1/*
2 * drivers/net/ethernet/freescale/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 *
13 * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
15 *
16 * This program is free software; you can redistribute  it and/or modify it
17 * under  the terms of  the GNU General  Public License as published by the
18 * Free Software Foundation;  either version 2 of the  License, or (at your
19 * option) any later version.
20 *
21 *  Gianfar:  AKA Lambda Draconis, "Dragon"
22 *  RA 11 31 24.2
23 *  Dec +69 19 52
24 *  V 3.84
25 *  B-V +1.62
26 *
27 *  Theory of operation
28 *
29 *  The driver is initialized through of_device. Configuration information
30 *  is therefore conveyed through an OF-style device tree.
31 *
32 *  The Gianfar Ethernet Controller uses a ring of buffer
33 *  descriptors.  The beginning is indicated by a register
34 *  pointing to the physical address of the start of the ring.
35 *  The end is determined by a "wrap" bit being set in the
36 *  last descriptor of the ring.
37 *
38 *  When a packet is received, the RXF bit in the
39 *  IEVENT register is set, triggering an interrupt when the
40 *  corresponding bit in the IMASK register is also set (if
41 *  interrupt coalescing is active, then the interrupt may not
42 *  happen immediately, but will wait until either a set number
43 *  of frames or amount of time have passed).  In NAPI, the
44 *  interrupt handler will signal there is work to be done, and
45 *  exit. This method will start at the last known empty
46 *  descriptor, and process every subsequent descriptor until there
47 *  are none left with data (NAPI will stop after a set number of
48 *  packets to give time to other tasks, but will eventually
49 *  process all the packets).  The data arrives inside a
50 *  pre-allocated skb, and so after the skb is passed up to the
51 *  stack, a new skb must be allocated, and the address field in
52 *  the buffer descriptor must be updated to indicate this new
53 *  skb.
54 *
55 *  When the kernel requests that a packet be transmitted, the
56 *  driver starts where it left off last time, and points the
57 *  descriptor at the buffer which was passed in.  The driver
58 *  then informs the DMA engine that there are packets ready to
59 *  be transmitted.  Once the controller is finished transmitting
60 *  the packet, an interrupt may be triggered (under the same
61 *  conditions as for reception, but depending on the TXF bit).
62 *  The driver then cleans up the buffer.
63 */
64
65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66#define DEBUG
67
68#include <linux/kernel.h>
69#include <linux/string.h>
70#include <linux/errno.h>
71#include <linux/unistd.h>
72#include <linux/slab.h>
73#include <linux/interrupt.h>
74#include <linux/init.h>
75#include <linux/delay.h>
76#include <linux/netdevice.h>
77#include <linux/etherdevice.h>
78#include <linux/skbuff.h>
79#include <linux/if_vlan.h>
80#include <linux/spinlock.h>
81#include <linux/mm.h>
82#include <linux/of_mdio.h>
83#include <linux/of_platform.h>
84#include <linux/ip.h>
85#include <linux/tcp.h>
86#include <linux/udp.h>
87#include <linux/in.h>
88#include <linux/net_tstamp.h>
89
90#include <asm/io.h>
91#include <asm/reg.h>
92#include <asm/irq.h>
93#include <asm/uaccess.h>
94#include <linux/module.h>
95#include <linux/dma-mapping.h>
96#include <linux/crc32.h>
97#include <linux/mii.h>
98#include <linux/phy.h>
99#include <linux/phy_fixed.h>
100#include <linux/of.h>
101#include <linux/of_net.h>
102
103#include "gianfar.h"
104#include "fsl_pq_mdio.h"
105
106#define TX_TIMEOUT      (1*HZ)
107
108const char gfar_driver_version[] = "1.3";
109
110static int gfar_enet_open(struct net_device *dev);
111static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
112static void gfar_reset_task(struct work_struct *work);
113static void gfar_timeout(struct net_device *dev);
114static int gfar_close(struct net_device *dev);
115struct sk_buff *gfar_new_skb(struct net_device *dev);
116static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
117		struct sk_buff *skb);
118static int gfar_set_mac_address(struct net_device *dev);
119static int gfar_change_mtu(struct net_device *dev, int new_mtu);
120static irqreturn_t gfar_error(int irq, void *dev_id);
121static irqreturn_t gfar_transmit(int irq, void *dev_id);
122static irqreturn_t gfar_interrupt(int irq, void *dev_id);
123static void adjust_link(struct net_device *dev);
124static void init_registers(struct net_device *dev);
125static int init_phy(struct net_device *dev);
126static int gfar_probe(struct platform_device *ofdev);
127static int gfar_remove(struct platform_device *ofdev);
128static void free_skb_resources(struct gfar_private *priv);
129static void gfar_set_multi(struct net_device *dev);
130static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
131static void gfar_configure_serdes(struct net_device *dev);
132static int gfar_poll(struct napi_struct *napi, int budget);
133#ifdef CONFIG_NET_POLL_CONTROLLER
134static void gfar_netpoll(struct net_device *dev);
135#endif
136int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
137static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
138static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
139			      int amount_pull);
140void gfar_halt(struct net_device *dev);
141static void gfar_halt_nodisable(struct net_device *dev);
142void gfar_start(struct net_device *dev);
143static void gfar_clear_exact_match(struct net_device *dev);
144static void gfar_set_mac_for_addr(struct net_device *dev, int num,
145				  const u8 *addr);
146static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
147
148MODULE_AUTHOR("Freescale Semiconductor, Inc");
149MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150MODULE_LICENSE("GPL");
151
152static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
153			    dma_addr_t buf)
154{
155	u32 lstatus;
156
157	bdp->bufPtr = buf;
158
159	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
160	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
161		lstatus |= BD_LFLAG(RXBD_WRAP);
162
163	eieio();
164
165	bdp->lstatus = lstatus;
166}
167
168static int gfar_init_bds(struct net_device *ndev)
169{
170	struct gfar_private *priv = netdev_priv(ndev);
171	struct gfar_priv_tx_q *tx_queue = NULL;
172	struct gfar_priv_rx_q *rx_queue = NULL;
173	struct txbd8 *txbdp;
174	struct rxbd8 *rxbdp;
175	int i, j;
176
177	for (i = 0; i < priv->num_tx_queues; i++) {
178		tx_queue = priv->tx_queue[i];
179		/* Initialize some variables in our dev structure */
180		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
181		tx_queue->dirty_tx = tx_queue->tx_bd_base;
182		tx_queue->cur_tx = tx_queue->tx_bd_base;
183		tx_queue->skb_curtx = 0;
184		tx_queue->skb_dirtytx = 0;
185
186		/* Initialize Transmit Descriptor Ring */
187		txbdp = tx_queue->tx_bd_base;
188		for (j = 0; j < tx_queue->tx_ring_size; j++) {
189			txbdp->lstatus = 0;
190			txbdp->bufPtr = 0;
191			txbdp++;
192		}
193
194		/* Set the last descriptor in the ring to indicate wrap */
195		txbdp--;
196		txbdp->status |= TXBD_WRAP;
197	}
198
199	for (i = 0; i < priv->num_rx_queues; i++) {
200		rx_queue = priv->rx_queue[i];
201		rx_queue->cur_rx = rx_queue->rx_bd_base;
202		rx_queue->skb_currx = 0;
203		rxbdp = rx_queue->rx_bd_base;
204
205		for (j = 0; j < rx_queue->rx_ring_size; j++) {
206			struct sk_buff *skb = rx_queue->rx_skbuff[j];
207
208			if (skb) {
209				gfar_init_rxbdp(rx_queue, rxbdp,
210						rxbdp->bufPtr);
211			} else {
212				skb = gfar_new_skb(ndev);
213				if (!skb) {
214					netdev_err(ndev, "Can't allocate RX buffers\n");
215					goto err_rxalloc_fail;
216				}
217				rx_queue->rx_skbuff[j] = skb;
218
219				gfar_new_rxbdp(rx_queue, rxbdp, skb);
220			}
221
222			rxbdp++;
223		}
224
225	}
226
227	return 0;
228
229err_rxalloc_fail:
230	free_skb_resources(priv);
231	return -ENOMEM;
232}
233
234static int gfar_alloc_skb_resources(struct net_device *ndev)
235{
236	void *vaddr;
237	dma_addr_t addr;
238	int i, j, k;
239	struct gfar_private *priv = netdev_priv(ndev);
240	struct device *dev = &priv->ofdev->dev;
241	struct gfar_priv_tx_q *tx_queue = NULL;
242	struct gfar_priv_rx_q *rx_queue = NULL;
243
244	priv->total_tx_ring_size = 0;
245	for (i = 0; i < priv->num_tx_queues; i++)
246		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
247
248	priv->total_rx_ring_size = 0;
249	for (i = 0; i < priv->num_rx_queues; i++)
250		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
251
252	/* Allocate memory for the buffer descriptors */
253	vaddr = dma_alloc_coherent(dev,
254			sizeof(struct txbd8) * priv->total_tx_ring_size +
255			sizeof(struct rxbd8) * priv->total_rx_ring_size,
256			&addr, GFP_KERNEL);
257	if (!vaddr) {
258		netif_err(priv, ifup, ndev,
259			  "Could not allocate buffer descriptors!\n");
260		return -ENOMEM;
261	}
262
263	for (i = 0; i < priv->num_tx_queues; i++) {
264		tx_queue = priv->tx_queue[i];
265		tx_queue->tx_bd_base = vaddr;
266		tx_queue->tx_bd_dma_base = addr;
267		tx_queue->dev = ndev;
268		/* enet DMA only understands physical addresses */
269		addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
270		vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
271	}
272
273	/* Start the rx descriptor ring where the tx ring leaves off */
274	for (i = 0; i < priv->num_rx_queues; i++) {
275		rx_queue = priv->rx_queue[i];
276		rx_queue->rx_bd_base = vaddr;
277		rx_queue->rx_bd_dma_base = addr;
278		rx_queue->dev = ndev;
279		addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
280		vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
281	}
282
283	/* Setup the skbuff rings */
284	for (i = 0; i < priv->num_tx_queues; i++) {
285		tx_queue = priv->tx_queue[i];
286		tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
287				  tx_queue->tx_ring_size, GFP_KERNEL);
288		if (!tx_queue->tx_skbuff) {
289			netif_err(priv, ifup, ndev,
290				  "Could not allocate tx_skbuff\n");
291			goto cleanup;
292		}
293
294		for (k = 0; k < tx_queue->tx_ring_size; k++)
295			tx_queue->tx_skbuff[k] = NULL;
296	}
297
298	for (i = 0; i < priv->num_rx_queues; i++) {
299		rx_queue = priv->rx_queue[i];
300		rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
301				  rx_queue->rx_ring_size, GFP_KERNEL);
302
303		if (!rx_queue->rx_skbuff) {
304			netif_err(priv, ifup, ndev,
305				  "Could not allocate rx_skbuff\n");
306			goto cleanup;
307		}
308
309		for (j = 0; j < rx_queue->rx_ring_size; j++)
310			rx_queue->rx_skbuff[j] = NULL;
311	}
312
313	if (gfar_init_bds(ndev))
314		goto cleanup;
315
316	return 0;
317
318cleanup:
319	free_skb_resources(priv);
320	return -ENOMEM;
321}
322
323static void gfar_init_tx_rx_base(struct gfar_private *priv)
324{
325	struct gfar __iomem *regs = priv->gfargrp[0].regs;
326	u32 __iomem *baddr;
327	int i;
328
329	baddr = &regs->tbase0;
330	for(i = 0; i < priv->num_tx_queues; i++) {
331		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
332		baddr	+= 2;
333	}
334
335	baddr = &regs->rbase0;
336	for(i = 0; i < priv->num_rx_queues; i++) {
337		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
338		baddr   += 2;
339	}
340}
341
342static void gfar_init_mac(struct net_device *ndev)
343{
344	struct gfar_private *priv = netdev_priv(ndev);
345	struct gfar __iomem *regs = priv->gfargrp[0].regs;
346	u32 rctrl = 0;
347	u32 tctrl = 0;
348	u32 attrs = 0;
349
350	/* write the tx/rx base registers */
351	gfar_init_tx_rx_base(priv);
352
353	/* Configure the coalescing support */
354	gfar_configure_coalescing(priv, 0xFF, 0xFF);
355
356	if (priv->rx_filer_enable) {
357		rctrl |= RCTRL_FILREN;
358		/* Program the RIR0 reg with the required distribution */
359		gfar_write(&regs->rir0, DEFAULT_RIR0);
360	}
361
362	if (ndev->features & NETIF_F_RXCSUM)
363		rctrl |= RCTRL_CHECKSUMMING;
364
365	if (priv->extended_hash) {
366		rctrl |= RCTRL_EXTHASH;
367
368		gfar_clear_exact_match(ndev);
369		rctrl |= RCTRL_EMEN;
370	}
371
372	if (priv->padding) {
373		rctrl &= ~RCTRL_PAL_MASK;
374		rctrl |= RCTRL_PADDING(priv->padding);
375	}
376
377	/* Insert receive time stamps into padding alignment bytes */
378	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
379		rctrl &= ~RCTRL_PAL_MASK;
380		rctrl |= RCTRL_PADDING(8);
381		priv->padding = 8;
382	}
383
384	/* Enable HW time stamping if requested from user space */
385	if (priv->hwts_rx_en)
386		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
387
388	if (ndev->features & NETIF_F_HW_VLAN_RX)
389		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
390
391	/* Init rctrl based on our settings */
392	gfar_write(&regs->rctrl, rctrl);
393
394	if (ndev->features & NETIF_F_IP_CSUM)
395		tctrl |= TCTRL_INIT_CSUM;
396
397	tctrl |= TCTRL_TXSCHED_PRIO;
398
399	gfar_write(&regs->tctrl, tctrl);
400
401	/* Set the extraction length and index */
402	attrs = ATTRELI_EL(priv->rx_stash_size) |
403		ATTRELI_EI(priv->rx_stash_index);
404
405	gfar_write(&regs->attreli, attrs);
406
407	/* Start with defaults, and add stashing or locking
408	 * depending on the approprate variables */
409	attrs = ATTR_INIT_SETTINGS;
410
411	if (priv->bd_stash_en)
412		attrs |= ATTR_BDSTASH;
413
414	if (priv->rx_stash_size != 0)
415		attrs |= ATTR_BUFSTASH;
416
417	gfar_write(&regs->attr, attrs);
418
419	gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
420	gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
421	gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
422}
423
424static struct net_device_stats *gfar_get_stats(struct net_device *dev)
