1/*******************************************************************************
2
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30
31static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
32static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
33static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
34static s32 e1000_wait_autoneg(struct e1000_hw *hw);
35static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
36static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
37					  u16 *data, bool read, bool page_set);
38static u32 e1000_get_phy_addr_for_hv_page(u32 page);
39static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
40                                          u16 *data, bool read);
41
42/* Cable length tables */
43static const u16 e1000_m88_cable_length_table[] = {
44	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
45#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
46		ARRAY_SIZE(e1000_m88_cable_length_table)
47
48static const u16 e1000_igp_2_cable_length_table[] = {
49	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
50	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
51	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
52	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
53	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
54	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
55	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
56	124};
57#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
58		ARRAY_SIZE(e1000_igp_2_cable_length_table)
59
60#define BM_PHY_REG_PAGE(offset) \
61	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
62#define BM_PHY_REG_NUM(offset) \
63	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
64	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
65		~MAX_PHY_REG_ADDRESS)))
66
67#define HV_INTC_FC_PAGE_START             768
68#define I82578_ADDR_REG                   29
69#define I82577_ADDR_REG                   16
70#define I82577_CFG_REG                    22
71#define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
72#define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
73#define I82577_CTRL_REG                   23
74
75/* 82577 specific PHY registers */
76#define I82577_PHY_CTRL_2            18
77#define I82577_PHY_STATUS_2          26
78#define I82577_PHY_DIAG_STATUS       31
79
80/* I82577 PHY Status 2 */
81#define I82577_PHY_STATUS2_REV_POLARITY   0x0400
82#define I82577_PHY_STATUS2_MDIX           0x0800
83#define I82577_PHY_STATUS2_SPEED_MASK     0x0300
84#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
85
86/* I82577 PHY Control 2 */
87#define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
88#define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200
89
90/* I82577 PHY Diagnostics Status */
91#define I82577_DSTATUS_CABLE_LENGTH       0x03FC
92#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
93
94/* BM PHY Copper Specific Control 1 */
95#define BM_CS_CTRL1                       16
96
97#define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
98#define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
99#define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
100
101/**
102 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
103 *  @hw: pointer to the HW structure
104 *
105 *  Read the PHY management control register and check whether a PHY reset
106 *  is blocked.  If a reset is not blocked return 0, otherwise
107 *  return E1000_BLK_PHY_RESET (12).
108 **/
109s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
110{
111	u32 manc;
112
113	manc = er32(MANC);
114
115	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
116	       E1000_BLK_PHY_RESET : 0;
117}
118
119/**
120 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
121 *  @hw: pointer to the HW structure
122 *
123 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
124 *  revision in the hardware structure.
125 **/
126s32 e1000e_get_phy_id(struct e1000_hw *hw)
127{
128	struct e1000_phy_info *phy = &hw->phy;
129	s32 ret_val = 0;
130	u16 phy_id;
131	u16 retry_count = 0;
132
133	if (!phy->ops.read_reg)
134		return 0;
135
136	while (retry_count < 2) {
137		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
138		if (ret_val)
139			return ret_val;
140
141		phy->id = (u32)(phy_id << 16);
142		udelay(20);
143		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
144		if (ret_val)
145			return ret_val;
146
147		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
148		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
149
150		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
151			return 0;
152
153		retry_count++;
154	}
155
156	return 0;
157}
158
159/**
160 *  e1000e_phy_reset_dsp - Reset PHY DSP
161 *  @hw: pointer to the HW structure
162 *
163 *  Reset the digital signal processor.
164 **/
165s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
166{
167	s32 ret_val;
168
169	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
170	if (ret_val)
171		return ret_val;
172
173	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
174}
175
176/**
177 *  e1000e_read_phy_reg_mdic - Read MDI control register
178 *  @hw: pointer to the HW structure
179 *  @offset: register offset to be read
180 *  @data: pointer to the read data
181 *
182 *  Reads the MDI control register in the PHY at offset and stores the
183 *  information read to data.
184 **/
185s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
186{
187	struct e1000_phy_info *phy = &hw->phy;
188	u32 i, mdic = 0;
189
190	if (offset > MAX_PHY_REG_ADDRESS) {
191		e_dbg("PHY Address %d is out of range\n", offset);
192		return -E1000_ERR_PARAM;
193	}
194
195	/*
196	 * Set up Op-code, Phy Address, and register offset in the MDI
197	 * Control register.  The MAC will take care of interfacing with the
198	 * PHY to retrieve the desired data.
199	 */
200	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
201		(phy->addr << E1000_MDIC_PHY_SHIFT) |
202		(E1000_MDIC_OP_READ));
203
204	ew32(MDIC, mdic);
205
206	/*
207	 * Poll the ready bit to see if the MDI read completed
208	 * Increasing the time out as testing showed failures with
209	 * the lower time out
210	 */
211	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
212		udelay(50);
213		mdic = er32(MDIC);
214		if (mdic & E1000_MDIC_READY)
215			break;
216	}
217	if (!(mdic & E1000_MDIC_READY)) {
218		e_dbg("MDI Read did not complete\n");
219		return -E1000_ERR_PHY;
220	}
221	if (mdic & E1000_MDIC_ERROR) {
222		e_dbg("MDI Error\n");
223		return -E1000_ERR_PHY;
224	}
225	*data = (u16) mdic;
226
227	/*
228	 * Allow some time after each MDIC transaction to avoid
229	 * reading duplicate data in the next MDIC transaction.
230	 */
231	if (hw->mac.type == e1000_pch2lan)
232		udelay(100);
233
234	return 0;
235}
236
237/**
238 *  e1000e_write_phy_reg_mdic - Write MDI control register
239 *  @hw: pointer to the HW structure
240 *  @offset: register offset to write to
241 *  @data: data to write to register at offset
242 *
243 *  Writes data to MDI control register in the PHY at offset.
244 **/
245s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
246{
247	struct e1000_phy_info *phy = &hw->phy;
248	u32 i, mdic = 0;
249
250	if (offset > MAX_PHY_REG_ADDRESS) {
251		e_dbg("PHY Address %d is out of range\n", offset);
252		return -E1000_ERR_PARAM;
253	}
254
255	/*
256	 * Set up Op-code, Phy Address, and register offset in the MDI
257	 * Control register.  The MAC will take care of interfacing with the
258	 * PHY to retrieve the desired data.
259	 */
260	mdic = (((u32)data) |
261		(offset << E1000_MDIC_REG_SHIFT) |
262		(phy->addr << E1000_MDIC_PHY_SHIFT) |
263		(E1000_MDIC_OP_WRITE));
264
265	ew32(MDIC, mdic);
266
267	/*
268	 * Poll the ready bit to see if the MDI read completed
269	 * Increasing the time out as testing showed failures with
270	 * the lower time out
271	 */
272	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
273		udelay(50);
274		mdic = er32(MDIC);
275		if (mdic & E1000_MDIC_READY)
276			break;
277	}
278	if (!(mdic & E1000_MDIC_READY)) {
279		e_dbg("MDI Write did not complete\n");
280		return -E1000_ERR_PHY;
281	}
282	if (mdic & E1000_MDIC_ERROR) {
283		e_dbg("MDI Error\n");
284		return -E1000_ERR_PHY;
285	}
286
287	/*
288	 * Allow some time after each MDIC transaction to avoid
289	 * reading duplicate data in the next MDIC transaction.
290	 */
291	if (hw->mac.type == e1000_pch2lan)
292		udelay(100);
293
294	return 0;
295}
296
297/**
298 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
299 *  @hw: pointer to the HW structure
300 *  @offset: register offset to be read
301 *  @data: pointer to the read data
302 *
303 *  Acquires semaphore, if necessary, then reads the PHY register at offset
304 *  and storing the retrieved information in data.  Release any acquired
305 *  semaphores before exiting.
306 **/
307s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
308{
309	s32 ret_val;
310
311	ret_val = hw->phy.ops.acquire(hw);
312	if (ret_val)
313		return ret_val;
314
315	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
316					   data);
317
318	hw->phy.ops.release(hw);
319
320	return ret_val;
321}
322
323/**
324 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
325 *  @hw: pointer to the HW structure
326 *  @offset: register offset to write to
327 *  @data: data to write at register offset
328 *
329 *  Acquires semaphore, if necessary, then writes the data to PHY register
330 *  at the offset.  Release any acquired semaphores before exiting.
331 **/
332s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
333{
334	s32 ret_val;
335
336	ret_val = hw->phy.ops.acquire(hw);
337	if (ret_val)
338		return ret_val;
339
340	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
341					    data);
342
343	hw->phy.ops.release(hw);
344
345	return ret_val;
346}
347
348/**
349 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
350 *  @hw: pointer to the HW structure
351 *  @page: page to set (shifted left when necessary)
352 *
353 *  Sets PHY page required for PHY register access.  Assumes semaphore is
354 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
355 *  must set it appropriately (if necessary) after this function returns.
356 **/
357s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
358{
359	e_dbg("Setting page 0x%x\n", page);
360
361	hw->phy.addr = 1;
362
363	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
364}
365
366/**
367 *  __e1000e_read_phy_reg_igp - Read igp PHY register
368 *  @hw: pointer to the HW structure
369 *  @offset: register offset to be read
370 *  @data: pointer to the read data
371 *  @locked: semaphore has already been acquired or not
372 *
373 *  Acquires semaphore, if necessary, then reads the PHY register at offset
374 *  and stores the retrieved information in data.  Release any acquired
375 *  semaphores before exiting.
376 **/
377static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
378                                    bool locked)
379{
380	s32 ret_val = 0;
381
382	if (!locked) {
383		if (!hw->phy.ops.acquire)
384			return 0;
385
386		ret_val = hw->phy.ops.acquire(hw);
387		if (ret_val)
388			return ret_val;
389	}
390
391	if (offset > MAX_PHY_MULTI_PAGE_REG)
392		ret_val = e1000e_write_phy_reg_mdic(hw,
393						    IGP01E1000_PHY_PAGE_SELECT,
394						    (u16)offset);
395	if (!ret_val)
396		ret_val = e1000e_read_phy_reg_mdic(hw,
397						   MAX_PHY_REG_ADDRESS & offset,
398						   data);
399	if (!locked)
400		hw->phy.ops.release(hw);
401
402	return ret_val;
403}
404
405/**
406 *  e1000e_read_phy_reg_igp - Read igp PHY register
407 *  @hw: pointer to the HW structure
408 *  @offset: register offset to be read
409 *  @data: pointer to the read data
410 *
411 *  Acquires semaphore then reads the PHY register at offset and stores the
412 *  retrieved information in data.
413 *  Release the acquired semaphore before exiting.
414 **/
415s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
416{
417	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
418}
419
420/**
421 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
422 *  @hw: pointer to the HW structure
423 *  @offset: register offset to be read
424 *  @data: pointer to the read data
425 *
426 *  Reads the PHY register at offset and stores the retrieved information
427 *  in data.  Assumes semaphore already acquired.
428 **/
429s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
430{
431	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
432}
433
434/**
435 *  e1000e_write_phy_reg_igp - Write igp PHY register
436 *  @hw: pointer to the HW structure
437 *  @offset: register offset to write to
438 *  @data: data to write at register offset
439 *  @locked: semaphore has already been acquired or not
440 *
441 *  Acquires semaphore, if necessary, then writes the data to PHY register
442 *  at the offset.  Release any acquired semaphores before exiting.
