e1000_mac.c revision 6538ee62d597ca09035c33838d7516455f4fd3e1
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2011 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30#include <linux/pci.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33
34#include "e1000_mac.h"
35
36#include "igb.h"
37
38static s32 igb_set_default_fc(struct e1000_hw *hw);
39static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
40
41/**
42 *  igb_get_bus_info_pcie - Get PCIe bus information
43 *  @hw: pointer to the HW structure
44 *
45 *  Determines and stores the system bus information for a particular
46 *  network interface.  The following bus information is determined and stored:
47 *  bus speed, bus width, type (PCIe), and PCIe function.
48 **/
49s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
50{
51	struct e1000_bus_info *bus = &hw->bus;
52	s32 ret_val;
53	u32 reg;
54	u16 pcie_link_status;
55
56	bus->type = e1000_bus_type_pci_express;
57
58	ret_val = igb_read_pcie_cap_reg(hw,
59					PCI_EXP_LNKSTA,
60					&pcie_link_status);
61	if (ret_val) {
62		bus->width = e1000_bus_width_unknown;
63		bus->speed = e1000_bus_speed_unknown;
64	} else {
65		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
66		case PCI_EXP_LNKSTA_CLS_2_5GB:
67			bus->speed = e1000_bus_speed_2500;
68			break;
69		case PCI_EXP_LNKSTA_CLS_5_0GB:
70			bus->speed = e1000_bus_speed_5000;
71			break;
72		default:
73			bus->speed = e1000_bus_speed_unknown;
74			break;
75		}
76
77		bus->width = (enum e1000_bus_width)((pcie_link_status &
78						     PCI_EXP_LNKSTA_NLW) >>
79						     PCI_EXP_LNKSTA_NLW_SHIFT);
80	}
81
82	reg = rd32(E1000_STATUS);
83	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
84
85	return 0;
86}
87
88/**
89 *  igb_clear_vfta - Clear VLAN filter table
90 *  @hw: pointer to the HW structure
91 *
92 *  Clears the register array which contains the VLAN filter table by
93 *  setting all the values to 0.
94 **/
95void igb_clear_vfta(struct e1000_hw *hw)
96{
97	u32 offset;
98
99	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
100		array_wr32(E1000_VFTA, offset, 0);
101		wrfl();
102	}
103}
104
105/**
106 *  igb_write_vfta - Write value to VLAN filter table
107 *  @hw: pointer to the HW structure
108 *  @offset: register offset in VLAN filter table
109 *  @value: register value written to VLAN filter table
110 *
111 *  Writes value at the given offset in the register array which stores
112 *  the VLAN filter table.
113 **/
114static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
115{
116	array_wr32(E1000_VFTA, offset, value);
117	wrfl();
118}
119
120/**
121 *  igb_init_rx_addrs - Initialize receive address's
122 *  @hw: pointer to the HW structure
123 *  @rar_count: receive address registers
124 *
125 *  Setups the receive address registers by setting the base receive address
126 *  register to the devices MAC address and clearing all the other receive
127 *  address registers to 0.
128 **/
129void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
130{
131	u32 i;
132	u8 mac_addr[ETH_ALEN] = {0};
133
134	/* Setup the receive address */
135	hw_dbg("Programming MAC Address into RAR[0]\n");
136
137	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
138
139	/* Zero out the other (rar_entry_count - 1) receive addresses */
140	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
141	for (i = 1; i < rar_count; i++)
142		hw->mac.ops.rar_set(hw, mac_addr, i);
143}
144
145/**
146 *  igb_vfta_set - enable or disable vlan in VLAN filter table
147 *  @hw: pointer to the HW structure
148 *  @vid: VLAN id to add or remove
149 *  @add: if true add filter, if false remove
150 *
151 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
152 *  and if we are adding or removing the filter
153 **/
154s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
155{
156	u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
157	u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
158	u32 vfta = array_rd32(E1000_VFTA, index);
159	s32 ret_val = 0;
160
161	/* bit was set/cleared before we started */
162	if ((!!(vfta & mask)) == add) {
163		ret_val = -E1000_ERR_CONFIG;
164	} else {
165		if (add)
166			vfta |= mask;
167		else
168			vfta &= ~mask;
169	}
170
171	igb_write_vfta(hw, index, vfta);
172
173	return ret_val;
174}
175
176/**
177 *  igb_check_alt_mac_addr - Check for alternate MAC addr
178 *  @hw: pointer to the HW structure
179 *
180 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
181 *  can be setup by pre-boot software and must be treated like a permanent
182 *  address and must override the actual permanent MAC address.  If an
183 *  alternate MAC address is fopund it is saved in the hw struct and
184 *  prgrammed into RAR0 and the cuntion returns success, otherwise the
185 *  function returns an error.