425{
426	struct gfar_private *priv = netdev_priv(dev);
427	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
428	unsigned long tx_packets = 0, tx_bytes = 0;
429	int i = 0;
430
431	for (i = 0; i < priv->num_rx_queues; i++) {
432		rx_packets += priv->rx_queue[i]->stats.rx_packets;
433		rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
434		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
435	}
436
437	dev->stats.rx_packets = rx_packets;
438	dev->stats.rx_bytes = rx_bytes;
439	dev->stats.rx_dropped = rx_dropped;
440
441	for (i = 0; i < priv->num_tx_queues; i++) {
442		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
443		tx_packets += priv->tx_queue[i]->stats.tx_packets;
444	}
445
446	dev->stats.tx_bytes = tx_bytes;
447	dev->stats.tx_packets = tx_packets;
448
449	return &dev->stats;
450}
451
452static const struct net_device_ops gfar_netdev_ops = {
453	.ndo_open = gfar_enet_open,
454	.ndo_start_xmit = gfar_start_xmit,
455	.ndo_stop = gfar_close,
456	.ndo_change_mtu = gfar_change_mtu,
457	.ndo_set_features = gfar_set_features,
458	.ndo_set_rx_mode = gfar_set_multi,
459	.ndo_tx_timeout = gfar_timeout,
460	.ndo_do_ioctl = gfar_ioctl,
461	.ndo_get_stats = gfar_get_stats,
462	.ndo_set_mac_address = eth_mac_addr,
463	.ndo_validate_addr = eth_validate_addr,
464#ifdef CONFIG_NET_POLL_CONTROLLER
465	.ndo_poll_controller = gfar_netpoll,
466#endif
467};
468
469void lock_rx_qs(struct gfar_private *priv)
470{
471	int i = 0x0;
472
473	for (i = 0; i < priv->num_rx_queues; i++)
474		spin_lock(&priv->rx_queue[i]->rxlock);
475}
476
477void lock_tx_qs(struct gfar_private *priv)
478{
479	int i = 0x0;
480
481	for (i = 0; i < priv->num_tx_queues; i++)
482		spin_lock(&priv->tx_queue[i]->txlock);
483}
484
485void unlock_rx_qs(struct gfar_private *priv)
486{
487	int i = 0x0;
488
489	for (i = 0; i < priv->num_rx_queues; i++)
490		spin_unlock(&priv->rx_queue[i]->rxlock);
491}
492
493void unlock_tx_qs(struct gfar_private *priv)
494{
495	int i = 0x0;
496
497	for (i = 0; i < priv->num_tx_queues; i++)
498		spin_unlock(&priv->tx_queue[i]->txlock);
499}
500
501static bool gfar_is_vlan_on(struct gfar_private *priv)
502{
503	return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
504	       (priv->ndev->features & NETIF_F_HW_VLAN_TX);
505}
506
507/* Returns 1 if incoming frames use an FCB */
508static inline int gfar_uses_fcb(struct gfar_private *priv)
509{
510	return gfar_is_vlan_on(priv) ||
511		(priv->ndev->features & NETIF_F_RXCSUM) ||
512		(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
513}
514
515static void free_tx_pointers(struct gfar_private *priv)
516{
517	int i = 0;
518
519	for (i = 0; i < priv->num_tx_queues; i++)
520		kfree(priv->tx_queue[i]);
521}
522
523static void free_rx_pointers(struct gfar_private *priv)
524{
525	int i = 0;
526
527	for (i = 0; i < priv->num_rx_queues; i++)
528		kfree(priv->rx_queue[i]);
529}
530
531static void unmap_group_regs(struct gfar_private *priv)
532{
533	int i = 0;
534
535	for (i = 0; i < MAXGROUPS; i++)
536		if (priv->gfargrp[i].regs)
537			iounmap(priv->gfargrp[i].regs);
538}
539
540static void disable_napi(struct gfar_private *priv)
541{
542	int i = 0;
543
544	for (i = 0; i < priv->num_grps; i++)
545		napi_disable(&priv->gfargrp[i].napi);
546}
547
548static void enable_napi(struct gfar_private *priv)
549{
550	int i = 0;
551
552	for (i = 0; i < priv->num_grps; i++)
553		napi_enable(&priv->gfargrp[i].napi);
554}
555
556static int gfar_parse_group(struct device_node *np,
557		struct gfar_private *priv, const char *model)
558{
559	u32 *queue_mask;
560
561	priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
562	if (!priv->gfargrp[priv->num_grps].regs)
563		return -ENOMEM;
564
565	priv->gfargrp[priv->num_grps].interruptTransmit =
566			irq_of_parse_and_map(np, 0);
567
568	/* If we aren't the FEC we have multiple interrupts */
569	if (model && strcasecmp(model, "FEC")) {
570		priv->gfargrp[priv->num_grps].interruptReceive =
571			irq_of_parse_and_map(np, 1);
572		priv->gfargrp[priv->num_grps].interruptError =
573			irq_of_parse_and_map(np,2);
574		if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
575		    priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
576		    priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
577			return -EINVAL;
578	}
579
580	priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
581	priv->gfargrp[priv->num_grps].priv = priv;
582	spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
583	if(priv->mode == MQ_MG_MODE) {
584		queue_mask = (u32 *)of_get_property(np,
585					"fsl,rx-bit-map", NULL);
586		priv->gfargrp[priv->num_grps].rx_bit_map =
587			queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
588		queue_mask = (u32 *)of_get_property(np,
589					"fsl,tx-bit-map", NULL);
590		priv->gfargrp[priv->num_grps].tx_bit_map =
591			queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
592	} else {
593		priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
594		priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
595	}
596	priv->num_grps++;
597
598	return 0;
599}
600
601static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
602{
603	const char *model;
604	const char *ctype;
605	const void *mac_addr;
606	int err = 0, i;
607	struct net_device *dev = NULL;
608	struct gfar_private *priv = NULL;
609	struct device_node *np = ofdev->dev.of_node;
610	struct device_node *child = NULL;
611	const u32 *stash;
612	const u32 *stash_len;
613	const u32 *stash_idx;
614	unsigned int num_tx_qs, num_rx_qs;
615	u32 *tx_queues, *rx_queues;
616
617	if (!np || !of_device_is_available(np))
618		return -ENODEV;
619
620	/* parse the num of tx and rx queues */
621	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
622	num_tx_qs = tx_queues ? *tx_queues : 1;
623
624	if (num_tx_qs > MAX_TX_QS) {
625		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
626		       num_tx_qs, MAX_TX_QS);
627		pr_err("Cannot do alloc_etherdev, aborting\n");
628		return -EINVAL;
629	}
630
631	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
632	num_rx_qs = rx_queues ? *rx_queues : 1;
633
634	if (num_rx_qs > MAX_RX_QS) {
635		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
636		       num_rx_qs, MAX_RX_QS);
637		pr_err("Cannot do alloc_etherdev, aborting\n");
638		return -EINVAL;
639	}
640
641	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
642	dev = *pdev;
643	if (NULL == dev)
644		return -ENOMEM;
645
646	priv = netdev_priv(dev);
647	priv->node = ofdev->dev.of_node;
648	priv->ndev = dev;
649
650	priv->num_tx_queues = num_tx_qs;
651	netif_set_real_num_rx_queues(dev, num_rx_qs);
652	priv->num_rx_queues = num_rx_qs;
653	priv->num_grps = 0x0;
654
655	/* Init Rx queue filer rule set linked list*/
656	INIT_LIST_HEAD(&priv->rx_list.list);
657	priv->rx_list.count = 0;
658	mutex_init(&priv->rx_queue_access);
659
660	model = of_get_property(np, "model", NULL);
661
662	for (i = 0; i < MAXGROUPS; i++)
663		priv->gfargrp[i].regs = NULL;
664
665	/* Parse and initialize group specific information */
666	if (of_device_is_compatible(np, "fsl,etsec2")) {
667		priv->mode = MQ_MG_MODE;
668		for_each_child_of_node(np, child) {
669			err = gfar_parse_group(child, priv, model);
670			if (err)
671				goto err_grp_init;
672		}
673	} else {
674		priv->mode = SQ_SG_MODE;
675		err = gfar_parse_group(np, priv, model);
676		if(err)
677			goto err_grp_init;
678	}
679
680	for (i = 0; i < priv->num_tx_queues; i++)
681	       priv->tx_queue[i] = NULL;
682	for (i = 0; i < priv->num_rx_queues; i++)
683		priv->rx_queue[i] = NULL;
684
685	for (i = 0; i < priv->num_tx_queues; i++) {
686		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
687					    GFP_KERNEL);
688		if (!priv->tx_queue[i]) {
689			err = -ENOMEM;
690			goto tx_alloc_failed;
691		}
692		priv->tx_queue[i]->tx_skbuff = NULL;
693		priv->tx_queue[i]->qindex = i;
694		priv->tx_queue[i]->dev = dev;
695		spin_lock_init(&(priv->tx_queue[i]->txlock));
696	}
697
698	for (i = 0; i < priv->num_rx_queues; i++) {
699		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
700					    GFP_KERNEL);
701		if (!priv->rx_queue[i]) {
702			err = -ENOMEM;
703			goto rx_alloc_failed;
704		}
705		priv->rx_queue[i]->rx_skbuff = NULL;
706		priv->rx_queue[i]->qindex = i;
707		priv->rx_queue[i]->dev = dev;
708		spin_lock_init(&(priv->rx_queue[i]->rxlock));
709	}
710
711
712	stash = of_get_property(np, "bd-stash", NULL);
713
714	if (stash) {
715		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
716		priv->bd_stash_en = 1;
717	}
718
719	stash_len = of_get_property(np, "rx-stash-len", NULL);
720
721	if (stash_len)
722		priv->rx_stash_size = *stash_len;
723
724	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
725
726	if (stash_idx)
727		priv->rx_stash_index = *stash_idx;
728
729	if (stash_len || stash_idx)
730		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
731
732	mac_addr = of_get_mac_address(np);
733	if (mac_addr)
734		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
735
736	if (model && !strcasecmp(model, "TSEC"))
737		priv->device_flags =
738			FSL_GIANFAR_DEV_HAS_GIGABIT |
739			FSL_GIANFAR_DEV_HAS_COALESCE |
740			FSL_GIANFAR_DEV_HAS_RMON |
741			FSL_GIANFAR_DEV_HAS_MULTI_INTR;
742	if (model && !strcasecmp(model, "eTSEC"))
743		priv->device_flags =
744			FSL_GIANFAR_DEV_HAS_GIGABIT |
745			FSL_GIANFAR_DEV_HAS_COALESCE |
746			FSL_GIANFAR_DEV_HAS_RMON |
747			FSL_GIANFAR_DEV_HAS_MULTI_INTR |
748			FSL_GIANFAR_DEV_HAS_PADDING |
749			FSL_GIANFAR_DEV_HAS_CSUM |
750			FSL_GIANFAR_DEV_HAS_VLAN |
751			FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
752			FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
753			FSL_GIANFAR_DEV_HAS_TIMER;
754
755	ctype = of_get_property(np, "phy-connection-type", NULL);
756
757	/* We only care about rgmii-id.  The rest are autodetected */
758	if (ctype && !strcmp(ctype, "rgmii-id"))
759		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
760	else
761		priv->interface = PHY_INTERFACE_MODE_MII;
762
763	if (of_get_property(np, "fsl,magic-packet", NULL))
764		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
765
766	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
767
768	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
769	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
770
771	return 0;
772
773rx_alloc_failed:
774	free_rx_pointers(priv);
775tx_alloc_failed:
776	free_tx_pointers(priv);
777err_grp_init:
778	unmap_group_regs(priv);
779	free_netdev(dev);
780	return err;
781}
782
783static int gfar_hwtstamp_ioctl(struct net_device *netdev,
784			struct ifreq *ifr, int cmd)
785{
786	struct hwtstamp_config config;
787	struct gfar_private *priv = netdev_priv(netdev);
788
789	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
790		return -EFAULT;
791
792	/* reserved for future extensions */
793	if (config.flags)
794		return -EINVAL;
795
796	switch (config.tx_type) {
797	case HWTSTAMP_TX_OFF:
798		priv->hwts_tx_en = 0;
799		break;
800	case HWTSTAMP_TX_ON:
801		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
802			return -ERANGE;
803		priv->hwts_tx_en = 1;
804		break;
805	default:
806		return -ERANGE;
807	}
808
809	switch (config.rx_filter) {
810	case HWTSTAMP_FILTER_NONE:
811		if (priv->hwts_rx_en) {
812			stop_gfar(netdev);
813			priv->hwts_rx_en = 0;
814			startup_gfar(netdev);
815		}
816		break;
817	default:
818		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
819			return -ERANGE;
820		if (!priv->hwts_rx_en) {
821			stop_gfar(netdev);
822			priv->hwts_rx_en = 1;
823			startup_gfar(netdev);
824		}
825		config.rx_filter = HWTSTAMP_FILTER_ALL;
826		break;
827	}
828
829	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
830		-EFAULT : 0;
831}
832
833/* Ioctl MII Interface */
834static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
835{
836	struct gfar_private *priv = netdev_priv(dev);
837
838	if (!netif_running(dev))
839		return -EINVAL;
840
841	if (cmd == SIOCSHWTSTAMP)
842		return gfar_hwtstamp_ioctl(dev, rq, cmd);
843
844	if (!priv->phydev)
845		return -ENODEV;
846
847	return phy_mii_ioctl(priv->phydev, rq, cmd);
848}
849
850static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
851{
852	unsigned int new_bit_map = 0x0;
853	int mask = 0x1 << (max_qs - 1), i;
854	for (i = 0; i < max_qs; i++) {
855		if (bit_map & mask)
856			new_bit_map = new_bit_map + (1 << i);
857		mask = mask >> 0x1;
858	}
859	return new_bit_map;
860}
861
862static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
863				   u32 class)
864{
865	u32 rqfpr = FPR_FILER_MASK;
866	u32 rqfcr = 0x0;
867
868	rqfar--;
869	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
870	priv->ftp_rqfpr[rqfar] = rqfpr;
871	priv->ftp_rqfcr[rqfar] = rqfcr;
872	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
873
874	rqfar--;
875	rqfcr = RQFCR_CMP_NOMATCH;
876	priv->ftp_rqfpr[rqfar] = rqfpr;
877	priv->ftp_rqfcr[rqfar] = rqfcr;
878	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
879
880	rqfar--;
881	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
882	rqfpr = class;
883	priv->ftp_rqfcr[rqfar] = rqfcr;
884	priv->ftp_rqfpr[rqfar] = rqfpr;
885	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
886
887	rqfar--;
888	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
889	rqfpr = class;
890	priv->ftp_rqfcr[rqfar] = rqfcr;
891	priv->ftp_rqfpr[rqfar] = rqfpr;
892	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
893
894	return rqfar;
895}
896
897static void gfar_init_filer_table(struct gfar_private *priv)