443 **/
444static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
445                                     bool locked)
446{
447	s32 ret_val = 0;
448
449	if (!locked) {
450		if (!hw->phy.ops.acquire)
451			return 0;
452
453		ret_val = hw->phy.ops.acquire(hw);
454		if (ret_val)
455			return ret_val;
456	}
457
458	if (offset > MAX_PHY_MULTI_PAGE_REG)
459		ret_val = e1000e_write_phy_reg_mdic(hw,
460						    IGP01E1000_PHY_PAGE_SELECT,
461						    (u16)offset);
462	if (!ret_val)
463		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
464							offset,
465						    data);
466	if (!locked)
467		hw->phy.ops.release(hw);
468
469	return ret_val;
470}
471
472/**
473 *  e1000e_write_phy_reg_igp - Write igp PHY register
474 *  @hw: pointer to the HW structure
475 *  @offset: register offset to write to
476 *  @data: data to write at register offset
477 *
478 *  Acquires semaphore then writes the data to PHY register
479 *  at the offset.  Release any acquired semaphores before exiting.
480 **/
481s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
482{
483	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
484}
485
486/**
487 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
488 *  @hw: pointer to the HW structure
489 *  @offset: register offset to write to
490 *  @data: data to write at register offset
491 *
492 *  Writes the data to PHY register at the offset.
493 *  Assumes semaphore already acquired.
494 **/
495s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
496{
497	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
498}
499
500/**
501 *  __e1000_read_kmrn_reg - Read kumeran register
502 *  @hw: pointer to the HW structure
503 *  @offset: register offset to be read
504 *  @data: pointer to the read data
505 *  @locked: semaphore has already been acquired or not
506 *
507 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
508 *  using the kumeran interface.  The information retrieved is stored in data.
509 *  Release any acquired semaphores before exiting.
510 **/
511static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
512                                 bool locked)
513{
514	u32 kmrnctrlsta;
515
516	if (!locked) {
517		s32 ret_val = 0;
518
519		if (!hw->phy.ops.acquire)
520			return 0;
521
522		ret_val = hw->phy.ops.acquire(hw);
523		if (ret_val)
524			return ret_val;
525	}
526
527	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
528		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
529	ew32(KMRNCTRLSTA, kmrnctrlsta);
530	e1e_flush();
531
532	udelay(2);
533
534	kmrnctrlsta = er32(KMRNCTRLSTA);
535	*data = (u16)kmrnctrlsta;
536
537	if (!locked)
538		hw->phy.ops.release(hw);
539
540	return 0;
541}
542
543/**
544 *  e1000e_read_kmrn_reg -  Read kumeran register
545 *  @hw: pointer to the HW structure
546 *  @offset: register offset to be read
547 *  @data: pointer to the read data
548 *
549 *  Acquires semaphore then reads the PHY register at offset using the
550 *  kumeran interface.  The information retrieved is stored in data.
551 *  Release the acquired semaphore before exiting.
552 **/
553s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
554{
555	return __e1000_read_kmrn_reg(hw, offset, data, false);
556}
557
558/**
559 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
560 *  @hw: pointer to the HW structure
561 *  @offset: register offset to be read
562 *  @data: pointer to the read data
563 *
564 *  Reads the PHY register at offset using the kumeran interface.  The
565 *  information retrieved is stored in data.
566 *  Assumes semaphore already acquired.
567 **/
568s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
569{
570	return __e1000_read_kmrn_reg(hw, offset, data, true);
571}
572
573/**
574 *  __e1000_write_kmrn_reg - Write kumeran register
575 *  @hw: pointer to the HW structure
576 *  @offset: register offset to write to
577 *  @data: data to write at register offset
578 *  @locked: semaphore has already been acquired or not
579 *
580 *  Acquires semaphore, if necessary.  Then write the data to PHY register
581 *  at the offset using the kumeran interface.  Release any acquired semaphores
582 *  before exiting.
583 **/
584static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
585                                  bool locked)
586{
587	u32 kmrnctrlsta;
588
589	if (!locked) {
590		s32 ret_val = 0;
591
592		if (!hw->phy.ops.acquire)
593			return 0;
594
595		ret_val = hw->phy.ops.acquire(hw);
596		if (ret_val)
597			return ret_val;
598	}
599
600	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
601		       E1000_KMRNCTRLSTA_OFFSET) | data;
602	ew32(KMRNCTRLSTA, kmrnctrlsta);
603	e1e_flush();
604
605	udelay(2);
606
607	if (!locked)
608		hw->phy.ops.release(hw);
609
610	return 0;
611}
612
613/**
614 *  e1000e_write_kmrn_reg -  Write kumeran register
615 *  @hw: pointer to the HW structure
616 *  @offset: register offset to write to
617 *  @data: data to write at register offset
618 *
619 *  Acquires semaphore then writes the data to the PHY register at the offset
620 *  using the kumeran interface.  Release the acquired semaphore before exiting.
621 **/
622s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
623{
624	return __e1000_write_kmrn_reg(hw, offset, data, false);
625}
626
627/**
628 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
629 *  @hw: pointer to the HW structure
630 *  @offset: register offset to write to
631 *  @data: data to write at register offset
632 *
633 *  Write the data to PHY register at the offset using the kumeran interface.
634 *  Assumes semaphore already acquired.
635 **/
636s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
637{
638	return __e1000_write_kmrn_reg(hw, offset, data, true);
639}
640
641/**
642 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
643 *  @hw: pointer to the HW structure
644 *
645 *  Sets up Carrier-sense on Transmit and downshift values.
646 **/
647s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
648{
649	s32 ret_val;
650	u16 phy_data;
651
652	/* Enable CRS on Tx. This must be set for half-duplex operation. */
653	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
654	if (ret_val)
655		return ret_val;
656
657	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
658
659	/* Enable downshift */
660	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
661
662	return e1e_wphy(hw, I82577_CFG_REG, phy_data);
663}
664
665/**
666 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
667 *  @hw: pointer to the HW structure
668 *
669 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
670 *  and downshift values are set also.
671 **/
672s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
673{
674	struct e1000_phy_info *phy = &hw->phy;
675	s32 ret_val;
676	u16 phy_data;
677
678	/* Enable CRS on Tx. This must be set for half-duplex operation. */
679	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
680	if (ret_val)
681		return ret_val;
682
683	/* For BM PHY this bit is downshift enable */
684	if (phy->type != e1000_phy_bm)
685		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
686
687	/*
688	 * Options:
689	 *   MDI/MDI-X = 0 (default)
690	 *   0 - Auto for all speeds
691	 *   1 - MDI mode
692	 *   2 - MDI-X mode
693	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
694	 */
695	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
696
697	switch (phy->mdix) {
698	case 1:
699		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
700		break;
701	case 2:
702		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
703		break;
704	case 3:
705		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
706		break;
707	case 0:
708	default:
709		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
710		break;
711	}
712
713	/*
714	 * Options:
715	 *   disable_polarity_correction = 0 (default)
716	 *       Automatic Correction for Reversed Cable Polarity
717	 *   0 - Disabled
718	 *   1 - Enabled
719	 */
720	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
721	if (phy->disable_polarity_correction == 1)
722		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
723
724	/* Enable downshift on BM (disabled by default) */
725	if (phy->type == e1000_phy_bm)
726		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
727
728	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
729	if (ret_val)
730		return ret_val;
731
732	if ((phy->type == e1000_phy_m88) &&
733	    (phy->revision < E1000_REVISION_4) &&
734	    (phy->id != BME1000_E_PHY_ID_R2)) {
735		/*
736		 * Force TX_CLK in the Extended PHY Specific Control Register
737		 * to 25MHz clock.
738		 */
739		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
740		if (ret_val)
741			return ret_val;
742
743		phy_data |= M88E1000_EPSCR_TX_CLK_25;
744
745		if ((phy->revision == 2) &&
746		    (phy->id == M88E1111_I_PHY_ID)) {
747			/* 82573L PHY - set the downshift counter to 5x. */
748			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
749			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
750		} else {
751			/* Configure Master and Slave downshift values */
752			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
753				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
754			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
755				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
756		}
757		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
758		if (ret_val)
759			return ret_val;
760	}
761
762	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
763		/* Set PHY page 0, register 29 to 0x0003 */
764		ret_val = e1e_wphy(hw, 29, 0x0003);
765		if (ret_val)
766			return ret_val;
767
768		/* Set PHY page 0, register 30 to 0x0000 */
769		ret_val = e1e_wphy(hw, 30, 0x0000);
770		if (ret_val)
771			return ret_val;
772	}
773
774	/* Commit the changes. */
775	ret_val = e1000e_commit_phy(hw);
776	if (ret_val) {
777		e_dbg("Error committing the PHY changes\n");
778		return ret_val;
779	}
780
781	if (phy->type == e1000_phy_82578) {
782		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
783		if (ret_val)
784			return ret_val;
785
786		/* 82578 PHY - set the downshift count to 1x. */
787		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
788		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
789		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
790		if (ret_val)
791			return ret_val;
792	}
793
794	return 0;
795}
796
797/**
798 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
799 *  @hw: pointer to the HW structure
800 *
801 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
802 *  igp PHY's.
803 **/
804s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
805{
806	struct e1000_phy_info *phy = &hw->phy;
807	s32 ret_val;
808	u16 data;
809
810	ret_val = e1000_phy_hw_reset(hw);
811	if (ret_val) {
812		e_dbg("Error resetting the PHY.\n");
813		return ret_val;
814	}
815
816	/*
817	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
818	 * timeout issues when LFS is enabled.
819	 */
820	msleep(100);
821
822	/* disable lplu d0 during driver init */
823	ret_val = e1000_set_d0_lplu_state(hw, false);
824	if (ret_val) {
825		e_dbg("Error Disabling LPLU D0\n");
826		return ret_val;
827	}
828	/* Configure mdi-mdix settings */
829	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
830	if (ret_val)
831		return ret_val;
832
833	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
834
835	switch (phy->mdix) {
836	case 1:
837		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
838		break;
839	case 2:
840		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
841		break;
842	case 0:
843	default:
844		data |= IGP01E1000_PSCR_AUTO_MDIX;
845		break;
846	}
847	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
848	if (ret_val)
849		return ret_val;
850
851	/* set auto-master slave resolution settings */
852	if (hw->mac.autoneg) {
853		/*
854		 * when autonegotiation advertisement is only 1000Mbps then we
855		 * should disable SmartSpeed and enable Auto MasterSlave
856		 * resolution as hardware default.
857		 */
858		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
859			/* Disable SmartSpeed */
860			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
861					   &data);
862			if (ret_val)
863				return ret_val;
864
865			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
866			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
867					   data);
868			if (ret_val)
869				return ret_val;
870
871			/* Set auto Master/Slave resolution process */
872			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
873			if (ret_val)
874				return ret_val;
875
876			data &= ~CR_1000T_MS_ENABLE;
877			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
878			if (ret_val)
879				return ret_val;
880		}
881
882		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
883		if (ret_val)
884			return ret_val;
885
886		/* load defaults for future use */
887		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
888			((data & CR_1000T_MS_VALUE) ?
