1/*******************************************************************************
2
3  Intel 10 Gigabit PCI Express Linux driver
4  Copyright(c) 1999 - 2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/sched.h>
31#include <linux/netdevice.h>
32
33#include "ixgbe.h"
34#include "ixgbe_common.h"
35#include "ixgbe_phy.h"
36
37static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
38static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
40static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43                                        u16 count);
44static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
48
49static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
50static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw);
51static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw);
52static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw);
53static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw);
54static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
55			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm);
56static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
57static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
58static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59					     u16 words, u16 *data);
60static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
61					     u16 words, u16 *data);
62static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
63						 u16 offset);
64static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
65
66/**
67 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
68 *  @hw: pointer to hardware structure
69 *
70 *  Starts the hardware by filling the bus info structure and media type, clears
71 *  all on chip counters, initializes receive address registers, multicast
72 *  table, VLAN filter table, calls routine to set up link and flow control
73 *  settings, and leaves transmit and receive units disabled and uninitialized
74 **/
75s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
76{
77	u32 ctrl_ext;
78
79	/* Set the media type */
80	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
81
82	/* Identify the PHY */
83	hw->phy.ops.identify(hw);
84
85	/* Clear the VLAN filter table */
86	hw->mac.ops.clear_vfta(hw);
87
88	/* Clear statistics registers */
89	hw->mac.ops.clear_hw_cntrs(hw);
90
91	/* Set No Snoop Disable */
92	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
93	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
94	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
95	IXGBE_WRITE_FLUSH(hw);
96
97	/* Setup flow control */
98	ixgbe_setup_fc(hw, 0);
99
100	/* Clear adapter stopped flag */
101	hw->adapter_stopped = false;
102
103	return 0;
104}
105
106/**
107 *  ixgbe_start_hw_gen2 - Init sequence for common device family
108 *  @hw: pointer to hw structure
109 *
110 * Performs the init sequence common to the second generation
111 * of 10 GbE devices.
112 * Devices in the second generation:
113 *     82599
114 *     X540
115 **/
116s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
117{
118	u32 i;
119	u32 regval;
120
121	/* Clear the rate limiters */
122	for (i = 0; i < hw->mac.max_tx_queues; i++) {
123		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
124		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
125	}
126	IXGBE_WRITE_FLUSH(hw);
127
128	/* Disable relaxed ordering */
129	for (i = 0; i < hw->mac.max_tx_queues; i++) {
130		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
131		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
132		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
133	}
134
135	for (i = 0; i < hw->mac.max_rx_queues; i++) {
136		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
137		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
138			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
139		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
140	}
141
142	return 0;
143}
144
145/**
146 *  ixgbe_init_hw_generic - Generic hardware initialization
147 *  @hw: pointer to hardware structure
148 *
149 *  Initialize the hardware by resetting the hardware, filling the bus info
150 *  structure and media type, clears all on chip counters, initializes receive
151 *  address registers, multicast table, VLAN filter table, calls routine to set
152 *  up link and flow control settings, and leaves transmit and receive units
153 *  disabled and uninitialized
154 **/
155s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
156{
157	s32 status;
158
159	/* Reset the hardware */
160	status = hw->mac.ops.reset_hw(hw);
161
162	if (status == 0) {
163		/* Start the HW */
164		status = hw->mac.ops.start_hw(hw);
165	}
166
167	return status;
168}
169
170/**
171 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
172 *  @hw: pointer to hardware structure
173 *
174 *  Clears all hardware statistics counters by reading them from the hardware
175 *  Statistics counters are clear on read.
176 **/
177s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
178{
179	u16 i = 0;
180
181	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
182	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
183	IXGBE_READ_REG(hw, IXGBE_ERRBC);
184	IXGBE_READ_REG(hw, IXGBE_MSPDC);
185	for (i = 0; i < 8; i++)
186		IXGBE_READ_REG(hw, IXGBE_MPC(i));
187
188	IXGBE_READ_REG(hw, IXGBE_MLFC);
189	IXGBE_READ_REG(hw, IXGBE_MRFC);
190	IXGBE_READ_REG(hw, IXGBE_RLEC);
191	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
192	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
193	if (hw->mac.type >= ixgbe_mac_82599EB) {
194		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
195		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
196	} else {
197		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
198		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
199	}
200
201	for (i = 0; i < 8; i++) {
202		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
203		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
204		if (hw->mac.type >= ixgbe_mac_82599EB) {
205			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
206			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
207		} else {
208			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
209			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
210		}
211	}
212	if (hw->mac.type >= ixgbe_mac_82599EB)
213		for (i = 0; i < 8; i++)
214			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
215	IXGBE_READ_REG(hw, IXGBE_PRC64);
216	IXGBE_READ_REG(hw, IXGBE_PRC127);
217	IXGBE_READ_REG(hw, IXGBE_PRC255);
218	IXGBE_READ_REG(hw, IXGBE_PRC511);
219	IXGBE_READ_REG(hw, IXGBE_PRC1023);
220	IXGBE_READ_REG(hw, IXGBE_PRC1522);
221	IXGBE_READ_REG(hw, IXGBE_GPRC);
222	IXGBE_READ_REG(hw, IXGBE_BPRC);
223	IXGBE_READ_REG(hw, IXGBE_MPRC);
224	IXGBE_READ_REG(hw, IXGBE_GPTC);
225	IXGBE_READ_REG(hw, IXGBE_GORCL);
226	IXGBE_READ_REG(hw, IXGBE_GORCH);
227	IXGBE_READ_REG(hw, IXGBE_GOTCL);
228	IXGBE_READ_REG(hw, IXGBE_GOTCH);
229	if (hw->mac.type == ixgbe_mac_82598EB)
230		for (i = 0; i < 8; i++)
231			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
232	IXGBE_READ_REG(hw, IXGBE_RUC);
233	IXGBE_READ_REG(hw, IXGBE_RFC);
234	IXGBE_READ_REG(hw, IXGBE_ROC);
235	IXGBE_READ_REG(hw, IXGBE_RJC);
236	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
237	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
238	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
239	IXGBE_READ_REG(hw, IXGBE_TORL);
240	IXGBE_READ_REG(hw, IXGBE_TORH);
241	IXGBE_READ_REG(hw, IXGBE_TPR);
242	IXGBE_READ_REG(hw, IXGBE_TPT);
243	IXGBE_READ_REG(hw, IXGBE_PTC64);
244	IXGBE_READ_REG(hw, IXGBE_PTC127);
245	IXGBE_READ_REG(hw, IXGBE_PTC255);
246	IXGBE_READ_REG(hw, IXGBE_PTC511);
247	IXGBE_READ_REG(hw, IXGBE_PTC1023);
248	IXGBE_READ_REG(hw, IXGBE_PTC1522);
249	IXGBE_READ_REG(hw, IXGBE_MPTC);
250	IXGBE_READ_REG(hw, IXGBE_BPTC);
251	for (i = 0; i < 16; i++) {
252		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
253		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
254		if (hw->mac.type >= ixgbe_mac_82599EB) {
255			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
256			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
257			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
258			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
259			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
260		} else {
261			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
262			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
263		}
264	}
265
266	if (hw->mac.type == ixgbe_mac_X540) {
267		if (hw->phy.id == 0)
268			hw->phy.ops.identify(hw);
269		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
270		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
271		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
272		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
273	}
274
275	return 0;
276}
277
278/**
279 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
280 *  @hw: pointer to hardware structure
281 *  @pba_num: stores the part number string from the EEPROM
282 *  @pba_num_size: part number string buffer length
283 *
284 *  Reads the part number string from the EEPROM.
285 **/
286s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
287                                  u32 pba_num_size)
288{
289	s32 ret_val;
290	u16 data;
291	u16 pba_ptr;
292	u16 offset;
293	u16 length;
294
295	if (pba_num == NULL) {
296		hw_dbg(hw, "PBA string buffer was null\n");
297		return IXGBE_ERR_INVALID_ARGUMENT;
298	}
299
300	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
301	if (ret_val) {
302		hw_dbg(hw, "NVM Read Error\n");
303		return ret_val;
304	}
305
306	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
307	if (ret_val) {
308		hw_dbg(hw, "NVM Read Error\n");
309		return ret_val;
310	}
311
312	/*
313	 * if data is not ptr guard the PBA must be in legacy format which
314	 * means pba_ptr is actually our second data word for the PBA number
315	 * and we can decode it into an ascii string
316	 */
317	if (data != IXGBE_PBANUM_PTR_GUARD) {
318		hw_dbg(hw, "NVM PBA number is not stored as string\n");
319
320		/* we will need 11 characters to store the PBA */
321		if (pba_num_size < 11) {
322			hw_dbg(hw, "PBA string buffer too small\n");
323			return IXGBE_ERR_NO_SPACE;
324		}
325
326		/* extract hex string from data and pba_ptr */
327		pba_num[0] = (data >> 12) & 0xF;
328		pba_num[1] = (data >> 8) & 0xF;
329		pba_num[2] = (data >> 4) & 0xF;
330		pba_num[3] = data & 0xF;
331		pba_num[4] = (pba_ptr >> 12) & 0xF;
332		pba_num[5] = (pba_ptr >> 8) & 0xF;
333		pba_num[6] = '-';
334		pba_num[7] = 0;
335		pba_num[8] = (pba_ptr >> 4) & 0xF;
336		pba_num[9] = pba_ptr & 0xF;
337
338		/* put a null character on the end of our string */
339		pba_num[10] = '\0';
340
341		/* switch all the data but the '-' to hex char */
342		for (offset = 0; offset < 10; offset++) {
343			if (pba_num[offset] < 0xA)
344				pba_num[offset] += '0';
345			else if (pba_num[offset] < 0x10)
346				pba_num[offset] += 'A' - 0xA;
347		}
348
349		return 0;
350	}
351
352	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
353	if (ret_val) {
354		hw_dbg(hw, "NVM Read Error\n");
355		return ret_val;
356	}
357
358	if (length == 0xFFFF || length == 0) {
359		hw_dbg(hw, "NVM PBA number section invalid length\n");
360		return IXGBE_ERR_PBA_SECTION;
361	}
362
363	/* check if pba_num buffer is big enough */
364	if (pba_num_size  < (((u32)length * 2) - 1)) {
365		hw_dbg(hw, "PBA string buffer too small\n");
366		return IXGBE_ERR_NO_SPACE;
367	}
368
369	/* trim pba length from start of string */
370	pba_ptr++;
371	length--;
372
373	for (offset = 0; offset < length; offset++) {
374		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
375		if (ret_val) {
376			hw_dbg(hw, "NVM Read Error\n");
377			return ret_val;
378		}
379		pba_num[offset * 2] = (u8)(data >> 8);
380		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
381	}
382	pba_num[offset * 2] = '\0';
383
384	return 0;
385}
386
387/**
388 *  ixgbe_get_mac_addr_generic - Generic get MAC address
389 *  @hw: pointer to hardware structure
390 *  @mac_addr: Adapter MAC address
391 *
392 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
393 *  A reset of the adapter must be performed prior to calling this function
394 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
395 **/
396s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
397{
398	u32 rar_high;
399	u32 rar_low;
400	u16 i;
401
402	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
403	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
404
405	for (i = 0; i < 4; i++)
406		mac_addr[i] = (u8)(rar_low >> (i*8));
407
408	for (i = 0; i < 2; i++)
409		mac_addr[i+4] = (u8)(rar_high >> (i*8));
410
411	return 0;
412}
413
414/**
415 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
416 *  @hw: pointer to hardware structure
417 *
418 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
419 **/
420s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
421{
422	struct ixgbe_adapter *adapter = hw->back;
423	struct ixgbe_mac_info *mac = &hw->mac;
424	u16 link_status;
425
426	hw->bus.type = ixgbe_bus_type_pci_express;
427
428	/* Get the negotiated link width and speed from PCI config space */
429	pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
430	                     &link_status);
431
432	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
433	case IXGBE_PCI_LINK_WIDTH_1:
434		hw->bus.width = ixgbe_bus_width_pcie_x1;
435		break;
436	case IXGBE_PCI_LINK_WIDTH_2:
437		hw->bus.width = ixgbe_bus_width_pcie_x2;
438		break;
439	case IXGBE_PCI_LINK_WIDTH_4:
440		hw->bus.width = ixgbe_bus_width_pcie_x4;
441		break;
442	case IXGBE_PCI_LINK_WIDTH_8:
443		hw->bus.width = ixgbe_bus_width_pcie_x8;
444		break;
445	default:
446		hw->bus.width = ixgbe_bus_width_unknown;
447		break;
448	}
449
450	switch (link_status & IXGBE_PCI_LINK_SPEED) {
451	case IXGBE_PCI_LINK_SPEED_2500:
452		hw->bus.speed = ixgbe_bus_speed_2500;
453		break;
454	case IXGBE_PCI_LINK_SPEED_5000:
455		hw->bus.speed = ixgbe_bus_speed_5000;
456		break;
457	default:
458		hw->bus.speed = ixgbe_bus_speed_unknown;
459		break;
460	}
461
462	mac->ops.set_lan_id(hw);
463
464	return 0;
465}
466
467/**
468 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
469 *  @hw: pointer to the HW structure
470 *
471 *  Determines the LAN function id by reading memory-mapped registers
472 *  and swaps the port value if requested.