186 **/
187s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
188{
189	u32 i;
190	s32 ret_val = 0;
191	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
192	u8 alt_mac_addr[ETH_ALEN];
193
194	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
195				 &nvm_alt_mac_addr_offset);
196	if (ret_val) {
197		hw_dbg("NVM Read Error\n");
198		goto out;
199	}
200
201	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
202	    (nvm_alt_mac_addr_offset == 0x0000))
203		/* There is no Alternate MAC Address */
204		goto out;
205
206	if (hw->bus.func == E1000_FUNC_1)
207		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
208	for (i = 0; i < ETH_ALEN; i += 2) {
209		offset = nvm_alt_mac_addr_offset + (i >> 1);
210		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
211		if (ret_val) {
212			hw_dbg("NVM Read Error\n");
213			goto out;
214		}
215
216		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
217		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
218	}
219
220	/* if multicast bit is set, the alternate address will not be used */
221	if (is_multicast_ether_addr(alt_mac_addr)) {
222		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
223		goto out;
224	}
225
226	/*
227	 * We have a valid alternate MAC address, and we want to treat it the
228	 * same as the normal permanent MAC address stored by the HW into the
229	 * RAR. Do this by mapping this address into RAR0.
230	 */
231	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
232
233out:
234	return ret_val;
235}
236
237/**
238 *  igb_rar_set - Set receive address register
239 *  @hw: pointer to the HW structure
240 *  @addr: pointer to the receive address
241 *  @index: receive address array register
242 *
243 *  Sets the receive address array register at index to the address passed
244 *  in by addr.
245 **/
246void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
247{
248	u32 rar_low, rar_high;
249
250	/*
251	 * HW expects these in little endian so we reverse the byte order
252	 * from network order (big endian) to little endian
253	 */
254	rar_low = ((u32) addr[0] |
255		   ((u32) addr[1] << 8) |
256		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
257
258	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
259
260	/* If MAC address zero, no need to set the AV bit */
261	if (rar_low || rar_high)
262		rar_high |= E1000_RAH_AV;
263
264	/*
265	 * Some bridges will combine consecutive 32-bit writes into
266	 * a single burst write, which will malfunction on some parts.
267	 * The flushes avoid this.
268	 */
269	wr32(E1000_RAL(index), rar_low);
270	wrfl();
271	wr32(E1000_RAH(index), rar_high);
272	wrfl();
273}
274
275/**
276 *  igb_mta_set - Set multicast filter table address
277 *  @hw: pointer to the HW structure
278 *  @hash_value: determines the MTA register and bit to set
279 *
280 *  The multicast table address is a register array of 32-bit registers.
281 *  The hash_value is used to determine what register the bit is in, the
282 *  current value is read, the new bit is OR'd in and the new value is
283 *  written back into the register.
284 **/
285void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
286{
287	u32 hash_bit, hash_reg, mta;
288
289	/*
290	 * The MTA is a register array of 32-bit registers. It is
291	 * treated like an array of (32*mta_reg_count) bits.  We want to
292	 * set bit BitArray[hash_value]. So we figure out what register
293	 * the bit is in, read it, OR in the new bit, then write
294	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
295	 * mask to bits 31:5 of the hash value which gives us the
296	 * register we're modifying.  The hash bit within that register
297	 * is determined by the lower 5 bits of the hash value.
298	 */
299	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
300	hash_bit = hash_value & 0x1F;
301
302	mta = array_rd32(E1000_MTA, hash_reg);
303
304	mta |= (1 << hash_bit);
305
306	array_wr32(E1000_MTA, hash_reg, mta);
307	wrfl();
308}
309
310/**
311 *  igb_hash_mc_addr - Generate a multicast hash value
312 *  @hw: pointer to the HW structure
313 *  @mc_addr: pointer to a multicast address
314 *
315 *  Generates a multicast address hash value which is used to determine
316 *  the multicast filter table array address and new table value.  See
317 *  igb_mta_set()
318 **/
319static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
320{
321	u32 hash_value, hash_mask;
322	u8 bit_shift = 0;
323
324	/* Register count multiplied by bits per register */
325	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
326
327	/*
328	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
329	 * where 0xFF would still fall within the hash mask.
330	 */
331	while (hash_mask >> bit_shift != 0xFF)
332		bit_shift++;
333
334	/*
335	 * The portion of the address that is used for the hash table
336	 * is determined by the mc_filter_type setting.
337	 * The algorithm is such that there is a total of 8 bits of shifting.
338	 * The bit_shift for a mc_filter_type of 0 represents the number of
339	 * left-shifts where the MSB of mc_addr[5] would still fall within
340	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
341	 * of 8 bits of shifting, then mc_addr[4] will shift right the
342	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
343	 * cases are a variation of this algorithm...essentially raising the
344	 * number of bits to shift mc_addr[5] left, while still keeping the
345	 * 8-bit shifting total.
346	 *
347	 * For example, given the following Destination MAC Address and an
348	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
349	 * we can see that the bit_shift for case 0 is 4.  These are the hash
350	 * values resulting from each mc_filter_type...
351	 * [0] [1] [2] [3] [4] [5]
352	 * 01  AA  00  12  34  56
353	 * LSB                 MSB
354	 *
355	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
356	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
357	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
358	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
359	 */
360	switch (hw->mac.mc_filter_type) {
361	default:
362	case 0:
363		break;
364	case 1:
365		bit_shift += 1;
366		break;
367	case 2:
368		bit_shift += 2;
369		break;
370	case 3:
371		bit_shift += 4;
372		break;
373	}
374
375	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
376				  (((u16) mc_addr[5]) << bit_shift)));
377
378	return hash_value;
379}
380
381/**
382 *  igb_update_mc_addr_list - Update Multicast addresses
383 *  @hw: pointer to the HW structure
384 *  @mc_addr_list: array of multicast addresses to program
385 *  @mc_addr_count: number of multicast addresses to program
386 *
387 *  Updates entire Multicast Table Array.
