1/*******************************************************************************
2
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
44 */
45
46#include "e1000.h"
47
48#define ID_LED_RESERVED_F746 0xF746
49#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50			      (ID_LED_OFF1_ON2  <<  8) | \
51			      (ID_LED_DEF1_DEF2 <<  4) | \
52			      (ID_LED_DEF1_DEF2))
53
54#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55#define AN_RETRY_COUNT          5 /* Autoneg Retry Count value */
56#define E1000_BASE1000T_STATUS          10
57#define E1000_IDLE_ERROR_COUNT_MASK     0xFF
58#define E1000_RECEIVE_ERROR_COUNTER     21
59#define E1000_RECEIVE_ERROR_MAX         0xFFFF
60
61#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
62
63static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
64static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
65static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
66static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
67static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
68				      u16 words, u16 *data);
69static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
70static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
71static s32 e1000_setup_link_82571(struct e1000_hw *hw);
72static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
73static void e1000_clear_vfta_82571(struct e1000_hw *hw);
74static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
75static s32 e1000_led_on_82574(struct e1000_hw *hw);
76static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
77static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
78static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
79static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
80static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
81static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
82static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
83
84/**
85 *  e1000_init_phy_params_82571 - Init PHY func ptrs.
86 *  @hw: pointer to the HW structure
87 **/
88static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
89{
90	struct e1000_phy_info *phy = &hw->phy;
91	s32 ret_val;
92
93	if (hw->phy.media_type != e1000_media_type_copper) {
94		phy->type = e1000_phy_none;
95		return 0;
96	}
97
98	phy->addr			 = 1;
99	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
100	phy->reset_delay_us		 = 100;
101
102	phy->ops.power_up		 = e1000_power_up_phy_copper;
103	phy->ops.power_down		 = e1000_power_down_phy_copper_82571;
104
105	switch (hw->mac.type) {
106	case e1000_82571:
107	case e1000_82572:
108		phy->type		 = e1000_phy_igp_2;
109		break;
110	case e1000_82573:
111		phy->type		 = e1000_phy_m88;
112		break;
113	case e1000_82574:
114	case e1000_82583:
115		phy->type		 = e1000_phy_bm;
116		phy->ops.acquire = e1000_get_hw_semaphore_82574;
117		phy->ops.release = e1000_put_hw_semaphore_82574;
118		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
119		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
120		break;
121	default:
122		return -E1000_ERR_PHY;
123		break;
124	}
125
126	/* This can only be done after all function pointers are setup. */
127	ret_val = e1000_get_phy_id_82571(hw);
128	if (ret_val) {
129		e_dbg("Error getting PHY ID\n");
130		return ret_val;
131	}
132
133	/* Verify phy id */
134	switch (hw->mac.type) {
135	case e1000_82571:
136	case e1000_82572:
137		if (phy->id != IGP01E1000_I_PHY_ID)
138			ret_val = -E1000_ERR_PHY;
139		break;
140	case e1000_82573:
141		if (phy->id != M88E1111_I_PHY_ID)
142			ret_val = -E1000_ERR_PHY;
143		break;
144	case e1000_82574:
145	case e1000_82583:
146		if (phy->id != BME1000_E_PHY_ID_R2)
147			ret_val = -E1000_ERR_PHY;
148		break;
149	default:
150		ret_val = -E1000_ERR_PHY;
151		break;
152	}
153
154	if (ret_val)
155		e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
156
157	return ret_val;
158}
159
160/**
161 *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
162 *  @hw: pointer to the HW structure
163 **/
164static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
165{
166	struct e1000_nvm_info *nvm = &hw->nvm;
167	u32 eecd = er32(EECD);
168	u16 size;
169
170	nvm->opcode_bits = 8;
171	nvm->delay_usec = 1;
172	switch (nvm->override) {
173	case e1000_nvm_override_spi_large:
174		nvm->page_size = 32;
175		nvm->address_bits = 16;
176		break;
177	case e1000_nvm_override_spi_small:
178		nvm->page_size = 8;
179		nvm->address_bits = 8;
180		break;
181	default:
182		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
183		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
184		break;
185	}
186
187	switch (hw->mac.type) {
188	case e1000_82573:
189	case e1000_82574:
190	case e1000_82583:
191		if (((eecd >> 15) & 0x3) == 0x3) {
192			nvm->type = e1000_nvm_flash_hw;
193			nvm->word_size = 2048;
194			/*
195			 * Autonomous Flash update bit must be cleared due
196			 * to Flash update issue.
197			 */
198			eecd &= ~E1000_EECD_AUPDEN;
199			ew32(EECD, eecd);
200			break;
201		}
202		/* Fall Through */
203	default:
204		nvm->type = e1000_nvm_eeprom_spi;
205		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
206				  E1000_EECD_SIZE_EX_SHIFT);
207		/*
208		 * Added to a constant, "size" becomes the left-shift value
209		 * for setting word_size.
210		 */
211		size += NVM_WORD_SIZE_BASE_SHIFT;
212
213		/* EEPROM access above 16k is unsupported */
214		if (size > 14)
215			size = 14;
216		nvm->word_size	= 1 << size;
217		break;
218	}
219
220	/* Function Pointers */
221	switch (hw->mac.type) {
222	case e1000_82574:
223	case e1000_82583:
224		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
225		nvm->ops.release = e1000_put_hw_semaphore_82574;
226		break;
227	default:
228		break;
229	}
230
231	return 0;
232}
233
234/**
235 *  e1000_init_mac_params_82571 - Init MAC func ptrs.
236 *  @hw: pointer to the HW structure
237 **/
238static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
239{
240	struct e1000_mac_info *mac = &hw->mac;
241	u32 swsm = 0;
242	u32 swsm2 = 0;
243	bool force_clear_smbi = false;
244
245	/* Set media type and media-dependent function pointers */
246	switch (hw->adapter->pdev->device) {
247	case E1000_DEV_ID_82571EB_FIBER:
248	case E1000_DEV_ID_82572EI_FIBER:
249	case E1000_DEV_ID_82571EB_QUAD_FIBER:
250		hw->phy.media_type = e1000_media_type_fiber;
251		mac->ops.setup_physical_interface =
252		    e1000_setup_fiber_serdes_link_82571;
253		mac->ops.check_for_link = e1000e_check_for_fiber_link;
254		mac->ops.get_link_up_info =
255		    e1000e_get_speed_and_duplex_fiber_serdes;
256		break;
257	case E1000_DEV_ID_82571EB_SERDES:
258	case E1000_DEV_ID_82571EB_SERDES_DUAL:
259	case E1000_DEV_ID_82571EB_SERDES_QUAD:
260	case E1000_DEV_ID_82572EI_SERDES:
261		hw->phy.media_type = e1000_media_type_internal_serdes;
262		mac->ops.setup_physical_interface =
263		    e1000_setup_fiber_serdes_link_82571;
264		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
265		mac->ops.get_link_up_info =
266		    e1000e_get_speed_and_duplex_fiber_serdes;
267		break;
268	default:
269		hw->phy.media_type = e1000_media_type_copper;
270		mac->ops.setup_physical_interface =
271		    e1000_setup_copper_link_82571;
272		mac->ops.check_for_link = e1000e_check_for_copper_link;
273		mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
274		break;
275	}
276
277	/* Set mta register count */
278	mac->mta_reg_count = 128;
279	/* Set rar entry count */
280	mac->rar_entry_count = E1000_RAR_ENTRIES;
281	/* Adaptive IFS supported */
282	mac->adaptive_ifs = true;
283
284	/* MAC-specific function pointers */
285	switch (hw->mac.type) {
286	case e1000_82573:
287		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
288		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
289		mac->ops.led_on = e1000e_led_on_generic;
290		mac->ops.blink_led = e1000e_blink_led_generic;
291
292		/* FWSM register */
293		mac->has_fwsm = true;
294		/*
295		 * ARC supported; valid only if manageability features are
296		 * enabled.