898{
899	int i = 0x0;
900	u32 rqfar = MAX_FILER_IDX;
901	u32 rqfcr = 0x0;
902	u32 rqfpr = FPR_FILER_MASK;
903
904	/* Default rule */
905	rqfcr = RQFCR_CMP_MATCH;
906	priv->ftp_rqfcr[rqfar] = rqfcr;
907	priv->ftp_rqfpr[rqfar] = rqfpr;
908	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
909
910	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
911	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
912	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
913	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
914	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
915	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
916
917	/* cur_filer_idx indicated the first non-masked rule */
918	priv->cur_filer_idx = rqfar;
919
920	/* Rest are masked rules */
921	rqfcr = RQFCR_CMP_NOMATCH;
922	for (i = 0; i < rqfar; i++) {
923		priv->ftp_rqfcr[i] = rqfcr;
924		priv->ftp_rqfpr[i] = rqfpr;
925		gfar_write_filer(priv, i, rqfcr, rqfpr);
926	}
927}
928
929static void gfar_detect_errata(struct gfar_private *priv)
930{
931	struct device *dev = &priv->ofdev->dev;
932	unsigned int pvr = mfspr(SPRN_PVR);
933	unsigned int svr = mfspr(SPRN_SVR);
934	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
935	unsigned int rev = svr & 0xffff;
936
937	/* MPC8313 Rev 2.0 and higher; All MPC837x */
938	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
939			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
940		priv->errata |= GFAR_ERRATA_74;
941
942	/* MPC8313 and MPC837x all rev */
943	if ((pvr == 0x80850010 && mod == 0x80b0) ||
944			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
945		priv->errata |= GFAR_ERRATA_76;
946
947	/* MPC8313 and MPC837x all rev */
948	if ((pvr == 0x80850010 && mod == 0x80b0) ||
949			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
950		priv->errata |= GFAR_ERRATA_A002;
951
952	/* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
953	if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
954			(pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
955		priv->errata |= GFAR_ERRATA_12;
956
957	if (priv->errata)
958		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
959			 priv->errata);
960}
961
962/* Set up the ethernet device structure, private data,
963 * and anything else we need before we start */
964static int gfar_probe(struct platform_device *ofdev)
965{
966	u32 tempval;
967	struct net_device *dev = NULL;
968	struct gfar_private *priv = NULL;
969	struct gfar __iomem *regs = NULL;
970	int err = 0, i, grp_idx = 0;
971	u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
972	u32 isrg = 0;
973	u32 __iomem *baddr;
974
975	err = gfar_of_init(ofdev, &dev);
976
977	if (err)
978		return err;
979
980	priv = netdev_priv(dev);
981	priv->ndev = dev;
982	priv->ofdev = ofdev;
983	priv->node = ofdev->dev.of_node;
984	SET_NETDEV_DEV(dev, &ofdev->dev);
985
986	spin_lock_init(&priv->bflock);
987	INIT_WORK(&priv->reset_task, gfar_reset_task);
988
989	dev_set_drvdata(&ofdev->dev, priv);
990	regs = priv->gfargrp[0].regs;
991
992	gfar_detect_errata(priv);
993
994	/* Stop the DMA engine now, in case it was running before */
995	/* (The firmware could have used it, and left it running). */
996	gfar_halt(dev);
997
998	/* Reset MAC layer */
999	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1000
1001	/* We need to delay at least 3 TX clocks */
1002	udelay(2);
1003
1004	tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1005	gfar_write(&regs->maccfg1, tempval);
1006
1007	/* Initialize MACCFG2. */
1008	tempval = MACCFG2_INIT_SETTINGS;
1009	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1010		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1011	gfar_write(&regs->maccfg2, tempval);
1012
1013	/* Initialize ECNTRL */
1014	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1015
1016	/* Set the dev->base_addr to the gfar reg region */
1017	dev->base_addr = (unsigned long) regs;
1018
1019	SET_NETDEV_DEV(dev, &ofdev->dev);
1020
1021	/* Fill in the dev structure */
1022	dev->watchdog_timeo = TX_TIMEOUT;
1023	dev->mtu = 1500;
1024	dev->netdev_ops = &gfar_netdev_ops;
1025	dev->ethtool_ops = &gfar_ethtool_ops;
1026
1027	/* Register for napi ...We are registering NAPI for each grp */
1028	for (i = 0; i < priv->num_grps; i++)
1029		netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1030
1031	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1032		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1033			NETIF_F_RXCSUM;
1034		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1035			NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1036	}
1037
1038	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1039		dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1040		dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1041	}
1042
1043	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1044		priv->extended_hash = 1;
1045		priv->hash_width = 9;
1046
1047		priv->hash_regs[0] = &regs->igaddr0;
1048		priv->hash_regs[1] = &regs->igaddr1;
1049		priv->hash_regs[2] = &regs->igaddr2;
1050		priv->hash_regs[3] = &regs->igaddr3;
1051		priv->hash_regs[4] = &regs->igaddr4;
1052		priv->hash_regs[5] = &regs->igaddr5;
1053		priv->hash_regs[6] = &regs->igaddr6;
1054		priv->hash_regs[7] = &regs->igaddr7;
1055		priv->hash_regs[8] = &regs->gaddr0;
1056		priv->hash_regs[9] = &regs->gaddr1;
1057		priv->hash_regs[10] = &regs->gaddr2;
1058		priv->hash_regs[11] = &regs->gaddr3;
1059		priv->hash_regs[12] = &regs->gaddr4;
1060		priv->hash_regs[13] = &regs->gaddr5;
1061		priv->hash_regs[14] = &regs->gaddr6;
1062		priv->hash_regs[15] = &regs->gaddr7;
1063
1064	} else {
1065		priv->extended_hash = 0;
1066		priv->hash_width = 8;
1067
1068		priv->hash_regs[0] = &regs->gaddr0;
1069		priv->hash_regs[1] = &regs->gaddr1;
1070		priv->hash_regs[2] = &regs->gaddr2;
1071		priv->hash_regs[3] = &regs->gaddr3;
1072		priv->hash_regs[4] = &regs->gaddr4;
1073		priv->hash_regs[5] = &regs->gaddr5;
1074		priv->hash_regs[6] = &regs->gaddr6;
1075		priv->hash_regs[7] = &regs->gaddr7;
1076	}
1077
1078	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1079		priv->padding = DEFAULT_PADDING;
1080	else
1081		priv->padding = 0;
1082
1083	if (dev->features & NETIF_F_IP_CSUM ||
1084			priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1085		dev->hard_header_len += GMAC_FCB_LEN;
1086
1087	/* Program the isrg regs only if number of grps > 1 */
1088	if (priv->num_grps > 1) {
1089		baddr = &regs->isrg0;
1090		for (i = 0; i < priv->num_grps; i++) {
1091			isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1092			isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1093			gfar_write(baddr, isrg);
1094			baddr++;
1095			isrg = 0x0;
1096		}
1097	}
1098
1099	/* Need to reverse the bit maps as  bit_map's MSB is q0
1100	 * but, for_each_set_bit parses from right to left, which
1101	 * basically reverses the queue numbers */
1102	for (i = 0; i< priv->num_grps; i++) {
1103		priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1104				priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1105		priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1106				priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1107	}
1108
1109	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1110	 * also assign queues to groups */
1111	for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1112		priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1113		for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1114				priv->num_rx_queues) {
1115			priv->gfargrp[grp_idx].num_rx_queues++;
1116			priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1117			rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1118			rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1119		}
1120		priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1121		for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1122				priv->num_tx_queues) {
1123			priv->gfargrp[grp_idx].num_tx_queues++;
1124			priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1125			tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1126			tqueue = tqueue | (TQUEUE_EN0 >> i);
1127		}
1128		priv->gfargrp[grp_idx].rstat = rstat;
1129		priv->gfargrp[grp_idx].tstat = tstat;
1130		rstat = tstat =0;
1131	}
1132
1133	gfar_write(&regs->rqueue, rqueue);
1134	gfar_write(&regs->tqueue, tqueue);
1135
1136	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1137
1138	/* Initializing some of the rx/tx queue level parameters */
1139	for (i = 0; i < priv->num_tx_queues; i++) {
1140		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1141		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1142		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1143		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1144	}
1145
1146	for (i = 0; i < priv->num_rx_queues; i++) {
1147		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1148		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1149		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1150	}
1151
1152	/* always enable rx filer*/
1153	priv->rx_filer_enable = 1;
1154	/* Enable most messages by default */
1155	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1156
1157	/* Carrier starts down, phylib will bring it up */
1158	netif_carrier_off(dev);
1159
1160	err = register_netdev(dev);
1161
1162	if (err) {
1163		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1164		goto register_fail;
1165	}
1166
1167	device_init_wakeup(&dev->dev,
1168		priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1169
1170	/* fill out IRQ number and name fields */
1171	for (i = 0; i < priv->num_grps; i++) {
1172		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1173			sprintf(priv->gfargrp[i].int_name_tx, "%s%s%c%s",
1174				dev->name, "_g", '0' + i, "_tx");
1175			sprintf(priv->gfargrp[i].int_name_rx, "%s%s%c%s",
1176				dev->name, "_g", '0' + i, "_rx");
1177			sprintf(priv->gfargrp[i].int_name_er, "%s%s%c%s",
1178				dev->name, "_g", '0' + i, "_er");
1179		} else
1180			strcpy(priv->gfargrp[i].int_name_tx, dev->name);
1181	}
1182
1183	/* Initialize the filer table */
1184	gfar_init_filer_table(priv);
1185
1186	/* Create all the sysfs files */
1187	gfar_init_sysfs(dev);
1188
1189	/* Print out the device info */
1190	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1191
1192	/* Even more device info helps when determining which kernel */
1193	/* provided which set of benchmarks. */
1194	netdev_info(dev, "Running with NAPI enabled\n");
1195	for (i = 0; i < priv->num_rx_queues; i++)
1196		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1197			    i, priv->rx_queue[i]->rx_ring_size);
1198	for(i = 0; i < priv->num_tx_queues; i++)
1199		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1200			    i, priv->tx_queue[i]->tx_ring_size);
1201
1202	return 0;
1203
1204register_fail:
1205	unmap_group_regs(priv);
1206	free_tx_pointers(priv);
1207	free_rx_pointers(priv);
1208	if (priv->phy_node)
1209		of_node_put(priv->phy_node);
1210	if (priv->tbi_node)
1211		of_node_put(priv->tbi_node);
1212	free_netdev(dev);
1213	return err;
1214}
1215
1216static int gfar_remove(struct platform_device *ofdev)
1217{
1218	struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1219
1220	if (priv->phy_node)
1221		of_node_put(priv->phy_node);
1222	if (priv->tbi_node)
1223		of_node_put(priv->tbi_node);
1224
1225	dev_set_drvdata(&ofdev->dev, NULL);
1226
1227	unregister_netdev(priv->ndev);
1228	unmap_group_regs(priv);
1229	free_netdev(priv->ndev);
1230
1231	return 0;
1232}
1233
1234#ifdef CONFIG_PM
1235
1236static int gfar_suspend(struct device *dev)
1237{
1238	struct gfar_private *priv = dev_get_drvdata(dev);
1239	struct net_device *ndev = priv->ndev;
1240	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1241	unsigned long flags;
1242	u32 tempval;
1243
1244	int magic_packet = priv->wol_en &&
1245		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1246
1247	netif_device_detach(ndev);
1248
1249	if (netif_running(ndev)) {
1250
1251		local_irq_save(flags);
1252		lock_tx_qs(priv);
1253		lock_rx_qs(priv);
1254
1255		gfar_halt_nodisable(ndev);
1256
1257		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1258		tempval = gfar_read(&regs->maccfg1);
1259
1260		tempval &= ~MACCFG1_TX_EN;
1261
1262		if (!magic_packet)
1263			tempval &= ~MACCFG1_RX_EN;
1264
1265		gfar_write(&regs->maccfg1, tempval);
1266
1267		unlock_rx_qs(priv);
1268		unlock_tx_qs(priv);
1269		local_irq_restore(flags);
1270
1271		disable_napi(priv);
1272
1273		if (magic_packet) {
1274			/* Enable interrupt on Magic Packet */
1275			gfar_write(&regs->imask, IMASK_MAG);
1276
1277			/* Enable Magic Packet mode */
1278			tempval = gfar_read(&regs->maccfg2);
1279			tempval |= MACCFG2_MPEN;
1280			gfar_write(&regs->maccfg2, tempval);
1281		} else {
1282			phy_stop(priv->phydev);
1283		}
1284	}
1285
1286	return 0;
1287}
1288
1289static int gfar_resume(struct device *dev)
1290{
1291	struct gfar_private *priv = dev_get_drvdata(dev);
1292	struct net_device *ndev = priv->ndev;
1293	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1294	unsigned long flags;
1295	u32 tempval;
1296	int magic_packet = priv->wol_en &&
1297		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1298
1299	if (!netif_running(ndev)) {
1300		netif_device_attach(ndev);
1301		return 0;
1302	}
1303
1304	if (!magic_packet && priv->phydev)
1305		phy_start(priv->phydev);
1306
1307	/* Disable Magic Packet mode, in case something
1308	 * else woke us up.