388 *  The caller must have a packed mc_addr_list of multicast addresses.
389 **/
390void igb_update_mc_addr_list(struct e1000_hw *hw,
391                             u8 *mc_addr_list, u32 mc_addr_count)
392{
393	u32 hash_value, hash_bit, hash_reg;
394	int i;
395
396	/* clear mta_shadow */
397	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
398
399	/* update mta_shadow from mc_addr_list */
400	for (i = 0; (u32) i < mc_addr_count; i++) {
401		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
402
403		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
404		hash_bit = hash_value & 0x1F;
405
406		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
407		mc_addr_list += (ETH_ALEN);
408	}
409
410	/* replace the entire MTA table */
411	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
412		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
413	wrfl();
414}
415
416/**
417 *  igb_clear_hw_cntrs_base - Clear base hardware counters
418 *  @hw: pointer to the HW structure
419 *
420 *  Clears the base hardware counters by reading the counter registers.
421 **/
422void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
423{
424	rd32(E1000_CRCERRS);
425	rd32(E1000_SYMERRS);
426	rd32(E1000_MPC);
427	rd32(E1000_SCC);
428	rd32(E1000_ECOL);
429	rd32(E1000_MCC);
430	rd32(E1000_LATECOL);
431	rd32(E1000_COLC);
432	rd32(E1000_DC);
433	rd32(E1000_SEC);
434	rd32(E1000_RLEC);
435	rd32(E1000_XONRXC);
436	rd32(E1000_XONTXC);
437	rd32(E1000_XOFFRXC);
438	rd32(E1000_XOFFTXC);
439	rd32(E1000_FCRUC);
440	rd32(E1000_GPRC);
441	rd32(E1000_BPRC);
442	rd32(E1000_MPRC);
443	rd32(E1000_GPTC);
444	rd32(E1000_GORCL);
445	rd32(E1000_GORCH);
446	rd32(E1000_GOTCL);
447	rd32(E1000_GOTCH);
448	rd32(E1000_RNBC);
449	rd32(E1000_RUC);
450	rd32(E1000_RFC);
451	rd32(E1000_ROC);
452	rd32(E1000_RJC);
453	rd32(E1000_TORL);
454	rd32(E1000_TORH);
455	rd32(E1000_TOTL);
456	rd32(E1000_TOTH);
457	rd32(E1000_TPR);
458	rd32(E1000_TPT);
459	rd32(E1000_MPTC);
460	rd32(E1000_BPTC);
461}
462
463/**
464 *  igb_check_for_copper_link - Check for link (Copper)
465 *  @hw: pointer to the HW structure
466 *
467 *  Checks to see of the link status of the hardware has changed.  If a
468 *  change in link status has been detected, then we read the PHY registers
469 *  to get the current speed/duplex if link exists.
470 **/
471s32 igb_check_for_copper_link(struct e1000_hw *hw)
472{
473	struct e1000_mac_info *mac = &hw->mac;
474	s32 ret_val;
475	bool link;
476
477	/*
478	 * We only want to go out to the PHY registers to see if Auto-Neg
479	 * has completed and/or if our link status has changed.  The
480	 * get_link_status flag is set upon receiving a Link Status
481	 * Change or Rx Sequence Error interrupt.
482	 */
483	if (!mac->get_link_status) {
484		ret_val = 0;
485		goto out;
486	}
487
488	/*
489	 * First we want to see if the MII Status Register reports
490	 * link.  If so, then we want to get the current speed/duplex
491	 * of the PHY.
492	 */
493	ret_val = igb_phy_has_link(hw, 1, 0, &link);
494	if (ret_val)
495		goto out;
496
497	if (!link)
498		goto out; /* No link detected */
499
500	mac->get_link_status = false;
501
502	/*
503	 * Check if there was DownShift, must be checked
504	 * immediately after link-up
505	 */
506	igb_check_downshift(hw);
507
508	/*
509	 * If we are forcing speed/duplex, then we simply return since
510	 * we have already determined whether we have link or not.
511	 */
512	if (!mac->autoneg) {
513		ret_val = -E1000_ERR_CONFIG;
514		goto out;
515	}
516
517	/*
518	 * Auto-Neg is enabled.  Auto Speed Detection takes care
519	 * of MAC speed/duplex configuration.  So we only need to
520	 * configure Collision Distance in the MAC.
521	 */
522	igb_config_collision_dist(hw);
523
524	/*
525	 * Configure Flow Control now that Auto-Neg has completed.
526	 * First, we need to restore the desired flow control
527	 * settings because we may have had to re-autoneg with a
528	 * different link partner.
529	 */
530	ret_val = igb_config_fc_after_link_up(hw);
531	if (ret_val)
532		hw_dbg("Error configuring flow control\n");
533
534out:
535	return ret_val;
536}
537
538/**
539 *  igb_setup_link - Setup flow control and link settings
540 *  @hw: pointer to the HW structure
541 *
542 *  Determines which flow control settings to use, then configures flow
543 *  control.  Calls the appropriate media-specific link configuration
544 *  function.  Assuming the adapter has a valid link partner, a valid link
545 *  should be established.  Assumes the hardware has previously been reset
546 *  and the transmitter and receiver are not enabled.
547 **/
548s32 igb_setup_link(struct e1000_hw *hw)
549{
550	s32 ret_val = 0;
551
552	/*
553	 * In the case of the phy reset being blocked, we already have a link.