297		 */
298		mac->arc_subsystem_valid =
299			(er32(FWSM) & E1000_FWSM_MODE_MASK)
300			? true : false;
301		break;
302	case e1000_82574:
303	case e1000_82583:
304		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
305		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
306		mac->ops.led_on = e1000_led_on_82574;
307		break;
308	default:
309		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
310		mac->ops.led_on = e1000e_led_on_generic;
311		mac->ops.blink_led = e1000e_blink_led_generic;
312
313		/* FWSM register */
314		mac->has_fwsm = true;
315		break;
316	}
317
318	/*
319	 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
320	 * first NVM or PHY access. This should be done for single-port
321	 * devices, and for one port only on dual-port devices so that
322	 * for those devices we can still use the SMBI lock to synchronize
323	 * inter-port accesses to the PHY & NVM.
324	 */
325	switch (hw->mac.type) {
326	case e1000_82571:
327	case e1000_82572:
328		swsm2 = er32(SWSM2);
329
330		if (!(swsm2 & E1000_SWSM2_LOCK)) {
331			/* Only do this for the first interface on this card */
332			ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
333			force_clear_smbi = true;
334		} else {
335			force_clear_smbi = false;
336		}
337		break;
338	default:
339		force_clear_smbi = true;
340		break;
341	}
342
343	if (force_clear_smbi) {
344		/* Make sure SWSM.SMBI is clear */
345		swsm = er32(SWSM);
346		if (swsm & E1000_SWSM_SMBI) {
347			/* This bit should not be set on a first interface, and
348			 * indicates that the bootagent or EFI code has
349			 * improperly left this bit enabled
350			 */
351			e_dbg("Please update your 82571 Bootagent\n");
352		}
353		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
354	}
355
356	/*
357	 * Initialize device specific counter of SMBI acquisition
358	 * timeouts.
359	 */
360	 hw->dev_spec.e82571.smb_counter = 0;
361
362	return 0;
363}
364
365static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
366{
367	struct e1000_hw *hw = &adapter->hw;
368	static int global_quad_port_a; /* global port a indication */
369	struct pci_dev *pdev = adapter->pdev;
370	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
371	s32 rc;
372
373	rc = e1000_init_mac_params_82571(hw);
374	if (rc)
375		return rc;
376
377	rc = e1000_init_nvm_params_82571(hw);
378	if (rc)
379		return rc;
380
381	rc = e1000_init_phy_params_82571(hw);
382	if (rc)
383		return rc;
384
385	/* tag quad port adapters first, it's used below */
386	switch (pdev->device) {
387	case E1000_DEV_ID_82571EB_QUAD_COPPER:
388	case E1000_DEV_ID_82571EB_QUAD_FIBER:
389	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
390	case E1000_DEV_ID_82571PT_QUAD_COPPER:
391		adapter->flags |= FLAG_IS_QUAD_PORT;
392		/* mark the first port */
393		if (global_quad_port_a == 0)
394			adapter->flags |= FLAG_IS_QUAD_PORT_A;
395		/* Reset for multiple quad port adapters */
396		global_quad_port_a++;
397		if (global_quad_port_a == 4)
398			global_quad_port_a = 0;
399		break;
400	default:
401		break;
402	}
403
404	switch (adapter->hw.mac.type) {
405	case e1000_82571:
406		/* these dual ports don't have WoL on port B at all */
407		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
408		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
409		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
410		    (is_port_b))
411			adapter->flags &= ~FLAG_HAS_WOL;
412		/* quad ports only support WoL on port A */
413		if (adapter->flags & FLAG_IS_QUAD_PORT &&
414		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
415			adapter->flags &= ~FLAG_HAS_WOL;
416		/* Does not support WoL on any port */
417		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
418			adapter->flags &= ~FLAG_HAS_WOL;
419		break;
420	case e1000_82573:
421		if (pdev->device == E1000_DEV_ID_82573L) {
422			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
423			adapter->max_hw_frame_size = DEFAULT_JUMBO;
424		}
425		break;
426	default:
427		break;
428	}
429
430	return 0;
431}
432
433/**
434 *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
435 *  @hw: pointer to the HW structure
436 *
437 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
438 *  revision in the hardware structure.
439 **/
440static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
441{
442	struct e1000_phy_info *phy = &hw->phy;
443	s32 ret_val;
444	u16 phy_id = 0;
445
446	switch (hw->mac.type) {
447	case e1000_82571:
448	case e1000_82572:
449		/*
450		 * The 82571 firmware may still be configuring the PHY.
451		 * In this case, we cannot access the PHY until the
452		 * configuration is done.  So we explicitly set the
453		 * PHY ID.
454		 */
455		phy->id = IGP01E1000_I_PHY_ID;
456		break;
457	case e1000_82573:
458		return e1000e_get_phy_id(hw);
459		break;
460	case e1000_82574:
461	case e1000_82583:
462		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
463		if (ret_val)
464			return ret_val;
465
466		phy->id = (u32)(phy_id << 16);
467		udelay(20);
468		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
469		if (ret_val)
470			return ret_val;
471
472		phy->id |= (u32)(phy_id);
473		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
474		break;
475	default:
476		return -E1000_ERR_PHY;
477		break;
478	}
479
480	return 0;
481}
482
483/**
484 *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
485 *  @hw: pointer to the HW structure
486 *
487 *  Acquire the HW semaphore to access the PHY or NVM
488 **/
489static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
490{
491	u32 swsm;
492	s32 sw_timeout = hw->nvm.word_size + 1;
493	s32 fw_timeout = hw->nvm.word_size + 1;
494	s32 i = 0;
495
496	/*
497	 * If we have timedout 3 times on trying to acquire
498	 * the inter-port SMBI semaphore, there is old code
499	 * operating on the other port, and it is not
500	 * releasing SMBI. Modify the number of times that
501	 * we try for the semaphore to interwork with this
502	 * older code.
503	 */
504	if (hw->dev_spec.e82571.smb_counter > 2)
505		sw_timeout = 1;
506
507	/* Get the SW semaphore */
508	while (i < sw_timeout) {
509		swsm = er32(SWSM);
510		if (!(swsm & E1000_SWSM_SMBI))
511			break;
512
513		udelay(50);
514		i++;
515	}
516
517	if (i == sw_timeout) {
518		e_dbg("Driver can't access device - SMBI bit is set.\n");
519		hw->dev_spec.e82571.smb_counter++;
520	}
521	/* Get the FW semaphore. */
522	for (i = 0; i < fw_timeout; i++) {
523		swsm = er32(SWSM);
524		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
525
526		/* Semaphore acquired if bit latched */
527		if (er32(SWSM) & E1000_SWSM_SWESMBI)
528			break;
529
530		udelay(50);
531	}
532
533	if (i == fw_timeout) {
534		/* Release semaphores */
535		e1000_put_hw_semaphore_82571(hw);
536		e_dbg("Driver can't access the NVM\n");
537		return -E1000_ERR_NVM;
538	}
539
540	return 0;
541}
542
543/**
544 *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
545 *  @hw: pointer to the HW structure
546 *
547 *  Release hardware semaphore used to access the PHY or NVM
548 **/
549static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
550{
551	u32 swsm;
552
553	swsm = er32(SWSM);
554	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
555	ew32(SWSM, swsm);
556}
557/**
558 *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
559 *  @hw: pointer to the HW structure
560 *
561 *  Acquire the HW semaphore during reset.
562 *
563 **/
564static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
565{
566	u32 extcnf_ctrl;
567	s32 i = 0;
568
569	extcnf_ctrl = er32(EXTCNF_CTRL);
570	extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
571	do {
572		ew32(EXTCNF_CTRL, extcnf_ctrl);
573		extcnf_ctrl = er32(EXTCNF_CTRL);
574
575		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
576			break;
577
578		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
579
580		usleep_range(2000, 4000);
581		i++;
582	} while (i < MDIO_OWNERSHIP_TIMEOUT);
583
584	if (i == MDIO_OWNERSHIP_TIMEOUT) {
585		/* Release semaphores */
586		e1000_put_hw_semaphore_82573(hw);
587		e_dbg("Driver can't access the PHY\n");
588		return -E1000_ERR_PHY;
589	}
590
591	return 0;
592}
593
594/**
595 *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
596 *  @hw: pointer to the HW structure
597 *
598 *  Release hardware semaphore used during reset.