473 **/
474void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
475{
476	struct ixgbe_bus_info *bus = &hw->bus;
477	u32 reg;
478
479	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
480	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
481	bus->lan_id = bus->func;
482
483	/* check for a port swap */
484	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
485	if (reg & IXGBE_FACTPS_LFS)
486		bus->func ^= 0x1;
487}
488
489/**
490 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
491 *  @hw: pointer to hardware structure
492 *
493 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
494 *  disables transmit and receive units. The adapter_stopped flag is used by
495 *  the shared code and drivers to determine if the adapter is in a stopped
496 *  state and should not touch the hardware.
497 **/
498s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
499{
500	u32 reg_val;
501	u16 i;
502
503	/*
504	 * Set the adapter_stopped flag so other driver functions stop touching
505	 * the hardware
506	 */
507	hw->adapter_stopped = true;
508
509	/* Disable the receive unit */
510	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
511
512	/* Clear interrupt mask to stop interrupts from being generated */
513	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
514
515	/* Clear any pending interrupts, flush previous writes */
516	IXGBE_READ_REG(hw, IXGBE_EICR);
517
518	/* Disable the transmit unit.  Each queue must be disabled. */
519	for (i = 0; i < hw->mac.max_tx_queues; i++)
520		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
521
522	/* Disable the receive unit by stopping each queue */
523	for (i = 0; i < hw->mac.max_rx_queues; i++) {
524		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
525		reg_val &= ~IXGBE_RXDCTL_ENABLE;
526		reg_val |= IXGBE_RXDCTL_SWFLSH;
527		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
528	}
529
530	/* flush all queues disables */
531	IXGBE_WRITE_FLUSH(hw);
532	usleep_range(1000, 2000);
533
534	/*
535	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
536	 * access and verify no pending requests
537	 */
538	return ixgbe_disable_pcie_master(hw);
539}
540
541/**
542 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
543 *  @hw: pointer to hardware structure
544 *  @index: led number to turn on
545 **/
546s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
547{
548	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
549
550	/* To turn on the LED, set mode to ON. */
551	led_reg &= ~IXGBE_LED_MODE_MASK(index);
552	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
553	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
554	IXGBE_WRITE_FLUSH(hw);
555
556	return 0;
557}
558
559/**
560 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
561 *  @hw: pointer to hardware structure
562 *  @index: led number to turn off
563 **/
564s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
565{
566	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
567
568	/* To turn off the LED, set mode to OFF. */
569	led_reg &= ~IXGBE_LED_MODE_MASK(index);
570	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
571	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
572	IXGBE_WRITE_FLUSH(hw);
573
574	return 0;
575}
576
577/**
578 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
579 *  @hw: pointer to hardware structure
580 *
581 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
582 *  ixgbe_hw struct in order to set up EEPROM access.
583 **/
584s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
585{
586	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
587	u32 eec;
588	u16 eeprom_size;
589
590	if (eeprom->type == ixgbe_eeprom_uninitialized) {
591		eeprom->type = ixgbe_eeprom_none;
592		/* Set default semaphore delay to 10ms which is a well
593		 * tested value */
594		eeprom->semaphore_delay = 10;
595		/* Clear EEPROM page size, it will be initialized as needed */
596		eeprom->word_page_size = 0;
597
598		/*
599		 * Check for EEPROM present first.
600		 * If not present leave as none
601		 */
602		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
603		if (eec & IXGBE_EEC_PRES) {
604			eeprom->type = ixgbe_eeprom_spi;
605
606			/*
607			 * SPI EEPROM is assumed here.  This code would need to
608			 * change if a future EEPROM is not SPI.
609			 */
610			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
611					    IXGBE_EEC_SIZE_SHIFT);
612			eeprom->word_size = 1 << (eeprom_size +
613						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
614		}
615
616		if (eec & IXGBE_EEC_ADDR_SIZE)
617			eeprom->address_bits = 16;
618		else
619			eeprom->address_bits = 8;
620		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
621			  "%d\n", eeprom->type, eeprom->word_size,
622			  eeprom->address_bits);
623	}
624
625	return 0;
626}
627
628/**
629 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
630 *  @hw: pointer to hardware structure
631 *  @offset: offset within the EEPROM to write
632 *  @words: number of words
633 *  @data: 16 bit word(s) to write to EEPROM
634 *
635 *  Reads 16 bit word(s) from EEPROM through bit-bang method
636 **/
637s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
638					       u16 words, u16 *data)
639{
640	s32 status = 0;
641	u16 i, count;
642
643	hw->eeprom.ops.init_params(hw);
644
645	if (words == 0) {
646		status = IXGBE_ERR_INVALID_ARGUMENT;
647		goto out;
648	}
649
650	if (offset + words > hw->eeprom.word_size) {
651		status = IXGBE_ERR_EEPROM;
652		goto out;
653	}
654
655	/*
656	 * The EEPROM page size cannot be queried from the chip. We do lazy
657	 * initialization. It is worth to do that when we write large buffer.
658	 */
659	if ((hw->eeprom.word_page_size == 0) &&
660	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
661		ixgbe_detect_eeprom_page_size_generic(hw, offset);
662
663	/*
664	 * We cannot hold synchronization semaphores for too long
665	 * to avoid other entity starvation. However it is more efficient
666	 * to read in bursts than synchronizing access for each word.
667	 */
668	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
669		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
670			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
671		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
672							    count, &data[i]);
673
674		if (status != 0)
675			break;
676	}
677
678out:
679	return status;
680}
681
682/**
683 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
684 *  @hw: pointer to hardware structure
685 *  @offset: offset within the EEPROM to be written to
686 *  @words: number of word(s)
687 *  @data: 16 bit word(s) to be written to the EEPROM
688 *
689 *  If ixgbe_eeprom_update_checksum is not called after this function, the
690 *  EEPROM will most likely contain an invalid checksum.
691 **/
692static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
693					      u16 words, u16 *data)
694{
695	s32 status;
696	u16 word;
697	u16 page_size;
698	u16 i;
699	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
700
701	/* Prepare the EEPROM for writing  */
702	status = ixgbe_acquire_eeprom(hw);
703
704	if (status == 0) {
705		if (ixgbe_ready_eeprom(hw) != 0) {
706			ixgbe_release_eeprom(hw);
707			status = IXGBE_ERR_EEPROM;
708		}
709	}
710
711	if (status == 0) {
712		for (i = 0; i < words; i++) {
713			ixgbe_standby_eeprom(hw);
714
715			/*  Send the WRITE ENABLE command (8 bit opcode )  */
716			ixgbe_shift_out_eeprom_bits(hw,
717						  IXGBE_EEPROM_WREN_OPCODE_SPI,
718						  IXGBE_EEPROM_OPCODE_BITS);
719
720			ixgbe_standby_eeprom(hw);
721
722			/*
723			 * Some SPI eeproms use the 8th address bit embedded
724			 * in the opcode
725			 */
726			if ((hw->eeprom.address_bits == 8) &&
727			    ((offset + i) >= 128))
728				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
729
730			/* Send the Write command (8-bit opcode + addr) */
731			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
732						    IXGBE_EEPROM_OPCODE_BITS);
733			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
734						    hw->eeprom.address_bits);
735
736			page_size = hw->eeprom.word_page_size;
737
738			/* Send the data in burst via SPI*/
739			do {
740				word = data[i];
741				word = (word >> 8) | (word << 8);
742				ixgbe_shift_out_eeprom_bits(hw, word, 16);
743
744				if (page_size == 0)
745					break;
746
747				/* do not wrap around page */
748				if (((offset + i) & (page_size - 1)) ==
749				    (page_size - 1))
750					break;
751			} while (++i < words);
752
753			ixgbe_standby_eeprom(hw);
754			usleep_range(10000, 20000);
755		}
756		/* Done with writing - release the EEPROM */
757		ixgbe_release_eeprom(hw);
758	}
759
760	return status;
761}
762
763/**
764 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
765 *  @hw: pointer to hardware structure
766 *  @offset: offset within the EEPROM to be written to
767 *  @data: 16 bit word to be written to the EEPROM
768 *
769 *  If ixgbe_eeprom_update_checksum is not called after this function, the
770 *  EEPROM will most likely contain an invalid checksum.