554	 * We do not need to set it up again.
555	 */
556	if (igb_check_reset_block(hw))
557		goto out;
558
559	/*
560	 * If requested flow control is set to default, set flow control
561	 * based on the EEPROM flow control settings.
562	 */
563	if (hw->fc.requested_mode == e1000_fc_default) {
564		ret_val = igb_set_default_fc(hw);
565		if (ret_val)
566			goto out;
567	}
568
569	/*
570	 * We want to save off the original Flow Control configuration just
571	 * in case we get disconnected and then reconnected into a different
572	 * hub or switch with different Flow Control capabilities.
573	 */
574	hw->fc.current_mode = hw->fc.requested_mode;
575
576	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
577
578	/* Call the necessary media_type subroutine to configure the link. */
579	ret_val = hw->mac.ops.setup_physical_interface(hw);
580	if (ret_val)
581		goto out;
582
583	/*
584	 * Initialize the flow control address, type, and PAUSE timer
585	 * registers to their default values.  This is done even if flow
586	 * control is disabled, because it does not hurt anything to
587	 * initialize these registers.
588	 */
589	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
590	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
591	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
592	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
593
594	wr32(E1000_FCTTV, hw->fc.pause_time);
595
596	ret_val = igb_set_fc_watermarks(hw);
597
598out:
599	return ret_val;
600}
601
602/**
603 *  igb_config_collision_dist - Configure collision distance
604 *  @hw: pointer to the HW structure
605 *
606 *  Configures the collision distance to the default value and is used
607 *  during link setup. Currently no func pointer exists and all
608 *  implementations are handled in the generic version of this function.
609 **/
610void igb_config_collision_dist(struct e1000_hw *hw)
611{
612	u32 tctl;
613
614	tctl = rd32(E1000_TCTL);
615
616	tctl &= ~E1000_TCTL_COLD;
617	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
618
619	wr32(E1000_TCTL, tctl);
620	wrfl();
621}
622
623/**
624 *  igb_set_fc_watermarks - Set flow control high/low watermarks
625 *  @hw: pointer to the HW structure
626 *
627 *  Sets the flow control high/low threshold (watermark) registers.  If
628 *  flow control XON frame transmission is enabled, then set XON frame
629 *  tansmission as well.
630 **/
631static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
632{
633	s32 ret_val = 0;
634	u32 fcrtl = 0, fcrth = 0;
635
636	/*
637	 * Set the flow control receive threshold registers.  Normally,
638	 * these registers will be set to a default threshold that may be
639	 * adjusted later by the driver's runtime code.  However, if the
640	 * ability to transmit pause frames is not enabled, then these
641	 * registers will be set to 0.
642	 */
643	if (hw->fc.current_mode & e1000_fc_tx_pause) {
644		/*
645		 * We need to set up the Receive Threshold high and low water
646		 * marks as well as (optionally) enabling the transmission of
647		 * XON frames.
648		 */
649		fcrtl = hw->fc.low_water;
650		if (hw->fc.send_xon)
651			fcrtl |= E1000_FCRTL_XONE;
652
653		fcrth = hw->fc.high_water;
654	}
655	wr32(E1000_FCRTL, fcrtl);
656	wr32(E1000_FCRTH, fcrth);
657
658	return ret_val;
659}
660
661/**
662 *  igb_set_default_fc - Set flow control default values
663 *  @hw: pointer to the HW structure
664 *
665 *  Read the EEPROM for the default values for flow control and store the
666 *  values.
667 **/
668static s32 igb_set_default_fc(struct e1000_hw *hw)
669{
670	s32 ret_val = 0;
671	u16 nvm_data;
672
673	/*
674	 * Read and store word 0x0F of the EEPROM. This word contains bits
675	 * that determine the hardware's default PAUSE (flow control) mode,
676	 * a bit that determines whether the HW defaults to enabling or
677	 * disabling auto-negotiation, and the direction of the
678	 * SW defined pins. If there is no SW over-ride of the flow
679	 * control setting, then the variable hw->fc will
680	 * be initialized based on a value in the EEPROM.
681	 */
682	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
683
684	if (ret_val) {
685		hw_dbg("NVM Read Error\n");
686		goto out;
687	}
688
689	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
690		hw->fc.requested_mode = e1000_fc_none;
691	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
692		 NVM_WORD0F_ASM_DIR)
693		hw->fc.requested_mode = e1000_fc_tx_pause;
694	else
695		hw->fc.requested_mode = e1000_fc_full;
696
697out:
698	return ret_val;
699}
700
701/**
702 *  igb_force_mac_fc - Force the MAC's flow control settings
703 *  @hw: pointer to the HW structure
704 *
705 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
706 *  device control register to reflect the adapter settings.  TFCE and RFCE
707 *  need to be explicitly set by software when a copper PHY is used because
708 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
709 *  also configure these bits when link is forced on a fiber connection.
710 **/
711s32 igb_force_mac_fc(struct e1000_hw *hw)
712{
713	u32 ctrl;
714	s32 ret_val = 0;
715
716	ctrl = rd32(E1000_CTRL);
717
718	/*
719	 * Because we didn't get link via the internal auto-negotiation
720	 * mechanism (we either forced link or we got link via PHY
721	 * auto-neg), we have to manually enable/disable transmit an
722	 * receive flow control.