599 *
600 **/
601static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
602{
603	u32 extcnf_ctrl;
604
605	extcnf_ctrl = er32(EXTCNF_CTRL);
606	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
607	ew32(EXTCNF_CTRL, extcnf_ctrl);
608}
609
610static DEFINE_MUTEX(swflag_mutex);
611
612/**
613 *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
614 *  @hw: pointer to the HW structure
615 *
616 *  Acquire the HW semaphore to access the PHY or NVM.
617 *
618 **/
619static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
620{
621	s32 ret_val;
622
623	mutex_lock(&swflag_mutex);
624	ret_val = e1000_get_hw_semaphore_82573(hw);
625	if (ret_val)
626		mutex_unlock(&swflag_mutex);
627	return ret_val;
628}
629
630/**
631 *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
632 *  @hw: pointer to the HW structure
633 *
634 *  Release hardware semaphore used to access the PHY or NVM
635 *
636 **/
637static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
638{
639	e1000_put_hw_semaphore_82573(hw);
640	mutex_unlock(&swflag_mutex);
641}
642
643/**
644 *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
645 *  @hw: pointer to the HW structure
646 *  @active: true to enable LPLU, false to disable
647 *
648 *  Sets the LPLU D0 state according to the active flag.
649 *  LPLU will not be activated unless the
650 *  device autonegotiation advertisement meets standards of
651 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
652 *  This is a function pointer entry point only called by
653 *  PHY setup routines.
654 **/
655static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
656{
657	u16 data = er32(POEMB);
658
659	if (active)
660		data |= E1000_PHY_CTRL_D0A_LPLU;
661	else
662		data &= ~E1000_PHY_CTRL_D0A_LPLU;
663
664	ew32(POEMB, data);
665	return 0;
666}
667
668/**
669 *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
670 *  @hw: pointer to the HW structure
671 *  @active: boolean used to enable/disable lplu
672 *
673 *  The low power link up (lplu) state is set to the power management level D3
674 *  when active is true, else clear lplu for D3. LPLU
675 *  is used during Dx states where the power conservation is most important.
676 *  During driver activity, SmartSpeed should be enabled so performance is
677 *  maintained.
678 **/
679static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
680{
681	u16 data = er32(POEMB);
682
683	if (!active) {
684		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
685	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
686		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
687		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
688		data |= E1000_PHY_CTRL_NOND0A_LPLU;
689	}
690
691	ew32(POEMB, data);
692	return 0;
693}
694
695/**
696 *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
697 *  @hw: pointer to the HW structure
698 *
699 *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
700 *  Then for non-82573 hardware, set the EEPROM access request bit and wait
701 *  for EEPROM access grant bit.  If the access grant bit is not set, release
702 *  hardware semaphore.
703 **/
704static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
705{
706	s32 ret_val;
707
708	ret_val = e1000_get_hw_semaphore_82571(hw);
709	if (ret_val)
710		return ret_val;
711
712	switch (hw->mac.type) {
713	case e1000_82573:
714		break;
715	default:
716		ret_val = e1000e_acquire_nvm(hw);
717		break;
718	}
719
720	if (ret_val)
721		e1000_put_hw_semaphore_82571(hw);
722
723	return ret_val;
724}
725
726/**
727 *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
728 *  @hw: pointer to the HW structure
729 *
730 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
731 **/
732static void e1000_release_nvm_82571(struct e1000_hw *hw)
733{
734	e1000e_release_nvm(hw);
735	e1000_put_hw_semaphore_82571(hw);
736}
737
738/**
739 *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
740 *  @hw: pointer to the HW structure
741 *  @offset: offset within the EEPROM to be written to
742 *  @words: number of words to write
743 *  @data: 16 bit word(s) to be written to the EEPROM
744 *
745 *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
746 *
747 *  If e1000e_update_nvm_checksum is not called after this function, the
748 *  EEPROM will most likely contain an invalid checksum.
749 **/
750static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
751				 u16 *data)
752{
753	s32 ret_val;
754
755	switch (hw->mac.type) {
756	case e1000_82573:
757	case e1000_82574:
758	case e1000_82583:
759		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
760		break;
761	case e1000_82571:
762	case e1000_82572:
763		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
764		break;
765	default:
766		ret_val = -E1000_ERR_NVM;
767		break;
768	}
769
770	return ret_val;
771}
772
773/**
774 *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
775 *  @hw: pointer to the HW structure
776 *
777 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
778 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
779 *  value to the EEPROM.
780 **/
781static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
782{
783	u32 eecd;
784	s32 ret_val;
785	u16 i;
786
787	ret_val = e1000e_update_nvm_checksum_generic(hw);
788	if (ret_val)
789		return ret_val;
790
791	/*
792	 * If our nvm is an EEPROM, then we're done
793	 * otherwise, commit the checksum to the flash NVM.
794	 */
795	if (hw->nvm.type != e1000_nvm_flash_hw)
796		return 0;
797
798	/* Check for pending operations. */
799	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
800		usleep_range(1000, 2000);
801		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
802			break;
803	}
804
805	if (i == E1000_FLASH_UPDATES)
806		return -E1000_ERR_NVM;
807
808	/* Reset the firmware if using STM opcode. */
809	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
810		/*
811		 * The enabling of and the actual reset must be done
812		 * in two write cycles.
813		 */
814		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
815		e1e_flush();
816		ew32(HICR, E1000_HICR_FW_RESET);
817	}
818
819	/* Commit the write to flash */
820	eecd = er32(EECD) | E1000_EECD_FLUPD;
821	ew32(EECD, eecd);
822
823	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
824		usleep_range(1000, 2000);
825		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
826			break;
827	}
828
829	if (i == E1000_FLASH_UPDATES)
830		return -E1000_ERR_NVM;
831
832	return 0;
833}
834
835/**
836 *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
837 *  @hw: pointer to the HW structure
838 *
839 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
840 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
841 **/
842static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
843{
844	if (hw->nvm.type == e1000_nvm_flash_hw)
845		e1000_fix_nvm_checksum_82571(hw);
846
847	return e1000e_validate_nvm_checksum_generic(hw);
848}
849
850/**
851 *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
852 *  @hw: pointer to the HW structure
853 *  @offset: offset within the EEPROM to be written to
854 *  @words: number of words to write
855 *  @data: 16 bit word(s) to be written to the EEPROM
856 *
857 *  After checking for invalid values, poll the EEPROM to ensure the previous
858 *  command has completed before trying to write the next word.  After write
859 *  poll for completion.
860 *
861 *  If e1000e_update_nvm_checksum is not called after this function, the
862 *  EEPROM will most likely contain an invalid checksum.
863 **/
864static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
865				      u16 words, u16 *data)
866{
867	struct e1000_nvm_info *nvm = &hw->nvm;
868	u32 i, eewr = 0;
869	s32 ret_val = 0;
870
871	/*
872	 * A check for invalid values:  offset too large, too many words,
873	 * and not enough words.
874	 */
875	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
876	    (words == 0)) {
877		e_dbg("nvm parameter(s) out of bounds\n");
878		return -E1000_ERR_NVM;
879	}
880
881	for (i = 0; i < words; i++) {
882		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
883		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
884		       E1000_NVM_RW_REG_START;
885
886		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
887		if (ret_val)
888			break;
889
890		ew32(EEWR, eewr);
891
892		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
893		if (ret_val)
894			break;
895	}
896
897	return ret_val;
898}
899
900/**
901 *  e1000_get_cfg_done_82571 - Poll for configuration done
902 *  @hw: pointer to the HW structure
903 *
904 *  Reads the management control register for the config done bit to be set.