771 **/
772s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
773{
774	s32 status;
775
776	hw->eeprom.ops.init_params(hw);
777
778	if (offset >= hw->eeprom.word_size) {
779		status = IXGBE_ERR_EEPROM;
780		goto out;
781	}
782
783	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
784
785out:
786	return status;
787}
788
789/**
790 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
791 *  @hw: pointer to hardware structure
792 *  @offset: offset within the EEPROM to be read
793 *  @words: number of word(s)
794 *  @data: read 16 bit words(s) from EEPROM
795 *
796 *  Reads 16 bit word(s) from EEPROM through bit-bang method
797 **/
798s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
799					      u16 words, u16 *data)
800{
801	s32 status = 0;
802	u16 i, count;
803
804	hw->eeprom.ops.init_params(hw);
805
806	if (words == 0) {
807		status = IXGBE_ERR_INVALID_ARGUMENT;
808		goto out;
809	}
810
811	if (offset + words > hw->eeprom.word_size) {
812		status = IXGBE_ERR_EEPROM;
813		goto out;
814	}
815
816	/*
817	 * We cannot hold synchronization semaphores for too long
818	 * to avoid other entity starvation. However it is more efficient
819	 * to read in bursts than synchronizing access for each word.
820	 */
821	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
822		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
823			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
824
825		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
826							   count, &data[i]);
827
828		if (status != 0)
829			break;
830	}
831
832out:
833	return status;
834}
835
836/**
837 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
838 *  @hw: pointer to hardware structure
839 *  @offset: offset within the EEPROM to be read
840 *  @words: number of word(s)
841 *  @data: read 16 bit word(s) from EEPROM
842 *
843 *  Reads 16 bit word(s) from EEPROM through bit-bang method
844 **/
845static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
846					     u16 words, u16 *data)
847{
848	s32 status;
849	u16 word_in;
850	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
851	u16 i;
852
853	/* Prepare the EEPROM for reading  */
854	status = ixgbe_acquire_eeprom(hw);
855
856	if (status == 0) {
857		if (ixgbe_ready_eeprom(hw) != 0) {
858			ixgbe_release_eeprom(hw);
859			status = IXGBE_ERR_EEPROM;
860		}
861	}
862
863	if (status == 0) {
864		for (i = 0; i < words; i++) {
865			ixgbe_standby_eeprom(hw);
866			/*
867			 * Some SPI eeproms use the 8th address bit embedded
868			 * in the opcode
869			 */
870			if ((hw->eeprom.address_bits == 8) &&
871			    ((offset + i) >= 128))
872				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
873
874			/* Send the READ command (opcode + addr) */
875			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
876						    IXGBE_EEPROM_OPCODE_BITS);
877			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
878						    hw->eeprom.address_bits);
879
880			/* Read the data. */
881			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
882			data[i] = (word_in >> 8) | (word_in << 8);
883		}
884
885		/* End this read operation */
886		ixgbe_release_eeprom(hw);
887	}
888
889	return status;
890}
891
892/**
893 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
894 *  @hw: pointer to hardware structure
895 *  @offset: offset within the EEPROM to be read
896 *  @data: read 16 bit value from EEPROM
897 *
898 *  Reads 16 bit value from EEPROM through bit-bang method
899 **/
900s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
901				       u16 *data)
902{
903	s32 status;
904
905	hw->eeprom.ops.init_params(hw);
906
907	if (offset >= hw->eeprom.word_size) {
908		status = IXGBE_ERR_EEPROM;
909		goto out;
910	}
911
912	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
913
914out:
915	return status;
916}
917
918/**
919 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
920 *  @hw: pointer to hardware structure
921 *  @offset: offset of word in the EEPROM to read
922 *  @words: number of word(s)
923 *  @data: 16 bit word(s) from the EEPROM
924 *
925 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
926 **/
927s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
928				   u16 words, u16 *data)
929{
930	u32 eerd;
931	s32 status = 0;
932	u32 i;
933
934	hw->eeprom.ops.init_params(hw);
935
936	if (words == 0) {
937		status = IXGBE_ERR_INVALID_ARGUMENT;
938		goto out;
939	}
940
941	if (offset >= hw->eeprom.word_size) {
942		status = IXGBE_ERR_EEPROM;
943		goto out;
944	}
945
946	for (i = 0; i < words; i++) {
947		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
948		       IXGBE_EEPROM_RW_REG_START;
949
950		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
951		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
952
953		if (status == 0) {
954			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
955				   IXGBE_EEPROM_RW_REG_DATA);
956		} else {
957			hw_dbg(hw, "Eeprom read timed out\n");
958			goto out;
959		}
960	}
961out:
962	return status;
963}
964
965/**
966 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
967 *  @hw: pointer to hardware structure
968 *  @offset: offset within the EEPROM to be used as a scratch pad
969 *
970 *  Discover EEPROM page size by writing marching data at given offset.
971 *  This function is called only when we are writing a new large buffer
972 *  at given offset so the data would be overwritten anyway.
973 **/
974static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
975						 u16 offset)
976{
977	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
978	s32 status = 0;
979	u16 i;
980
981	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
982		data[i] = i;
983
984	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
985	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
986					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
987	hw->eeprom.word_page_size = 0;
988	if (status != 0)
989		goto out;
990
991	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
992	if (status != 0)
993		goto out;
994
995	/*
996	 * When writing in burst more than the actual page size
997	 * EEPROM address wraps around current page.
998	 */
999	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1000
1001	hw_dbg(hw, "Detected EEPROM page size = %d words.",
1002	       hw->eeprom.word_page_size);
1003out:
1004	return status;
1005}
1006
1007/**
1008 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1009 *  @hw: pointer to hardware structure
1010 *  @offset: offset of  word in the EEPROM to read
1011 *  @data: word read from the EEPROM
1012 *
1013 *  Reads a 16 bit word from the EEPROM using the EERD register.
1014 **/
1015s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1016{
1017	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1018}
1019
1020/**
1021 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1022 *  @hw: pointer to hardware structure
1023 *  @offset: offset of  word in the EEPROM to write
1024 *  @words: number of words
1025 *  @data: word(s) write to the EEPROM
1026 *
1027 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1028 **/
1029s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1030				    u16 words, u16 *data)
1031{
1032	u32 eewr;
1033	s32 status = 0;
1034	u16 i;
1035
1036	hw->eeprom.ops.init_params(hw);
1037
1038	if (words == 0) {
1039		status = IXGBE_ERR_INVALID_ARGUMENT;
1040		goto out;
1041	}
1042
1043	if (offset >= hw->eeprom.word_size) {
1044		status = IXGBE_ERR_EEPROM;
1045		goto out;
1046	}
1047
1048	for (i = 0; i < words; i++) {
1049		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1050		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1051		       IXGBE_EEPROM_RW_REG_START;
1052
1053		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1054		if (status != 0) {
1055			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1056			goto out;
1057		}
1058
1059		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1060
1061		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1062		if (status != 0) {
1063			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1064			goto out;
1065		}
1066	}
1067
1068out:
1069	return status;
1070}
1071
1072/**
1073 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1074 *  @hw: pointer to hardware structure
1075 *  @offset: offset of  word in the EEPROM to write
1076 *  @data: word write to the EEPROM
1077 *
1078 *  Write a 16 bit word to the EEPROM using the EEWR register.
1079 **/
1080s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1081{
1082	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1083}
1084
1085/**
1086 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1087 *  @hw: pointer to hardware structure
1088 *  @ee_reg: EEPROM flag for polling
1089 *
1090 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1091 *  read or write is done respectively.
1092 **/
1093static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1094{
1095	u32 i;
1096	u32 reg;
1097	s32 status = IXGBE_ERR_EEPROM;
1098
1099	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1100		if (ee_reg == IXGBE_NVM_POLL_READ)
1101			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1102		else
1103			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1104
1105		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1106			status = 0;
1107			break;
1108		}
1109		udelay(5);
1110	}
1111	return status;
1112}
1113
1114/**
1115 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1116 *  @hw: pointer to hardware structure
1117 *
1118 *  Prepares EEPROM for access using bit-bang method. This function should
1119 *  be called before issuing a command to the EEPROM.
1120 **/
1121static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1122{
1123	s32 status = 0;
1124	u32 eec;
1125	u32 i;
1126
1127	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1128		status = IXGBE_ERR_SWFW_SYNC;
1129
1130	if (status == 0) {
1131		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1132
1133		/* Request EEPROM Access */
1134		eec |= IXGBE_EEC_REQ;
1135		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1136
1137		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1138			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1139			if (eec & IXGBE_EEC_GNT)
1140				break;
1141			udelay(5);
1142		}
1143
1144		/* Release if grant not acquired */
1145		if (!(eec & IXGBE_EEC_GNT)) {
1146			eec &= ~IXGBE_EEC_REQ;
1147			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1148			hw_dbg(hw, "Could not acquire EEPROM grant\n");
1149
1150			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1151			status = IXGBE_ERR_EEPROM;
1152		}
1153
1154		/* Setup EEPROM for Read/Write */
1155		if (status == 0) {
1156			/* Clear CS and SK */
1157			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1158			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1159			IXGBE_WRITE_FLUSH(hw);
1160			udelay(1);
1161		}
1162	}
1163	return status;
1164}
1165
1166/**
1167 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1168 *  @hw: pointer to hardware structure
1169 *
1170 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1171 **/
1172static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1173{
1174	s32 status = IXGBE_ERR_EEPROM;
1175	u32 timeout = 2000;
1176	u32 i;
1177	u32 swsm;
1178
1179	/* Get SMBI software semaphore between device drivers first */
1180	for (i = 0; i < timeout; i++) {
1181		/*
1182		 * If the SMBI bit is 0 when we read it, then the bit will be
1183		 * set and we have the semaphore
1184		 */
1185		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1186		if (!(swsm & IXGBE_SWSM_SMBI)) {
1187			status = 0;
1188			break;
1189		}
1190		udelay(50);
1191	}
1192
1193	if (i == timeout) {
1194		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1195		       "not granted.\n");
1196		/*
1197		 * this release is particularly important because our attempts
1198		 * above to get the semaphore may have succeeded, and if there
1199		 * was a timeout, we should unconditionally clear the semaphore
1200		 * bits to free the driver to make progress
1201		 */
1202		ixgbe_release_eeprom_semaphore(hw);
1203
1204		udelay(50);
1205		/*
1206		 * one last try
1207		 * If the SMBI bit is 0 when we read it, then the bit will be
1208		 * set and we have the semaphore
1209		 */
1210		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1211		if (!(swsm & IXGBE_SWSM_SMBI))
1212			status = 0;
1213	}
1214
1215	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1216	if (status == 0) {
1217		for (i = 0; i < timeout; i++) {
1218			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1219
1220			/* Set the SW EEPROM semaphore bit to request access */
1221			swsm |= IXGBE_SWSM_SWESMBI;
1222			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1223
1224			/*
1225			 * If we set the bit successfully then we got the
1226			 * semaphore.