723	 *
724	 * The "Case" statement below enables/disable flow control
725	 * according to the "hw->fc.current_mode" parameter.
726	 *
727	 * The possible values of the "fc" parameter are:
728	 *      0:  Flow control is completely disabled
729	 *      1:  Rx flow control is enabled (we can receive pause
730	 *          frames but not send pause frames).
731	 *      2:  Tx flow control is enabled (we can send pause frames
732	 *          frames but we do not receive pause frames).
733	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
734	 *  other:  No other values should be possible at this point.
735	 */
736	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
737
738	switch (hw->fc.current_mode) {
739	case e1000_fc_none:
740		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
741		break;
742	case e1000_fc_rx_pause:
743		ctrl &= (~E1000_CTRL_TFCE);
744		ctrl |= E1000_CTRL_RFCE;
745		break;
746	case e1000_fc_tx_pause:
747		ctrl &= (~E1000_CTRL_RFCE);
748		ctrl |= E1000_CTRL_TFCE;
749		break;
750	case e1000_fc_full:
751		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
752		break;
753	default:
754		hw_dbg("Flow control param set incorrectly\n");
755		ret_val = -E1000_ERR_CONFIG;
756		goto out;
757	}
758
759	wr32(E1000_CTRL, ctrl);
760
761out:
762	return ret_val;
763}
764
765/**
766 *  igb_config_fc_after_link_up - Configures flow control after link
767 *  @hw: pointer to the HW structure
768 *
769 *  Checks the status of auto-negotiation after link up to ensure that the
770 *  speed and duplex were not forced.  If the link needed to be forced, then
771 *  flow control needs to be forced also.  If auto-negotiation is enabled
772 *  and did not fail, then we configure flow control based on our link
773 *  partner.
774 **/
775s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
776{
777	struct e1000_mac_info *mac = &hw->mac;
778	s32 ret_val = 0;
779	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
780	u16 speed, duplex;
781
782	/*
783	 * Check for the case where we have fiber media and auto-neg failed
784	 * so we had to force link.  In this case, we need to force the
785	 * configuration of the MAC to match the "fc" parameter.
786	 */
787	if (mac->autoneg_failed) {
788		if (hw->phy.media_type == e1000_media_type_internal_serdes)
789			ret_val = igb_force_mac_fc(hw);
790	} else {
791		if (hw->phy.media_type == e1000_media_type_copper)
792			ret_val = igb_force_mac_fc(hw);
793	}
794
795	if (ret_val) {
796		hw_dbg("Error forcing flow control settings\n");
797		goto out;
798	}
799
800	/*
801	 * Check for the case where we have copper media and auto-neg is
802	 * enabled.  In this case, we need to check and see if Auto-Neg
803	 * has completed, and if so, how the PHY and link partner has
804	 * flow control configured.
805	 */
806	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
807		/*
808		 * Read the MII Status Register and check to see if AutoNeg
809		 * has completed.  We read this twice because this reg has
810		 * some "sticky" (latched) bits.
811		 */
812		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
813						   &mii_status_reg);
814		if (ret_val)
815			goto out;
816		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
817						   &mii_status_reg);
818		if (ret_val)
819			goto out;
820
821		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
822			hw_dbg("Copper PHY and Auto Neg "
823				 "has not completed.\n");
824			goto out;
825		}
826
827		/*
828		 * The AutoNeg process has completed, so we now need to
829		 * read both the Auto Negotiation Advertisement
830		 * Register (Address 4) and the Auto_Negotiation Base
831		 * Page Ability Register (Address 5) to determine how
832		 * flow control was negotiated.
833		 */
834		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
835					    &mii_nway_adv_reg);
836		if (ret_val)
837			goto out;
838		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
839					    &mii_nway_lp_ability_reg);
840		if (ret_val)
841			goto out;
842
843		/*
844		 * Two bits in the Auto Negotiation Advertisement Register
845		 * (Address 4) and two bits in the Auto Negotiation Base
846		 * Page Ability Register (Address 5) determine flow control
847		 * for both the PHY and the link partner.  The following
848		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
849		 * 1999, describes these PAUSE resolution bits and how flow
850		 * control is determined based upon these settings.
851		 * NOTE:  DC = Don't Care
852		 *
853		 *   LOCAL DEVICE  |   LINK PARTNER
854		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
855		 *-------|---------|-------|---------|--------------------
856		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
857		 *   0   |    1    |   0   |   DC    | e1000_fc_none
858		 *   0   |    1    |   1   |    0    | e1000_fc_none
859		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
860		 *   1   |    0    |   0   |   DC    | e1000_fc_none
861		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
862		 *   1   |    1    |   0   |    0    | e1000_fc_none
863		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
864		 *
865		 * Are both PAUSE bits set to 1?  If so, this implies
866		 * Symmetric Flow Control is enabled at both ends.  The
867		 * ASM_DIR bits are irrelevant per the spec.
868		 *
869		 * For Symmetric Flow Control:
870		 *
871		 *   LOCAL DEVICE  |   LINK PARTNER
872		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
873		 *-------|---------|-------|---------|--------------------
874		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
875		 *
876		 */
877		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
878		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
879			/*
880			 * Now we need to check if the user selected RX ONLY
881			 * of pause frames.  In this case, we had to advertise
882			 * FULL flow control because we could not advertise RX
883			 * ONLY. Hence, we must now check to see if we need to
884			 * turn OFF  the TRANSMISSION of PAUSE frames.