905 **/
906static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
907{
908	s32 timeout = PHY_CFG_TIMEOUT;
909
910	while (timeout) {
911		if (er32(EEMNGCTL) &
912		    E1000_NVM_CFG_DONE_PORT_0)
913			break;
914		usleep_range(1000, 2000);
915		timeout--;
916	}
917	if (!timeout) {
918		e_dbg("MNG configuration cycle has not completed.\n");
919		return -E1000_ERR_RESET;
920	}
921
922	return 0;
923}
924
925/**
926 *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
927 *  @hw: pointer to the HW structure
928 *  @active: true to enable LPLU, false to disable
929 *
930 *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
931 *  this function also disables smart speed and vice versa.  LPLU will not be
932 *  activated unless the device autonegotiation advertisement meets standards
933 *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
934 *  pointer entry point only called by PHY setup routines.
935 **/
936static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
937{
938	struct e1000_phy_info *phy = &hw->phy;
939	s32 ret_val;
940	u16 data;
941
942	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
943	if (ret_val)
944		return ret_val;
945
946	if (active) {
947		data |= IGP02E1000_PM_D0_LPLU;
948		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
949		if (ret_val)
950			return ret_val;
951
952		/* When LPLU is enabled, we should disable SmartSpeed */
953		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
954		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
955		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
956		if (ret_val)
957			return ret_val;
958	} else {
959		data &= ~IGP02E1000_PM_D0_LPLU;
960		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
961		/*
962		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
963		 * during Dx states where the power conservation is most
964		 * important.  During driver activity we should enable
965		 * SmartSpeed, so performance is maintained.
966		 */
967		if (phy->smart_speed == e1000_smart_speed_on) {
968			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
969					   &data);
970			if (ret_val)
971				return ret_val;
972
973			data |= IGP01E1000_PSCFR_SMART_SPEED;
974			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
975					   data);
976			if (ret_val)
977				return ret_val;
978		} else if (phy->smart_speed == e1000_smart_speed_off) {
979			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
980					   &data);
981			if (ret_val)
982				return ret_val;
983
984			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
985			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
986					   data);
987			if (ret_val)
988				return ret_val;
989		}
990	}
991
992	return 0;
993}
994
995/**
996 *  e1000_reset_hw_82571 - Reset hardware
997 *  @hw: pointer to the HW structure
998 *
999 *  This resets the hardware into a known state.
1000 **/
1001static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
1002{
1003	u32 ctrl, ctrl_ext;
1004	s32 ret_val;
1005
1006	/*
1007	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1008	 * on the last TLP read/write transaction when MAC is reset.
1009	 */
1010	ret_val = e1000e_disable_pcie_master(hw);
1011	if (ret_val)
1012		e_dbg("PCI-E Master disable polling has failed.\n");
1013
1014	e_dbg("Masking off all interrupts\n");
1015	ew32(IMC, 0xffffffff);
1016
1017	ew32(RCTL, 0);
1018	ew32(TCTL, E1000_TCTL_PSP);
1019	e1e_flush();
1020
1021	usleep_range(10000, 20000);
1022
1023	/*
1024	 * Must acquire the MDIO ownership before MAC reset.
1025	 * Ownership defaults to firmware after a reset.
1026	 */
1027	switch (hw->mac.type) {
1028	case e1000_82573:
1029		ret_val = e1000_get_hw_semaphore_82573(hw);
1030		break;
1031	case e1000_82574:
1032	case e1000_82583:
1033		ret_val = e1000_get_hw_semaphore_82574(hw);
1034		break;
1035	default:
1036		break;
1037	}
1038	if (ret_val)
1039		e_dbg("Cannot acquire MDIO ownership\n");
1040
1041	ctrl = er32(CTRL);
1042
1043	e_dbg("Issuing a global reset to MAC\n");
1044	ew32(CTRL, ctrl | E1000_CTRL_RST);
1045
1046	/* Must release MDIO ownership and mutex after MAC reset. */
1047	switch (hw->mac.type) {
1048	case e1000_82574:
1049	case e1000_82583:
1050		e1000_put_hw_semaphore_82574(hw);
1051		break;
1052	default:
1053		break;
1054	}
1055
1056	if (hw->nvm.type == e1000_nvm_flash_hw) {
1057		udelay(10);
1058		ctrl_ext = er32(CTRL_EXT);
1059		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1060		ew32(CTRL_EXT, ctrl_ext);
1061		e1e_flush();
1062	}
1063
1064	ret_val = e1000e_get_auto_rd_done(hw);
1065	if (ret_val)
1066		/* We don't want to continue accessing MAC registers. */
1067		return ret_val;
1068
1069	/*
1070	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1071	 * Need to wait for Phy configuration completion before accessing
1072	 * NVM and Phy.
1073	 */
1074
1075	switch (hw->mac.type) {
1076	case e1000_82573:
1077	case e1000_82574:
1078	case e1000_82583:
1079		msleep(25);
1080		break;
1081	default:
1082		break;
1083	}
1084
1085	/* Clear any pending interrupt events. */
1086	ew32(IMC, 0xffffffff);
1087	er32(ICR);
1088
1089	if (hw->mac.type == e1000_82571) {
1090		/* Install any alternate MAC address into RAR0 */
1091		ret_val = e1000_check_alt_mac_addr_generic(hw);
1092		if (ret_val)
1093			return ret_val;
1094
1095		e1000e_set_laa_state_82571(hw, true);
1096	}
1097
1098	/* Reinitialize the 82571 serdes link state machine */
1099	if (hw->phy.media_type == e1000_media_type_internal_serdes)
1100		hw->mac.serdes_link_state = e1000_serdes_link_down;
1101
1102	return 0;
1103}
1104
1105/**
1106 *  e1000_init_hw_82571 - Initialize hardware
1107 *  @hw: pointer to the HW structure
1108 *
1109 *  This inits the hardware readying it for operation.
1110 **/
1111static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1112{
1113	struct e1000_mac_info *mac = &hw->mac;
1114	u32 reg_data;
1115	s32 ret_val;
1116	u16 i, rar_count = mac->rar_entry_count;
1117
1118	e1000_initialize_hw_bits_82571(hw);
1119
1120	/* Initialize identification LED */
1121	ret_val = mac->ops.id_led_init(hw);
1122	if (ret_val)
1123		e_dbg("Error initializing identification LED\n");
1124		/* This is not fatal and we should not stop init due to this */
1125
1126	/* Disabling VLAN filtering */
1127	e_dbg("Initializing the IEEE VLAN\n");
1128	mac->ops.clear_vfta(hw);
1129
1130	/* Setup the receive address. */
1131	/*
1132	 * If, however, a locally administered address was assigned to the
1133	 * 82571, we must reserve a RAR for it to work around an issue where
1134	 * resetting one port will reload the MAC on the other port.
1135	 */
1136	if (e1000e_get_laa_state_82571(hw))
1137		rar_count--;
1138	e1000e_init_rx_addrs(hw, rar_count);
1139
1140	/* Zero out the Multicast HASH table */
1141	e_dbg("Zeroing the MTA\n");
1142	for (i = 0; i < mac->mta_reg_count; i++)
1143		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1144
1145	/* Setup link and flow control */
1146	ret_val = mac->ops.setup_link(hw);
1147
1148	/* Set the transmit descriptor write-back policy */
1149	reg_data = er32(TXDCTL(0));
1150	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1151		   E1000_TXDCTL_FULL_TX_DESC_WB |
1152		   E1000_TXDCTL_COUNT_DESC;
1153	ew32(TXDCTL(0), reg_data);
1154
1155	/* ...for both queues. */
1156	switch (mac->type) {
1157	case e1000_82573:
1158		e1000e_enable_tx_pkt_filtering(hw);
1159		/* fall through */
1160	case e1000_82574:
1161	case e1000_82583:
1162		reg_data = er32(GCR);
1163		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1164		ew32(GCR, reg_data);
1165		break;
1166	default:
1167		reg_data = er32(TXDCTL(1));
1168		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1169			   E1000_TXDCTL_FULL_TX_DESC_WB |
1170			   E1000_TXDCTL_COUNT_DESC;
1171		ew32(TXDCTL(1), reg_data);
1172		break;
1173	}
1174
1175	/*
1176	 * Clear all of the statistics registers (clear on read).  It is
1177	 * important that we do this after we have tried to establish link
1178	 * because the symbol error count will increment wildly if there
1179	 * is no link.