1227			 */
1228			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1229			if (swsm & IXGBE_SWSM_SWESMBI)
1230				break;
1231
1232			udelay(50);
1233		}
1234
1235		/*
1236		 * Release semaphores and return error if SW EEPROM semaphore
1237		 * was not granted because we don't have access to the EEPROM
1238		 */
1239		if (i >= timeout) {
1240			hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1241			       "not granted.\n");
1242			ixgbe_release_eeprom_semaphore(hw);
1243			status = IXGBE_ERR_EEPROM;
1244		}
1245	} else {
1246		hw_dbg(hw, "Software semaphore SMBI between device drivers "
1247		       "not granted.\n");
1248	}
1249
1250	return status;
1251}
1252
1253/**
1254 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1255 *  @hw: pointer to hardware structure
1256 *
1257 *  This function clears hardware semaphore bits.
1258 **/
1259static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1260{
1261	u32 swsm;
1262
1263	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1264
1265	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1266	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1267	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1268	IXGBE_WRITE_FLUSH(hw);
1269}
1270
1271/**
1272 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1273 *  @hw: pointer to hardware structure
1274 **/
1275static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1276{
1277	s32 status = 0;
1278	u16 i;
1279	u8 spi_stat_reg;
1280
1281	/*
1282	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1283	 * EEPROM will signal that the command has been completed by clearing
1284	 * bit 0 of the internal status register.  If it's not cleared within
1285	 * 5 milliseconds, then error out.
1286	 */
1287	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1288		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1289		                            IXGBE_EEPROM_OPCODE_BITS);
1290		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1291		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1292			break;
1293
1294		udelay(5);
1295		ixgbe_standby_eeprom(hw);
1296	}
1297
1298	/*
1299	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1300	 * devices (and only 0-5mSec on 5V devices)
1301	 */
1302	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1303		hw_dbg(hw, "SPI EEPROM Status error\n");
1304		status = IXGBE_ERR_EEPROM;
1305	}
1306
1307	return status;
1308}
1309
1310/**
1311 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1312 *  @hw: pointer to hardware structure
1313 **/
1314static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1315{
1316	u32 eec;
1317
1318	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1319
1320	/* Toggle CS to flush commands */
1321	eec |= IXGBE_EEC_CS;
1322	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1323	IXGBE_WRITE_FLUSH(hw);
1324	udelay(1);
1325	eec &= ~IXGBE_EEC_CS;
1326	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1327	IXGBE_WRITE_FLUSH(hw);
1328	udelay(1);
1329}
1330
1331/**
1332 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1333 *  @hw: pointer to hardware structure
1334 *  @data: data to send to the EEPROM
1335 *  @count: number of bits to shift out
1336 **/
1337static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1338                                        u16 count)
1339{
1340	u32 eec;
1341	u32 mask;
1342	u32 i;
1343
1344	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1345
1346	/*
1347	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1348	 * one bit at a time.  Determine the starting bit based on count
1349	 */
1350	mask = 0x01 << (count - 1);
1351
1352	for (i = 0; i < count; i++) {
1353		/*
1354		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1355		 * "1", and then raising and then lowering the clock (the SK
1356		 * bit controls the clock input to the EEPROM).  A "0" is
1357		 * shifted out to the EEPROM by setting "DI" to "0" and then
1358		 * raising and then lowering the clock.
1359		 */
1360		if (data & mask)
1361			eec |= IXGBE_EEC_DI;
1362		else
1363			eec &= ~IXGBE_EEC_DI;
1364
1365		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1366		IXGBE_WRITE_FLUSH(hw);
1367
1368		udelay(1);
1369
1370		ixgbe_raise_eeprom_clk(hw, &eec);
1371		ixgbe_lower_eeprom_clk(hw, &eec);
1372
1373		/*
1374		 * Shift mask to signify next bit of data to shift in to the
1375		 * EEPROM
1376		 */
1377		mask = mask >> 1;
1378	}
1379
1380	/* We leave the "DI" bit set to "0" when we leave this routine. */
1381	eec &= ~IXGBE_EEC_DI;
1382	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1383	IXGBE_WRITE_FLUSH(hw);
1384}
1385
1386/**
1387 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1388 *  @hw: pointer to hardware structure
1389 **/
1390static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1391{
1392	u32 eec;
1393	u32 i;
1394	u16 data = 0;
1395
1396	/*
1397	 * In order to read a register from the EEPROM, we need to shift
1398	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1399	 * the clock input to the EEPROM (setting the SK bit), and then reading
1400	 * the value of the "DO" bit.  During this "shifting in" process the
1401	 * "DI" bit should always be clear.
1402	 */
1403	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1404
1405	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1406
1407	for (i = 0; i < count; i++) {
1408		data = data << 1;
1409		ixgbe_raise_eeprom_clk(hw, &eec);
1410
1411		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1412
1413		eec &= ~(IXGBE_EEC_DI);
1414		if (eec & IXGBE_EEC_DO)
1415			data |= 1;
1416
1417		ixgbe_lower_eeprom_clk(hw, &eec);
1418	}
1419
1420	return data;
1421}
1422
1423/**
1424 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1425 *  @hw: pointer to hardware structure
1426 *  @eec: EEC register's current value
1427 **/
1428static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1429{
1430	/*
1431	 * Raise the clock input to the EEPROM
1432	 * (setting the SK bit), then delay
1433	 */
1434	*eec = *eec | IXGBE_EEC_SK;
1435	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1436	IXGBE_WRITE_FLUSH(hw);
1437	udelay(1);
1438}
1439
1440/**
1441 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1442 *  @hw: pointer to hardware structure
1443 *  @eecd: EECD's current value
1444 **/
1445static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1446{
1447	/*
1448	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1449	 * delay
1450	 */
1451	*eec = *eec & ~IXGBE_EEC_SK;
1452	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1453	IXGBE_WRITE_FLUSH(hw);
1454	udelay(1);
1455}
1456
1457/**
1458 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1459 *  @hw: pointer to hardware structure
1460 **/
1461static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1462{
1463	u32 eec;
1464
1465	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1466
1467	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1468	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1469
1470	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1471	IXGBE_WRITE_FLUSH(hw);
1472
1473	udelay(1);
1474
1475	/* Stop requesting EEPROM access */
1476	eec &= ~IXGBE_EEC_REQ;
1477	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1478
1479	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1480
1481	/*
1482	 * Delay before attempt to obtain semaphore again to allow FW
1483	 * access. semaphore_delay is in ms we need us for usleep_range
1484	 */
1485	usleep_range(hw->eeprom.semaphore_delay * 1000,
1486		     hw->eeprom.semaphore_delay * 2000);
1487}
1488
1489/**
1490 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1491 *  @hw: pointer to hardware structure
1492 **/
1493u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1494{
1495	u16 i;
1496	u16 j;
1497	u16 checksum = 0;
1498	u16 length = 0;
1499	u16 pointer = 0;
1500	u16 word = 0;
1501
1502	/* Include 0x0-0x3F in the checksum */
1503	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1504		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1505			hw_dbg(hw, "EEPROM read failed\n");
1506			break;
1507		}
1508		checksum += word;
1509	}
1510
1511	/* Include all data from pointers except for the fw pointer */
1512	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1513		hw->eeprom.ops.read(hw, i, &pointer);
1514
1515		/* Make sure the pointer seems valid */
1516		if (pointer != 0xFFFF && pointer != 0) {
1517			hw->eeprom.ops.read(hw, pointer, &length);
1518
1519			if (length != 0xFFFF && length != 0) {
1520				for (j = pointer+1; j <= pointer+length; j++) {
1521					hw->eeprom.ops.read(hw, j, &word);
1522					checksum += word;
1523				}
1524			}
1525		}
1526	}
1527
1528	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1529
1530	return checksum;
1531}
1532
1533/**
1534 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1535 *  @hw: pointer to hardware structure
1536 *  @checksum_val: calculated checksum
1537 *
1538 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1539 *  caller does not need checksum_val, the value can be NULL.
1540 **/
1541s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1542                                           u16 *checksum_val)
1543{
1544	s32 status;
1545	u16 checksum;
1546	u16 read_checksum = 0;
1547
1548	/*
1549	 * Read the first word from the EEPROM. If this times out or fails, do
1550	 * not continue or we could be in for a very long wait while every
1551	 * EEPROM read fails
1552	 */
1553	status = hw->eeprom.ops.read(hw, 0, &checksum);
1554
1555	if (status == 0) {
1556		checksum = hw->eeprom.ops.calc_checksum(hw);
1557
1558		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1559
1560		/*
1561		 * Verify read checksum from EEPROM is the same as
1562		 * calculated checksum
1563		 */
1564		if (read_checksum != checksum)
1565			status = IXGBE_ERR_EEPROM_CHECKSUM;
1566
1567		/* If the user cares, return the calculated checksum */
1568		if (checksum_val)
1569			*checksum_val = checksum;
1570	} else {
1571		hw_dbg(hw, "EEPROM read failed\n");
1572	}
1573
1574	return status;
1575}
1576
1577/**
1578 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1579 *  @hw: pointer to hardware structure
1580 **/
1581s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1582{
1583	s32 status;
1584	u16 checksum;
1585
1586	/*
1587	 * Read the first word from the EEPROM. If this times out or fails, do
1588	 * not continue or we could be in for a very long wait while every
1589	 * EEPROM read fails
1590	 */
1591	status = hw->eeprom.ops.read(hw, 0, &checksum);
1592
1593	if (status == 0) {
1594		checksum = hw->eeprom.ops.calc_checksum(hw);
1595		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1596					      checksum);
1597	} else {
1598		hw_dbg(hw, "EEPROM read failed\n");
1599	}
1600
1601	return status;
1602}
1603
1604/**
1605 *  ixgbe_validate_mac_addr - Validate MAC address
1606 *  @mac_addr: pointer to MAC address.
1607 *
1608 *  Tests a MAC address to ensure it is a valid Individual Address
1609 **/
1610s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1611{
1612	s32 status = 0;
1613
1614	/* Make sure it is not a multicast address */
1615	if (IXGBE_IS_MULTICAST(mac_addr))
1616		status = IXGBE_ERR_INVALID_MAC_ADDR;
1617	/* Not a broadcast address */
1618	else if (IXGBE_IS_BROADCAST(mac_addr))
1619		status = IXGBE_ERR_INVALID_MAC_ADDR;
1620	/* Reject the zero address */
1621	else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1622	         mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1623		status = IXGBE_ERR_INVALID_MAC_ADDR;
1624
1625	return status;
1626}
1627
1628/**
1629 *  ixgbe_set_rar_generic - Set Rx address register
1630 *  @hw: pointer to hardware structure
1631 *  @index: Receive address register to write
1632 *  @addr: Address to put into receive address register
1633 *  @vmdq: VMDq "set" or "pool" index
1634 *  @enable_addr: set flag that address is active
1635 *
1636 *  Puts an ethernet address into a receive address register.