885			 */
886			if (hw->fc.requested_mode == e1000_fc_full) {
887				hw->fc.current_mode = e1000_fc_full;
888				hw_dbg("Flow Control = FULL.\r\n");
889			} else {
890				hw->fc.current_mode = e1000_fc_rx_pause;
891				hw_dbg("Flow Control = "
892				       "RX PAUSE frames only.\r\n");
893			}
894		}
895		/*
896		 * For receiving PAUSE frames ONLY.
897		 *
898		 *   LOCAL DEVICE  |   LINK PARTNER
899		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
900		 *-------|---------|-------|---------|--------------------
901		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
902		 */
903		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
904			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
905			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
906			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
907			hw->fc.current_mode = e1000_fc_tx_pause;
908			hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
909		}
910		/*
911		 * For transmitting PAUSE frames ONLY.
912		 *
913		 *   LOCAL DEVICE  |   LINK PARTNER
914		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
915		 *-------|---------|-------|---------|--------------------
916		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
917		 */
918		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
919			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
920			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
921			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
922			hw->fc.current_mode = e1000_fc_rx_pause;
923			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
924		}
925		/*
926		 * Per the IEEE spec, at this point flow control should be
927		 * disabled.  However, we want to consider that we could
928		 * be connected to a legacy switch that doesn't advertise
929		 * desired flow control, but can be forced on the link
930		 * partner.  So if we advertised no flow control, that is
931		 * what we will resolve to.  If we advertised some kind of
932		 * receive capability (Rx Pause Only or Full Flow Control)
933		 * and the link partner advertised none, we will configure
934		 * ourselves to enable Rx Flow Control only.  We can do
935		 * this safely for two reasons:  If the link partner really
936		 * didn't want flow control enabled, and we enable Rx, no
937		 * harm done since we won't be receiving any PAUSE frames
938		 * anyway.  If the intent on the link partner was to have
939		 * flow control enabled, then by us enabling RX only, we
940		 * can at least receive pause frames and process them.
941		 * This is a good idea because in most cases, since we are
942		 * predominantly a server NIC, more times than not we will
943		 * be asked to delay transmission of packets than asking
944		 * our link partner to pause transmission of frames.
945		 */
946		else if ((hw->fc.requested_mode == e1000_fc_none ||
947			  hw->fc.requested_mode == e1000_fc_tx_pause) ||
948			 hw->fc.strict_ieee) {
949			hw->fc.current_mode = e1000_fc_none;
950			hw_dbg("Flow Control = NONE.\r\n");
951		} else {
952			hw->fc.current_mode = e1000_fc_rx_pause;
953			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
954		}
955
956		/*
957		 * Now we need to do one last check...  If we auto-
958		 * negotiated to HALF DUPLEX, flow control should not be
959		 * enabled per IEEE 802.3 spec.
960		 */
961		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
962		if (ret_val) {
963			hw_dbg("Error getting link speed and duplex\n");
964			goto out;
965		}
966
967		if (duplex == HALF_DUPLEX)
968			hw->fc.current_mode = e1000_fc_none;
969
970		/*
971		 * Now we call a subroutine to actually force the MAC
972		 * controller to use the correct flow control settings.
973		 */
974		ret_val = igb_force_mac_fc(hw);
975		if (ret_val) {
976			hw_dbg("Error forcing flow control settings\n");
977			goto out;
978		}
979	}
980
981out:
982	return ret_val;
983}
984
985/**
986 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
987 *  @hw: pointer to the HW structure
988 *  @speed: stores the current speed
989 *  @duplex: stores the current duplex
990 *
991 *  Read the status register for the current speed/duplex and store the current
992 *  speed and duplex for copper connections.
993 **/
994s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
995				      u16 *duplex)
996{
997	u32 status;
998
999	status = rd32(E1000_STATUS);
1000	if (status & E1000_STATUS_SPEED_1000) {
1001		*speed = SPEED_1000;
1002		hw_dbg("1000 Mbs, ");
1003	} else if (status & E1000_STATUS_SPEED_100) {
1004		*speed = SPEED_100;
1005		hw_dbg("100 Mbs, ");
1006	} else {
1007		*speed = SPEED_10;
1008		hw_dbg("10 Mbs, ");
1009	}
1010
1011	if (status & E1000_STATUS_FD) {
1012		*duplex = FULL_DUPLEX;
1013		hw_dbg("Full Duplex\n");
1014	} else {
1015		*duplex = HALF_DUPLEX;
1016		hw_dbg("Half Duplex\n");
1017	}
1018
1019	return 0;
1020}
1021
1022/**
1023 *  igb_get_hw_semaphore - Acquire hardware semaphore
1024 *  @hw: pointer to the HW structure
1025 *
1026 *  Acquire the HW semaphore to access the PHY or NVM
1027 **/
1028s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1029{
1030	u32 swsm;
1031	s32 ret_val = 0;
1032	s32 timeout = hw->nvm.word_size + 1;
1033	s32 i = 0;
1034
1035	/* Get the SW semaphore */
1036	while (i < timeout) {
1037		swsm = rd32(E1000_SWSM);
1038		if (!(swsm & E1000_SWSM_SMBI))
1039			break;
1040
1041		udelay(50);
1042		i++;
1043	}
1044
1045	if (i == timeout) {
1046		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1047		ret_val = -E1000_ERR_NVM;
1048		goto out;
1049	}
1050
1051	/* Get the FW semaphore. */
1052	for (i = 0; i < timeout; i++) {
1053		swsm = rd32(E1000_SWSM);
1054		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1055
1056		/* Semaphore acquired if bit latched */
1057		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1058			break;
1059
1060		udelay(50);
1061	}
1062
1063	if (i == timeout) {
1064		/* Release semaphores */
1065		igb_put_hw_semaphore(hw);
1066		hw_dbg("Driver can't access the NVM\n");
1067		ret_val = -E1000_ERR_NVM;
1068		goto out;
1069	}
1070
1071out:
1072	return ret_val;
1073}
1074
1075/**
1076 *  igb_put_hw_semaphore - Release hardware semaphore
1077 *  @hw: pointer to the HW structure
1078 *
1079 *  Release hardware semaphore used to access the PHY or NVM
1080 **/
1081void igb_put_hw_semaphore(struct e1000_hw *hw)
1082{
1083	u32 swsm;
1084
1085	swsm = rd32(E1000_SWSM);
1086
1087	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1088
1089	wr32(E1000_SWSM, swsm);
1090}
1091
1092/**
1093 *  igb_get_auto_rd_done - Check for auto read completion
1094 *  @hw: pointer to the HW structure
1095 *
1096 *  Check EEPROM for Auto Read done bit.