1180	 */
1181	e1000_clear_hw_cntrs_82571(hw);
1182
1183	return ret_val;
1184}
1185
1186/**
1187 *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1188 *  @hw: pointer to the HW structure
1189 *
1190 *  Initializes required hardware-dependent bits needed for normal operation.
1191 **/
1192static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1193{
1194	u32 reg;
1195
1196	/* Transmit Descriptor Control 0 */
1197	reg = er32(TXDCTL(0));
1198	reg |= (1 << 22);
1199	ew32(TXDCTL(0), reg);
1200
1201	/* Transmit Descriptor Control 1 */
1202	reg = er32(TXDCTL(1));
1203	reg |= (1 << 22);
1204	ew32(TXDCTL(1), reg);
1205
1206	/* Transmit Arbitration Control 0 */
1207	reg = er32(TARC(0));
1208	reg &= ~(0xF << 27); /* 30:27 */
1209	switch (hw->mac.type) {
1210	case e1000_82571:
1211	case e1000_82572:
1212		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1213		break;
1214	case e1000_82574:
1215	case e1000_82583:
1216		reg |= (1 << 26);
1217		break;
1218	default:
1219		break;
1220	}
1221	ew32(TARC(0), reg);
1222
1223	/* Transmit Arbitration Control 1 */
1224	reg = er32(TARC(1));
1225	switch (hw->mac.type) {
1226	case e1000_82571:
1227	case e1000_82572:
1228		reg &= ~((1 << 29) | (1 << 30));
1229		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1230		if (er32(TCTL) & E1000_TCTL_MULR)
1231			reg &= ~(1 << 28);
1232		else
1233			reg |= (1 << 28);
1234		ew32(TARC(1), reg);
1235		break;
1236	default:
1237		break;
1238	}
1239
1240	/* Device Control */
1241	switch (hw->mac.type) {
1242	case e1000_82573:
1243	case e1000_82574:
1244	case e1000_82583:
1245		reg = er32(CTRL);
1246		reg &= ~(1 << 29);
1247		ew32(CTRL, reg);
1248		break;
1249	default:
1250		break;
1251	}
1252
1253	/* Extended Device Control */
1254	switch (hw->mac.type) {
1255	case e1000_82573:
1256	case e1000_82574:
1257	case e1000_82583:
1258		reg = er32(CTRL_EXT);
1259		reg &= ~(1 << 23);
1260		reg |= (1 << 22);
1261		ew32(CTRL_EXT, reg);
1262		break;
1263	default:
1264		break;
1265	}
1266
1267	if (hw->mac.type == e1000_82571) {
1268		reg = er32(PBA_ECC);
1269		reg |= E1000_PBA_ECC_CORR_EN;
1270		ew32(PBA_ECC, reg);
1271	}
1272
1273	/*
1274	 * Workaround for hardware errata.
1275	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1276	 */
1277	if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1278		reg = er32(CTRL_EXT);
1279		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1280		ew32(CTRL_EXT, reg);
1281	}
1282
1283	/* PCI-Ex Control Registers */
1284	switch (hw->mac.type) {
1285	case e1000_82574:
1286	case e1000_82583:
1287		reg = er32(GCR);
1288		reg |= (1 << 22);
1289		ew32(GCR, reg);
1290
1291		/*
1292		 * Workaround for hardware errata.
1293		 * apply workaround for hardware errata documented in errata
1294		 * docs Fixes issue where some error prone or unreliable PCIe
1295		 * completions are occurring, particularly with ASPM enabled.
1296		 * Without fix, issue can cause Tx timeouts.
1297		 */
1298		reg = er32(GCR2);
1299		reg |= 1;
1300		ew32(GCR2, reg);
1301		break;
1302	default:
1303		break;
1304	}
1305}
1306
1307/**
1308 *  e1000_clear_vfta_82571 - Clear VLAN filter table
1309 *  @hw: pointer to the HW structure
1310 *
1311 *  Clears the register array which contains the VLAN filter table by
1312 *  setting all the values to 0.
1313 **/
1314static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1315{
1316	u32 offset;
1317	u32 vfta_value = 0;
1318	u32 vfta_offset = 0;
1319	u32 vfta_bit_in_reg = 0;
1320
1321	switch (hw->mac.type) {
1322	case e1000_82573:
1323	case e1000_82574:
1324	case e1000_82583:
1325		if (hw->mng_cookie.vlan_id != 0) {
1326			/*
1327			 * The VFTA is a 4096b bit-field, each identifying
1328			 * a single VLAN ID.  The following operations
1329			 * determine which 32b entry (i.e. offset) into the
1330			 * array we want to set the VLAN ID (i.e. bit) of
1331			 * the manageability unit.
1332			 */
1333			vfta_offset = (hw->mng_cookie.vlan_id >>
1334				       E1000_VFTA_ENTRY_SHIFT) &
1335				      E1000_VFTA_ENTRY_MASK;
1336			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1337					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1338		}
1339		break;
1340	default:
1341		break;
1342	}
1343	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1344		/*
1345		 * If the offset we want to clear is the same offset of the
1346		 * manageability VLAN ID, then clear all bits except that of
1347		 * the manageability unit.
1348		 */
1349		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1350		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1351		e1e_flush();
1352	}
1353}
1354
1355/**
1356 *  e1000_check_mng_mode_82574 - Check manageability is enabled
1357 *  @hw: pointer to the HW structure
1358 *
1359 *  Reads the NVM Initialization Control Word 2 and returns true
1360 *  (>0) if any manageability is enabled, else false (0).
1361 **/
1362static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1363{
1364	u16 data;
1365
1366	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1367	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1368}
1369
1370/**
1371 *  e1000_led_on_82574 - Turn LED on
1372 *  @hw: pointer to the HW structure
1373 *
1374 *  Turn LED on.
1375 **/
1376static s32 e1000_led_on_82574(struct e1000_hw *hw)
1377{
1378	u32 ctrl;
1379	u32 i;
1380
1381	ctrl = hw->mac.ledctl_mode2;
1382	if (!(E1000_STATUS_LU & er32(STATUS))) {
1383		/*
1384		 * If no link, then turn LED on by setting the invert bit
1385		 * for each LED that's "on" (0x0E) in ledctl_mode2.
1386		 */
1387		for (i = 0; i < 4; i++)
1388			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1389			    E1000_LEDCTL_MODE_LED_ON)
1390				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1391	}
1392	ew32(LEDCTL, ctrl);
1393
1394	return 0;
1395}
1396
1397/**
1398 *  e1000_check_phy_82574 - check 82574 phy hung state
1399 *  @hw: pointer to the HW structure
1400 *
1401 *  Returns whether phy is hung or not
1402 **/
1403bool e1000_check_phy_82574(struct e1000_hw *hw)
1404{
1405	u16 status_1kbt = 0;
1406	u16 receive_errors = 0;
1407	s32 ret_val = 0;
1408
1409	/*
1410	 * Read PHY Receive Error counter first, if its is max - all F's then
1411	 * read the Base1000T status register If both are max then PHY is hung.
1412	 */
1413	ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1414	if (ret_val)
1415		return false;
1416	if (receive_errors == E1000_RECEIVE_ERROR_MAX)  {
1417		ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1418		if (ret_val)
1419			return false;
1420		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1421		    E1000_IDLE_ERROR_COUNT_MASK)
1422			return true;
1423	}
1424
1425	return false;
1426}
1427
1428/**
1429 *  e1000_setup_link_82571 - Setup flow control and link settings
1430 *  @hw: pointer to the HW structure
1431 *
1432 *  Determines which flow control settings to use, then configures flow
1433 *  control.  Calls the appropriate media-specific link configuration
1434 *  function.  Assuming the adapter has a valid link partner, a valid link
1435 *  should be established.  Assumes the hardware has previously been reset
1436 *  and the transmitter and receiver are not enabled.