1637 **/
1638s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1639                          u32 enable_addr)
1640{
1641	u32 rar_low, rar_high;
1642	u32 rar_entries = hw->mac.num_rar_entries;
1643
1644	/* Make sure we are using a valid rar index range */
1645	if (index >= rar_entries) {
1646		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1647		return IXGBE_ERR_INVALID_ARGUMENT;
1648	}
1649
1650	/* setup VMDq pool selection before this RAR gets enabled */
1651	hw->mac.ops.set_vmdq(hw, index, vmdq);
1652
1653	/*
1654	 * HW expects these in little endian so we reverse the byte
1655	 * order from network order (big endian) to little endian
1656	 */
1657	rar_low = ((u32)addr[0] |
1658		   ((u32)addr[1] << 8) |
1659		   ((u32)addr[2] << 16) |
1660		   ((u32)addr[3] << 24));
1661	/*
1662	 * Some parts put the VMDq setting in the extra RAH bits,
1663	 * so save everything except the lower 16 bits that hold part
1664	 * of the address and the address valid bit.
1665	 */
1666	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1667	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1668	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1669
1670	if (enable_addr != 0)
1671		rar_high |= IXGBE_RAH_AV;
1672
1673	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1674	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1675
1676	return 0;
1677}
1678
1679/**
1680 *  ixgbe_clear_rar_generic - Remove Rx address register
1681 *  @hw: pointer to hardware structure
1682 *  @index: Receive address register to write
1683 *
1684 *  Clears an ethernet address from a receive address register.
1685 **/
1686s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1687{
1688	u32 rar_high;
1689	u32 rar_entries = hw->mac.num_rar_entries;
1690
1691	/* Make sure we are using a valid rar index range */
1692	if (index >= rar_entries) {
1693		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1694		return IXGBE_ERR_INVALID_ARGUMENT;
1695	}
1696
1697	/*
1698	 * Some parts put the VMDq setting in the extra RAH bits,
1699	 * so save everything except the lower 16 bits that hold part
1700	 * of the address and the address valid bit.
1701	 */
1702	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1703	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1704
1705	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1706	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1707
1708	/* clear VMDq pool/queue selection for this RAR */
1709	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1710
1711	return 0;
1712}
1713
1714/**
1715 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1716 *  @hw: pointer to hardware structure
1717 *
1718 *  Places the MAC address in receive address register 0 and clears the rest
1719 *  of the receive address registers. Clears the multicast table. Assumes
1720 *  the receiver is in reset when the routine is called.
1721 **/
1722s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1723{
1724	u32 i;
1725	u32 rar_entries = hw->mac.num_rar_entries;
1726
1727	/*
1728	 * If the current mac address is valid, assume it is a software override
1729	 * to the permanent address.
1730	 * Otherwise, use the permanent address from the eeprom.
1731	 */
1732	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1733	    IXGBE_ERR_INVALID_MAC_ADDR) {
1734		/* Get the MAC address from the RAR0 for later reference */
1735		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1736
1737		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1738	} else {
1739		/* Setup the receive address. */
1740		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1741		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1742
1743		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1744
1745		/*  clear VMDq pool/queue selection for RAR 0 */
1746		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1747	}
1748	hw->addr_ctrl.overflow_promisc = 0;
1749
1750	hw->addr_ctrl.rar_used_count = 1;
1751
1752	/* Zero out the other receive addresses. */
1753	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1754	for (i = 1; i < rar_entries; i++) {
1755		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1756		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1757	}
1758
1759	/* Clear the MTA */
1760	hw->addr_ctrl.mta_in_use = 0;
1761	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1762
1763	hw_dbg(hw, " Clearing MTA\n");
1764	for (i = 0; i < hw->mac.mcft_size; i++)
1765		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1766
1767	if (hw->mac.ops.init_uta_tables)
1768		hw->mac.ops.init_uta_tables(hw);
1769
1770	return 0;
1771}
1772
1773/**
1774 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1775 *  @hw: pointer to hardware structure
1776 *  @mc_addr: the multicast address
1777 *
1778 *  Extracts the 12 bits, from a multicast address, to determine which
1779 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1780 *  incoming rx multicast addresses, to determine the bit-vector to check in
1781 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1782 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1783 *  to mc_filter_type.
1784 **/
1785static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1786{
1787	u32 vector = 0;
1788
1789	switch (hw->mac.mc_filter_type) {
1790	case 0:   /* use bits [47:36] of the address */
1791		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1792		break;
1793	case 1:   /* use bits [46:35] of the address */
1794		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1795		break;
1796	case 2:   /* use bits [45:34] of the address */
1797		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1798		break;
1799	case 3:   /* use bits [43:32] of the address */
1800		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1801		break;
1802	default:  /* Invalid mc_filter_type */
1803		hw_dbg(hw, "MC filter type param set incorrectly\n");
1804		break;
1805	}
1806
1807	/* vector can only be 12-bits or boundary will be exceeded */
1808	vector &= 0xFFF;
1809	return vector;
1810}
1811
1812/**
1813 *  ixgbe_set_mta - Set bit-vector in multicast table
1814 *  @hw: pointer to hardware structure
1815 *  @hash_value: Multicast address hash value
1816 *
1817 *  Sets the bit-vector in the multicast table.
1818 **/
1819static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1820{
1821	u32 vector;
1822	u32 vector_bit;
1823	u32 vector_reg;
1824
1825	hw->addr_ctrl.mta_in_use++;
1826
1827	vector = ixgbe_mta_vector(hw, mc_addr);
1828	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1829
1830	/*
1831	 * The MTA is a register array of 128 32-bit registers. It is treated
1832	 * like an array of 4096 bits.  We want to set bit
1833	 * BitArray[vector_value]. So we figure out what register the bit is
1834	 * in, read it, OR in the new bit, then write back the new value.  The
1835	 * register is determined by the upper 7 bits of the vector value and
1836	 * the bit within that register are determined by the lower 5 bits of
1837	 * the value.
1838	 */
1839	vector_reg = (vector >> 5) & 0x7F;
1840	vector_bit = vector & 0x1F;
1841	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1842}
1843
1844/**
1845 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1846 *  @hw: pointer to hardware structure
1847 *  @netdev: pointer to net device structure
1848 *
1849 *  The given list replaces any existing list. Clears the MC addrs from receive
1850 *  address registers and the multicast table. Uses unused receive address
1851 *  registers for the first multicast addresses, and hashes the rest into the
1852 *  multicast table.
1853 **/
1854s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1855				      struct net_device *netdev)
1856{
1857	struct netdev_hw_addr *ha;
1858	u32 i;
1859
1860	/*
1861	 * Set the new number of MC addresses that we are being requested to
1862	 * use.
1863	 */
1864	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1865	hw->addr_ctrl.mta_in_use = 0;
1866
1867	/* Clear mta_shadow */
1868	hw_dbg(hw, " Clearing MTA\n");
1869	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
1870
1871	/* Update mta shadow */
1872	netdev_for_each_mc_addr(ha, netdev) {
1873		hw_dbg(hw, " Adding the multicast addresses:\n");
1874		ixgbe_set_mta(hw, ha->addr);
1875	}
1876
1877	/* Enable mta */
1878	for (i = 0; i < hw->mac.mcft_size; i++)
1879		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
1880				      hw->mac.mta_shadow[i]);
1881
1882	if (hw->addr_ctrl.mta_in_use > 0)
1883		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1884		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1885
1886	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1887	return 0;
1888}
1889
1890/**
1891 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
1892 *  @hw: pointer to hardware structure
1893 *
1894 *  Enables multicast address in RAR and the use of the multicast hash table.
1895 **/
1896s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1897{
1898	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1899
1900	if (a->mta_in_use > 0)
1901		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1902		                hw->mac.mc_filter_type);
1903
1904	return 0;
1905}
1906
1907/**
1908 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
1909 *  @hw: pointer to hardware structure
1910 *
1911 *  Disables multicast address in RAR and the use of the multicast hash table.
1912 **/
1913s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1914{
1915	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1916
1917	if (a->mta_in_use > 0)
1918		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1919
1920	return 0;
1921}
1922
1923/**
1924 *  ixgbe_fc_enable_generic - Enable flow control
1925 *  @hw: pointer to hardware structure
1926 *  @packetbuf_num: packet buffer number (0-7)
1927 *
1928 *  Enable flow control according to the current settings.
1929 **/
1930s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
1931{
1932	s32 ret_val = 0;
1933	u32 mflcn_reg, fccfg_reg;
1934	u32 reg;
1935	u32 fcrtl, fcrth;
1936
1937#ifdef CONFIG_DCB
1938	if (hw->fc.requested_mode == ixgbe_fc_pfc)
1939		goto out;
1940
1941#endif /* CONFIG_DCB */
1942	/* Negotiate the fc mode to use */
1943	ret_val = ixgbe_fc_autoneg(hw);
1944	if (ret_val == IXGBE_ERR_FLOW_CONTROL)
1945		goto out;
1946
1947	/* Disable any previous flow control settings */
1948	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
1949	mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
1950
1951	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
1952	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
1953
1954	/*
1955	 * The possible values of fc.current_mode are:
1956	 * 0: Flow control is completely disabled
1957	 * 1: Rx flow control is enabled (we can receive pause frames,
1958	 *    but not send pause frames).
1959	 * 2: Tx flow control is enabled (we can send pause frames but
1960	 *    we do not support receiving pause frames).
1961	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1962#ifdef CONFIG_DCB
1963	 * 4: Priority Flow Control is enabled.
1964#endif
1965	 * other: Invalid.
1966	 */
1967	switch (hw->fc.current_mode) {
1968	case ixgbe_fc_none:
1969		/*
1970		 * Flow control is disabled by software override or autoneg.
1971		 * The code below will actually disable it in the HW.
1972		 */
1973		break;
1974	case ixgbe_fc_rx_pause:
1975		/*
1976		 * Rx Flow control is enabled and Tx Flow control is
1977		 * disabled by software override. Since there really
1978		 * isn't a way to advertise that we are capable of RX
1979		 * Pause ONLY, we will advertise that we support both
1980		 * symmetric and asymmetric Rx PAUSE.  Later, we will
1981		 * disable the adapter's ability to send PAUSE frames.
1982		 */
1983		mflcn_reg |= IXGBE_MFLCN_RFCE;
1984		break;
1985	case ixgbe_fc_tx_pause:
1986		/*
1987		 * Tx Flow control is enabled, and Rx Flow control is
1988		 * disabled by software override.