889			e1000_ms_force_master :
890			e1000_ms_force_slave) :
891			e1000_ms_auto;
892
893		switch (phy->ms_type) {
894		case e1000_ms_force_master:
895			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
896			break;
897		case e1000_ms_force_slave:
898			data |= CR_1000T_MS_ENABLE;
899			data &= ~(CR_1000T_MS_VALUE);
900			break;
901		case e1000_ms_auto:
902			data &= ~CR_1000T_MS_ENABLE;
903		default:
904			break;
905		}
906		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
907	}
908
909	return ret_val;
910}
911
912/**
913 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
914 *  @hw: pointer to the HW structure
915 *
916 *  Reads the MII auto-neg advertisement register and/or the 1000T control
917 *  register and if the PHY is already setup for auto-negotiation, then
918 *  return successful.  Otherwise, setup advertisement and flow control to
919 *  the appropriate values for the wanted auto-negotiation.
920 **/
921static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
922{
923	struct e1000_phy_info *phy = &hw->phy;
924	s32 ret_val;
925	u16 mii_autoneg_adv_reg;
926	u16 mii_1000t_ctrl_reg = 0;
927
928	phy->autoneg_advertised &= phy->autoneg_mask;
929
930	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
931	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
932	if (ret_val)
933		return ret_val;
934
935	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
936		/* Read the MII 1000Base-T Control Register (Address 9). */
937		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
938		if (ret_val)
939			return ret_val;
940	}
941
942	/*
943	 * Need to parse both autoneg_advertised and fc and set up
944	 * the appropriate PHY registers.  First we will parse for
945	 * autoneg_advertised software override.  Since we can advertise
946	 * a plethora of combinations, we need to check each bit
947	 * individually.
948	 */
949
950	/*
951	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
952	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
953	 * the  1000Base-T Control Register (Address 9).
954	 */
955	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
956				 NWAY_AR_100TX_HD_CAPS |
957				 NWAY_AR_10T_FD_CAPS   |
958				 NWAY_AR_10T_HD_CAPS);
959	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
960
961	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
962
963	/* Do we want to advertise 10 Mb Half Duplex? */
964	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
965		e_dbg("Advertise 10mb Half duplex\n");
966		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
967	}
968
969	/* Do we want to advertise 10 Mb Full Duplex? */
970	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
971		e_dbg("Advertise 10mb Full duplex\n");
972		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
973	}
974
975	/* Do we want to advertise 100 Mb Half Duplex? */
976	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
977		e_dbg("Advertise 100mb Half duplex\n");
978		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
979	}
980
981	/* Do we want to advertise 100 Mb Full Duplex? */
982	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
983		e_dbg("Advertise 100mb Full duplex\n");
984		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
985	}
986
987	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
988	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
989		e_dbg("Advertise 1000mb Half duplex request denied!\n");
990
991	/* Do we want to advertise 1000 Mb Full Duplex? */
992	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
993		e_dbg("Advertise 1000mb Full duplex\n");
994		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
995	}
996
997	/*
998	 * Check for a software override of the flow control settings, and
999	 * setup the PHY advertisement registers accordingly.  If
1000	 * auto-negotiation is enabled, then software will have to set the
1001	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1002	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1003	 * negotiation.
1004	 *
1005	 * The possible values of the "fc" parameter are:
1006	 *      0:  Flow control is completely disabled
1007	 *      1:  Rx flow control is enabled (we can receive pause frames
1008	 *          but not send pause frames).
1009	 *      2:  Tx flow control is enabled (we can send pause frames
1010	 *          but we do not support receiving pause frames).
1011	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1012	 *  other:  No software override.  The flow control configuration
1013	 *          in the EEPROM is used.
1014	 */
1015	switch (hw->fc.current_mode) {
1016	case e1000_fc_none:
1017		/*
1018		 * Flow control (Rx & Tx) is completely disabled by a
1019		 * software over-ride.
1020		 */
1021		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1022		break;
1023	case e1000_fc_rx_pause:
1024		/*
1025		 * Rx Flow control is enabled, and Tx Flow control is
1026		 * disabled, by a software over-ride.
1027		 *
1028		 * Since there really isn't a way to advertise that we are
1029		 * capable of Rx Pause ONLY, we will advertise that we
1030		 * support both symmetric and asymmetric Rx PAUSE.  Later
1031		 * (in e1000e_config_fc_after_link_up) we will disable the
1032		 * hw's ability to send PAUSE frames.
1033		 */
1034		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1035		break;
1036	case e1000_fc_tx_pause:
1037		/*
1038		 * Tx Flow control is enabled, and Rx Flow control is
1039		 * disabled, by a software over-ride.
1040		 */
1041		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1042		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1043		break;
1044	case e1000_fc_full:
1045		/*
1046		 * Flow control (both Rx and Tx) is enabled by a software
1047		 * over-ride.
1048		 */
1049		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1050		break;
1051	default:
1052		e_dbg("Flow control param set incorrectly\n");
1053		return -E1000_ERR_CONFIG;
1054	}
1055
1056	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1057	if (ret_val)
1058		return ret_val;
1059
1060	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1061
1062	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1063		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1064
1065	return ret_val;
1066}
1067
1068/**
1069 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1070 *  @hw: pointer to the HW structure
1071 *
1072 *  Performs initial bounds checking on autoneg advertisement parameter, then
1073 *  configure to advertise the full capability.  Setup the PHY to autoneg
1074 *  and restart the negotiation process between the link partner.  If
1075 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1076 **/
1077static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1078{
1079	struct e1000_phy_info *phy = &hw->phy;
1080	s32 ret_val;
1081	u16 phy_ctrl;
1082
1083	/*
1084	 * Perform some bounds checking on the autoneg advertisement
1085	 * parameter.
1086	 */
1087	phy->autoneg_advertised &= phy->autoneg_mask;
1088
1089	/*
1090	 * If autoneg_advertised is zero, we assume it was not defaulted
1091	 * by the calling code so we set to advertise full capability.
1092	 */
1093	if (phy->autoneg_advertised == 0)
1094		phy->autoneg_advertised = phy->autoneg_mask;
1095
1096	e_dbg("Reconfiguring auto-neg advertisement params\n");
1097	ret_val = e1000_phy_setup_autoneg(hw);
1098	if (ret_val) {
1099		e_dbg("Error Setting up Auto-Negotiation\n");
1100		return ret_val;
1101	}
1102	e_dbg("Restarting Auto-Neg\n");
1103
1104	/*
1105	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1106	 * the Auto Neg Restart bit in the PHY control register.
1107	 */
1108	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1109	if (ret_val)
1110		return ret_val;
1111
1112	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1113	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1114	if (ret_val)
1115		return ret_val;
1116
1117	/*
1118	 * Does the user want to wait for Auto-Neg to complete here, or
1119	 * check at a later time (for example, callback routine).
1120	 */
1121	if (phy->autoneg_wait_to_complete) {
1122		ret_val = e1000_wait_autoneg(hw);
1123		if (ret_val) {
1124			e_dbg("Error while waiting for autoneg to complete\n");
1125			return ret_val;
1126		}
1127	}
1128
1129	hw->mac.get_link_status = true;
1130
1131	return ret_val;
1132}
1133
1134/**
1135 *  e1000e_setup_copper_link - Configure copper link settings
1136 *  @hw: pointer to the HW structure
1137 *
1138 *  Calls the appropriate function to configure the link for auto-neg or forced
1139 *  speed and duplex.  Then we check for link, once link is established calls
1140 *  to configure collision distance and flow control are called.  If link is
1141 *  not established, we return -E1000_ERR_PHY (-2).
1142 **/
1143s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1144{
1145	s32 ret_val;
1146	bool link;
1147
1148	if (hw->mac.autoneg) {
1149		/*
1150		 * Setup autoneg and flow control advertisement and perform
1151		 * autonegotiation.
1152		 */
1153		ret_val = e1000_copper_link_autoneg(hw);
1154		if (ret_val)
1155			return ret_val;
1156	} else {
1157		/*
1158		 * PHY will be set to 10H, 10F, 100H or 100F
1159		 * depending on user settings.
1160		 */
1161		e_dbg("Forcing Speed and Duplex\n");
1162		ret_val = e1000_phy_force_speed_duplex(hw);
1163		if (ret_val) {
1164			e_dbg("Error Forcing Speed and Duplex\n");
1165			return ret_val;
1166		}
1167	}
1168
1169	/*
1170	 * Check link status. Wait up to 100 microseconds for link to become
1171	 * valid.
1172	 */
1173	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1174					      &link);
1175	if (ret_val)
1176		return ret_val;
1177
1178	if (link) {
1179		e_dbg("Valid link established!!!\n");
1180		hw->mac.ops.config_collision_dist(hw);
1181		ret_val = e1000e_config_fc_after_link_up(hw);
1182	} else {
1183		e_dbg("Unable to establish link!!!\n");
1184	}
1185
1186	return ret_val;
1187}
1188
1189/**
1190 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1191 *  @hw: pointer to the HW structure
1192 *
1193 *  Calls the PHY setup function to force speed and duplex.  Clears the
1194 *  auto-crossover to force MDI manually.  Waits for link and returns
1195 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1196 **/
1197s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1198{
1199	struct e1000_phy_info *phy = &hw->phy;
1200	s32 ret_val;
1201	u16 phy_data;
1202	bool link;
1203
1204	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1205	if (ret_val)
1206		return ret_val;
1207
1208	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1209
1210	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1211	if (ret_val)
1212		return ret_val;
1213
1214	/*
1215	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1216	 * forced whenever speed and duplex are forced.
1217	 */
1218	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1219	if (ret_val)
1220		return ret_val;
1221
1222	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1223	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1224
1225	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1226	if (ret_val)
1227		return ret_val;
1228
1229	e_dbg("IGP PSCR: %X\n", phy_data);
1230
1231	udelay(1);
1232
1233	if (phy->autoneg_wait_to_complete) {
1234		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1235
1236		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1237						      100000, &link);
1238		if (ret_val)
1239			return ret_val;
1240
1241		if (!link)
1242			e_dbg("Link taking longer than expected.\n");
1243
1244		/* Try once more */
1245		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1246						      100000, &link);
1247	}
1248
1249	return ret_val;
1250}
1251
1252/**
1253 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1254 *  @hw: pointer to the HW structure
1255 *
1256 *  Calls the PHY setup function to force speed and duplex.  Clears the
1257 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1258 *  changes.  If time expires while waiting for link up, we reset the DSP.
1259 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1260 *  successful completion, else return corresponding error code.
1261 **/
1262s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1263{
1264	struct e1000_phy_info *phy = &hw->phy;
1265	s32 ret_val;
1266	u16 phy_data;
1267	bool link;
1268
1269	/*
1270	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1271	 * forced whenever speed and duplex are forced.
1272	 */
1273	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1274	if (ret_val)
1275		return ret_val;
1276
1277	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1278	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1279	if (ret_val)
1280		return ret_val;
1281
1282	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1283
1284	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1285	if (ret_val)
1286		return ret_val;
1287
1288	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1289
1290	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1291	if (ret_val)
1292		return ret_val;
1293
1294	/* Reset the phy to commit changes. */
1295	ret_val = e1000e_commit_phy(hw);
1296	if (ret_val)
1297		return ret_val;
1298
1299	if (phy->autoneg_wait_to_complete) {
1300		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1301
1302		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1303						     100000, &link);
1304		if (ret_val)
1305			return ret_val;
1306
1307		if (!link) {
1308			if (hw->phy.type != e1000_phy_m88) {
1309				e_dbg("Link taking longer than expected.\n");
1310			} else {
1311				/*
1312				 * We didn't get link.