1437 **/
1438static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1439{
1440	/*
1441	 * 82573 does not have a word in the NVM to determine
1442	 * the default flow control setting, so we explicitly
1443	 * set it to full.
1444	 */
1445	switch (hw->mac.type) {
1446	case e1000_82573:
1447	case e1000_82574:
1448	case e1000_82583:
1449		if (hw->fc.requested_mode == e1000_fc_default)
1450			hw->fc.requested_mode = e1000_fc_full;
1451		break;
1452	default:
1453		break;
1454	}
1455
1456	return e1000e_setup_link_generic(hw);
1457}
1458
1459/**
1460 *  e1000_setup_copper_link_82571 - Configure copper link settings
1461 *  @hw: pointer to the HW structure
1462 *
1463 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1464 *  for link, once link is established calls to configure collision distance
1465 *  and flow control are called.
1466 **/
1467static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1468{
1469	u32 ctrl;
1470	s32 ret_val;
1471
1472	ctrl = er32(CTRL);
1473	ctrl |= E1000_CTRL_SLU;
1474	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1475	ew32(CTRL, ctrl);
1476
1477	switch (hw->phy.type) {
1478	case e1000_phy_m88:
1479	case e1000_phy_bm:
1480		ret_val = e1000e_copper_link_setup_m88(hw);
1481		break;
1482	case e1000_phy_igp_2:
1483		ret_val = e1000e_copper_link_setup_igp(hw);
1484		break;
1485	default:
1486		return -E1000_ERR_PHY;
1487		break;
1488	}
1489
1490	if (ret_val)
1491		return ret_val;
1492
1493	return e1000e_setup_copper_link(hw);
1494}
1495
1496/**
1497 *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1498 *  @hw: pointer to the HW structure
1499 *
1500 *  Configures collision distance and flow control for fiber and serdes links.
1501 *  Upon successful setup, poll for link.
1502 **/
1503static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1504{
1505	switch (hw->mac.type) {
1506	case e1000_82571:
1507	case e1000_82572:
1508		/*
1509		 * If SerDes loopback mode is entered, there is no form
1510		 * of reset to take the adapter out of that mode.  So we
1511		 * have to explicitly take the adapter out of loopback
1512		 * mode.  This prevents drivers from twiddling their thumbs
1513		 * if another tool failed to take it out of loopback mode.
1514		 */
1515		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1516		break;
1517	default:
1518		break;
1519	}
1520
1521	return e1000e_setup_fiber_serdes_link(hw);
1522}
1523
1524/**
1525 *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1526 *  @hw: pointer to the HW structure
1527 *
1528 *  Reports the link state as up or down.
1529 *
1530 *  If autonegotiation is supported by the link partner, the link state is
1531 *  determined by the result of autonegotiation. This is the most likely case.
1532 *  If autonegotiation is not supported by the link partner, and the link
1533 *  has a valid signal, force the link up.
1534 *
1535 *  The link state is represented internally here by 4 states:
1536 *
1537 *  1) down
1538 *  2) autoneg_progress
1539 *  3) autoneg_complete (the link successfully autonegotiated)
1540 *  4) forced_up (the link has been forced up, it did not autonegotiate)
1541 *
1542 **/
1543static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1544{
1545	struct e1000_mac_info *mac = &hw->mac;
1546	u32 rxcw;
1547	u32 ctrl;
1548	u32 status;
1549	u32 txcw;
1550	u32 i;
1551	s32 ret_val = 0;
1552
1553	ctrl = er32(CTRL);
1554	status = er32(STATUS);
1555	rxcw = er32(RXCW);
1556
1557	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1558
1559		/* Receiver is synchronized with no invalid bits.  */
1560		switch (mac->serdes_link_state) {
1561		case e1000_serdes_link_autoneg_complete:
1562			if (!(status & E1000_STATUS_LU)) {
1563				/*
1564				 * We have lost link, retry autoneg before
1565				 * reporting link failure
1566				 */
1567				mac->serdes_link_state =
1568				    e1000_serdes_link_autoneg_progress;
1569				mac->serdes_has_link = false;
1570				e_dbg("AN_UP     -> AN_PROG\n");
1571			} else {
1572				mac->serdes_has_link = true;
1573			}
1574			break;
1575
1576		case e1000_serdes_link_forced_up:
1577			/*
1578			 * If we are receiving /C/ ordered sets, re-enable
1579			 * auto-negotiation in the TXCW register and disable
1580			 * forced link in the Device Control register in an
1581			 * attempt to auto-negotiate with our link partner.
1582			 * If the partner code word is null, stop forcing
1583			 * and restart auto negotiation.
1584			 */
1585			if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW))  {
1586				/* Enable autoneg, and unforce link up */
1587				ew32(TXCW, mac->txcw);
1588				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1589				mac->serdes_link_state =
1590				    e1000_serdes_link_autoneg_progress;
1591				mac->serdes_has_link = false;
1592				e_dbg("FORCED_UP -> AN_PROG\n");
1593			} else {
1594				mac->serdes_has_link = true;
1595			}
1596			break;
1597
1598		case e1000_serdes_link_autoneg_progress:
1599			if (rxcw & E1000_RXCW_C) {
1600				/*
1601				 * We received /C/ ordered sets, meaning the
1602				 * link partner has autonegotiated, and we can
1603				 * trust the Link Up (LU) status bit.
1604				 */
1605				if (status & E1000_STATUS_LU) {
1606					mac->serdes_link_state =
1607					    e1000_serdes_link_autoneg_complete;
1608					e_dbg("AN_PROG   -> AN_UP\n");
1609					mac->serdes_has_link = true;
1610				} else {
1611					/* Autoneg completed, but failed. */
1612					mac->serdes_link_state =
1613					    e1000_serdes_link_down;
1614					e_dbg("AN_PROG   -> DOWN\n");
1615				}
1616			} else {
1617				/*
1618				 * The link partner did not autoneg.
1619				 * Force link up and full duplex, and change
1620				 * state to forced.
1621				 */
1622				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1623				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1624				ew32(CTRL, ctrl);
1625
1626				/* Configure Flow Control after link up. */
1627				ret_val = e1000e_config_fc_after_link_up(hw);
1628				if (ret_val) {
1629					e_dbg("Error config flow control\n");
1630					break;
1631				}
1632				mac->serdes_link_state =
1633				    e1000_serdes_link_forced_up;
1634				mac->serdes_has_link = true;
1635				e_dbg("AN_PROG   -> FORCED_UP\n");
1636			}
1637			break;
1638
1639		case e1000_serdes_link_down:
1640		default:
1641			/*
1642			 * The link was down but the receiver has now gained
1643			 * valid sync, so lets see if we can bring the link
1644			 * up.
1645			 */
1646			ew32(TXCW, mac->txcw);
1647			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1648			mac->serdes_link_state =
1649			    e1000_serdes_link_autoneg_progress;
1650			mac->serdes_has_link = false;
1651			e_dbg("DOWN      -> AN_PROG\n");
1652			break;
1653		}
1654	} else {
1655		if (!(rxcw & E1000_RXCW_SYNCH)) {
1656			mac->serdes_has_link = false;
1657			mac->serdes_link_state = e1000_serdes_link_down;
1658			e_dbg("ANYSTATE  -> DOWN\n");
1659		} else {
1660			/*
1661			 * Check several times, if Sync and Config
1662			 * both are consistently 1 then simply ignore
1663			 * the Invalid bit and restart Autoneg
1664			 */
1665			for (i = 0; i < AN_RETRY_COUNT; i++) {
1666				udelay(10);
1667				rxcw = er32(RXCW);
1668				if ((rxcw & E1000_RXCW_IV) &&
1669				    !((rxcw & E1000_RXCW_SYNCH) &&
1670				      (rxcw & E1000_RXCW_C))) {
1671					mac->serdes_has_link = false;
1672					mac->serdes_link_state =
1673					    e1000_serdes_link_down;
1674					e_dbg("ANYSTATE  -> DOWN\n");
1675					break;
1676				}
1677			}
1678
1679			if (i == AN_RETRY_COUNT) {
1680				txcw = er32(TXCW);
1681				txcw |= E1000_TXCW_ANE;
1682				ew32(TXCW, txcw);
1683				mac->serdes_link_state =
1684				    e1000_serdes_link_autoneg_progress;
1685				mac->serdes_has_link = false;
1686				e_dbg("ANYSTATE  -> AN_PROG\n");
1687			}
1688		}
1689	}
1690
1691	return ret_val;
1692}
1693
1694/**
1695 *  e1000_valid_led_default_82571 - Verify a valid default LED config
1696 *  @hw: pointer to the HW structure
1697 *  @data: pointer to the NVM (EEPROM)
1698 *
1699 *  Read the EEPROM for the current default LED configuration.  If the
1700 *  LED configuration is not valid, set to a valid LED configuration.