1989		 */
1990		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1991		break;
1992	case ixgbe_fc_full:
1993		/* Flow control (both Rx and Tx) is enabled by SW override. */
1994		mflcn_reg |= IXGBE_MFLCN_RFCE;
1995		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1996		break;
1997#ifdef CONFIG_DCB
1998	case ixgbe_fc_pfc:
1999		goto out;
2000		break;
2001#endif /* CONFIG_DCB */
2002	default:
2003		hw_dbg(hw, "Flow control param set incorrectly\n");
2004		ret_val = IXGBE_ERR_CONFIG;
2005		goto out;
2006		break;
2007	}
2008
2009	/* Set 802.3x based flow control settings. */
2010	mflcn_reg |= IXGBE_MFLCN_DPF;
2011	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2012	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2013
2014	fcrtl = hw->fc.low_water << 10;
2015
2016	if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
2017		fcrth = hw->fc.high_water[packetbuf_num] << 10;
2018		fcrth |= IXGBE_FCRTH_FCEN;
2019		if (hw->fc.send_xon)
2020			fcrtl |= IXGBE_FCRTL_XONE;
2021	} else {
2022		/*
2023		 * If Tx flow control is disabled, set our high water mark
2024		 * to Rx FIFO size minus 32 in order prevent Tx switch
2025		 * loopback from stalling on DMA.
2026		 */
2027		fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num)) - 32;
2028	}
2029
2030	IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
2031	IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);
2032
2033	/* Configure pause time (2 TCs per register) */
2034	reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
2035	if ((packetbuf_num & 1) == 0)
2036		reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
2037	else
2038		reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
2039	IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
2040
2041	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
2042
2043out:
2044	return ret_val;
2045}
2046
2047/**
2048 *  ixgbe_fc_autoneg - Configure flow control
2049 *  @hw: pointer to hardware structure
2050 *
2051 *  Compares our advertised flow control capabilities to those advertised by
2052 *  our link partner, and determines the proper flow control mode to use.
2053 **/
2054s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2055{
2056	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2057	ixgbe_link_speed speed;
2058	bool link_up;
2059
2060	if (hw->fc.disable_fc_autoneg)
2061		goto out;
2062
2063	/*
2064	 * AN should have completed when the cable was plugged in.
2065	 * Look for reasons to bail out.  Bail out if:
2066	 * - FC autoneg is disabled, or if
2067	 * - link is not up.
2068	 *
2069	 * Since we're being called from an LSC, link is already known to be up.
2070	 * So use link_up_wait_to_complete=false.
2071	 */
2072	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2073	if (!link_up) {
2074		ret_val = IXGBE_ERR_FLOW_CONTROL;
2075		goto out;
2076	}
2077
2078	switch (hw->phy.media_type) {
2079	/* Autoneg flow control on fiber adapters */
2080	case ixgbe_media_type_fiber:
2081		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2082			ret_val = ixgbe_fc_autoneg_fiber(hw);
2083		break;
2084
2085	/* Autoneg flow control on backplane adapters */
2086	case ixgbe_media_type_backplane:
2087		ret_val = ixgbe_fc_autoneg_backplane(hw);
2088		break;
2089
2090	/* Autoneg flow control on copper adapters */
2091	case ixgbe_media_type_copper:
2092		if (ixgbe_device_supports_autoneg_fc(hw) == 0)
2093			ret_val = ixgbe_fc_autoneg_copper(hw);
2094		break;
2095
2096	default:
2097		break;
2098	}
2099
2100out:
2101	if (ret_val == 0) {
2102		hw->fc.fc_was_autonegged = true;
2103	} else {
2104		hw->fc.fc_was_autonegged = false;
2105		hw->fc.current_mode = hw->fc.requested_mode;
2106	}
2107	return ret_val;
2108}
2109
2110/**
2111 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2112 *  @hw: pointer to hardware structure
2113 *
2114 *  Enable flow control according on 1 gig fiber.
2115 **/
2116static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2117{
2118	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2119	s32 ret_val;
2120
2121	/*
2122	 * On multispeed fiber at 1g, bail out if
2123	 * - link is up but AN did not complete, or if
2124	 * - link is up and AN completed but timed out
2125	 */
2126
2127	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2128	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2129	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2130		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2131		goto out;
2132	}
2133
2134	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2135	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2136
2137	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2138			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2139			       IXGBE_PCS1GANA_ASM_PAUSE,
2140			       IXGBE_PCS1GANA_SYM_PAUSE,
2141			       IXGBE_PCS1GANA_ASM_PAUSE);
2142
2143out:
2144	return ret_val;
2145}
2146
2147/**
2148 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2149 *  @hw: pointer to hardware structure
2150 *
2151 *  Enable flow control according to IEEE clause 37.
2152 **/
2153static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2154{
2155	u32 links2, anlp1_reg, autoc_reg, links;
2156	s32 ret_val;
2157
2158	/*
2159	 * On backplane, bail out if
2160	 * - backplane autoneg was not completed, or if
2161	 * - we are 82599 and link partner is not AN enabled
2162	 */
2163	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2164	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2165		hw->fc.fc_was_autonegged = false;
2166		hw->fc.current_mode = hw->fc.requested_mode;
2167		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2168		goto out;
2169	}
2170
2171	if (hw->mac.type == ixgbe_mac_82599EB) {
2172		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2173		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2174			hw->fc.fc_was_autonegged = false;
2175			hw->fc.current_mode = hw->fc.requested_mode;
2176			ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2177			goto out;
2178		}
2179	}
2180	/*
2181	 * Read the 10g AN autoc and LP ability registers and resolve
2182	 * local flow control settings accordingly
2183	 */
2184	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2185	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2186
2187	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2188		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2189		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2190
2191out:
2192	return ret_val;
2193}
2194
2195/**
2196 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2197 *  @hw: pointer to hardware structure
2198 *
2199 *  Enable flow control according to IEEE clause 37.
2200 **/
2201static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2202{
2203	u16 technology_ability_reg = 0;
2204	u16 lp_technology_ability_reg = 0;
2205
2206	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2207			     MDIO_MMD_AN,
2208			     &technology_ability_reg);
2209	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2210			     MDIO_MMD_AN,
2211			     &lp_technology_ability_reg);
2212
2213	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2214				  (u32)lp_technology_ability_reg,
2215				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2216				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2217}
2218
2219/**
2220 *  ixgbe_negotiate_fc - Negotiate flow control
2221 *  @hw: pointer to hardware structure
2222 *  @adv_reg: flow control advertised settings
2223 *  @lp_reg: link partner's flow control settings
2224 *  @adv_sym: symmetric pause bit in advertisement
2225 *  @adv_asm: asymmetric pause bit in advertisement
2226 *  @lp_sym: symmetric pause bit in link partner advertisement
2227 *  @lp_asm: asymmetric pause bit in link partner advertisement
2228 *
2229 *  Find the intersection between advertised settings and link partner's
2230 *  advertised settings
2231 **/
2232static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2233			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2234{
2235	if ((!(adv_reg)) ||  (!(lp_reg)))
2236		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2237
2238	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2239		/*
2240		 * Now we need to check if the user selected Rx ONLY
2241		 * of pause frames.  In this case, we had to advertise
2242		 * FULL flow control because we could not advertise RX
2243		 * ONLY. Hence, we must now check to see if we need to
2244		 * turn OFF the TRANSMISSION of PAUSE frames.
2245		 */
2246		if (hw->fc.requested_mode == ixgbe_fc_full) {
2247			hw->fc.current_mode = ixgbe_fc_full;
2248			hw_dbg(hw, "Flow Control = FULL.\n");
2249		} else {
2250			hw->fc.current_mode = ixgbe_fc_rx_pause;
2251			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2252		}
2253	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2254		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2255		hw->fc.current_mode = ixgbe_fc_tx_pause;
2256		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2257	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2258		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2259		hw->fc.current_mode = ixgbe_fc_rx_pause;
2260		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2261	} else {
2262		hw->fc.current_mode = ixgbe_fc_none;
2263		hw_dbg(hw, "Flow Control = NONE.\n");
2264	}
2265	return 0;
2266}
2267
2268/**
2269 *  ixgbe_setup_fc - Set up flow control
2270 *  @hw: pointer to hardware structure
2271 *
2272 *  Called at init time to set up flow control.
2273 **/
2274static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
2275{
2276	s32 ret_val = 0;
2277	u32 reg = 0, reg_bp = 0;
2278	u16 reg_cu = 0;
2279
2280#ifdef CONFIG_DCB
2281	if (hw->fc.requested_mode == ixgbe_fc_pfc) {
2282		hw->fc.current_mode = hw->fc.requested_mode;
2283		goto out;
2284	}
2285
2286#endif /* CONFIG_DCB */
2287	/* Validate the packetbuf configuration */
2288	if (packetbuf_num < 0 || packetbuf_num > 7) {
2289		hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
2290		       "is 0-7\n", packetbuf_num);
2291		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2292		goto out;
2293	}
2294
2295	/*
2296	 * Validate the water mark configuration.  Zero water marks are invalid
2297	 * because it causes the controller to just blast out fc packets.
2298	 */
2299	if (!hw->fc.low_water ||
2300	    !hw->fc.high_water[packetbuf_num] ||
2301	    !hw->fc.pause_time) {
2302		hw_dbg(hw, "Invalid water mark configuration\n");
2303		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2304		goto out;
2305	}
2306
2307	/*
2308	 * Validate the requested mode.  Strict IEEE mode does not allow
2309	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
2310	 */
2311	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
2312		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
2313		       "IEEE mode\n");
2314		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2315		goto out;
2316	}
2317
2318	/*
2319	 * 10gig parts do not have a word in the EEPROM to determine the
2320	 * default flow control setting, so we explicitly set it to full.
2321	 */
2322	if (hw->fc.requested_mode == ixgbe_fc_default)
2323		hw->fc.requested_mode = ixgbe_fc_full;
2324
2325	/*
2326	 * Set up the 1G and 10G flow control advertisement registers so the
2327	 * HW will be able to do fc autoneg once the cable is plugged in.  If
2328	 * we link at 10G, the 1G advertisement is harmless and vice versa.
2329	 */
2330
2331	switch (hw->phy.media_type) {
2332	case ixgbe_media_type_fiber:
2333	case ixgbe_media_type_backplane:
2334		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2335		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2336		break;
2337
2338	case ixgbe_media_type_copper:
2339		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2340					MDIO_MMD_AN, &reg_cu);
2341		break;
2342
2343	default:
2344		;
2345	}
2346
2347	/*
2348	 * The possible values of fc.requested_mode are:
2349	 * 0: Flow control is completely disabled
2350	 * 1: Rx flow control is enabled (we can receive pause frames,
2351	 *    but not send pause frames).
2352	 * 2: Tx flow control is enabled (we can send pause frames but
2353	 *    we do not support receiving pause frames).
2354	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2355#ifdef CONFIG_DCB
2356	 * 4: Priority Flow Control is enabled.
2357#endif
2358	 * other: Invalid.
2359	 */
2360	switch (hw->fc.requested_mode) {
2361	case ixgbe_fc_none:
2362		/* Flow control completely disabled by software override. */
2363		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2364		if (hw->phy.media_type == ixgbe_media_type_backplane)
2365			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
2366				    IXGBE_AUTOC_ASM_PAUSE);
2367		else if (hw->phy.media_type == ixgbe_media_type_copper)
2368			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2369		break;
2370	case ixgbe_fc_rx_pause:
2371		/*
2372		 * Rx Flow control is enabled and Tx Flow control is
2373		 * disabled by software override. Since there really
2374		 * isn't a way to advertise that we are capable of RX
2375		 * Pause ONLY, we will advertise that we support both
2376		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2377		 * disable the adapter's ability to send PAUSE frames.