1309	 */
1310	local_irq_save(flags);
1311	lock_tx_qs(priv);
1312	lock_rx_qs(priv);
1313
1314	tempval = gfar_read(&regs->maccfg2);
1315	tempval &= ~MACCFG2_MPEN;
1316	gfar_write(&regs->maccfg2, tempval);
1317
1318	gfar_start(ndev);
1319
1320	unlock_rx_qs(priv);
1321	unlock_tx_qs(priv);
1322	local_irq_restore(flags);
1323
1324	netif_device_attach(ndev);
1325
1326	enable_napi(priv);
1327
1328	return 0;
1329}
1330
1331static int gfar_restore(struct device *dev)
1332{
1333	struct gfar_private *priv = dev_get_drvdata(dev);
1334	struct net_device *ndev = priv->ndev;
1335
1336	if (!netif_running(ndev))
1337		return 0;
1338
1339	gfar_init_bds(ndev);
1340	init_registers(ndev);
1341	gfar_set_mac_address(ndev);
1342	gfar_init_mac(ndev);
1343	gfar_start(ndev);
1344
1345	priv->oldlink = 0;
1346	priv->oldspeed = 0;
1347	priv->oldduplex = -1;
1348
1349	if (priv->phydev)
1350		phy_start(priv->phydev);
1351
1352	netif_device_attach(ndev);
1353	enable_napi(priv);
1354
1355	return 0;
1356}
1357
1358static struct dev_pm_ops gfar_pm_ops = {
1359	.suspend = gfar_suspend,
1360	.resume = gfar_resume,
1361	.freeze = gfar_suspend,
1362	.thaw = gfar_resume,
1363	.restore = gfar_restore,
1364};
1365
1366#define GFAR_PM_OPS (&gfar_pm_ops)
1367
1368#else
1369
1370#define GFAR_PM_OPS NULL
1371
1372#endif
1373
1374/* Reads the controller's registers to determine what interface
1375 * connects it to the PHY.
1376 */
1377static phy_interface_t gfar_get_interface(struct net_device *dev)
1378{
1379	struct gfar_private *priv = netdev_priv(dev);
1380	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1381	u32 ecntrl;
1382
1383	ecntrl = gfar_read(&regs->ecntrl);
1384
1385	if (ecntrl & ECNTRL_SGMII_MODE)
1386		return PHY_INTERFACE_MODE_SGMII;
1387
1388	if (ecntrl & ECNTRL_TBI_MODE) {
1389		if (ecntrl & ECNTRL_REDUCED_MODE)
1390			return PHY_INTERFACE_MODE_RTBI;
1391		else
1392			return PHY_INTERFACE_MODE_TBI;
1393	}
1394
1395	if (ecntrl & ECNTRL_REDUCED_MODE) {
1396		if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1397			return PHY_INTERFACE_MODE_RMII;
1398		else {
1399			phy_interface_t interface = priv->interface;
1400
1401			/*
1402			 * This isn't autodetected right now, so it must
1403			 * be set by the device tree or platform code.
1404			 */
1405			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1406				return PHY_INTERFACE_MODE_RGMII_ID;
1407
1408			return PHY_INTERFACE_MODE_RGMII;
1409		}
1410	}
1411
1412	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1413		return PHY_INTERFACE_MODE_GMII;
1414
1415	return PHY_INTERFACE_MODE_MII;
1416}
1417
1418
1419/* Initializes driver's PHY state, and attaches to the PHY.
1420 * Returns 0 on success.
1421 */
1422static int init_phy(struct net_device *dev)
1423{
1424	struct gfar_private *priv = netdev_priv(dev);
1425	uint gigabit_support =
1426		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1427		SUPPORTED_1000baseT_Full : 0;
1428	phy_interface_t interface;
1429
1430	priv->oldlink = 0;
1431	priv->oldspeed = 0;
1432	priv->oldduplex = -1;
1433
1434	interface = gfar_get_interface(dev);
1435
1436	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1437				      interface);
1438	if (!priv->phydev)
1439		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1440							 interface);
1441	if (!priv->phydev) {
1442		dev_err(&dev->dev, "could not attach to PHY\n");
1443		return -ENODEV;
1444	}
1445
1446	if (interface == PHY_INTERFACE_MODE_SGMII)
1447		gfar_configure_serdes(dev);
1448
1449	/* Remove any features not supported by the controller */
1450	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1451	priv->phydev->advertising = priv->phydev->supported;
1452
1453	return 0;
1454}
1455
1456/*
1457 * Initialize TBI PHY interface for communicating with the
1458 * SERDES lynx PHY on the chip.  We communicate with this PHY
1459 * through the MDIO bus on each controller, treating it as a
1460 * "normal" PHY at the address found in the TBIPA register.  We assume
1461 * that the TBIPA register is valid.  Either the MDIO bus code will set
1462 * it to a value that doesn't conflict with other PHYs on the bus, or the
1463 * value doesn't matter, as there are no other PHYs on the bus.
1464 */
1465static void gfar_configure_serdes(struct net_device *dev)
1466{
1467	struct gfar_private *priv = netdev_priv(dev);
1468	struct phy_device *tbiphy;
1469
1470	if (!priv->tbi_node) {
1471		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1472				    "device tree specify a tbi-handle\n");
1473		return;
1474	}
1475
1476	tbiphy = of_phy_find_device(priv->tbi_node);
1477	if (!tbiphy) {
1478		dev_err(&dev->dev, "error: Could not get TBI device\n");
1479		return;
1480	}
1481
1482	/*
1483	 * If the link is already up, we must already be ok, and don't need to
1484	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1485	 * everything for us?  Resetting it takes the link down and requires
1486	 * several seconds for it to come back.
1487	 */
1488	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1489		return;
1490
1491	/* Single clk mode, mii mode off(for serdes communication) */
1492	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1493
1494	phy_write(tbiphy, MII_ADVERTISE,
1495			ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1496			ADVERTISE_1000XPSE_ASYM);
1497
1498	phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1499			BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1500}
1501
1502static void init_registers(struct net_device *dev)
1503{
1504	struct gfar_private *priv = netdev_priv(dev);
1505	struct gfar __iomem *regs = NULL;
1506	int i = 0;
1507
1508	for (i = 0; i < priv->num_grps; i++) {
1509		regs = priv->gfargrp[i].regs;
1510		/* Clear IEVENT */
1511		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1512
1513		/* Initialize IMASK */
1514		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1515	}
1516
1517	regs = priv->gfargrp[0].regs;
1518	/* Init hash registers to zero */
1519	gfar_write(&regs->igaddr0, 0);
1520	gfar_write(&regs->igaddr1, 0);
1521	gfar_write(&regs->igaddr2, 0);
1522	gfar_write(&regs->igaddr3, 0);
1523	gfar_write(&regs->igaddr4, 0);
1524	gfar_write(&regs->igaddr5, 0);
1525	gfar_write(&regs->igaddr6, 0);
1526	gfar_write(&regs->igaddr7, 0);
1527
1528	gfar_write(&regs->gaddr0, 0);
1529	gfar_write(&regs->gaddr1, 0);
1530	gfar_write(&regs->gaddr2, 0);
1531	gfar_write(&regs->gaddr3, 0);
1532	gfar_write(&regs->gaddr4, 0);
1533	gfar_write(&regs->gaddr5, 0);
1534	gfar_write(&regs->gaddr6, 0);
1535	gfar_write(&regs->gaddr7, 0);
1536
1537	/* Zero out the rmon mib registers if it has them */
1538	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1539		memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1540
1541		/* Mask off the CAM interrupts */
1542		gfar_write(&regs->rmon.cam1, 0xffffffff);
1543		gfar_write(&regs->rmon.cam2, 0xffffffff);
1544	}
1545
1546	/* Initialize the max receive buffer length */
1547	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1548
1549	/* Initialize the Minimum Frame Length Register */
1550	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1551}
1552
1553static int __gfar_is_rx_idle(struct gfar_private *priv)
1554{
1555	u32 res;
1556
1557	/*
1558	 * Normaly TSEC should not hang on GRS commands, so we should
1559	 * actually wait for IEVENT_GRSC flag.
1560	 */
1561	if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1562		return 0;
1563
1564	/*
1565	 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1566	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1567	 * and the Rx can be safely reset.
1568	 */
1569	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1570	res &= 0x7f807f80;
1571	if ((res & 0xffff) == (res >> 16))
1572		return 1;
1573
1574	return 0;
1575}
1576
1577/* Halt the receive and transmit queues */
1578static void gfar_halt_nodisable(struct net_device *dev)
1579{
1580	struct gfar_private *priv = netdev_priv(dev);
1581	struct gfar __iomem *regs = NULL;
1582	u32 tempval;
1583	int i = 0;
1584
1585	for (i = 0; i < priv->num_grps; i++) {
1586		regs = priv->gfargrp[i].regs;
1587		/* Mask all interrupts */
1588		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1589
1590		/* Clear all interrupts */
1591		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1592	}
1593
1594	regs = priv->gfargrp[0].regs;
1595	/* Stop the DMA, and wait for it to stop */
1596	tempval = gfar_read(&regs->dmactrl);
1597	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1598	    != (DMACTRL_GRS | DMACTRL_GTS)) {
1599		int ret;
1600
1601		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1602		gfar_write(&regs->dmactrl, tempval);
1603
1604		do {
1605			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1606				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1607				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1608			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1609				ret = __gfar_is_rx_idle(priv);
1610		} while (!ret);
1611	}
1612}
1613
1614/* Halt the receive and transmit queues */
1615void gfar_halt(struct net_device *dev)
1616{
1617	struct gfar_private *priv = netdev_priv(dev);
1618	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1619	u32 tempval;
1620
1621	gfar_halt_nodisable(dev);
1622
1623	/* Disable Rx and Tx */
1624	tempval = gfar_read(&regs->maccfg1);
1625	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1626	gfar_write(&regs->maccfg1, tempval);
1627}
1628
1629static void free_grp_irqs(struct gfar_priv_grp *grp)
1630{
1631	free_irq(grp->interruptError, grp);
1632	free_irq(grp->interruptTransmit, grp);
1633	free_irq(grp->interruptReceive, grp);
1634}
1635
1636void stop_gfar(struct net_device *dev)
1637{
1638	struct gfar_private *priv = netdev_priv(dev);
1639	unsigned long flags;
1640	int i;
1641
1642	phy_stop(priv->phydev);
1643
1644
1645	/* Lock it down */
1646	local_irq_save(flags);
1647	lock_tx_qs(priv);
1648	lock_rx_qs(priv);
1649
1650	gfar_halt(dev);
1651
1652	unlock_rx_qs(priv);
1653	unlock_tx_qs(priv);
1654	local_irq_restore(flags);
1655
1656	/* Free the IRQs */
1657	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1658		for (i = 0; i < priv->num_grps; i++)
1659			free_grp_irqs(&priv->gfargrp[i]);
1660	} else {
1661		for (i = 0; i < priv->num_grps; i++)
1662			free_irq(priv->gfargrp[i].interruptTransmit,
1663					&priv->gfargrp[i]);
1664	}
1665
1666	free_skb_resources(priv);
1667}
1668
1669static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1670{
1671	struct txbd8 *txbdp;
1672	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1673	int i, j;
1674
1675	txbdp = tx_queue->tx_bd_base;
1676
1677	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1678		if (!tx_queue->tx_skbuff[i])
1679			continue;
1680
1681		dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1682				txbdp->length, DMA_TO_DEVICE);
1683		txbdp->lstatus = 0;
1684		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1685				j++) {
1686			txbdp++;
1687			dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1688					txbdp->length, DMA_TO_DEVICE);
1689		}
1690		txbdp++;
1691		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1692		tx_queue->tx_skbuff[i] = NULL;
1693	}
1694	kfree(tx_queue->tx_skbuff);
1695}
1696
1697static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1698{
1699	struct rxbd8 *rxbdp;
1700	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1701	int i;
1702
1703	rxbdp = rx_queue->rx_bd_base;
1704
1705	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1706		if (rx_queue->rx_skbuff[i]) {
1707			dma_unmap_single(&priv->ofdev->dev,
1708					rxbdp->bufPtr, priv->rx_buffer_size,
1709					DMA_FROM_DEVICE);
1710			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1711			rx_queue->rx_skbuff[i] = NULL;
1712		}
1713		rxbdp->lstatus = 0;
1714		rxbdp->bufPtr = 0;
1715		rxbdp++;
1716	}
1717	kfree(rx_queue->rx_skbuff);
1718}
1719
1720/* If there are any tx skbs or rx skbs still around, free them.