1097 **/
1098s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1099{
1100	s32 i = 0;
1101	s32 ret_val = 0;
1102
1103
1104	while (i < AUTO_READ_DONE_TIMEOUT) {
1105		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1106			break;
1107		msleep(1);
1108		i++;
1109	}
1110
1111	if (i == AUTO_READ_DONE_TIMEOUT) {
1112		hw_dbg("Auto read by HW from NVM has not completed.\n");
1113		ret_val = -E1000_ERR_RESET;
1114		goto out;
1115	}
1116
1117out:
1118	return ret_val;
1119}
1120
1121/**
1122 *  igb_valid_led_default - Verify a valid default LED config
1123 *  @hw: pointer to the HW structure
1124 *  @data: pointer to the NVM (EEPROM)
1125 *
1126 *  Read the EEPROM for the current default LED configuration.  If the
1127 *  LED configuration is not valid, set to a valid LED configuration.
1128 **/
1129static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1130{
1131	s32 ret_val;
1132
1133	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1134	if (ret_val) {
1135		hw_dbg("NVM Read Error\n");
1136		goto out;
1137	}
1138
1139	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1140		switch(hw->phy.media_type) {
1141		case e1000_media_type_internal_serdes:
1142			*data = ID_LED_DEFAULT_82575_SERDES;
1143			break;
1144		case e1000_media_type_copper:
1145		default:
1146			*data = ID_LED_DEFAULT;
1147			break;
1148		}
1149	}
1150out:
1151	return ret_val;
1152}
1153
1154/**
1155 *  igb_id_led_init -
1156 *  @hw: pointer to the HW structure
1157 *
1158 **/
1159s32 igb_id_led_init(struct e1000_hw *hw)
1160{
1161	struct e1000_mac_info *mac = &hw->mac;
1162	s32 ret_val;
1163	const u32 ledctl_mask = 0x000000FF;
1164	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1165	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1166	u16 data, i, temp;
1167	const u16 led_mask = 0x0F;
1168
1169	ret_val = igb_valid_led_default(hw, &data);
1170	if (ret_val)
1171		goto out;
1172
1173	mac->ledctl_default = rd32(E1000_LEDCTL);
1174	mac->ledctl_mode1 = mac->ledctl_default;
1175	mac->ledctl_mode2 = mac->ledctl_default;
1176
1177	for (i = 0; i < 4; i++) {
1178		temp = (data >> (i << 2)) & led_mask;
1179		switch (temp) {
1180		case ID_LED_ON1_DEF2:
1181		case ID_LED_ON1_ON2:
1182		case ID_LED_ON1_OFF2:
1183			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1184			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1185			break;
1186		case ID_LED_OFF1_DEF2:
1187		case ID_LED_OFF1_ON2:
1188		case ID_LED_OFF1_OFF2:
1189			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1190			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1191			break;
1192		default:
1193			/* Do nothing */
1194			break;
1195		}
1196		switch (temp) {
1197		case ID_LED_DEF1_ON2:
1198		case ID_LED_ON1_ON2:
1199		case ID_LED_OFF1_ON2:
1200			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1201			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1202			break;
1203		case ID_LED_DEF1_OFF2:
1204		case ID_LED_ON1_OFF2:
1205		case ID_LED_OFF1_OFF2:
1206			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1207			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1208			break;
1209		default:
1210			/* Do nothing */
1211			break;
1212		}
1213	}
1214
1215out:
1216	return ret_val;
1217}
1218
1219/**
1220 *  igb_cleanup_led - Set LED config to default operation
1221 *  @hw: pointer to the HW structure
1222 *
1223 *  Remove the current LED configuration and set the LED configuration
1224 *  to the default value, saved from the EEPROM.
1225 **/
1226s32 igb_cleanup_led(struct e1000_hw *hw)
1227{
1228	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1229	return 0;
1230}
1231
1232/**
1233 *  igb_blink_led - Blink LED
1234 *  @hw: pointer to the HW structure
1235 *
1236 *  Blink the led's which are set to be on.