1313				 * Reset the DSP and cross our fingers.
1314				 */
1315				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1316						   0x001d);
1317				if (ret_val)
1318					return ret_val;
1319				ret_val = e1000e_phy_reset_dsp(hw);
1320				if (ret_val)
1321					return ret_val;
1322			}
1323		}
1324
1325		/* Try once more */
1326		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1327						     100000, &link);
1328		if (ret_val)
1329			return ret_val;
1330	}
1331
1332	if (hw->phy.type != e1000_phy_m88)
1333		return 0;
1334
1335	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1336	if (ret_val)
1337		return ret_val;
1338
1339	/*
1340	 * Resetting the phy means we need to re-force TX_CLK in the
1341	 * Extended PHY Specific Control Register to 25MHz clock from
1342	 * the reset value of 2.5MHz.
1343	 */
1344	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1345	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1346	if (ret_val)
1347		return ret_val;
1348
1349	/*
1350	 * In addition, we must re-enable CRS on Tx for both half and full
1351	 * duplex.
1352	 */
1353	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1354	if (ret_val)
1355		return ret_val;
1356
1357	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1358	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1359
1360	return ret_val;
1361}
1362
1363/**
1364 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1365 *  @hw: pointer to the HW structure
1366 *
1367 *  Forces the speed and duplex settings of the PHY.
1368 *  This is a function pointer entry point only called by
1369 *  PHY setup routines.
1370 **/
1371s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1372{
1373	struct e1000_phy_info *phy = &hw->phy;
1374	s32 ret_val;
1375	u16 data;
1376	bool link;
1377
1378	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1379	if (ret_val)
1380		return ret_val;
1381
1382	e1000e_phy_force_speed_duplex_setup(hw, &data);
1383
1384	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1385	if (ret_val)
1386		return ret_val;
1387
1388	/* Disable MDI-X support for 10/100 */
1389	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1390	if (ret_val)
1391		return ret_val;
1392
1393	data &= ~IFE_PMC_AUTO_MDIX;
1394	data &= ~IFE_PMC_FORCE_MDIX;
1395
1396	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1397	if (ret_val)
1398		return ret_val;
1399
1400	e_dbg("IFE PMC: %X\n", data);
1401
1402	udelay(1);
1403
1404	if (phy->autoneg_wait_to_complete) {
1405		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1406
1407		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1408						      100000, &link);
1409		if (ret_val)
1410			return ret_val;
1411
1412		if (!link)
1413			e_dbg("Link taking longer than expected.\n");
1414
1415		/* Try once more */
1416		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1417						      100000, &link);
1418		if (ret_val)
1419			return ret_val;
1420	}
1421
1422	return 0;
1423}
1424
1425/**
1426 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1427 *  @hw: pointer to the HW structure
1428 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1429 *
1430 *  Forces speed and duplex on the PHY by doing the following: disable flow
1431 *  control, force speed/duplex on the MAC, disable auto speed detection,
1432 *  disable auto-negotiation, configure duplex, configure speed, configure
1433 *  the collision distance, write configuration to CTRL register.  The
1434 *  caller must write to the PHY_CONTROL register for these settings to
1435 *  take affect.
1436 **/
1437void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1438{
1439	struct e1000_mac_info *mac = &hw->mac;
1440	u32 ctrl;
1441
1442	/* Turn off flow control when forcing speed/duplex */
1443	hw->fc.current_mode = e1000_fc_none;
1444
1445	/* Force speed/duplex on the mac */
1446	ctrl = er32(CTRL);
1447	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1448	ctrl &= ~E1000_CTRL_SPD_SEL;
1449
1450	/* Disable Auto Speed Detection */
1451	ctrl &= ~E1000_CTRL_ASDE;
1452
1453	/* Disable autoneg on the phy */
1454	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1455
1456	/* Forcing Full or Half Duplex? */
1457	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1458		ctrl &= ~E1000_CTRL_FD;
1459		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1460		e_dbg("Half Duplex\n");
1461	} else {
1462		ctrl |= E1000_CTRL_FD;
1463		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1464		e_dbg("Full Duplex\n");
1465	}
1466
1467	/* Forcing 10mb or 100mb? */
1468	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1469		ctrl |= E1000_CTRL_SPD_100;
1470		*phy_ctrl |= MII_CR_SPEED_100;
1471		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1472		e_dbg("Forcing 100mb\n");
1473	} else {
1474		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1475		*phy_ctrl |= MII_CR_SPEED_10;
1476		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1477		e_dbg("Forcing 10mb\n");
1478	}
1479
1480	hw->mac.ops.config_collision_dist(hw);
1481
1482	ew32(CTRL, ctrl);
1483}
1484
1485/**
1486 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1487 *  @hw: pointer to the HW structure
1488 *  @active: boolean used to enable/disable lplu
1489 *
1490 *  Success returns 0, Failure returns 1
1491 *
1492 *  The low power link up (lplu) state is set to the power management level D3
1493 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1494 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1495 *  is used during Dx states where the power conservation is most important.
1496 *  During driver activity, SmartSpeed should be enabled so performance is
1497 *  maintained.
1498 **/
1499s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1500{
1501	struct e1000_phy_info *phy = &hw->phy;
1502	s32 ret_val;
1503	u16 data;
1504
1505	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1506	if (ret_val)
1507		return ret_val;
1508
1509	if (!active) {
1510		data &= ~IGP02E1000_PM_D3_LPLU;
1511		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1512		if (ret_val)
1513			return ret_val;
1514		/*
1515		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1516		 * during Dx states where the power conservation is most
1517		 * important.  During driver activity we should enable
1518		 * SmartSpeed, so performance is maintained.
1519		 */
1520		if (phy->smart_speed == e1000_smart_speed_on) {
1521			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1522					   &data);
1523			if (ret_val)
1524				return ret_val;
1525
1526			data |= IGP01E1000_PSCFR_SMART_SPEED;
1527			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1528					   data);
1529			if (ret_val)
1530				return ret_val;
1531		} else if (phy->smart_speed == e1000_smart_speed_off) {
1532			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1533					   &data);
1534			if (ret_val)
1535				return ret_val;
1536
1537			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1538			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1539					   data);
1540			if (ret_val)
1541				return ret_val;
1542		}
1543	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1544		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1545		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1546		data |= IGP02E1000_PM_D3_LPLU;
1547		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1548		if (ret_val)
1549			return ret_val;
1550
1551		/* When LPLU is enabled, we should disable SmartSpeed */
1552		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1553		if (ret_val)
1554			return ret_val;
1555
1556		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1557		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1558	}
1559
1560	return ret_val;
1561}
1562
1563/**
1564 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1565 *  @hw: pointer to the HW structure
1566 *
1567 *  Success returns 0, Failure returns 1
1568 *
1569 *  A downshift is detected by querying the PHY link health.
1570 **/
1571s32 e1000e_check_downshift(struct e1000_hw *hw)
1572{
1573	struct e1000_phy_info *phy = &hw->phy;
1574	s32 ret_val;
1575	u16 phy_data, offset, mask;
1576
1577	switch (phy->type) {
1578	case e1000_phy_m88:
1579	case e1000_phy_gg82563:
1580	case e1000_phy_bm:
1581	case e1000_phy_82578:
1582		offset	= M88E1000_PHY_SPEC_STATUS;
1583		mask	= M88E1000_PSSR_DOWNSHIFT;
1584		break;
1585	case e1000_phy_igp_2:
1586	case e1000_phy_igp_3:
1587		offset	= IGP01E1000_PHY_LINK_HEALTH;
1588		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1589		break;
1590	default:
1591		/* speed downshift not supported */
1592		phy->speed_downgraded = false;
1593		return 0;
1594	}
1595
1596	ret_val = e1e_rphy(hw, offset, &phy_data);
1597
1598	if (!ret_val)
1599		phy->speed_downgraded = (phy_data & mask);
1600
1601	return ret_val;
1602}
1603
1604/**
1605 *  e1000_check_polarity_m88 - Checks the polarity.
1606 *  @hw: pointer to the HW structure
1607 *
1608 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1609 *
1610 *  Polarity is determined based on the PHY specific status register.
1611 **/
1612s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1613{
1614	struct e1000_phy_info *phy = &hw->phy;
1615	s32 ret_val;
1616	u16 data;
1617
1618	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1619
1620	if (!ret_val)
1621		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1622				      ? e1000_rev_polarity_reversed
1623				      : e1000_rev_polarity_normal;
1624
1625	return ret_val;
1626}
1627
1628/**
1629 *  e1000_check_polarity_igp - Checks the polarity.
1630 *  @hw: pointer to the HW structure
1631 *
1632 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1633 *
1634 *  Polarity is determined based on the PHY port status register, and the
1635 *  current speed (since there is no polarity at 100Mbps).
1636 **/
1637s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1638{
1639	struct e1000_phy_info *phy = &hw->phy;
1640	s32 ret_val;
1641	u16 data, offset, mask;
1642
1643	/*
1644	 * Polarity is determined based on the speed of
1645	 * our connection.
1646	 */
1647	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1648	if (ret_val)
1649		return ret_val;
1650
1651	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1652	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1653		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1654		mask	= IGP01E1000_PHY_POLARITY_MASK;
1655	} else {
1656		/*
1657		 * This really only applies to 10Mbps since
1658		 * there is no polarity for 100Mbps (always 0).
1659		 */
1660		offset	= IGP01E1000_PHY_PORT_STATUS;
1661		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1662	}
1663
1664	ret_val = e1e_rphy(hw, offset, &data);
1665
1666	if (!ret_val)
1667		phy->cable_polarity = (data & mask)
1668				      ? e1000_rev_polarity_reversed
1669				      : e1000_rev_polarity_normal;
1670
1671	return ret_val;
1672}
1673
1674/**
1675 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1676 *  @hw: pointer to the HW structure
1677 *
1678 *  Polarity is determined on the polarity reversal feature being enabled.
1679 **/
1680s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1681{
1682	struct e1000_phy_info *phy = &hw->phy;
1683	s32 ret_val;
1684	u16 phy_data, offset, mask;
1685
1686	/*
1687	 * Polarity is determined based on the reversal feature being enabled.
1688	 */
1689	if (phy->polarity_correction) {
1690		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1691		mask = IFE_PESC_POLARITY_REVERSED;
1692	} else {
1693		offset = IFE_PHY_SPECIAL_CONTROL;
1694		mask = IFE_PSC_FORCE_POLARITY;
1695	}
1696
1697	ret_val = e1e_rphy(hw, offset, &phy_data);
1698
1699	if (!ret_val)
1700		phy->cable_polarity = (phy_data & mask)
1701		                       ? e1000_rev_polarity_reversed
1702		                       : e1000_rev_polarity_normal;
1703
1704	return ret_val;
1705}
1706
1707/**
1708 *  e1000_wait_autoneg - Wait for auto-neg completion
1709 *  @hw: pointer to the HW structure
1710 *
1711 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1712 *  limit to expire, which ever happens first.
1713 **/
1714static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1715{
1716	s32 ret_val = 0;
1717	u16 i, phy_status;
1718
1719	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1720	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1721		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1722		if (ret_val)
1723			break;
1724		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1725		if (ret_val)
1726			break;
1727		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1728			break;
1729		msleep(100);
1730	}
1731
1732	/*
1733	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1734	 * has completed.