1721 * Then free tx_skbuff and rx_skbuff */
1722static void free_skb_resources(struct gfar_private *priv)
1723{
1724	struct gfar_priv_tx_q *tx_queue = NULL;
1725	struct gfar_priv_rx_q *rx_queue = NULL;
1726	int i;
1727
1728	/* Go through all the buffer descriptors and free their data buffers */
1729	for (i = 0; i < priv->num_tx_queues; i++) {
1730		struct netdev_queue *txq;
1731		tx_queue = priv->tx_queue[i];
1732		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1733		if(tx_queue->tx_skbuff)
1734			free_skb_tx_queue(tx_queue);
1735		netdev_tx_reset_queue(txq);
1736	}
1737
1738	for (i = 0; i < priv->num_rx_queues; i++) {
1739		rx_queue = priv->rx_queue[i];
1740		if(rx_queue->rx_skbuff)
1741			free_skb_rx_queue(rx_queue);
1742	}
1743
1744	dma_free_coherent(&priv->ofdev->dev,
1745			sizeof(struct txbd8) * priv->total_tx_ring_size +
1746			sizeof(struct rxbd8) * priv->total_rx_ring_size,
1747			priv->tx_queue[0]->tx_bd_base,
1748			priv->tx_queue[0]->tx_bd_dma_base);
1749	skb_queue_purge(&priv->rx_recycle);
1750}
1751
1752void gfar_start(struct net_device *dev)
1753{
1754	struct gfar_private *priv = netdev_priv(dev);
1755	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1756	u32 tempval;
1757	int i = 0;
1758
1759	/* Enable Rx and Tx in MACCFG1 */
1760	tempval = gfar_read(&regs->maccfg1);
1761	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1762	gfar_write(&regs->maccfg1, tempval);
1763
1764	/* Initialize DMACTRL to have WWR and WOP */
1765	tempval = gfar_read(&regs->dmactrl);
1766	tempval |= DMACTRL_INIT_SETTINGS;
1767	gfar_write(&regs->dmactrl, tempval);
1768
1769	/* Make sure we aren't stopped */
1770	tempval = gfar_read(&regs->dmactrl);
1771	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1772	gfar_write(&regs->dmactrl, tempval);
1773
1774	for (i = 0; i < priv->num_grps; i++) {
1775		regs = priv->gfargrp[i].regs;
1776		/* Clear THLT/RHLT, so that the DMA starts polling now */
1777		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1778		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1779		/* Unmask the interrupts we look for */
1780		gfar_write(&regs->imask, IMASK_DEFAULT);
1781	}
1782
1783	dev->trans_start = jiffies; /* prevent tx timeout */
1784}
1785
1786void gfar_configure_coalescing(struct gfar_private *priv,
1787	unsigned long tx_mask, unsigned long rx_mask)
1788{
1789	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1790	u32 __iomem *baddr;
1791	int i = 0;
1792
1793	/* Backward compatible case ---- even if we enable
1794	 * multiple queues, there's only single reg to program
1795	 */
1796	gfar_write(&regs->txic, 0);
1797	if(likely(priv->tx_queue[0]->txcoalescing))
1798		gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1799
1800	gfar_write(&regs->rxic, 0);
1801	if(unlikely(priv->rx_queue[0]->rxcoalescing))
1802		gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1803
1804	if (priv->mode == MQ_MG_MODE) {
1805		baddr = &regs->txic0;
1806		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1807			if (likely(priv->tx_queue[i]->txcoalescing)) {
1808				gfar_write(baddr + i, 0);
1809				gfar_write(baddr + i, priv->tx_queue[i]->txic);
1810			}
1811		}
1812
1813		baddr = &regs->rxic0;
1814		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1815			if (likely(priv->rx_queue[i]->rxcoalescing)) {
1816				gfar_write(baddr + i, 0);
1817				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1818			}
1819		}
1820	}
1821}
1822
1823static int register_grp_irqs(struct gfar_priv_grp *grp)
1824{
1825	struct gfar_private *priv = grp->priv;
1826	struct net_device *dev = priv->ndev;
1827	int err;
1828
1829	/* If the device has multiple interrupts, register for
1830	 * them.  Otherwise, only register for the one */
1831	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1832		/* Install our interrupt handlers for Error,
1833		 * Transmit, and Receive */
1834		if ((err = request_irq(grp->interruptError, gfar_error, 0,
1835				grp->int_name_er,grp)) < 0) {
1836			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1837				  grp->interruptError);
1838
1839			goto err_irq_fail;
1840		}
1841
1842		if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1843				0, grp->int_name_tx, grp)) < 0) {
1844			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1845				  grp->interruptTransmit);
1846			goto tx_irq_fail;
1847		}
1848
1849		if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1850				grp->int_name_rx, grp)) < 0) {
1851			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1852				  grp->interruptReceive);
1853			goto rx_irq_fail;
1854		}
1855	} else {
1856		if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1857				grp->int_name_tx, grp)) < 0) {
1858			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1859				  grp->interruptTransmit);
1860			goto err_irq_fail;
1861		}
1862	}
1863
1864	return 0;
1865
1866rx_irq_fail:
1867	free_irq(grp->interruptTransmit, grp);
1868tx_irq_fail:
1869	free_irq(grp->interruptError, grp);
1870err_irq_fail:
1871	return err;
1872
1873}
1874
1875/* Bring the controller up and running */
1876int startup_gfar(struct net_device *ndev)
1877{
1878	struct gfar_private *priv = netdev_priv(ndev);
1879	struct gfar __iomem *regs = NULL;
1880	int err, i, j;
1881
1882	for (i = 0; i < priv->num_grps; i++) {
1883		regs= priv->gfargrp[i].regs;
1884		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1885	}
1886
1887	regs= priv->gfargrp[0].regs;
1888	err = gfar_alloc_skb_resources(ndev);
1889	if (err)
1890		return err;
1891
1892	gfar_init_mac(ndev);
1893
1894	for (i = 0; i < priv->num_grps; i++) {
1895		err = register_grp_irqs(&priv->gfargrp[i]);
1896		if (err) {
1897			for (j = 0; j < i; j++)
1898				free_grp_irqs(&priv->gfargrp[j]);
1899			goto irq_fail;
1900		}
1901	}
1902
1903	/* Start the controller */
1904	gfar_start(ndev);
1905
1906	phy_start(priv->phydev);
1907
1908	gfar_configure_coalescing(priv, 0xFF, 0xFF);
1909
1910	return 0;
1911
1912irq_fail:
1913	free_skb_resources(priv);
1914	return err;
1915}
1916
1917/* Called when something needs to use the ethernet device */
1918/* Returns 0 for success. */
1919static int gfar_enet_open(struct net_device *dev)
1920{
1921	struct gfar_private *priv = netdev_priv(dev);
1922	int err;
1923
1924	enable_napi(priv);
1925
1926	skb_queue_head_init(&priv->rx_recycle);
1927
1928	/* Initialize a bunch of registers */
1929	init_registers(dev);
1930
1931	gfar_set_mac_address(dev);
1932
1933	err = init_phy(dev);
1934
1935	if (err) {
1936		disable_napi(priv);
1937		return err;
1938	}
1939
1940	err = startup_gfar(dev);
1941	if (err) {
1942		disable_napi(priv);
1943		return err;
1944	}
1945
1946	netif_tx_start_all_queues(dev);
1947
1948	device_set_wakeup_enable(&dev->dev, priv->wol_en);
1949
1950	return err;
1951}
1952
1953static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1954{
1955	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1956
1957	memset(fcb, 0, GMAC_FCB_LEN);
1958
1959	return fcb;
1960}
1961
1962static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1963		int fcb_length)
1964{
1965	u8 flags = 0;
1966
1967	/* If we're here, it's a IP packet with a TCP or UDP
1968	 * payload.  We set it to checksum, using a pseudo-header
1969	 * we provide
1970	 */
1971	flags = TXFCB_DEFAULT;
1972
1973	/* Tell the controller what the protocol is */
1974	/* And provide the already calculated phcs */
1975	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1976		flags |= TXFCB_UDP;
1977		fcb->phcs = udp_hdr(skb)->check;
1978	} else
1979		fcb->phcs = tcp_hdr(skb)->check;
1980
1981	/* l3os is the distance between the start of the
1982	 * frame (skb->data) and the start of the IP hdr.
1983	 * l4os is the distance between the start of the
1984	 * l3 hdr and the l4 hdr */
1985	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
1986	fcb->l4os = skb_network_header_len(skb);
1987
1988	fcb->flags = flags;
1989}
1990
1991void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1992{
1993	fcb->flags |= TXFCB_VLN;
1994	fcb->vlctl = vlan_tx_tag_get(skb);
1995}
1996
1997static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1998			       struct txbd8 *base, int ring_size)
1999{
2000	struct txbd8 *new_bd = bdp + stride;
2001
2002	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2003}
2004
2005static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2006		int ring_size)
2007{
2008	return skip_txbd(bdp, 1, base, ring_size);
2009}
2010
2011/* This is called by the kernel when a frame is ready for transmission. */
2012/* It is pointed to by the dev->hard_start_xmit function pointer */
2013static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2014{
2015	struct gfar_private *priv = netdev_priv(dev);
2016	struct gfar_priv_tx_q *tx_queue = NULL;
2017	struct netdev_queue *txq;
2018	struct gfar __iomem *regs = NULL;
2019	struct txfcb *fcb = NULL;
2020	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2021	u32 lstatus;
2022	int i, rq = 0, do_tstamp = 0;
2023	u32 bufaddr;
2024	unsigned long flags;
2025	unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2026
2027	/*
2028	 * TOE=1 frames larger than 2500 bytes may see excess delays
2029	 * before start of transmission.