2378		 */
2379		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2380		if (hw->phy.media_type == ixgbe_media_type_backplane)
2381			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2382				   IXGBE_AUTOC_ASM_PAUSE);
2383		else if (hw->phy.media_type == ixgbe_media_type_copper)
2384			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2385		break;
2386	case ixgbe_fc_tx_pause:
2387		/*
2388		 * Tx Flow control is enabled, and Rx Flow control is
2389		 * disabled by software override.
2390		 */
2391		reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
2392		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
2393		if (hw->phy.media_type == ixgbe_media_type_backplane) {
2394			reg_bp |= (IXGBE_AUTOC_ASM_PAUSE);
2395			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE);
2396		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
2397			reg_cu |= (IXGBE_TAF_ASM_PAUSE);
2398			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE);
2399		}
2400		break;
2401	case ixgbe_fc_full:
2402		/* Flow control (both Rx and Tx) is enabled by SW override. */
2403		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2404		if (hw->phy.media_type == ixgbe_media_type_backplane)
2405			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2406				   IXGBE_AUTOC_ASM_PAUSE);
2407		else if (hw->phy.media_type == ixgbe_media_type_copper)
2408			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2409		break;
2410#ifdef CONFIG_DCB
2411	case ixgbe_fc_pfc:
2412		goto out;
2413		break;
2414#endif /* CONFIG_DCB */
2415	default:
2416		hw_dbg(hw, "Flow control param set incorrectly\n");
2417		ret_val = IXGBE_ERR_CONFIG;
2418		goto out;
2419		break;
2420	}
2421
2422	if (hw->mac.type != ixgbe_mac_X540) {
2423		/*
2424		 * Enable auto-negotiation between the MAC & PHY;
2425		 * the MAC will advertise clause 37 flow control.
2426		 */
2427		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
2428		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
2429
2430		/* Disable AN timeout */
2431		if (hw->fc.strict_ieee)
2432			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
2433
2434		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
2435		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
2436	}
2437
2438	/*
2439	 * AUTOC restart handles negotiation of 1G and 10G on backplane
2440	 * and copper. There is no need to set the PCS1GCTL register.
2441	 *
2442	 */
2443	if (hw->phy.media_type == ixgbe_media_type_backplane) {
2444		reg_bp |= IXGBE_AUTOC_AN_RESTART;
2445		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
2446	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
2447		    (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
2448		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
2449				      MDIO_MMD_AN, reg_cu);
2450	}
2451
2452	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
2453out:
2454	return ret_val;
2455}
2456
2457/**
2458 *  ixgbe_disable_pcie_master - Disable PCI-express master access
2459 *  @hw: pointer to hardware structure
2460 *
2461 *  Disables PCI-Express master access and verifies there are no pending
2462 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2463 *  bit hasn't caused the master requests to be disabled, else 0
2464 *  is returned signifying master requests disabled.
2465 **/
2466static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2467{
2468	struct ixgbe_adapter *adapter = hw->back;
2469	s32 status = 0;
2470	u32 i;
2471	u16 value;
2472
2473	/* Always set this bit to ensure any future transactions are blocked */
2474	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2475
2476	/* Exit if master requests are blocked */
2477	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2478		goto out;
2479
2480	/* Poll for master request bit to clear */
2481	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2482		udelay(100);
2483		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2484			goto out;
2485	}
2486
2487	/*
2488	 * Two consecutive resets are required via CTRL.RST per datasheet
2489	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2490	 * of this need.  The first reset prevents new master requests from
2491	 * being issued by our device.  We then must wait 1usec or more for any
2492	 * remaining completions from the PCIe bus to trickle in, and then reset
2493	 * again to clear out any effects they may have had on our device.
2494	 */
2495	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2496	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2497
2498	/*
2499	 * Before proceeding, make sure that the PCIe block does not have
2500	 * transactions pending.
2501	 */
2502	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2503		udelay(100);
2504		pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2505							 &value);
2506		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2507			goto out;
2508	}
2509
2510	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2511	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2512
2513out:
2514	return status;
2515}
2516
2517/**
2518 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2519 *  @hw: pointer to hardware structure
2520 *  @mask: Mask to specify which semaphore to acquire
2521 *
2522 *  Acquires the SWFW semaphore through the GSSR register for the specified
2523 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2524 **/
2525s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2526{
2527	u32 gssr;
2528	u32 swmask = mask;
2529	u32 fwmask = mask << 5;
2530	s32 timeout = 200;
2531
2532	while (timeout) {
2533		/*
2534		 * SW EEPROM semaphore bit is used for access to all
2535		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2536		 */
2537		if (ixgbe_get_eeprom_semaphore(hw))
2538			return IXGBE_ERR_SWFW_SYNC;
2539
2540		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2541		if (!(gssr & (fwmask | swmask)))
2542			break;
2543
2544		/*
2545		 * Firmware currently using resource (fwmask) or other software
2546		 * thread currently using resource (swmask)
2547		 */
2548		ixgbe_release_eeprom_semaphore(hw);
2549		usleep_range(5000, 10000);
2550		timeout--;
2551	}
2552
2553	if (!timeout) {
2554		hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2555		return IXGBE_ERR_SWFW_SYNC;
2556	}
2557
2558	gssr |= swmask;
2559	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2560
2561	ixgbe_release_eeprom_semaphore(hw);
2562	return 0;
2563}
2564
2565/**
2566 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2567 *  @hw: pointer to hardware structure
2568 *  @mask: Mask to specify which semaphore to release
2569 *
2570 *  Releases the SWFW semaphore through the GSSR register for the specified
2571 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2572 **/
2573void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2574{
2575	u32 gssr;
2576	u32 swmask = mask;
2577
2578	ixgbe_get_eeprom_semaphore(hw);
2579
2580	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2581	gssr &= ~swmask;
2582	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2583
2584	ixgbe_release_eeprom_semaphore(hw);
2585}
2586
2587/**
2588 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2589 *  @hw: pointer to hardware structure
2590 *
2591 *  Stops the receive data path and waits for the HW to internally
2592 *  empty the Rx security block.
2593 **/
2594s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2595{
2596#define IXGBE_MAX_SECRX_POLL 40
2597	int i;
2598	int secrxreg;
2599
2600	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2601	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2602	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2603	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2604		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2605		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2606			break;
2607		else
2608			/* Use interrupt-safe sleep just in case */
2609			udelay(10);
2610	}
2611
2612	/* For informational purposes only */
2613	if (i >= IXGBE_MAX_SECRX_POLL)
2614		hw_dbg(hw, "Rx unit being enabled before security "
2615		       "path fully disabled.  Continuing with init.\n");
2616
2617	return 0;
2618
2619}
2620
2621/**
2622 *  ixgbe_enable_rx_buff - Enables the receive data path
2623 *  @hw: pointer to hardware structure
2624 *
2625 *  Enables the receive data path
2626 **/
2627s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2628{
2629	int secrxreg;
2630
2631	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2632	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2633	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2634	IXGBE_WRITE_FLUSH(hw);
2635
2636	return 0;
2637}
2638
2639/**
2640 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2641 *  @hw: pointer to hardware structure
2642 *  @regval: register value to write to RXCTRL
2643 *
2644 *  Enables the Rx DMA unit
2645 **/
2646s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2647{
2648	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2649
2650	return 0;
2651}
2652
2653/**
2654 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2655 *  @hw: pointer to hardware structure
2656 *  @index: led number to blink
2657 **/
2658s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2659{
2660	ixgbe_link_speed speed = 0;
2661	bool link_up = false;
2662	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2663	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2664
2665	/*
2666	 * Link must be up to auto-blink the LEDs;
2667	 * Force it if link is down.
2668	 */
2669	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2670
2671	if (!link_up) {
2672		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2673		autoc_reg |= IXGBE_AUTOC_FLU;
2674		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2675		IXGBE_WRITE_FLUSH(hw);
2676		usleep_range(10000, 20000);
2677	}
2678
2679	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2680	led_reg |= IXGBE_LED_BLINK(index);
2681	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2682	IXGBE_WRITE_FLUSH(hw);
2683
2684	return 0;
2685}
2686
2687/**
2688 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2689 *  @hw: pointer to hardware structure
2690 *  @index: led number to stop blinking
2691 **/
2692s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2693{
2694	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2695	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2696
2697	autoc_reg &= ~IXGBE_AUTOC_FLU;
2698	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2699	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2700
2701	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2702	led_reg &= ~IXGBE_LED_BLINK(index);
2703	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2704	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2705	IXGBE_WRITE_FLUSH(hw);
2706
2707	return 0;
2708}
2709
2710/**
2711 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2712 *  @hw: pointer to hardware structure
2713 *  @san_mac_offset: SAN MAC address offset
2714 *
2715 *  This function will read the EEPROM location for the SAN MAC address
2716 *  pointer, and returns the value at that location.  This is used in both
2717 *  get and set mac_addr routines.
2718 **/
2719static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2720                                        u16 *san_mac_offset)
2721{
2722	/*
2723	 * First read the EEPROM pointer to see if the MAC addresses are
2724	 * available.
2725	 */
2726	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2727
2728	return 0;
2729}
2730
2731/**
2732 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2733 *  @hw: pointer to hardware structure
2734 *  @san_mac_addr: SAN MAC address
2735 *
2736 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2737 *  per-port, so set_lan_id() must be called before reading the addresses.
2738 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2739 *  upon for non-SFP connections, so we must call it here.
2740 **/
2741s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2742{
2743	u16 san_mac_data, san_mac_offset;
2744	u8 i;
2745
2746	/*
2747	 * First read the EEPROM pointer to see if the MAC addresses are
2748	 * available.  If they're not, no point in calling set_lan_id() here.
2749	 */
2750	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2751
2752	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2753		/*
2754		 * No addresses available in this EEPROM.  It's not an
2755		 * error though, so just wipe the local address and return.
2756		 */
2757		for (i = 0; i < 6; i++)
2758			san_mac_addr[i] = 0xFF;
2759
2760		goto san_mac_addr_out;
2761	}
2762
2763	/* make sure we know which port we need to program */
2764	hw->mac.ops.set_lan_id(hw);
2765	/* apply the port offset to the address offset */
2766	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2767	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2768	for (i = 0; i < 3; i++) {
2769		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2770		san_mac_addr[i * 2] = (u8)(san_mac_data);
2771		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2772		san_mac_offset++;
2773	}
2774
2775san_mac_addr_out:
2776	return 0;
2777}
2778
2779/**
2780 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2781 *  @hw: pointer to hardware structure
2782 *
2783 *  Read PCIe configuration space, and get the MSI-X vector count from
2784 *  the capabilities table.