1701 **/
1702static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1703{
1704	s32 ret_val;
1705
1706	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1707	if (ret_val) {
1708		e_dbg("NVM Read Error\n");
1709		return ret_val;
1710	}
1711
1712	switch (hw->mac.type) {
1713	case e1000_82573:
1714	case e1000_82574:
1715	case e1000_82583:
1716		if (*data == ID_LED_RESERVED_F746)
1717			*data = ID_LED_DEFAULT_82573;
1718		break;
1719	default:
1720		if (*data == ID_LED_RESERVED_0000 ||
1721		    *data == ID_LED_RESERVED_FFFF)
1722			*data = ID_LED_DEFAULT;
1723		break;
1724	}
1725
1726	return 0;
1727}
1728
1729/**
1730 *  e1000e_get_laa_state_82571 - Get locally administered address state
1731 *  @hw: pointer to the HW structure
1732 *
1733 *  Retrieve and return the current locally administered address state.
1734 **/
1735bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1736{
1737	if (hw->mac.type != e1000_82571)
1738		return false;
1739
1740	return hw->dev_spec.e82571.laa_is_present;
1741}
1742
1743/**
1744 *  e1000e_set_laa_state_82571 - Set locally administered address state
1745 *  @hw: pointer to the HW structure
1746 *  @state: enable/disable locally administered address
1747 *
1748 *  Enable/Disable the current locally administered address state.
1749 **/
1750void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1751{
1752	if (hw->mac.type != e1000_82571)
1753		return;
1754
1755	hw->dev_spec.e82571.laa_is_present = state;
1756
1757	/* If workaround is activated... */
1758	if (state)
1759		/*
1760		 * Hold a copy of the LAA in RAR[14] This is done so that
1761		 * between the time RAR[0] gets clobbered and the time it
1762		 * gets fixed, the actual LAA is in one of the RARs and no
1763		 * incoming packets directed to this port are dropped.
1764		 * Eventually the LAA will be in RAR[0] and RAR[14].
1765		 */
1766		e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1767}
1768
1769/**
1770 *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1771 *  @hw: pointer to the HW structure
1772 *
1773 *  Verifies that the EEPROM has completed the update.  After updating the
1774 *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1775 *  the checksum fix is not implemented, we need to set the bit and update
1776 *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1777 *  we need to return bad checksum.
1778 **/
1779static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1780{
1781	struct e1000_nvm_info *nvm = &hw->nvm;
1782	s32 ret_val;
1783	u16 data;
1784
1785	if (nvm->type != e1000_nvm_flash_hw)
1786		return 0;
1787
1788	/*
1789	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1790	 * 10h-12h.  Checksum may need to be fixed.
1791	 */
1792	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1793	if (ret_val)
1794		return ret_val;
1795
1796	if (!(data & 0x10)) {
1797		/*
1798		 * Read 0x23 and check bit 15.  This bit is a 1
1799		 * when the checksum has already been fixed.  If
1800		 * the checksum is still wrong and this bit is a
1801		 * 1, we need to return bad checksum.  Otherwise,
1802		 * we need to set this bit to a 1 and update the
1803		 * checksum.
1804		 */
1805		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1806		if (ret_val)
1807			return ret_val;
1808
1809		if (!(data & 0x8000)) {
1810			data |= 0x8000;
1811			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1812			if (ret_val)
1813				return ret_val;
1814			ret_val = e1000e_update_nvm_checksum(hw);
1815		}
1816	}
1817
1818	return 0;
1819}
1820
1821/**
1822 *  e1000_read_mac_addr_82571 - Read device MAC address
1823 *  @hw: pointer to the HW structure
1824 **/
1825static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1826{
1827	if (hw->mac.type == e1000_82571) {
1828		s32 ret_val = 0;
1829
1830		/*
1831		 * If there's an alternate MAC address place it in RAR0
1832		 * so that it will override the Si installed default perm
1833		 * address.
1834		 */
1835		ret_val = e1000_check_alt_mac_addr_generic(hw);
1836		if (ret_val)
1837			return ret_val;
1838	}
1839
1840	return e1000_read_mac_addr_generic(hw);
1841}
1842
1843/**
1844 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1845 * @hw: pointer to the HW structure
1846 *
1847 * In the case of a PHY power down to save power, or to turn off link during a
1848 * driver unload, or wake on lan is not enabled, remove the link.
1849 **/
1850static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1851{
1852	struct e1000_phy_info *phy = &hw->phy;
1853	struct e1000_mac_info *mac = &hw->mac;
1854
1855	if (!phy->ops.check_reset_block)
1856		return;
1857
1858	/* If the management interface is not enabled, then power down */
1859	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1860		e1000_power_down_phy_copper(hw);
1861}
1862
1863/**
1864 *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1865 *  @hw: pointer to the HW structure
1866 *
1867 *  Clears the hardware counters by reading the counter registers.