2030	 */
2031	if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2032			skb->ip_summed == CHECKSUM_PARTIAL &&
2033			skb->len > 2500)) {
2034		int ret;
2035
2036		ret = skb_checksum_help(skb);
2037		if (ret)
2038			return ret;
2039	}
2040
2041	rq = skb->queue_mapping;
2042	tx_queue = priv->tx_queue[rq];
2043	txq = netdev_get_tx_queue(dev, rq);
2044	base = tx_queue->tx_bd_base;
2045	regs = tx_queue->grp->regs;
2046
2047	/* check if time stamp should be generated */
2048	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2049			priv->hwts_tx_en)) {
2050		do_tstamp = 1;
2051		fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2052	}
2053
2054	/* make space for additional header when fcb is needed */
2055	if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2056			vlan_tx_tag_present(skb) ||
2057			unlikely(do_tstamp)) &&
2058			(skb_headroom(skb) < fcb_length)) {
2059		struct sk_buff *skb_new;
2060
2061		skb_new = skb_realloc_headroom(skb, fcb_length);
2062		if (!skb_new) {
2063			dev->stats.tx_errors++;
2064			kfree_skb(skb);
2065			return NETDEV_TX_OK;
2066		}
2067
2068		/* Steal sock reference for processing TX time stamps */
2069		swap(skb_new->sk, skb->sk);
2070		swap(skb_new->destructor, skb->destructor);
2071		kfree_skb(skb);
2072		skb = skb_new;
2073	}
2074
2075	/* total number of fragments in the SKB */
2076	nr_frags = skb_shinfo(skb)->nr_frags;
2077
2078	/* calculate the required number of TxBDs for this skb */
2079	if (unlikely(do_tstamp))
2080		nr_txbds = nr_frags + 2;
2081	else
2082		nr_txbds = nr_frags + 1;
2083
2084	/* check if there is space to queue this packet */
2085	if (nr_txbds > tx_queue->num_txbdfree) {
2086		/* no space, stop the queue */
2087		netif_tx_stop_queue(txq);
2088		dev->stats.tx_fifo_errors++;
2089		return NETDEV_TX_BUSY;
2090	}
2091
2092	/* Update transmit stats */
2093	tx_queue->stats.tx_bytes += skb->len;
2094	tx_queue->stats.tx_packets++;
2095
2096	txbdp = txbdp_start = tx_queue->cur_tx;
2097	lstatus = txbdp->lstatus;
2098
2099	/* Time stamp insertion requires one additional TxBD */
2100	if (unlikely(do_tstamp))
2101		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2102				tx_queue->tx_ring_size);
2103
2104	if (nr_frags == 0) {
2105		if (unlikely(do_tstamp))
2106			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2107					TXBD_INTERRUPT);
2108		else
2109			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2110	} else {
2111		/* Place the fragment addresses and lengths into the TxBDs */
2112		for (i = 0; i < nr_frags; i++) {
2113			/* Point at the next BD, wrapping as needed */
2114			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2115
2116			length = skb_shinfo(skb)->frags[i].size;
2117
2118			lstatus = txbdp->lstatus | length |
2119				BD_LFLAG(TXBD_READY);
2120
2121			/* Handle the last BD specially */
2122			if (i == nr_frags - 1)
2123				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2124
2125			bufaddr = skb_frag_dma_map(&priv->ofdev->dev,
2126						   &skb_shinfo(skb)->frags[i],
2127						   0,
2128						   length,
2129						   DMA_TO_DEVICE);
2130
2131			/* set the TxBD length and buffer pointer */
2132			txbdp->bufPtr = bufaddr;
2133			txbdp->lstatus = lstatus;
2134		}
2135
2136		lstatus = txbdp_start->lstatus;
2137	}
2138
2139	/* Add TxPAL between FCB and frame if required */
2140	if (unlikely(do_tstamp)) {
2141		skb_push(skb, GMAC_TXPAL_LEN);
2142		memset(skb->data, 0, GMAC_TXPAL_LEN);
2143	}
2144
2145	/* Set up checksumming */
2146	if (CHECKSUM_PARTIAL == skb->ip_summed) {
2147		fcb = gfar_add_fcb(skb);
2148		/* as specified by errata */
2149		if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12)
2150			     && ((unsigned long)fcb % 0x20) > 0x18)) {
2151			__skb_pull(skb, GMAC_FCB_LEN);
2152			skb_checksum_help(skb);
2153		} else {
2154			lstatus |= BD_LFLAG(TXBD_TOE);
2155			gfar_tx_checksum(skb, fcb, fcb_length);
2156		}
2157	}
2158
2159	if (vlan_tx_tag_present(skb)) {
2160		if (unlikely(NULL == fcb)) {
2161			fcb = gfar_add_fcb(skb);
2162			lstatus |= BD_LFLAG(TXBD_TOE);
2163		}
2164
2165		gfar_tx_vlan(skb, fcb);
2166	}
2167
2168	/* Setup tx hardware time stamping if requested */
2169	if (unlikely(do_tstamp)) {
2170		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2171		if (fcb == NULL)
2172			fcb = gfar_add_fcb(skb);
2173		fcb->ptp = 1;
2174		lstatus |= BD_LFLAG(TXBD_TOE);
2175	}
2176
2177	txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2178			skb_headlen(skb), DMA_TO_DEVICE);
2179
2180	/*
2181	 * If time stamping is requested one additional TxBD must be set up. The
2182	 * first TxBD points to the FCB and must have a data length of
2183	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2184	 * the full frame length.
2185	 */
2186	if (unlikely(do_tstamp)) {
2187		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2188		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2189				(skb_headlen(skb) - fcb_length);
2190		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2191	} else {
2192		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2193	}
2194
2195	netdev_tx_sent_queue(txq, skb->len);
2196
2197	/*
2198	 * We can work in parallel with gfar_clean_tx_ring(), except
2199	 * when modifying num_txbdfree. Note that we didn't grab the lock
2200	 * when we were reading the num_txbdfree and checking for available
2201	 * space, that's because outside of this function it can only grow,
2202	 * and once we've got needed space, it cannot suddenly disappear.
2203	 *
2204	 * The lock also protects us from gfar_error(), which can modify
2205	 * regs->tstat and thus retrigger the transfers, which is why we
2206	 * also must grab the lock before setting ready bit for the first
2207	 * to be transmitted BD.
2208	 */
2209	spin_lock_irqsave(&tx_queue->txlock, flags);
2210
2211	/*
2212	 * The powerpc-specific eieio() is used, as wmb() has too strong
2213	 * semantics (it requires synchronization between cacheable and
2214	 * uncacheable mappings, which eieio doesn't provide and which we
2215	 * don't need), thus requiring a more expensive sync instruction.  At
2216	 * some point, the set of architecture-independent barrier functions
2217	 * should be expanded to include weaker barriers.
2218	 */
2219	eieio();
2220
2221	txbdp_start->lstatus = lstatus;
2222
2223	eieio(); /* force lstatus write before tx_skbuff */
2224
2225	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2226
2227	/* Update the current skb pointer to the next entry we will use
2228	 * (wrapping if necessary) */
2229	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2230		TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2231
2232	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2233
2234	/* reduce TxBD free count */
2235	tx_queue->num_txbdfree -= (nr_txbds);
2236
2237	/* If the next BD still needs to be cleaned up, then the bds
2238	   are full.  We need to tell the kernel to stop sending us stuff. */
2239	if (!tx_queue->num_txbdfree) {
2240		netif_tx_stop_queue(txq);
2241
2242		dev->stats.tx_fifo_errors++;
2243	}
2244
2245	/* Tell the DMA to go go go */
2246	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2247
2248	/* Unlock priv */
2249	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2250
2251	return NETDEV_TX_OK;
2252}
2253
2254/* Stops the kernel queue, and halts the controller */
2255static int gfar_close(struct net_device *dev)
2256{
2257	struct gfar_private *priv = netdev_priv(dev);
2258
2259	disable_napi(priv);
2260
2261	cancel_work_sync(&priv->reset_task);
2262	stop_gfar(dev);
2263
2264	/* Disconnect from the PHY */
2265	phy_disconnect(priv->phydev);
2266	priv->phydev = NULL;
2267
2268	netif_tx_stop_all_queues(dev);
2269
2270	return 0;
2271}
2272
2273/* Changes the mac address if the controller is not running. */
2274static int gfar_set_mac_address(struct net_device *dev)
2275{
2276	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2277
2278	return 0;
2279}
2280
2281/* Check if rx parser should be activated */
2282void gfar_check_rx_parser_mode(struct gfar_private *priv)
2283{
2284	struct gfar __iomem *regs;
2285	u32 tempval;
2286
2287	regs = priv->gfargrp[0].regs;
2288
2289	tempval = gfar_read(&regs->rctrl);
2290	/* If parse is no longer required, then disable parser */
2291	if (tempval & RCTRL_REQ_PARSER)
2292		tempval |= RCTRL_PRSDEP_INIT;
2293	else
2294		tempval &= ~RCTRL_PRSDEP_INIT;
2295	gfar_write(&regs->rctrl, tempval);
2296}
2297
2298/* Enables and disables VLAN insertion/extraction */
2299void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2300{
2301	struct gfar_private *priv = netdev_priv(dev);
2302	struct gfar __iomem *regs = NULL;
2303	unsigned long flags;
2304	u32 tempval;
2305
2306	regs = priv->gfargrp[0].regs;
2307	local_irq_save(flags);
2308	lock_rx_qs(priv);
2309
2310	if (features & NETIF_F_HW_VLAN_TX) {
2311		/* Enable VLAN tag insertion */
2312		tempval = gfar_read(&regs->tctrl);
2313		tempval |= TCTRL_VLINS;
2314		gfar_write(&regs->tctrl, tempval);
2315	} else {
2316		/* Disable VLAN tag insertion */
2317		tempval = gfar_read(&regs->tctrl);
2318		tempval &= ~TCTRL_VLINS;
2319		gfar_write(&regs->tctrl, tempval);
2320	}
2321
2322	if (features & NETIF_F_HW_VLAN_RX) {
2323		/* Enable VLAN tag extraction */
2324		tempval = gfar_read(&regs->rctrl);
2325		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2326		gfar_write(&regs->rctrl, tempval);
2327	} else {
2328		/* Disable VLAN tag extraction */
2329		tempval = gfar_read(&regs->rctrl);
2330		tempval &= ~RCTRL_VLEX;
2331		gfar_write(&regs->rctrl, tempval);
2332
2333		gfar_check_rx_parser_mode(priv);
2334	}
2335
2336	gfar_change_mtu(dev, dev->mtu);
2337
2338	unlock_rx_qs(priv);
2339	local_irq_restore(flags);
2340}
2341
2342static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2343{
2344	int tempsize, tempval;
2345	struct gfar_private *priv = netdev_priv(dev);
2346	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2347	int oldsize = priv->rx_buffer_size;
2348	int frame_size = new_mtu + ETH_HLEN;
2349
2350	if (gfar_is_vlan_on(priv))
2351		frame_size += VLAN_HLEN;
2352
2353	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2354		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2355		return -EINVAL;
2356	}
2357
2358	if (gfar_uses_fcb(priv))
2359		frame_size += GMAC_FCB_LEN;
2360
2361	frame_size += priv->padding;
2362
2363	tempsize =
2364	    (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2365	    INCREMENTAL_BUFFER_SIZE;
2366
2367	/* Only stop and start the controller if it isn't already
2368	 * stopped, and we changed something */
2369	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2370		stop_gfar(dev);
2371
2372	priv->rx_buffer_size = tempsize;
2373
2374	dev->mtu = new_mtu;
2375
2376	gfar_write(&regs->mrblr, priv->rx_buffer_size);
2377	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2378
2379	/* If the mtu is larger than the max size for standard
2380	 * ethernet frames (ie, a jumbo frame), then set maccfg2
2381	 * to allow huge frames, and to check the length */
2382	tempval = gfar_read(&regs->maccfg2);
2383
2384	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2385			gfar_has_errata(priv, GFAR_ERRATA_74))
2386		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2387	else
2388		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2389
2390	gfar_write(&regs->maccfg2, tempval);
2391
2392	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2393		startup_gfar(dev);
2394
2395	return 0;
2396}
2397
2398/* gfar_reset_task gets scheduled when a packet has not been
2399 * transmitted after a set amount of time.
2400 * For now, assume that clearing out all the structures, and
2401 * starting over will fix the problem.
2402 */
2403static void gfar_reset_task(struct work_struct *work)
2404{
2405	struct gfar_private *priv = container_of(work, struct gfar_private,
2406			reset_task);
2407	struct net_device *dev = priv->ndev;
2408
2409	if (dev->flags & IFF_UP) {
2410		netif_tx_stop_all_queues(dev);
2411		stop_gfar(dev);
2412		startup_gfar(dev);
2413		netif_tx_start_all_queues(dev);
2414	}
2415
2416	netif_tx_schedule_all(dev);
2417}
2418
2419static void gfar_timeout(struct net_device *dev)
2420{
2421	struct gfar_private *priv = netdev_priv(dev);
2422
2423	dev->stats.tx_errors++;
2424	schedule_work(&priv->reset_task);
2425}
2426
2427static void gfar_align_skb(struct sk_buff *skb)
2428{
2429	/* We need the data buffer to be aligned properly.  We will reserve
2430	 * as many bytes as needed to align the data properly
2431	 */
2432	skb_reserve(skb, RXBUF_ALIGNMENT -
2433		(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2434}
2435
2436/* Interrupt Handler for Transmit complete */
2437static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2438{
2439	struct net_device *dev = tx_queue->dev;
2440	struct netdev_queue *txq;
2441	struct gfar_private *priv = netdev_priv(dev);
2442	struct gfar_priv_rx_q *rx_queue = NULL;
2443	struct txbd8 *bdp, *next = NULL;
2444	struct txbd8 *lbdp = NULL;
2445	struct txbd8 *base = tx_queue->tx_bd_base;
2446	struct sk_buff *skb;
2447	int skb_dirtytx;
2448	int tx_ring_size = tx_queue->tx_ring_size;
2449	int frags = 0, nr_txbds = 0;
2450	int i;
2451	int howmany = 0;
2452	int tqi = tx_queue->qindex;
2453	unsigned int bytes_sent = 0;
2454	u32 lstatus;
2455	size_t buflen;
2456
2457	rx_queue = priv->rx_queue[tqi];
2458	txq = netdev_get_tx_queue(dev, tqi);
2459	bdp = tx_queue->dirty_tx;
2460	skb_dirtytx = tx_queue->skb_dirtytx;
2461
2462	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2463		unsigned long flags;
2464
2465		frags = skb_shinfo(skb)->nr_frags;
2466
2467		/*
2468		 * When time stamping, one additional TxBD must be freed.
2469		 * Also, we need to dma_unmap_single() the TxPAL.