1735	 */
1736	return ret_val;
1737}
1738
1739/**
1740 *  e1000e_phy_has_link_generic - Polls PHY for link
1741 *  @hw: pointer to the HW structure
1742 *  @iterations: number of times to poll for link
1743 *  @usec_interval: delay between polling attempts
1744 *  @success: pointer to whether polling was successful or not
1745 *
1746 *  Polls the PHY status register for link, 'iterations' number of times.
1747 **/
1748s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1749			       u32 usec_interval, bool *success)
1750{
1751	s32 ret_val = 0;
1752	u16 i, phy_status;
1753
1754	for (i = 0; i < iterations; i++) {
1755		/*
1756		 * Some PHYs require the PHY_STATUS register to be read
1757		 * twice due to the link bit being sticky.  No harm doing
1758		 * it across the board.
1759		 */
1760		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1761		if (ret_val)
1762			/*
1763			 * If the first read fails, another entity may have
1764			 * ownership of the resources, wait and try again to
1765			 * see if they have relinquished the resources yet.
1766			 */
1767			udelay(usec_interval);
1768		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1769		if (ret_val)
1770			break;
1771		if (phy_status & MII_SR_LINK_STATUS)
1772			break;
1773		if (usec_interval >= 1000)
1774			mdelay(usec_interval/1000);
1775		else
1776			udelay(usec_interval);
1777	}
1778
1779	*success = (i < iterations);
1780
1781	return ret_val;
1782}
1783
1784/**
1785 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1786 *  @hw: pointer to the HW structure
1787 *
1788 *  Reads the PHY specific status register to retrieve the cable length
1789 *  information.  The cable length is determined by averaging the minimum and
1790 *  maximum values to get the "average" cable length.  The m88 PHY has four
1791 *  possible cable length values, which are:
1792 *	Register Value		Cable Length
1793 *	0			< 50 meters
1794 *	1			50 - 80 meters
1795 *	2			80 - 110 meters
1796 *	3			110 - 140 meters
1797 *	4			> 140 meters
1798 **/
1799s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1800{
1801	struct e1000_phy_info *phy = &hw->phy;
1802	s32 ret_val;
1803	u16 phy_data, index;
1804
1805	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1806	if (ret_val)
1807		return ret_val;
1808
1809	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1810	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1811
1812	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1813		return -E1000_ERR_PHY;
1814
1815	phy->min_cable_length = e1000_m88_cable_length_table[index];
1816	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1817
1818	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1819
1820	return 0;
1821}
1822
1823/**
1824 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1825 *  @hw: pointer to the HW structure
1826 *
1827 *  The automatic gain control (agc) normalizes the amplitude of the
1828 *  received signal, adjusting for the attenuation produced by the
1829 *  cable.  By reading the AGC registers, which represent the
1830 *  combination of coarse and fine gain value, the value can be put
1831 *  into a lookup table to obtain the approximate cable length
1832 *  for each channel.
1833 **/
1834s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1835{
1836	struct e1000_phy_info *phy = &hw->phy;
1837	s32 ret_val;
1838	u16 phy_data, i, agc_value = 0;
1839	u16 cur_agc_index, max_agc_index = 0;
1840	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1841	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1842	       IGP02E1000_PHY_AGC_A,
1843	       IGP02E1000_PHY_AGC_B,
1844	       IGP02E1000_PHY_AGC_C,
1845	       IGP02E1000_PHY_AGC_D
1846	};
1847
1848	/* Read the AGC registers for all channels */
1849	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1850		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1851		if (ret_val)
1852			return ret_val;
1853
1854		/*
1855		 * Getting bits 15:9, which represent the combination of
1856		 * coarse and fine gain values.  The result is a number
1857		 * that can be put into the lookup table to obtain the
1858		 * approximate cable length.
1859		 */
1860		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1861				IGP02E1000_AGC_LENGTH_MASK;
1862
1863		/* Array index bound check. */
1864		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1865		    (cur_agc_index == 0))
1866			return -E1000_ERR_PHY;
1867
1868		/* Remove min & max AGC values from calculation. */
1869		if (e1000_igp_2_cable_length_table[min_agc_index] >
1870		    e1000_igp_2_cable_length_table[cur_agc_index])
1871			min_agc_index = cur_agc_index;
1872		if (e1000_igp_2_cable_length_table[max_agc_index] <
1873		    e1000_igp_2_cable_length_table[cur_agc_index])
1874			max_agc_index = cur_agc_index;
1875
1876		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1877	}
1878
1879	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1880		      e1000_igp_2_cable_length_table[max_agc_index]);
1881	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1882
1883	/* Calculate cable length with the error range of +/- 10 meters. */
1884	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1885				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1886	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1887
1888	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1889
1890	return 0;
1891}
1892
1893/**
1894 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1895 *  @hw: pointer to the HW structure
1896 *
1897 *  Valid for only copper links.  Read the PHY status register (sticky read)
1898 *  to verify that link is up.  Read the PHY special control register to
1899 *  determine the polarity and 10base-T extended distance.  Read the PHY
1900 *  special status register to determine MDI/MDIx and current speed.  If
1901 *  speed is 1000, then determine cable length, local and remote receiver.
1902 **/
1903s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1904{
1905	struct e1000_phy_info *phy = &hw->phy;
1906	s32  ret_val;
1907	u16 phy_data;
1908	bool link;
1909
1910	if (phy->media_type != e1000_media_type_copper) {
1911		e_dbg("Phy info is only valid for copper media\n");
1912		return -E1000_ERR_CONFIG;
1913	}
1914
1915	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1916	if (ret_val)
1917		return ret_val;
1918
1919	if (!link) {
1920		e_dbg("Phy info is only valid if link is up\n");
1921		return -E1000_ERR_CONFIG;
1922	}
1923
1924	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1925	if (ret_val)
1926		return ret_val;
1927
1928	phy->polarity_correction = (phy_data &
1929				    M88E1000_PSCR_POLARITY_REVERSAL);
1930
1931	ret_val = e1000_check_polarity_m88(hw);
1932	if (ret_val)
1933		return ret_val;
1934
1935	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1936	if (ret_val)
1937		return ret_val;
1938
1939	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1940
1941	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1942		ret_val = e1000_get_cable_length(hw);
1943		if (ret_val)
1944			return ret_val;
1945
1946		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1947		if (ret_val)
1948			return ret_val;
1949
1950		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1951				? e1000_1000t_rx_status_ok
1952				: e1000_1000t_rx_status_not_ok;
1953
1954		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1955				 ? e1000_1000t_rx_status_ok
1956				 : e1000_1000t_rx_status_not_ok;
1957	} else {
1958		/* Set values to "undefined" */
1959		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1960		phy->local_rx = e1000_1000t_rx_status_undefined;
1961		phy->remote_rx = e1000_1000t_rx_status_undefined;
1962	}
1963
1964	return ret_val;
1965}
1966
1967/**
1968 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1969 *  @hw: pointer to the HW structure
1970 *
1971 *  Read PHY status to determine if link is up.  If link is up, then
1972 *  set/determine 10base-T extended distance and polarity correction.  Read
1973 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1974 *  determine on the cable length, local and remote receiver.
1975 **/
1976s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1977{
1978	struct e1000_phy_info *phy = &hw->phy;
1979	s32 ret_val;
1980	u16 data;
1981	bool link;
1982
1983	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1984	if (ret_val)
1985		return ret_val;
1986
1987	if (!link) {
1988		e_dbg("Phy info is only valid if link is up\n");
1989		return -E1000_ERR_CONFIG;
1990	}
1991
1992	phy->polarity_correction = true;
1993
1994	ret_val = e1000_check_polarity_igp(hw);
1995	if (ret_val)
1996		return ret_val;
1997
1998	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1999	if (ret_val)
2000		return ret_val;
2001
2002	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
2003
2004	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2005	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2006		ret_val = e1000_get_cable_length(hw);
2007		if (ret_val)
2008			return ret_val;
2009
2010		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2011		if (ret_val)
2012			return ret_val;
2013
2014		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2015				? e1000_1000t_rx_status_ok
2016				: e1000_1000t_rx_status_not_ok;
2017
2018		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2019				 ? e1000_1000t_rx_status_ok
2020				 : e1000_1000t_rx_status_not_ok;
2021	} else {
2022		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2023		phy->local_rx = e1000_1000t_rx_status_undefined;
2024		phy->remote_rx = e1000_1000t_rx_status_undefined;
2025	}
2026
2027	return ret_val;
2028}
2029
2030/**
2031 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2032 *  @hw: pointer to the HW structure
2033 *
2034 *  Populates "phy" structure with various feature states.
2035 **/
2036s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2037{
2038	struct e1000_phy_info *phy = &hw->phy;
2039	s32 ret_val;
2040	u16 data;
2041	bool link;
2042
2043	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2044	if (ret_val)
2045		return ret_val;
2046
2047	if (!link) {
2048		e_dbg("Phy info is only valid if link is up\n");
2049		return -E1000_ERR_CONFIG;
2050	}
2051
2052	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2053	if (ret_val)
2054		return ret_val;
2055	phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
2056	                           ? false : true;
2057
2058	if (phy->polarity_correction) {
2059		ret_val = e1000_check_polarity_ife(hw);
2060		if (ret_val)
2061			return ret_val;
2062	} else {
2063		/* Polarity is forced */
2064		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2065		                      ? e1000_rev_polarity_reversed
2066		                      : e1000_rev_polarity_normal;
2067	}
2068
2069	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2070	if (ret_val)
2071		return ret_val;
2072
2073	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
2074
2075	/* The following parameters are undefined for 10/100 operation. */
2076	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2077	phy->local_rx = e1000_1000t_rx_status_undefined;
2078	phy->remote_rx = e1000_1000t_rx_status_undefined;
2079
2080	return 0;
2081}
2082
2083/**
2084 *  e1000e_phy_sw_reset - PHY software reset
2085 *  @hw: pointer to the HW structure
2086 *
2087 *  Does a software reset of the PHY by reading the PHY control register and
2088 *  setting/write the control register reset bit to the PHY.
2089 **/
2090s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2091{
2092	s32 ret_val;
2093	u16 phy_ctrl;
2094
2095	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2096	if (ret_val)
2097		return ret_val;
2098
2099	phy_ctrl |= MII_CR_RESET;
2100	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2101	if (ret_val)
2102		return ret_val;
2103
2104	udelay(1);
2105
2106	return ret_val;
2107}
2108
2109/**
2110 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2111 *  @hw: pointer to the HW structure
2112 *
2113 *  Verify the reset block is not blocking us from resetting.  Acquire
2114 *  semaphore (if necessary) and read/set/write the device control reset
2115 *  bit in the PHY.  Wait the appropriate delay time for the device to
2116 *  reset and release the semaphore (if necessary).
2117 **/
2118s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2119{
2120	struct e1000_phy_info *phy = &hw->phy;
2121	s32 ret_val;
2122	u32 ctrl;
2123
2124	if (phy->ops.check_reset_block) {
2125		ret_val = phy->ops.check_reset_block(hw);
2126		if (ret_val)
2127			return 0;
2128	}
2129
2130	ret_val = phy->ops.acquire(hw);
2131	if (ret_val)
2132		return ret_val;
2133
2134	ctrl = er32(CTRL);
2135	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2136	e1e_flush();
2137
2138	udelay(phy->reset_delay_us);
2139
2140	ew32(CTRL, ctrl);
2141	e1e_flush();
2142
2143	udelay(150);
2144
2145	phy->ops.release(hw);
2146
2147	return e1000_get_phy_cfg_done(hw);
2148}
2149
2150/**
2151 *  e1000e_get_cfg_done - Generic configuration done
2152 *  @hw: pointer to the HW structure
2153 *
2154 *  Generic function to wait 10 milli-seconds for configuration to complete
2155 *  and return success.