1237 **/
1238s32 igb_blink_led(struct e1000_hw *hw)
1239{
1240	u32 ledctl_blink = 0;
1241	u32 i;
1242
1243	/*
1244	 * set the blink bit for each LED that's "on" (0x0E)
1245	 * in ledctl_mode2
1246	 */
1247	ledctl_blink = hw->mac.ledctl_mode2;
1248	for (i = 0; i < 4; i++)
1249		if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1250		    E1000_LEDCTL_MODE_LED_ON)
1251			ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1252					 (i * 8));
1253
1254	wr32(E1000_LEDCTL, ledctl_blink);
1255
1256	return 0;
1257}
1258
1259/**
1260 *  igb_led_off - Turn LED off
1261 *  @hw: pointer to the HW structure
1262 *
1263 *  Turn LED off.
1264 **/
1265s32 igb_led_off(struct e1000_hw *hw)
1266{
1267	switch (hw->phy.media_type) {
1268	case e1000_media_type_copper:
1269		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1270		break;
1271	default:
1272		break;
1273	}
1274
1275	return 0;
1276}
1277
1278/**
1279 *  igb_disable_pcie_master - Disables PCI-express master access
1280 *  @hw: pointer to the HW structure
1281 *
1282 *  Returns 0 (0) if successful, else returns -10
1283 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1284 *  the master requests to be disabled.
1285 *
1286 *  Disables PCI-Express master access and verifies there are no pending
1287 *  requests.
1288 **/
1289s32 igb_disable_pcie_master(struct e1000_hw *hw)
1290{
1291	u32 ctrl;
1292	s32 timeout = MASTER_DISABLE_TIMEOUT;
1293	s32 ret_val = 0;
1294
1295	if (hw->bus.type != e1000_bus_type_pci_express)
1296		goto out;
1297
1298	ctrl = rd32(E1000_CTRL);
1299	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1300	wr32(E1000_CTRL, ctrl);
1301
1302	while (timeout) {
1303		if (!(rd32(E1000_STATUS) &
1304		      E1000_STATUS_GIO_MASTER_ENABLE))
1305			break;
1306		udelay(100);
1307		timeout--;
1308	}
1309
1310	if (!timeout) {
1311		hw_dbg("Master requests are pending.\n");
1312		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1313		goto out;
1314	}
1315
1316out:
1317	return ret_val;
1318}
1319
1320/**
1321 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1322 *  @hw: pointer to the HW structure
1323 *
1324 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1325 *  set, which is forced to MDI mode only.
1326 **/
1327s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1328{
1329	s32 ret_val = 0;
1330
1331	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1332		hw_dbg("Invalid MDI setting detected\n");
1333		hw->phy.mdix = 1;
1334		ret_val = -E1000_ERR_CONFIG;
1335		goto out;
1336	}
1337
1338out:
1339	return ret_val;
1340}
1341
1342/**
1343 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1344 *  @hw: pointer to the HW structure
1345 *  @reg: 32bit register offset such as E1000_SCTL
1346 *  @offset: register offset to write to
1347 *  @data: data to write at register offset
1348 *
1349 *  Writes an address/data control type register.  There are several of these
1350 *  and they all have the format address << 8 | data and bit 31 is polled for
1351 *  completion.
1352 **/
1353s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1354			      u32 offset, u8 data)
1355{
1356	u32 i, regvalue = 0;
1357	s32 ret_val = 0;
1358
1359	/* Set up the address and data */
1360	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1361	wr32(reg, regvalue);
1362
1363	/* Poll the ready bit to see if the MDI read completed */
1364	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1365		udelay(5);
1366		regvalue = rd32(reg);
1367		if (regvalue & E1000_GEN_CTL_READY)
1368			break;
1369	}
1370	if (!(regvalue & E1000_GEN_CTL_READY)) {
1371		hw_dbg("Reg %08x did not indicate ready\n", reg);
1372		ret_val = -E1000_ERR_PHY;
1373		goto out;
1374	}
1375
1376out:
1377	return ret_val;
1378}
1379
1380/**
1381 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1382 *  @hw: pointer to the HW structure
1383 *
1384 *  Verifies the hardware needs to leave interface enabled so that frames can
1385 *  be directed to and from the management interface.
1386 **/
1387bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1388{
1389	u32 manc;
1390	u32 fwsm, factps;
1391	bool ret_val = false;
1392
1393	if (!hw->mac.asf_firmware_present)
1394		goto out;
1395
1396	manc = rd32(E1000_MANC);
1397
1398	if (!(manc & E1000_MANC_RCV_TCO_EN))
1399		goto out;
1400
1401	if (hw->mac.arc_subsystem_valid) {
1402		fwsm = rd32(E1000_FWSM);
1403		factps = rd32(E1000_FACTPS);
1404
1405		if (!(factps & E1000_FACTPS_MNGCG) &&
1406		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1407		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1408			ret_val = true;
1409			goto out;
1410		}
1411	} else {
1412		if ((manc & E1000_MANC_SMBUS_EN) &&
1413		    !(manc & E1000_MANC_ASF_EN)) {
1414			ret_val = true;
1415			goto out;
1416		}
1417	}
1418
1419out:
1420	return ret_val;
1421}
1422