2470		 */
2471		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2472			nr_txbds = frags + 2;
2473		else
2474			nr_txbds = frags + 1;
2475
2476		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2477
2478		lstatus = lbdp->lstatus;
2479
2480		/* Only clean completed frames */
2481		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2482				(lstatus & BD_LENGTH_MASK))
2483			break;
2484
2485		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2486			next = next_txbd(bdp, base, tx_ring_size);
2487			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2488		} else
2489			buflen = bdp->length;
2490
2491		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2492				buflen, DMA_TO_DEVICE);
2493
2494		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2495			struct skb_shared_hwtstamps shhwtstamps;
2496			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2497			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2498			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2499			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2500			skb_tstamp_tx(skb, &shhwtstamps);
2501			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2502			bdp = next;
2503		}
2504
2505		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2506		bdp = next_txbd(bdp, base, tx_ring_size);
2507
2508		for (i = 0; i < frags; i++) {
2509			dma_unmap_page(&priv->ofdev->dev,
2510					bdp->bufPtr,
2511					bdp->length,
2512					DMA_TO_DEVICE);
2513			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2514			bdp = next_txbd(bdp, base, tx_ring_size);
2515		}
2516
2517		bytes_sent += skb->len;
2518
2519		/*
2520		 * If there's room in the queue (limit it to rx_buffer_size)
2521		 * we add this skb back into the pool, if it's the right size
2522		 */
2523		if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2524				skb_recycle_check(skb, priv->rx_buffer_size +
2525					RXBUF_ALIGNMENT)) {
2526			gfar_align_skb(skb);
2527			skb_queue_head(&priv->rx_recycle, skb);
2528		} else
2529			dev_kfree_skb_any(skb);
2530
2531		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2532
2533		skb_dirtytx = (skb_dirtytx + 1) &
2534			TX_RING_MOD_MASK(tx_ring_size);
2535
2536		howmany++;
2537		spin_lock_irqsave(&tx_queue->txlock, flags);
2538		tx_queue->num_txbdfree += nr_txbds;
2539		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2540	}
2541
2542	/* If we freed a buffer, we can restart transmission, if necessary */
2543	if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2544		netif_wake_subqueue(dev, tqi);
2545
2546	/* Update dirty indicators */
2547	tx_queue->skb_dirtytx = skb_dirtytx;
2548	tx_queue->dirty_tx = bdp;
2549
2550	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2551
2552	return howmany;
2553}
2554
2555static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2556{
2557	unsigned long flags;
2558
2559	spin_lock_irqsave(&gfargrp->grplock, flags);
2560	if (napi_schedule_prep(&gfargrp->napi)) {
2561		gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2562		__napi_schedule(&gfargrp->napi);
2563	} else {
2564		/*
2565		 * Clear IEVENT, so interrupts aren't called again
2566		 * because of the packets that have already arrived.
2567		 */
2568		gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2569	}
2570	spin_unlock_irqrestore(&gfargrp->grplock, flags);
2571
2572}
2573
2574/* Interrupt Handler for Transmit complete */
2575static irqreturn_t gfar_transmit(int irq, void *grp_id)
2576{
2577	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2578	return IRQ_HANDLED;
2579}
2580
2581static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2582		struct sk_buff *skb)
2583{
2584	struct net_device *dev = rx_queue->dev;
2585	struct gfar_private *priv = netdev_priv(dev);
2586	dma_addr_t buf;
2587
2588	buf = dma_map_single(&priv->ofdev->dev, skb->data,
2589			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2590	gfar_init_rxbdp(rx_queue, bdp, buf);
2591}
2592
2593static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2594{
2595	struct gfar_private *priv = netdev_priv(dev);
2596	struct sk_buff *skb = NULL;
2597
2598	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2599	if (!skb)
2600		return NULL;
2601
2602	gfar_align_skb(skb);
2603
2604	return skb;
2605}
2606
2607struct sk_buff * gfar_new_skb(struct net_device *dev)
2608{
2609	struct gfar_private *priv = netdev_priv(dev);
2610	struct sk_buff *skb = NULL;
2611
2612	skb = skb_dequeue(&priv->rx_recycle);
2613	if (!skb)
2614		skb = gfar_alloc_skb(dev);
2615
2616	return skb;
2617}
2618
2619static inline void count_errors(unsigned short status, struct net_device *dev)
2620{
2621	struct gfar_private *priv = netdev_priv(dev);
2622	struct net_device_stats *stats = &dev->stats;
2623	struct gfar_extra_stats *estats = &priv->extra_stats;
2624
2625	/* If the packet was truncated, none of the other errors
2626	 * matter */
2627	if (status & RXBD_TRUNCATED) {
2628		stats->rx_length_errors++;
2629
2630		estats->rx_trunc++;
2631
2632		return;
2633	}
2634	/* Count the errors, if there were any */
2635	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2636		stats->rx_length_errors++;
2637
2638		if (status & RXBD_LARGE)
2639			estats->rx_large++;
2640		else
2641			estats->rx_short++;
2642	}
2643	if (status & RXBD_NONOCTET) {
2644		stats->rx_frame_errors++;
2645		estats->rx_nonoctet++;
2646	}
2647	if (status & RXBD_CRCERR) {
2648		estats->rx_crcerr++;
2649		stats->rx_crc_errors++;
2650	}
2651	if (status & RXBD_OVERRUN) {
2652		estats->rx_overrun++;
2653		stats->rx_crc_errors++;
2654	}
2655}
2656
2657irqreturn_t gfar_receive(int irq, void *grp_id)
2658{
2659	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2660	return IRQ_HANDLED;
2661}
2662
2663static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2664{
2665	/* If valid headers were found, and valid sums
2666	 * were verified, then we tell the kernel that no
2667	 * checksumming is necessary.  Otherwise, it is */
2668	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2669		skb->ip_summed = CHECKSUM_UNNECESSARY;
2670	else
2671		skb_checksum_none_assert(skb);
2672}
2673
2674
2675/* gfar_process_frame() -- handle one incoming packet if skb
2676 * isn't NULL.  */
2677static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2678			      int amount_pull)
2679{
2680	struct gfar_private *priv = netdev_priv(dev);
2681	struct rxfcb *fcb = NULL;
2682
2683	int ret;
2684
2685	/* fcb is at the beginning if exists */
2686	fcb = (struct rxfcb *)skb->data;
2687
2688	/* Remove the FCB from the skb */
2689	/* Remove the padded bytes, if there are any */
2690	if (amount_pull) {
2691		skb_record_rx_queue(skb, fcb->rq);
2692		skb_pull(skb, amount_pull);
2693	}
2694
2695	/* Get receive timestamp from the skb */
2696	if (priv->hwts_rx_en) {
2697		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2698		u64 *ns = (u64 *) skb->data;
2699		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2700		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2701	}
2702
2703	if (priv->padding)
2704		skb_pull(skb, priv->padding);
2705
2706	if (dev->features & NETIF_F_RXCSUM)
2707		gfar_rx_checksum(skb, fcb);
2708
2709	/* Tell the skb what kind of packet this is */
2710	skb->protocol = eth_type_trans(skb, dev);
2711
2712	/*
2713	 * There's need to check for NETIF_F_HW_VLAN_RX here.
2714	 * Even if vlan rx accel is disabled, on some chips
2715	 * RXFCB_VLN is pseudo randomly set.
2716	 */
2717	if (dev->features & NETIF_F_HW_VLAN_RX &&
2718	    fcb->flags & RXFCB_VLN)
2719		__vlan_hwaccel_put_tag(skb, fcb->vlctl);
2720
2721	/* Send the packet up the stack */
2722	ret = netif_receive_skb(skb);
2723
2724	if (NET_RX_DROP == ret)
2725		priv->extra_stats.kernel_dropped++;
2726
2727	return 0;
2728}
2729
2730/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2731 *   until the budget/quota has been reached. Returns the number
2732 *   of frames handled
2733 */
2734int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2735{
2736	struct net_device *dev = rx_queue->dev;
2737	struct rxbd8 *bdp, *base;
2738	struct sk_buff *skb;
2739	int pkt_len;
2740	int amount_pull;
2741	int howmany = 0;
2742	struct gfar_private *priv = netdev_priv(dev);
2743
2744	/* Get the first full descriptor */
2745	bdp = rx_queue->cur_rx;
2746	base = rx_queue->rx_bd_base;
2747
2748	amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2749
2750	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2751		struct sk_buff *newskb;
2752		rmb();
2753
2754		/* Add another skb for the future */
2755		newskb = gfar_new_skb(dev);
2756
2757		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2758
2759		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2760				priv->rx_buffer_size, DMA_FROM_DEVICE);
2761
2762		if (unlikely(!(bdp->status & RXBD_ERR) &&
2763				bdp->length > priv->rx_buffer_size))
2764			bdp->status = RXBD_LARGE;
2765
2766		/* We drop the frame if we failed to allocate a new buffer */
2767		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2768				 bdp->status & RXBD_ERR)) {
2769			count_errors(bdp->status, dev);
2770
2771			if (unlikely(!newskb))
2772				newskb = skb;
2773			else if (skb)
2774				skb_queue_head(&priv->rx_recycle, skb);
2775		} else {
2776			/* Increment the number of packets */
2777			rx_queue->stats.rx_packets++;
2778			howmany++;
2779
2780			if (likely(skb)) {
2781				pkt_len = bdp->length - ETH_FCS_LEN;
2782				/* Remove the FCS from the packet length */
2783				skb_put(skb, pkt_len);
2784				rx_queue->stats.rx_bytes += pkt_len;
2785				skb_record_rx_queue(skb, rx_queue->qindex);
2786				gfar_process_frame(dev, skb, amount_pull);
2787
2788			} else {
2789				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2790				rx_queue->stats.rx_dropped++;
2791				priv->extra_stats.rx_skbmissing++;
2792			}
2793
2794		}
2795
2796		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2797
2798		/* Setup the new bdp */
2799		gfar_new_rxbdp(rx_queue, bdp, newskb);
2800
2801		/* Update to the next pointer */
2802		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2803
2804		/* update to point at the next skb */
2805		rx_queue->skb_currx =
2806		    (rx_queue->skb_currx + 1) &
2807		    RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2808	}
2809
2810	/* Update the current rxbd pointer to be the next one */
2811	rx_queue->cur_rx = bdp;
2812
2813	return howmany;
2814}
2815
2816static int gfar_poll(struct napi_struct *napi, int budget)
2817{
2818	struct gfar_priv_grp *gfargrp = container_of(napi,
2819			struct gfar_priv_grp, napi);
2820	struct gfar_private *priv = gfargrp->priv;
2821	struct gfar __iomem *regs = gfargrp->regs;
2822	struct gfar_priv_tx_q *tx_queue = NULL;
2823	struct gfar_priv_rx_q *rx_queue = NULL;
2824	int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2825	int tx_cleaned = 0, i, left_over_budget = budget;
2826	unsigned long serviced_queues = 0;
2827	int num_queues = 0;
2828
2829	num_queues = gfargrp->num_rx_queues;
2830	budget_per_queue = budget/num_queues;
2831
2832	/* Clear IEVENT, so interrupts aren't called again
2833	 * because of the packets that have already arrived */
2834	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2835
2836	while (num_queues && left_over_budget) {
2837
2838		budget_per_queue = left_over_budget/num_queues;
2839		left_over_budget = 0;
2840
2841		for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2842			if (test_bit(i, &serviced_queues))
2843				continue;
2844			rx_queue = priv->rx_queue[i];
2845			tx_queue = priv->tx_queue[rx_queue->qindex];
2846
2847			tx_cleaned += gfar_clean_tx_ring(tx_queue);
2848			rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2849							budget_per_queue);
2850			rx_cleaned += rx_cleaned_per_queue;
2851			if(rx_cleaned_per_queue < budget_per_queue) {
2852				left_over_budget = left_over_budget +
2853					(budget_per_queue - rx_cleaned_per_queue);
2854				set_bit(i, &serviced_queues);
2855				num_queues--;
2856			}
2857		}
2858	}
2859
2860	if (tx_cleaned)
2861		return budget;
2862
2863	if (rx_cleaned < budget) {
2864		napi_complete(napi);
2865
2866		/* Clear the halt bit in RSTAT */
2867		gfar_write(&regs->rstat, gfargrp->rstat);
2868
2869		gfar_write(&regs->imask, IMASK_DEFAULT);
2870
2871		/* If we are coalescing interrupts, update the timer */
2872		/* Otherwise, clear it */
2873		gfar_configure_coalescing(priv,
2874				gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2875	}
2876
2877	return rx_cleaned;
2878}
2879
2880#ifdef CONFIG_NET_POLL_CONTROLLER
2881/*
2882 * Polling 'interrupt' - used by things like netconsole to send skbs
2883 * without having to re-enable interrupts. It's not called while
2884 * the interrupt routine is executing.
2885 */
2886static void gfar_netpoll(struct net_device *dev)
2887{
2888	struct gfar_private *priv = netdev_priv(dev);
2889	int i = 0;
2890
2891	/* If the device has multiple interrupts, run tx/rx */
2892	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2893		for (i = 0; i < priv->num_grps; i++) {
2894			disable_irq(priv->gfargrp[i].interruptTransmit);
2895			disable_irq(priv->gfargrp[i].interruptReceive);
2896			disable_irq(priv->gfargrp[i].interruptError);
2897			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2898						&priv->gfargrp[i]);
2899			enable_irq(priv->gfargrp[i].interruptError);
2900			enable_irq(priv->gfargrp[i].interruptReceive);
2901			enable_irq(priv->gfargrp[i].interruptTransmit);
2902		}
2903	} else {
2904		for (i = 0; i < priv->num_grps; i++) {
2905			disable_irq(priv->gfargrp[i].interruptTransmit);
2906			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2907						&priv->gfargrp[i]);
2908			enable_irq(priv->gfargrp[i].interruptTransmit);
2909		}
2910	}
2911}
2912#endif
2913
2914/* The interrupt handler for devices with one interrupt */
2915static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2916{
2917	struct gfar_priv_grp *gfargrp = grp_id;
2918
2919	/* Save ievent for future reference */
2920	u32 events = gfar_read(&gfargrp->regs->ievent);
2921
2922	/* Check for reception */
2923	if (events & IEVENT_RX_MASK)
2924		gfar_receive(irq, grp_id);
2925
2926	/* Check for transmit completion */
2927	if (events & IEVENT_TX_MASK)
2928		gfar_transmit(irq, grp_id);
2929
2930	/* Check for errors */
2931	if (events & IEVENT_ERR_MASK)
2932		gfar_error(irq, grp_id);
2933
2934	return IRQ_HANDLED;
2935}
2936
2937/* Called every time the controller might need to be made
2938 * aware of new link state.  The PHY code conveys this
2939 * information through variables in the phydev structure, and this
2940 * function converts those variables into the appropriate
2941 * register values, and can bring down the device if needed.
