,
3669	.get_link		= ethtool_op_get_link,
3670	.get_strings		= atl1_get_strings,
3671	.nway_reset		= atl1_nway_reset,
3672	.get_ethtool_stats	= atl1_get_ethtool_stats,
3673	.get_sset_count		= atl1_get_sset_count,
3674};
3675