2156 **/
2157s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2158{
2159	mdelay(10);
2160
2161	return 0;
2162}
2163
2164/**
2165 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2166 *  @hw: pointer to the HW structure
2167 *
2168 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2169 **/
2170s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2171{
2172	e_dbg("Running IGP 3 PHY init script\n");
2173
2174	/* PHY init IGP 3 */
2175	/* Enable rise/fall, 10-mode work in class-A */
2176	e1e_wphy(hw, 0x2F5B, 0x9018);
2177	/* Remove all caps from Replica path filter */
2178	e1e_wphy(hw, 0x2F52, 0x0000);
2179	/* Bias trimming for ADC, AFE and Driver (Default) */
2180	e1e_wphy(hw, 0x2FB1, 0x8B24);
2181	/* Increase Hybrid poly bias */
2182	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2183	/* Add 4% to Tx amplitude in Gig mode */
2184	e1e_wphy(hw, 0x2010, 0x10B0);
2185	/* Disable trimming (TTT) */
2186	e1e_wphy(hw, 0x2011, 0x0000);
2187	/* Poly DC correction to 94.6% + 2% for all channels */
2188	e1e_wphy(hw, 0x20DD, 0x249A);
2189	/* ABS DC correction to 95.9% */
2190	e1e_wphy(hw, 0x20DE, 0x00D3);
2191	/* BG temp curve trim */
2192	e1e_wphy(hw, 0x28B4, 0x04CE);
2193	/* Increasing ADC OPAMP stage 1 currents to max */
2194	e1e_wphy(hw, 0x2F70, 0x29E4);
2195	/* Force 1000 ( required for enabling PHY regs configuration) */
2196	e1e_wphy(hw, 0x0000, 0x0140);
2197	/* Set upd_freq to 6 */
2198	e1e_wphy(hw, 0x1F30, 0x1606);
2199	/* Disable NPDFE */
2200	e1e_wphy(hw, 0x1F31, 0xB814);
2201	/* Disable adaptive fixed FFE (Default) */
2202	e1e_wphy(hw, 0x1F35, 0x002A);
2203	/* Enable FFE hysteresis */
2204	e1e_wphy(hw, 0x1F3E, 0x0067);
2205	/* Fixed FFE for short cable lengths */
2206	e1e_wphy(hw, 0x1F54, 0x0065);
2207	/* Fixed FFE for medium cable lengths */
2208	e1e_wphy(hw, 0x1F55, 0x002A);
2209	/* Fixed FFE for long cable lengths */
2210	e1e_wphy(hw, 0x1F56, 0x002A);
2211	/* Enable Adaptive Clip Threshold */
2212	e1e_wphy(hw, 0x1F72, 0x3FB0);
2213	/* AHT reset limit to 1 */
2214	e1e_wphy(hw, 0x1F76, 0xC0FF);
2215	/* Set AHT master delay to 127 msec */
2216	e1e_wphy(hw, 0x1F77, 0x1DEC);
2217	/* Set scan bits for AHT */
2218	e1e_wphy(hw, 0x1F78, 0xF9EF);
2219	/* Set AHT Preset bits */
2220	e1e_wphy(hw, 0x1F79, 0x0210);
2221	/* Change integ_factor of channel A to 3 */
2222	e1e_wphy(hw, 0x1895, 0x0003);
2223	/* Change prop_factor of channels BCD to 8 */
2224	e1e_wphy(hw, 0x1796, 0x0008);
2225	/* Change cg_icount + enable integbp for channels BCD */
2226	e1e_wphy(hw, 0x1798, 0xD008);
2227	/*
2228	 * Change cg_icount + enable integbp + change prop_factor_master
2229	 * to 8 for channel A
2230	 */
2231	e1e_wphy(hw, 0x1898, 0xD918);
2232	/* Disable AHT in Slave mode on channel A */
2233	e1e_wphy(hw, 0x187A, 0x0800);
2234	/*
2235	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2236	 * Enable SPD+B2B
2237	 */
2238	e1e_wphy(hw, 0x0019, 0x008D);
2239	/* Enable restart AN on an1000_dis change */
2240	e1e_wphy(hw, 0x001B, 0x2080);
2241	/* Enable wh_fifo read clock in 10/100 modes */
2242	e1e_wphy(hw, 0x0014, 0x0045);
2243	/* Restart AN, Speed selection is 1000 */
2244	e1e_wphy(hw, 0x0000, 0x1340);
2245
2246	return 0;
2247}
2248
2249/* Internal function pointers */
2250
2251/**
2252 *  e1000_get_phy_cfg_done - Generic PHY configuration done
2253 *  @hw: pointer to the HW structure
2254 *
2255 *  Return success if silicon family did not implement a family specific
2256 *  get_cfg_done function.
2257 **/
2258static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2259{
2260	if (hw->phy.ops.get_cfg_done)
2261		return hw->phy.ops.get_cfg_done(hw);
2262
2263	return 0;
2264}
2265
2266/**
2267 *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2268 *  @hw: pointer to the HW structure
2269 *
2270 *  When the silicon family has not implemented a forced speed/duplex
2271 *  function for the PHY, simply return 0.
2272 **/
2273static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2274{
2275	if (hw->phy.ops.force_speed_duplex)
2276		return hw->phy.ops.force_speed_duplex(hw);
2277
2278	return 0;
2279}
2280
2281/**
2282 *  e1000e_get_phy_type_from_id - Get PHY type from id
2283 *  @phy_id: phy_id read from the phy
2284 *
2285 *  Returns the phy type from the id.
2286 **/
2287enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2288{
2289	enum e1000_phy_type phy_type = e1000_phy_unknown;
2290
2291	switch (phy_id) {
2292	case M88E1000_I_PHY_ID:
2293	case M88E1000_E_PHY_ID:
2294	case M88E1111_I_PHY_ID:
2295	case M88E1011_I_PHY_ID:
2296		phy_type = e1000_phy_m88;
2297		break;
2298	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2299		phy_type = e1000_phy_igp_2;
2300		break;
2301	case GG82563_E_PHY_ID:
2302		phy_type = e1000_phy_gg82563;
2303		break;
2304	case IGP03E1000_E_PHY_ID:
2305		phy_type = e1000_phy_igp_3;
2306		break;
2307	case IFE_E_PHY_ID:
2308	case IFE_PLUS_E_PHY_ID:
2309	case IFE_C_E_PHY_ID:
2310		phy_type = e1000_phy_ife;
2311		break;
2312	case BME1000_E_PHY_ID:
2313	case BME1000_E_PHY_ID_R2:
2314		phy_type = e1000_phy_bm;
2315		break;
2316	case I82578_E_PHY_ID:
2317		phy_type = e1000_phy_82578;
2318		break;
2319	case I82577_E_PHY_ID:
2320		phy_type = e1000_phy_82577;
2321		break;
2322	case I82579_E_PHY_ID:
2323		phy_type = e1000_phy_82579;
2324		break;
2325	default:
2326		phy_type = e1000_phy_unknown;
2327		break;
2328	}
2329	return phy_type;
2330}
2331
2332/**
2333 *  e1000e_determine_phy_address - Determines PHY address.
2334 *  @hw: pointer to the HW structure
2335 *
2336 *  This uses a trial and error method to loop through possible PHY
2337 *  addresses. It tests each by reading the PHY ID registers and
2338 *  checking for a match.
2339 **/
2340s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2341{
2342	u32 phy_addr = 0;
2343	u32 i;
2344	enum e1000_phy_type phy_type = e1000_phy_unknown;
2345
2346	hw->phy.id = phy_type;
2347
2348	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2349		hw->phy.addr = phy_addr;
2350		i = 0;
2351
2352		do {
2353			e1000e_get_phy_id(hw);
2354			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2355
2356			/*
2357			 * If phy_type is valid, break - we found our
2358			 * PHY address
2359			 */
2360			if (phy_type  != e1000_phy_unknown)
2361				return 0;
2362
2363			usleep_range(1000, 2000);
2364			i++;
2365		} while (i < 10);
2366	}
2367
2368	return -E1000_ERR_PHY_TYPE;
2369}
2370
2371/**
2372 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2373 *  @page: page to access
2374 *
2375 *  Returns the phy address for the page requested.
2376 **/
2377static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2378{
2379	u32 phy_addr = 2;
2380
2381	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2382		phy_addr = 1;
2383
2384	return phy_addr;
2385}
2386
2387/**
2388 *  e1000e_write_phy_reg_bm - Write BM PHY register
2389 *  @hw: pointer to the HW structure
2390 *  @offset: register offset to write to
2391 *  @data: data to write at register offset
2392 *
2393 *  Acquires semaphore, if necessary, then writes the data to PHY register
2394 *  at the offset.  Release any acquired semaphores before exiting.
2395 **/
2396s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2397{
2398	s32 ret_val;
2399	u32 page = offset >> IGP_PAGE_SHIFT;
2400
2401	ret_val = hw->phy.ops.acquire(hw);
2402	if (ret_val)
2403		return ret_val;
2404
2405	/* Page 800 works differently than the rest so it has its own func */
2406	if (page == BM_WUC_PAGE) {
2407		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2408							 false, false);
2409		goto release;
2410	}
2411
2412	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2413
2414	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2415		u32 page_shift, page_select;
2416
2417		/*
2418		 * Page select is register 31 for phy address 1 and 22 for
2419		 * phy address 2 and 3. Page select is shifted only for
2420		 * phy address 1.
2421		 */
2422		if (hw->phy.addr == 1) {
2423			page_shift = IGP_PAGE_SHIFT;
2424			page_select = IGP01E1000_PHY_PAGE_SELECT;
2425		} else {
2426			page_shift = 0;
2427			page_select = BM_PHY_PAGE_SELECT;
2428		}
2429
2430		/* Page is shifted left, PHY expects (page x 32) */
2431		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2432		                                    (page << page_shift));
2433		if (ret_val)
2434			goto release;
2435	}
2436
2437	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2438	                                    data);
2439
2440release:
2441	hw->phy.ops.release(hw);
2442	return ret_val;
2443}
2444
2445/**
2446 *  e1000e_read_phy_reg_bm - Read BM PHY register
2447 *  @hw: pointer to the HW structure
2448 *  @offset: register offset to be read
2449 *  @data: pointer to the read data
2450 *
2451 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2452 *  and storing the retrieved information in data.  Release any acquired
2453 *  semaphores before exiting.
2454 **/
2455s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2456{
2457	s32 ret_val;
2458	u32 page = offset >> IGP_PAGE_SHIFT;
2459
2460	ret_val = hw->phy.ops.acquire(hw);
2461	if (ret_val)
2462		return ret_val;
2463
2464	/* Page 800 works differently than the rest so it has its own func */
2465	if (page == BM_WUC_PAGE) {
2466		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2467							 true, false);
2468		goto release;
2469	}
2470
2471	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2472
2473	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2474		u32 page_shift, page_select;
2475
2476		/*
2477		 * Page select is register 31 for phy address 1 and 22 for
2478		 * phy address 2 and 3. Page select is shifted only for
2479		 * phy address 1.