1868 **/
1869static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1870{
1871	e1000e_clear_hw_cntrs_base(hw);
1872
1873	er32(PRC64);
1874	er32(PRC127);
1875	er32(PRC255);
1876	er32(PRC511);
1877	er32(PRC1023);
1878	er32(PRC1522);
1879	er32(PTC64);
1880	er32(PTC127);
1881	er32(PTC255);
1882	er32(PTC511);
1883	er32(PTC1023);
1884	er32(PTC1522);
1885
1886	er32(ALGNERRC);
1887	er32(RXERRC);
1888	er32(TNCRS);
1889	er32(CEXTERR);
1890	er32(TSCTC);
1891	er32(TSCTFC);
1892
1893	er32(MGTPRC);
1894	er32(MGTPDC);
1895	er32(MGTPTC);
1896
1897	er32(IAC);
1898	er32(ICRXOC);
1899
1900	er32(ICRXPTC);
1901	er32(ICRXATC);
1902	er32(ICTXPTC);
1903	er32(ICTXATC);
1904	er32(ICTXQEC);
1905	er32(ICTXQMTC);
1906	er32(ICRXDMTC);
1907}
1908
1909static const struct e1000_mac_operations e82571_mac_ops = {
1910	/* .check_mng_mode: mac type dependent */
1911	/* .check_for_link: media type dependent */
1912	.id_led_init		= e1000e_id_led_init_generic,
1913	.cleanup_led		= e1000e_cleanup_led_generic,
1914	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
1915	.get_bus_info		= e1000e_get_bus_info_pcie,
1916	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1917	/* .get_link_up_info: media type dependent */
1918	/* .led_on: mac type dependent */
1919	.led_off		= e1000e_led_off_generic,
1920	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1921	.write_vfta		= e1000_write_vfta_generic,
1922	.clear_vfta		= e1000_clear_vfta_82571,
1923	.reset_hw		= e1000_reset_hw_82571,
1924	.init_hw		= e1000_init_hw_82571,
1925	.setup_link		= e1000_setup_link_82571,
1926	/* .setup_physical_interface: media type dependent */
1927	.setup_led		= e1000e_setup_led_generic,
1928	.config_collision_dist	= e1000e_config_collision_dist_generic,
1929	.read_mac_addr		= e1000_read_mac_addr_82571,
1930};
1931
1932static const struct e1000_phy_operations e82_phy_ops_igp = {
1933	.acquire		= e1000_get_hw_semaphore_82571,
1934	.check_polarity		= e1000_check_polarity_igp,
1935	.check_reset_block	= e1000e_check_reset_block_generic,
1936	.commit			= NULL,
1937	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
1938	.get_cfg_done		= e1000_get_cfg_done_82571,
1939	.get_cable_length	= e1000e_get_cable_length_igp_2,
1940	.get_info		= e1000e_get_phy_info_igp,
1941	.read_reg		= e1000e_read_phy_reg_igp,
1942	.release		= e1000_put_hw_semaphore_82571,
1943	.reset			= e1000e_phy_hw_reset_generic,
1944	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1945	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1946	.write_reg		= e1000e_write_phy_reg_igp,
1947	.cfg_on_link_up      	= NULL,
1948};
1949
1950static const struct e1000_phy_operations e82_phy_ops_m88 = {
1951	.acquire		= e1000_get_hw_semaphore_82571,
1952	.check_polarity		= e1000_check_polarity_m88,
1953	.check_reset_block	= e1000e_check_reset_block_generic,
1954	.commit			= e1000e_phy_sw_reset,
1955	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1956	.get_cfg_done		= e1000e_get_cfg_done,
1957	.get_cable_length	= e1000e_get_cable_length_m88,
1958	.get_info		= e1000e_get_phy_info_m88,
1959	.read_reg		= e1000e_read_phy_reg_m88,
1960	.release		= e1000_put_hw_semaphore_82571,
1961	.reset			= e1000e_phy_hw_reset_generic,
1962	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1963	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1964	.write_reg		= e1000e_write_phy_reg_m88,
1965	.cfg_on_link_up      	= NULL,
1966};
1967
1968static const struct e1000_phy_operations e82_phy_ops_bm = {
1969	.acquire		= e1000_get_hw_semaphore_82571,
1970	.check_polarity		= e1000_check_polarity_m88,
1971	.check_reset_block	= e1000e_check_reset_block_generic,
1972	.commit			= e1000e_phy_sw_reset,
1973	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1974	.get_cfg_done		= e1000e_get_cfg_done,
1975	.get_cable_length	= e1000e_get_cable_length_m88,
1976	.get_info		= e1000e_get_phy_info_m88,
1977	.read_reg		= e1000e_read_phy_reg_bm2,
1978	.release		= e1000_put_hw_semaphore_82571,
1979	.reset			= e1000e_phy_hw_reset_generic,
1980	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1981	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1982	.write_reg		= e1000e_write_phy_reg_bm2,
1983	.cfg_on_link_up      	= NULL,
1984};
1985
1986static const struct e1000_nvm_operations e82571_nvm_ops = {
1987	.acquire		= e1000_acquire_nvm_82571,
1988	.read			= e1000e_read_nvm_eerd,
1989	.release		= e1000_release_nvm_82571,
1990	.reload			= e1000e_reload_nvm_generic,
1991	.update			= e1000_update_nvm_checksum_82571,
1992	.valid_led_default	= e1000_valid_led_default_82571,
1993	.validate		= e1000_validate_nvm_checksum_82571,
1994	.write			= e1000_write_nvm_82571,
1995};
1996
1997const struct e1000_info e1000_82571_info = {
1998	.mac			= e1000_82571,
1999	.flags			= FLAG_HAS_HW_VLAN_FILTER
2000				  | FLAG_HAS_JUMBO_FRAMES
2001				  | FLAG_HAS_WOL
2002				  | FLAG_APME_IN_CTRL3
2003				  | FLAG_HAS_CTRLEXT_ON_LOAD
2004				  | FLAG_HAS_SMART_POWER_DOWN
2005				  | FLAG_RESET_OVERWRITES_LAA /* errata */
2006				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
2007				  | FLAG_APME_CHECK_PORT_B,
2008	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2009				  | FLAG2_DMA_BURST,
2010	.pba			= 38,
2011	.max_hw_frame_size	= DEFAULT_JUMBO,
2012	.get_variants		= e1000_get_variants_82571,
2013	.mac_ops		= &e82571_mac_ops,
2014	.phy_ops		= &e82_phy_ops_igp,
2015	.nvm_ops		= &e82571_nvm_ops,
2016};
2017
2018const struct e1000_info e1000_82572_info = {
2019	.mac			= e1000_82572,
2020	.flags			= FLAG_HAS_HW_VLAN_FILTER
2021				  | FLAG_HAS_JUMBO_FRAMES
2022				  | FLAG_HAS_WOL
2023				  | FLAG_APME_IN_CTRL3
2024				  | FLAG_HAS_CTRLEXT_ON_LOAD
2025				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
2026	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2027				  | FLAG2_DMA_BURST,
2028	.pba			= 38,
2029	.max_hw_frame_size	= DEFAULT_JUMBO,
2030	.get_variants		= e1000_get_variants_82571,
2031	.mac_ops		= &e82571_mac_ops,
2032	.phy_ops		= &e82_phy_ops_igp,
2033	.nvm_ops		= &e82571_nvm_ops,
2034};
2035
2036const struct e1000_info e1000_82573_info = {
2037	.mac			= e1000_82573,
2038	.flags			= FLAG_HAS_HW_VLAN_FILTER
2039				  | FLAG_HAS_WOL
2040				  | FLAG_APME_IN_CTRL3
2041				  | FLAG_HAS_SMART_POWER_DOWN
2042				  | FLAG_HAS_AMT
2043				  | FLAG_HAS_SWSM_ON_LOAD,
2044	.flags2			= FLAG2_DISABLE_ASPM_L1
2045				  | FLAG2_DISABLE_ASPM_L0S,
2046	.pba			= 20,
2047	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
2048	.get_variants		= e1000_get_variants_82571,
2049	.mac_ops		= &e82571_mac_ops,
2050	.phy_ops		= &e82_phy_ops_m88,
2051	.nvm_ops		= &e82571_nvm_ops,
2052};
2053
2054const struct e1000_info e1000_82574_info = {
2055	.mac			= e1000_82574,
2056	.flags			= FLAG_HAS_HW_VLAN_FILTER
2057				  | FLAG_HAS_MSIX
2058				  | FLAG_HAS_JUMBO_FRAMES
2059				  | FLAG_HAS_WOL
2060				  | FLAG_APME_IN_CTRL3
2061				  | FLAG_HAS_SMART_POWER_DOWN
2062				  | FLAG_HAS_AMT
2063				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2064	.flags2			= FLAG2_CHECK_PHY_HANG
2065				  | FLAG2_DISABLE_ASPM_L0S
2066				  | FLAG2_DISABLE_ASPM_L1
2067				  | FLAG2_NO_DISABLE_RX,
2068	.pba			= 32,
2069	.max_hw_frame_size	= DEFAULT_JUMBO,
2070	.get_variants		= e1000_get_variants_82571,
2071	.mac_ops		= &e82571_mac_ops,
2072	.phy_ops		= &e82_phy_ops_bm,
2073	.nvm_ops		= &e82571_nvm_ops,
2074};
2075
2076const struct e1000_info e1000_82583_info = {
2077	.mac			= e1000_82583,
2078	.flags			= FLAG_HAS_HW_VLAN_FILTER
2079				  | FLAG_HAS_WOL
2080				  | FLAG_APME_IN_CTRL3
2081				  | FLAG_HAS_SMART_POWER_DOWN
2082				  | FLAG_HAS_AMT
2083				  | FLAG_HAS_JUMBO_FRAMES
2084				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2085	.flags2			= FLAG2_DISABLE_ASPM_L0S
2086				  | FLAG2_NO_DISABLE_RX,
2087	.pba			= 32,
2088	.max_hw_frame_size	= DEFAULT_JUMBO,
2089	.get_variants		= e1000_get_variants_82571,
2090	.mac_ops		= &e82571_mac_ops,
2091	.phy_ops		= &e82_phy_ops_bm,
2092	.nvm_ops		= &e82571_nvm_ops,
2093};
2094
2095