2942 */
2943static void adjust_link(struct net_device *dev)
2944{
2945	struct gfar_private *priv = netdev_priv(dev);
2946	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2947	unsigned long flags;
2948	struct phy_device *phydev = priv->phydev;
2949	int new_state = 0;
2950
2951	local_irq_save(flags);
2952	lock_tx_qs(priv);
2953
2954	if (phydev->link) {
2955		u32 tempval = gfar_read(&regs->maccfg2);
2956		u32 ecntrl = gfar_read(&regs->ecntrl);
2957
2958		/* Now we make sure that we can be in full duplex mode.
2959		 * If not, we operate in half-duplex mode. */
2960		if (phydev->duplex != priv->oldduplex) {
2961			new_state = 1;
2962			if (!(phydev->duplex))
2963				tempval &= ~(MACCFG2_FULL_DUPLEX);
2964			else
2965				tempval |= MACCFG2_FULL_DUPLEX;
2966
2967			priv->oldduplex = phydev->duplex;
2968		}
2969
2970		if (phydev->speed != priv->oldspeed) {
2971			new_state = 1;
2972			switch (phydev->speed) {
2973			case 1000:
2974				tempval =
2975				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2976
2977				ecntrl &= ~(ECNTRL_R100);
2978				break;
2979			case 100:
2980			case 10:
2981				tempval =
2982				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2983
2984				/* Reduced mode distinguishes
2985				 * between 10 and 100 */
2986				if (phydev->speed == SPEED_100)
2987					ecntrl |= ECNTRL_R100;
2988				else
2989					ecntrl &= ~(ECNTRL_R100);
2990				break;
2991			default:
2992				netif_warn(priv, link, dev,
2993					   "Ack!  Speed (%d) is not 10/100/1000!\n",
2994					   phydev->speed);
2995				break;
2996			}
2997
2998			priv->oldspeed = phydev->speed;
2999		}
3000
3001		gfar_write(&regs->maccfg2, tempval);
3002		gfar_write(&regs->ecntrl, ecntrl);
3003
3004		if (!priv->oldlink) {
3005			new_state = 1;
3006			priv->oldlink = 1;
3007		}
3008	} else if (priv->oldlink) {
3009		new_state = 1;
3010		priv->oldlink = 0;
3011		priv->oldspeed = 0;
3012		priv->oldduplex = -1;
3013	}
3014
3015	if (new_state && netif_msg_link(priv))
3016		phy_print_status(phydev);
3017	unlock_tx_qs(priv);
3018	local_irq_restore(flags);
3019}
3020
3021/* Update the hash table based on the current list of multicast
3022 * addresses we subscribe to.  Also, change the promiscuity of
3023 * the device based on the flags (this function is called
3024 * whenever dev->flags is changed */
3025static void gfar_set_multi(struct net_device *dev)
3026{
3027	struct netdev_hw_addr *ha;
3028	struct gfar_private *priv = netdev_priv(dev);
3029	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3030	u32 tempval;
3031
3032	if (dev->flags & IFF_PROMISC) {
3033		/* Set RCTRL to PROM */
3034		tempval = gfar_read(&regs->rctrl);
3035		tempval |= RCTRL_PROM;
3036		gfar_write(&regs->rctrl, tempval);
3037	} else {
3038		/* Set RCTRL to not PROM */
3039		tempval = gfar_read(&regs->rctrl);
3040		tempval &= ~(RCTRL_PROM);
3041		gfar_write(&regs->rctrl, tempval);
3042	}
3043
3044	if (dev->flags & IFF_ALLMULTI) {
3045		/* Set the hash to rx all multicast frames */
3046		gfar_write(&regs->igaddr0, 0xffffffff);
3047		gfar_write(&regs->igaddr1, 0xffffffff);
3048		gfar_write(&regs->igaddr2, 0xffffffff);
3049		gfar_write(&regs->igaddr3, 0xffffffff);
3050		gfar_write(&regs->igaddr4, 0xffffffff);
3051		gfar_write(&regs->igaddr5, 0xffffffff);
3052		gfar_write(&regs->igaddr6, 0xffffffff);
3053		gfar_write(&regs->igaddr7, 0xffffffff);
3054		gfar_write(&regs->gaddr0, 0xffffffff);
3055		gfar_write(&regs->gaddr1, 0xffffffff);
3056		gfar_write(&regs->gaddr2, 0xffffffff);
3057		gfar_write(&regs->gaddr3, 0xffffffff);
3058		gfar_write(&regs->gaddr4, 0xffffffff);
3059		gfar_write(&regs->gaddr5, 0xffffffff);
3060		gfar_write(&regs->gaddr6, 0xffffffff);
3061		gfar_write(&regs->gaddr7, 0xffffffff);
3062	} else {
3063		int em_num;
3064		int idx;
3065
3066		/* zero out the hash */
3067		gfar_write(&regs->igaddr0, 0x0);
3068		gfar_write(&regs->igaddr1, 0x0);
3069		gfar_write(&regs->igaddr2, 0x0);
3070		gfar_write(&regs->igaddr3, 0x0);
3071		gfar_write(&regs->igaddr4, 0x0);
3072		gfar_write(&regs->igaddr5, 0x0);
3073		gfar_write(&regs->igaddr6, 0x0);
3074		gfar_write(&regs->igaddr7, 0x0);
3075		gfar_write(&regs->gaddr0, 0x0);
3076		gfar_write(&regs->gaddr1, 0x0);
3077		gfar_write(&regs->gaddr2, 0x0);
3078		gfar_write(&regs->gaddr3, 0x0);
3079		gfar_write(&regs->gaddr4, 0x0);
3080		gfar_write(&regs->gaddr5, 0x0);
3081		gfar_write(&regs->gaddr6, 0x0);
3082		gfar_write(&regs->gaddr7, 0x0);
3083
3084		/* If we have extended hash tables, we need to
3085		 * clear the exact match registers to prepare for
3086		 * setting them */
3087		if (priv->extended_hash) {
3088			em_num = GFAR_EM_NUM + 1;
3089			gfar_clear_exact_match(dev);
3090			idx = 1;
3091		} else {
3092			idx = 0;
3093			em_num = 0;
3094		}
3095
3096		if (netdev_mc_empty(dev))
3097			return;
3098
3099		/* Parse the list, and set the appropriate bits */
3100		netdev_for_each_mc_addr(ha, dev) {
3101			if (idx < em_num) {
3102				gfar_set_mac_for_addr(dev, idx, ha->addr);
3103				idx++;
3104			} else
3105				gfar_set_hash_for_addr(dev, ha->addr);
3106		}
3107	}
3108}
3109
3110
3111/* Clears each of the exact match registers to zero, so they
3112 * don't interfere with normal reception */
3113static void gfar_clear_exact_match(struct net_device *dev)
3114{
3115	int idx;
3116	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3117
3118	for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3119		gfar_set_mac_for_addr(dev, idx, zero_arr);
3120}
3121
3122/* Set the appropriate hash bit for the given addr */
3123/* The algorithm works like so:
3124 * 1) Take the Destination Address (ie the multicast address), and
3125 * do a CRC on it (little endian), and reverse the bits of the
3126 * result.
3127 * 2) Use the 8 most significant bits as a hash into a 256-entry
3128 * table.  The table is controlled through 8 32-bit registers:
3129 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3130 * gaddr7.  This means that the 3 most significant bits in the
3131 * hash index which gaddr register to use, and the 5 other bits
3132 * indicate which bit (assuming an IBM numbering scheme, which
3133 * for PowerPC (tm) is usually the case) in the register holds
3134 * the entry. */
3135static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3136{
3137	u32 tempval;
3138	struct gfar_private *priv = netdev_priv(dev);
3139	u32 result = ether_crc(ETH_ALEN, addr);
3140	int width = priv->hash_width;
3141	u8 whichbit = (result >> (32 - width)) & 0x1f;
3142	u8 whichreg = result >> (32 - width + 5);
3143	u32 value = (1 << (31-whichbit));
3144
3145	tempval = gfar_read(priv->hash_regs[whichreg]);
3146	tempval |= value;
3147	gfar_write(priv->hash_regs[whichreg], tempval);
3148}
3149
3150
3151/* There are multiple MAC Address register pairs on some controllers
3152 * This function sets the numth pair to a given address
3153 */
3154static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3155				  const u8 *addr)
3156{
3157	struct gfar_private *priv = netdev_priv(dev);
3158	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3159	int idx;
3160	char tmpbuf[ETH_ALEN];
3161	u32 tempval;
3162	u32 __iomem *macptr = &regs->macstnaddr1;
3163
3164	macptr += num*2;
3165
3166	/* Now copy it into the mac registers backwards, cuz */
3167	/* little endian is silly */
3168	for (idx = 0; idx < ETH_ALEN; idx++)
3169		tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3170
3171	gfar_write(macptr, *((u32 *) (tmpbuf)));
3172
3173	tempval = *((u32 *) (tmpbuf + 4));
3174
3175	gfar_write(macptr+1, tempval);
3176}
3177
3178/* GFAR error interrupt handler */
3179static irqreturn_t gfar_error(int irq, void *grp_id)
3180{
3181	struct gfar_priv_grp *gfargrp = grp_id;
3182	struct gfar __iomem *regs = gfargrp->regs;
3183	struct gfar_private *priv= gfargrp->priv;
3184	struct net_device *dev = priv->ndev;
3185
3186	/* Save ievent for future reference */
3187	u32 events = gfar_read(&regs->ievent);
3188
3189	/* Clear IEVENT */
3190	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3191
3192	/* Magic Packet is not an error. */
3193	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3194	    (events & IEVENT_MAG))
3195		events &= ~IEVENT_MAG;
3196
3197	/* Hmm... */
3198	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3199		netdev_dbg(dev, "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3200			   events, gfar_read(&regs->imask));
3201
3202	/* Update the error counters */
3203	if (events & IEVENT_TXE) {
3204		dev->stats.tx_errors++;
3205
3206		if (events & IEVENT_LC)
3207			dev->stats.tx_window_errors++;
3208		if (events & IEVENT_CRL)
3209			dev->stats.tx_aborted_errors++;
3210		if (events & IEVENT_XFUN) {
3211			unsigned long flags;
3212
3213			netif_dbg(priv, tx_err, dev,
3214				  "TX FIFO underrun, packet dropped\n");
3215			dev->stats.tx_dropped++;
3216			priv->extra_stats.tx_underrun++;
3217
3218			local_irq_save(flags);
3219			lock_tx_qs(priv);
3220
3221			/* Reactivate the Tx Queues */
3222			gfar_write(&regs->tstat, gfargrp->tstat);
3223
3224			unlock_tx_qs(priv);
3225			local_irq_restore(flags);
3226		}
3227		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3228	}
3229	if (events & IEVENT_BSY) {
3230		dev->stats.rx_errors++;
3231		priv->extra_stats.rx_bsy++;
3232
3233		gfar_receive(irq, grp_id);
3234
3235		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3236			  gfar_read(&regs->rstat));
3237	}
3238	if (events & IEVENT_BABR) {
3239		dev->stats.rx_errors++;
3240		priv->extra_stats.rx_babr++;
3241
3242		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3243	}
3244	if (events & IEVENT_EBERR) {
3245		priv->extra_stats.eberr++;
3246		netif_dbg(priv, rx_err, dev, "bus error\n");
3247	}
3248	if (events & IEVENT_RXC)
3249		netif_dbg(priv, rx_status, dev, "control frame\n");
3250
3251	if (events & IEVENT_BABT) {
3252		priv->extra_stats.tx_babt++;
3253		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3254	}
3255	return IRQ_HANDLED;
3256}
3257
3258static struct of_device_id gfar_match[] =
3259{
3260	{
3261		.type = "network",
3262		.compatible = "gianfar",
3263	},
3264	{
3265		.compatible = "fsl,etsec2",
3266	},
3267	{},
3268};
3269MODULE_DEVICE_TABLE(of, gfar_match);
3270
3271/* Structure for a device driver */
3272static struct platform_driver gfar_driver = {
3273	.driver = {
3274		.name = "fsl-gianfar",
3275		.owner = THIS_MODULE,
3276		.pm = GFAR_PM_OPS,
3277		.of_match_table = gfar_match,
3278	},
3279	.probe = gfar_probe,
3280	.remove = gfar_remove,
3281};
3282
3283module_platform_driver(gfar_driver);
3284