2480		 */
2481		if (hw->phy.addr == 1) {
2482			page_shift = IGP_PAGE_SHIFT;
2483			page_select = IGP01E1000_PHY_PAGE_SELECT;
2484		} else {
2485			page_shift = 0;
2486			page_select = BM_PHY_PAGE_SELECT;
2487		}
2488
2489		/* Page is shifted left, PHY expects (page x 32) */
2490		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2491		                                    (page << page_shift));
2492		if (ret_val)
2493			goto release;
2494	}
2495
2496	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2497	                                   data);
2498release:
2499	hw->phy.ops.release(hw);
2500	return ret_val;
2501}
2502
2503/**
2504 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2505 *  @hw: pointer to the HW structure
2506 *  @offset: register offset to be read
2507 *  @data: pointer to the read data
2508 *
2509 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2510 *  and storing the retrieved information in data.  Release any acquired
2511 *  semaphores before exiting.
2512 **/
2513s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2514{
2515	s32 ret_val;
2516	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2517
2518	ret_val = hw->phy.ops.acquire(hw);
2519	if (ret_val)
2520		return ret_val;
2521
2522	/* Page 800 works differently than the rest so it has its own func */
2523	if (page == BM_WUC_PAGE) {
2524		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2525							 true, false);
2526		goto release;
2527	}
2528
2529	hw->phy.addr = 1;
2530
2531	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2532
2533		/* Page is shifted left, PHY expects (page x 32) */
2534		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2535						    page);
2536
2537		if (ret_val)
2538			goto release;
2539	}
2540
2541	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2542					   data);
2543release:
2544	hw->phy.ops.release(hw);
2545	return ret_val;
2546}
2547
2548/**
2549 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2550 *  @hw: pointer to the HW structure
2551 *  @offset: register offset to write to
2552 *  @data: data to write at register offset
2553 *
2554 *  Acquires semaphore, if necessary, then writes the data to PHY register
2555 *  at the offset.  Release any acquired semaphores before exiting.
2556 **/
2557s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2558{
2559	s32 ret_val;
2560	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2561
2562	ret_val = hw->phy.ops.acquire(hw);
2563	if (ret_val)
2564		return ret_val;
2565
2566	/* Page 800 works differently than the rest so it has its own func */
2567	if (page == BM_WUC_PAGE) {
2568		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2569							 false, false);
2570		goto release;
2571	}
2572
2573	hw->phy.addr = 1;
2574
2575	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2576		/* Page is shifted left, PHY expects (page x 32) */
2577		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2578						    page);
2579
2580		if (ret_val)
2581			goto release;
2582	}
2583
2584	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2585					    data);
2586
2587release:
2588	hw->phy.ops.release(hw);
2589	return ret_val;
2590}
2591
2592/**
2593 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2594 *  @hw: pointer to the HW structure
2595 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2596 *
2597 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2598 *  address to store contents of the BM_WUC_ENABLE_REG register.
2599 **/
2600s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2601{
2602	s32 ret_val;
2603	u16 temp;
2604
2605	/* All page select, port ctrl and wakeup registers use phy address 1 */
2606	hw->phy.addr = 1;
2607
2608	/* Select Port Control Registers page */
2609	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2610	if (ret_val) {
2611		e_dbg("Could not set Port Control page\n");
2612		return ret_val;
2613	}
2614
2615	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2616	if (ret_val) {
2617		e_dbg("Could not read PHY register %d.%d\n",
2618		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2619		return ret_val;
2620	}
2621
2622	/*
2623	 * Enable both PHY wakeup mode and Wakeup register page writes.
2624	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2625	 */
2626	temp = *phy_reg;
2627	temp |= BM_WUC_ENABLE_BIT;
2628	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2629
2630	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2631	if (ret_val) {
2632		e_dbg("Could not write PHY register %d.%d\n",
2633		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2634		return ret_val;
2635	}
2636
2637	/*
2638	 * Select Host Wakeup Registers page - caller now able to write
2639	 * registers on the Wakeup registers page
2640	 */
2641	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2642}
2643
2644/**
2645 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2646 *  @hw: pointer to the HW structure
2647 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2648 *
2649 *  Restore BM_WUC_ENABLE_REG to its original value.
2650 *
2651 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2652 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2653 *  caller.
2654 **/
2655s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2656{
2657	s32 ret_val = 0;
2658
2659	/* Select Port Control Registers page */
2660	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2661	if (ret_val) {
2662		e_dbg("Could not set Port Control page\n");
2663		return ret_val;
2664	}
2665
2666	/* Restore 769.17 to its original value */
2667	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2668	if (ret_val)
2669		e_dbg("Could not restore PHY register %d.%d\n",
2670		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2671
2672	return ret_val;
2673}
2674
2675/**
2676 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2677 *  @hw: pointer to the HW structure
2678 *  @offset: register offset to be read or written
2679 *  @data: pointer to the data to read or write
2680 *  @read: determines if operation is read or write
2681 *  @page_set: BM_WUC_PAGE already set and access enabled
2682 *
2683 *  Read the PHY register at offset and store the retrieved information in
2684 *  data, or write data to PHY register at offset.  Note the procedure to
2685 *  access the PHY wakeup registers is different than reading the other PHY
2686 *  registers. It works as such:
2687 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2688 *  2) Set page to 800 for host (801 if we were manageability)
2689 *  3) Write the address using the address opcode (0x11)
2690 *  4) Read or write the data using the data opcode (0x12)
2691 *  5) Restore 769.17.2 to its original value
2692 *
2693 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2694 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2695 *
2696 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2697 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2698 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2699 **/
2700static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2701					  u16 *data, bool read, bool page_set)
2702{
2703	s32 ret_val;
2704	u16 reg = BM_PHY_REG_NUM(offset);
2705	u16 page = BM_PHY_REG_PAGE(offset);
2706	u16 phy_reg = 0;
2707
2708	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2709	if ((hw->mac.type == e1000_pchlan) &&
2710	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2711		e_dbg("Attempting to access page %d while gig enabled.\n",
2712		      page);
2713
2714	if (!page_set) {
2715		/* Enable access to PHY wakeup registers */
2716		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2717		if (ret_val) {
2718			e_dbg("Could not enable PHY wakeup reg access\n");
2719			return ret_val;
2720		}
2721	}
2722
2723	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2724
2725	/* Write the Wakeup register page offset value using opcode 0x11 */
2726	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2727	if (ret_val) {
2728		e_dbg("Could not write address opcode to page %d\n", page);
2729		return ret_val;
2730	}
2731
2732	if (read) {
2733		/* Read the Wakeup register page value using opcode 0x12 */
2734		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2735		                                   data);
2736	} else {
2737		/* Write the Wakeup register page value using opcode 0x12 */
2738		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2739						    *data);
2740	}
2741
2742	if (ret_val) {
2743		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2744		return ret_val;
2745	}
2746
2747	if (!page_set)
2748		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2749
2750	return ret_val;
2751}
2752
2753/**
2754 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2755 * @hw: pointer to the HW structure
2756 *
2757 * In the case of a PHY power down to save power, or to turn off link during a
2758 * driver unload, or wake on lan is not enabled, restore the link to previous
2759 * settings.
2760 **/
2761void e1000_power_up_phy_copper(struct e1000_hw *hw)
2762{
2763	u16 mii_reg = 0;
2764
2765	/* The PHY will retain its settings across a power down/up cycle */
2766	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2767	mii_reg &= ~MII_CR_POWER_DOWN;
2768	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2769}
2770
2771/**
2772 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2773 * @hw: pointer to the HW structure
2774 *
2775 * In the case of a PHY power down to save power, or to turn off link during a
2776 * driver unload, or wake on lan is not enabled, restore the link to previous
2777 * settings.
2778 **/
2779void e1000_power_down_phy_copper(struct e1000_hw *hw)
2780{
2781	u16 mii_reg = 0;
2782
2783	/* The PHY will retain its settings across a power down/up cycle */
2784	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2785	mii_reg |= MII_CR_POWER_DOWN;
2786	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2787	usleep_range(1000, 2000);
2788}
2789
2790/**
2791 *  e1000e_commit_phy - Soft PHY reset
2792 *  @hw: pointer to the HW structure
2793 *
2794 *  Performs a soft PHY reset on those that apply. This is a function pointer
2795 *  entry point called by drivers.
2796 **/
2797s32 e1000e_commit_phy(struct e1000_hw *hw)
2798{
2799	if (hw->phy.ops.commit)
2800		return hw->phy.ops.commit(hw);
2801
2802	return 0;
2803}
2804
2805/**
2806 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
2807 *  @hw: pointer to the HW structure
2808 *  @active: boolean used to enable/disable lplu
2809 *
2810 *  Success returns 0, Failure returns 1
2811 *
2812 *  The low power link up (lplu) state is set to the power management level D0
2813 *  and SmartSpeed is disabled when active is true, else clear lplu for D0
2814 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
2815 *  is used during Dx states where the power conservation is most important.
2816 *  During driver activity, SmartSpeed should be enabled so performance is
2817 *  maintained.  This is a function pointer entry point called by drivers.
2818 **/
2819static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2820{
2821	if (hw->phy.ops.set_d0_lplu_state)
2822		return hw->phy.ops.set_d0_lplu_state(hw, active);
2823
2824	return 0;
2825}
2826
2827/**
2828 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2829 *  @hw: pointer to the HW structure
2830 *  @offset: register offset to be read
2831 *  @data: pointer to the read data
2832 *  @locked: semaphore has already been acquired or not
2833 *
2834 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2835 *  and stores the retrieved information in data.  Release any acquired
2836 *  semaphore before exiting.
2837 **/
2838static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2839				   bool locked, bool page_set)
2840{
2841	s32 ret_val;
2842	u16 page = BM_PHY_REG_PAGE(offset);
2843	u16 reg = BM_PHY_REG_NUM(offset);
2844	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2845
2846	if (!locked) {
2847		ret_val = hw->phy.ops.acquire(hw);
2848		if (ret_val)
2849			return ret_val;
2850	}
2851
2852	/* Page 800 works differently than the rest so it has its own func */
2853	if (page == BM_WUC_PAGE) {
2854		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2855							 true, page_set);
2856		goto out;
2857	}
2858
2859	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2860		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2861		                                         data, true);
2862		goto out;
2863	}
2864
2865	if (!page_set) {
2866		if (page == HV_INTC_FC_PAGE_START)
2867			page = 0;
2868
2869		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2870			/* Page is shifted left, PHY expects (page x 32) */
2871			ret_val = e1000_set_page_igp(hw,
2872						     (page << IGP_PAGE_SHIFT));
2873
2874			hw->phy.addr = phy_addr;
2875
2876			if (ret_val)
2877				goto out;
2878		}
2879	}
2880
2881	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2882	      page << IGP_PAGE_SHIFT, reg);
2883
2884	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2885	                                  data);
2886out:
2887	if (!locked)
2888		hw->phy.ops.release(hw);
2889
2890	return ret_val;
2891}
2892
2893/**
2894 *  e1000_read_phy_reg_hv -  Read HV PHY register
2895 *  @hw: pointer to the HW structure
2896 *  @offset: register offset to be read
2897 *  @data: pointer to the read data
2898 *
2899 *  Acquires semaphore then reads the PHY register at offset and stores
2900 *  the retrieved information in data.  Release the acquired semaphore
2901 *  before exiting.
2902 **/
2903s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2904{
2905	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2906}
2907
2908/**
2909 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2910 *  @hw: pointer to the HW structure
2911 *  @offset: register offset to be read
2912 *  @data: pointer to the read data
2913 *
2914 *  Reads the PHY register at offset and stores the retrieved information
2915 *  in data.  Assumes semaphore already acquired.
2916 **/
2917s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2918{
2919	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2920}
2921
2922/**
2923 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2924 *  @hw: pointer to the HW structure
2925 *  @offset: register offset to write to
2926 *  @data: data to write at register offset
2927 *
2928 *  Reads the PHY register at offset and stores the retrieved information
2929 *  in data.  Assumes semaphore already acquired and page already set.
2930 **/
2931s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2932{
2933	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2934}
2935
2936/**
2937 *  __e1000_write_phy_reg_hv - Write HV PHY register
2938 *  @hw: pointer to the HW structure
2939 *  @offset: register offset to write to
2940 *  @data: data to write at register offset
2941 *  @locked: semaphore has already been acquired or not
2942 *
2943 *  Acquires semaphore, if necessary, then writes the data to PHY register
2944 *  at the offset.  Release any acquired semaphores before exiting.
2945 **/
2946static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2947				    bool locked, bool page_set)
2948{
2949	s32 ret_val;
2950	u16 page = BM_PHY_REG_PAGE(offset);
2951	u16 reg = BM_PHY_REG_NUM(offset);
2952	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2953
2954	if (!locked) {
2955		ret_val = hw->phy.ops.acquire(hw);
2956		if (ret_val)
2957			return ret_val;
2958	}
2959
2960	/* Page 800 works differently than the rest so it has its own func */
2961	if (page == BM_WUC_PAGE) {
2962		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2963							 false, page_set);
2964		goto out;
2965	}
2966
2967	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2968		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2969		                                         &data, false);
2970		goto out;
2971	}
2972
2973	if (!page_set) {
2974		if (page == HV_INTC_FC_PAGE_START)
2975			page = 0;
2976
2977		/*
2978		 * Workaround MDIO accesses being disabled after entering IEEE
2979		 * Power Down (when bit 11 of the PHY Control register is set)
2980		 */
2981		if ((hw->phy.type == e1000_phy_82578) &&
2982		    (hw->phy.revision >= 1) &&
2983		    (hw->phy.addr == 2) &&
2984		    ((MAX_PHY_REG_ADDRESS & reg) == 0) && (data & (1 << 11))) {
2985			u16 data2 = 0x7EFF;
2986			ret_val = e1000_access_phy_debug_regs_hv(hw,
2987								 (1 << 6) | 0x3,
2988								 &data2, false);
2989			if (ret_val)
2990				goto out;
2991		}
2992
2993		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2994			/* Page is shifted left, PHY expects (page x 32) */
2995			ret_val = e1000_set_page_igp(hw,
2996						     (page << IGP_PAGE_SHIFT));
2997
2998			hw->phy.addr = phy_addr;
2999
3000			if (ret_val)
3001				goto out;
3002		}
3003	}
3004
3005	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3006	      page << IGP_PAGE_SHIFT, reg);
3007
3008	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3009	                                  data);
3010
3011out:
3012	if (!locked)
3013		hw->phy.ops.release(hw);
3014
3015	return ret_val;
3016}
3017
3018/**
3019 *  e1000_write_phy_reg_hv - Write HV PHY register
3020 *  @hw: pointer to the HW structure
3021 *  @offset: register offset to write to
3022 *  @data: data to write at register offset
3023 *
3024 *  Acquires semaphore then writes the data to PHY register at the offset.
3025 *  Release the acquired semaphores before exiting.
3026 **/
3027s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3028{
3029	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
3030}
3031
3032/**
3033 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
3034 *  @hw: pointer to the HW structure
3035 *  @offset: register offset to write to
3036 *  @data: data to write at register offset
3037 *
3038 *  Writes the data to PHY register at the offset.  Assumes semaphore
3039 *  already acquired.
3040 **/
3041s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3042{
3043	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3044}
3045
3046/**
3047 *  e1000_write_phy_reg_page_hv - Write HV PHY register
3048 *  @hw: pointer to the HW structure
3049 *  @offset: register offset to write to
3050 *  @data: data to write at register offset
3051 *
3052 *  Writes the data to PHY register at the offset.  Assumes semaphore
3053 *  already acquired and page already set.
3054 **/
3055s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3056{
3057	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3058}
3059
3060/**
3061 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3062 *  @page: page to be accessed
3063 **/
3064static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3065{
3066	u32 phy_addr = 2;
3067
3068	if (page >= HV_INTC_FC_PAGE_START)
3069		phy_addr = 1;
3070
3071	return phy_addr;
3072}
3073
3074/**
3075 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3076 *  @hw: pointer to the HW structure
3077 *  @offset: register offset to be read or written
3078 *  @data: pointer to the data to be read or written
3079 *  @read: determines if operation is read or write
3080 *
3081 *  Reads the PHY register at offset and stores the retreived information
3082 *  in data.  Assumes semaphore already acquired.  Note that the procedure
3083 *  to access these regs uses the address port and data port to read/write.
3084 *  These accesses done with PHY address 2 and without using pages.
3085 **/
3086static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3087                                          u16 *data, bool read)
3088{
3089	s32 ret_val;
3090	u32 addr_reg = 0;
3091	u32 data_reg = 0;
3092
3093	/* This takes care of the difference with desktop vs mobile phy */
3094	addr_reg = (hw->phy.type == e1000_phy_82578) ?
3095	           I82578_ADDR_REG : I82577_ADDR_REG;
3096	data_reg = addr_reg + 1;
3097
3098	/* All operations in this function are phy address 2 */
3099	hw->phy.addr = 2;
3100
3101	/* masking with 0x3F to remove the page from offset */
3102	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3103	if (ret_val) {
3104		e_dbg("Could not write the Address Offset port register\n");
3105		return ret_val;
3106	}
3107
3108	/* Read or write the data value next */
3109	if (read)
3110		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3111	else
3112		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3113
3114	if (ret_val)
3115		e_dbg("Could not access the Data port register\n");
3116
3117	return ret_val;
3118}
3119
3120/**
3121 *  e1000_link_stall_workaround_hv - Si workaround
3122 *  @hw: pointer to the HW structure
3123 *
3124 *  This function works around a Si bug where the link partner can get
3125 *  a link up indication before the PHY does.  If small packets are sent
3126 *  by the link partner they can be placed in the packet buffer without
3127 *  being properly accounted for by the PHY and will stall preventing
3128 *  further packets from being received.  The workaround is to clear the
3129 *  packet buffer after the PHY detects link up.
3130 **/
3131s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3132{
3133	s32 ret_val = 0;
3134	u16 data;
3135
3136	if (hw->phy.type != e1000_phy_82578)
3137		return 0;
3138
3139	/* Do not apply workaround if in PHY loopback bit 14 set */
3140	e1e_rphy(hw, PHY_CONTROL, &data);
3141	if (data & PHY_CONTROL_LB)
3142		return 0;
3143
3144	/* check if link is up and at 1Gbps */
3145	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3146	if (ret_val)
3147		return ret_val;
3148
3149	data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3150		BM_CS_STATUS_SPEED_MASK;
3151
3152	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3153		     BM_CS_STATUS_SPEED_1000))
3154		return 0;
3155
3156	msleep(200);
3157
3158	/* flush the packets in the fifo buffer */
3159	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
3160			   HV_MUX_DATA_CTRL_FORCE_SPEED);
3161	if (ret_val)
3162		return ret_val;
3163
3164	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3165}
3166
3167/**
3168 *  e1000_check_polarity_82577 - Checks the polarity.
3169 *  @hw: pointer to the HW structure
3170 *
3171 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3172 *
3173 *  Polarity is determined based on the PHY specific status register.
3174 **/
3175s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3176{
3177	struct e1000_phy_info *phy = &hw->phy;
3178	s32 ret_val;
3179	u16 data;
3180
3181	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3182
3183	if (!ret_val)
3184		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3185		                      ? e1000_rev_polarity_reversed
3186		                      : e1000_rev_polarity_normal;
3187
3188	return ret_val;
3189}
3190
3191/**
3192 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3193 *  @hw: pointer to the HW structure
3194 *
3195 *  Calls the PHY setup function to force speed and duplex.
3196 **/
3197s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3198{
3199	struct e1000_phy_info *phy = &hw->phy;
3200	s32 ret_val;
3201	u16 phy_data;
3202	bool link;
3203
3204	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3205	if (ret_val)
3206		return ret_val;
3207
3208	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3209
3210	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3211	if (ret_val)
3212		return ret_val;
3213
3214	udelay(1);
3215
3216	if (phy->autoneg_wait_to_complete) {
3217		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3218
3219		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3220						      100000, &link);
3221		if (ret_val)
3222			return ret_val;
3223
3224		if (!link)
3225			e_dbg("Link taking longer than expected.\n");
3226
3227		/* Try once more */
3228		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3229						      100000, &link);
3230	}
3231
3232	return ret_val;
3233}
3234
3235/**
3236 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3237 *  @hw: pointer to the HW structure
3238 *
3239 *  Read PHY status to determine if link is up.  If link is up, then
3240 *  set/determine 10base-T extended distance and polarity correction.  Read
3241 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3242 *  determine on the cable length, local and remote receiver.
3243 **/
3244s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3245{
3246	struct e1000_phy_info *phy = &hw->phy;
3247	s32 ret_val;
3248	u16 data;
3249	bool link;
3250
3251	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3252	if (ret_val)
3253		return ret_val;
3254
3255	if (!link) {
3256		e_dbg("Phy info is only valid if link is up\n");
3257		return -E1000_ERR_CONFIG;
3258	}
3259
3260	phy->polarity_correction = true;
3261
3262	ret_val = e1000_check_polarity_82577(hw);
3263	if (ret_val)
3264		return ret_val;
3265
3266	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3267	if (ret_val)
3268		return ret_val;
3269
3270	phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
3271
3272	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3273	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3274		ret_val = hw->phy.ops.get_cable_length(hw);
3275		if (ret_val)
3276			return ret_val;
3277
3278		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3279		if (ret_val)
3280			return ret_val;
3281
3282		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3283		                ? e1000_1000t_rx_status_ok
3284		                : e1000_1000t_rx_status_not_ok;
3285
3286		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3287		                 ? e1000_1000t_rx_status_ok
3288		                 : e1000_1000t_rx_status_not_ok;
3289	} else {
3290		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3291		phy->local_rx = e1000_1000t_rx_status_undefined;
3292		phy->remote_rx = e1000_1000t_rx_status_undefined;
3293	}
3294
3295	return 0;
3296}
3297
3298/**
3299 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3300 *  @hw: pointer to the HW structure
3301 *
3302 * Reads the diagnostic status register and verifies result is valid before
3303 * placing it in the phy_cable_length field.
3304 **/
3305s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3306{
3307	struct e1000_phy_info *phy = &hw->phy;
3308	s32 ret_val;
3309	u16 phy_data, length;
3310
3311	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3312	if (ret_val)
3313		return ret_val;
3314
3315	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3316	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3317
3318	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3319		ret_val = -E1000_ERR_PHY;
3320
3321	phy->cable_length = length;
3322
3323	return 0;
3324}
3325