2785 **/
2786u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2787{
2788	struct ixgbe_adapter *adapter = hw->back;
2789	u16 msix_count;
2790	pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
2791	                     &msix_count);
2792	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2793
2794	/* MSI-X count is zero-based in HW, so increment to give proper value */
2795	msix_count++;
2796
2797	return msix_count;
2798}
2799
2800/**
2801 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2802 *  @hw: pointer to hardware struct
2803 *  @rar: receive address register index to disassociate
2804 *  @vmdq: VMDq pool index to remove from the rar
2805 **/
2806s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2807{
2808	u32 mpsar_lo, mpsar_hi;
2809	u32 rar_entries = hw->mac.num_rar_entries;
2810
2811	/* Make sure we are using a valid rar index range */
2812	if (rar >= rar_entries) {
2813		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2814		return IXGBE_ERR_INVALID_ARGUMENT;
2815	}
2816
2817	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2818	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2819
2820	if (!mpsar_lo && !mpsar_hi)
2821		goto done;
2822
2823	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2824		if (mpsar_lo) {
2825			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2826			mpsar_lo = 0;
2827		}
2828		if (mpsar_hi) {
2829			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2830			mpsar_hi = 0;
2831		}
2832	} else if (vmdq < 32) {
2833		mpsar_lo &= ~(1 << vmdq);
2834		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2835	} else {
2836		mpsar_hi &= ~(1 << (vmdq - 32));
2837		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2838	}
2839
2840	/* was that the last pool using this rar? */
2841	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2842		hw->mac.ops.clear_rar(hw, rar);
2843done:
2844	return 0;
2845}
2846
2847/**
2848 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2849 *  @hw: pointer to hardware struct
2850 *  @rar: receive address register index to associate with a VMDq index
2851 *  @vmdq: VMDq pool index
2852 **/
2853s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2854{
2855	u32 mpsar;
2856	u32 rar_entries = hw->mac.num_rar_entries;
2857
2858	/* Make sure we are using a valid rar index range */
2859	if (rar >= rar_entries) {
2860		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2861		return IXGBE_ERR_INVALID_ARGUMENT;
2862	}
2863
2864	if (vmdq < 32) {
2865		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2866		mpsar |= 1 << vmdq;
2867		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2868	} else {
2869		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2870		mpsar |= 1 << (vmdq - 32);
2871		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2872	}
2873	return 0;
2874}
2875
2876/**
2877 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2878 *  @hw: pointer to hardware structure
2879 **/
2880s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2881{
2882	int i;
2883
2884	for (i = 0; i < 128; i++)
2885		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2886
2887	return 0;
2888}
2889
2890/**
2891 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2892 *  @hw: pointer to hardware structure
2893 *  @vlan: VLAN id to write to VLAN filter
2894 *
2895 *  return the VLVF index where this VLAN id should be placed
2896 *
2897 **/
2898static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2899{
2900	u32 bits = 0;
2901	u32 first_empty_slot = 0;
2902	s32 regindex;
2903
2904	/* short cut the special case */
2905	if (vlan == 0)
2906		return 0;
2907
2908	/*
2909	  * Search for the vlan id in the VLVF entries. Save off the first empty
2910	  * slot found along the way
2911	  */
2912	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2913		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2914		if (!bits && !(first_empty_slot))
2915			first_empty_slot = regindex;
2916		else if ((bits & 0x0FFF) == vlan)
2917			break;
2918	}
2919
2920	/*
2921	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2922	  * in the VLVF. Else use the first empty VLVF register for this
2923	  * vlan id.
2924	  */
2925	if (regindex >= IXGBE_VLVF_ENTRIES) {
2926		if (first_empty_slot)
2927			regindex = first_empty_slot;
2928		else {
2929			hw_dbg(hw, "No space in VLVF.\n");
2930			regindex = IXGBE_ERR_NO_SPACE;
2931		}
2932	}
2933
2934	return regindex;
2935}
2936
2937/**
2938 *  ixgbe_set_vfta_generic - Set VLAN filter table
2939 *  @hw: pointer to hardware structure
2940 *  @vlan: VLAN id to write to VLAN filter
2941 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2942 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2943 *
2944 *  Turn on/off specified VLAN in the VLAN filter table.
2945 **/
2946s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2947                           bool vlan_on)
2948{
2949	s32 regindex;
2950	u32 bitindex;
2951	u32 vfta;
2952	u32 bits;
2953	u32 vt;
2954	u32 targetbit;
2955	bool vfta_changed = false;
2956
2957	if (vlan > 4095)
2958		return IXGBE_ERR_PARAM;
2959
2960	/*
2961	 * this is a 2 part operation - first the VFTA, then the
2962	 * VLVF and VLVFB if VT Mode is set
2963	 * We don't write the VFTA until we know the VLVF part succeeded.
2964	 */
2965
2966	/* Part 1
2967	 * The VFTA is a bitstring made up of 128 32-bit registers
2968	 * that enable the particular VLAN id, much like the MTA:
2969	 *    bits[11-5]: which register
2970	 *    bits[4-0]:  which bit in the register
2971	 */
2972	regindex = (vlan >> 5) & 0x7F;
2973	bitindex = vlan & 0x1F;
2974	targetbit = (1 << bitindex);
2975	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
2976
2977	if (vlan_on) {
2978		if (!(vfta & targetbit)) {
2979			vfta |= targetbit;
2980			vfta_changed = true;
2981		}
2982	} else {
2983		if ((vfta & targetbit)) {
2984			vfta &= ~targetbit;
2985			vfta_changed = true;
2986		}
2987	}
2988
2989	/* Part 2
2990	 * If VT Mode is set
2991	 *   Either vlan_on
2992	 *     make sure the vlan is in VLVF
2993	 *     set the vind bit in the matching VLVFB
2994	 *   Or !vlan_on
2995	 *     clear the pool bit and possibly the vind
2996	 */
2997	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
2998	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
2999		s32 vlvf_index;
3000
3001		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3002		if (vlvf_index < 0)
3003			return vlvf_index;
3004
3005		if (vlan_on) {
3006			/* set the pool bit */
3007			if (vind < 32) {
3008				bits = IXGBE_READ_REG(hw,
3009						IXGBE_VLVFB(vlvf_index*2));
3010				bits |= (1 << vind);
3011				IXGBE_WRITE_REG(hw,
3012						IXGBE_VLVFB(vlvf_index*2),
3013						bits);
3014			} else {
3015				bits = IXGBE_READ_REG(hw,
3016						IXGBE_VLVFB((vlvf_index*2)+1));
3017				bits |= (1 << (vind-32));
3018				IXGBE_WRITE_REG(hw,
3019						IXGBE_VLVFB((vlvf_index*2)+1),
3020						bits);
3021			}
3022		} else {
3023			/* clear the pool bit */
3024			if (vind < 32) {
3025				bits = IXGBE_READ_REG(hw,
3026						IXGBE_VLVFB(vlvf_index*2));
3027				bits &= ~(1 << vind);
3028				IXGBE_WRITE_REG(hw,
3029						IXGBE_VLVFB(vlvf_index*2),
3030						bits);
3031				bits |= IXGBE_READ_REG(hw,
3032						IXGBE_VLVFB((vlvf_index*2)+1));
3033			} else {
3034				bits = IXGBE_READ_REG(hw,
3035						IXGBE_VLVFB((vlvf_index*2)+1));
3036				bits &= ~(1 << (vind-32));
3037				IXGBE_WRITE_REG(hw,
3038						IXGBE_VLVFB((vlvf_index*2)+1),
3039						bits);
3040				bits |= IXGBE_READ_REG(hw,
3041						IXGBE_VLVFB(vlvf_index*2));
3042			}
3043		}
3044
3045		/*
3046		 * If there are still bits set in the VLVFB registers
3047		 * for the VLAN ID indicated we need to see if the
3048		 * caller is requesting that we clear the VFTA entry bit.
3049		 * If the caller has requested that we clear the VFTA
3050		 * entry bit but there are still pools/VFs using this VLAN
3051		 * ID entry then ignore the request.  We're not worried
3052		 * about the case where we're turning the VFTA VLAN ID
3053		 * entry bit on, only when requested to turn it off as
3054		 * there may be multiple pools and/or VFs using the
3055		 * VLAN ID entry.  In that case we cannot clear the
3056		 * VFTA bit until all pools/VFs using that VLAN ID have also
3057		 * been cleared.  This will be indicated by "bits" being
3058		 * zero.
3059		 */
3060		if (bits) {
3061			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3062					(IXGBE_VLVF_VIEN | vlan));
3063			if (!vlan_on) {
3064				/* someone wants to clear the vfta entry
3065				 * but some pools/VFs are still using it.
3066				 * Ignore it. */
3067				vfta_changed = false;
3068			}
3069		}
3070		else
3071			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3072	}
3073
3074	if (vfta_changed)
3075		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3076
3077	return 0;
3078}
3079
3080/**
3081 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3082 *  @hw: pointer to hardware structure
3083 *
3084 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3085 **/
3086s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3087{
3088	u32 offset;
3089
3090	for (offset = 0; offset < hw->mac.vft_size; offset++)
3091		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3092
3093	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3094		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3095		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3096		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3097	}
3098
3099	return 0;
3100}
3101
3102/**
3103 *  ixgbe_check_mac_link_generic - Determine link and speed status
3104 *  @hw: pointer to hardware structure
3105 *  @speed: pointer to link speed
3106 *  @link_up: true when link is up
3107 *  @link_up_wait_to_complete: bool used to wait for link up or not
3108 *
3109 *  Reads the links register to determine if link is up and the current speed
3110 **/
3111s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3112				 bool *link_up, bool link_up_wait_to_complete)
3113{
3114	u32 links_reg, links_orig;
3115	u32 i;
3116
3117	/* clear the old state */
3118	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3119
3120	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3121
3122	if (links_orig != links_reg) {
3123		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3124		       links_orig, links_reg);
3125	}
3126
3127	if (link_up_wait_to_complete) {
3128		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3129			if (links_reg & IXGBE_LINKS_UP) {
3130				*link_up = true;
3131				break;
3132			} else {
3133				*link_up = false;
3134			}
3135			msleep(100);
3136			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3137		}
3138	} else {
3139		if (links_reg & IXGBE_LINKS_UP)
3140			*link_up = true;
3141		else
3142			*link_up = false;
3143	}
3144
3145	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3146	    IXGBE_LINKS_SPEED_10G_82599)
3147		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3148	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3149		 IXGBE_LINKS_SPEED_1G_82599)
3150		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3151	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3152		 IXGBE_LINKS_SPEED_100_82599)
3153		*speed = IXGBE_LINK_SPEED_100_FULL;
3154	else
3155		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3156
3157	return 0;
3158}
3159
3160/**
3161 *  ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
3162 *  the EEPROM
3163 *  @hw: pointer to hardware structure
3164 *  @wwnn_prefix: the alternative WWNN prefix
3165 *  @wwpn_prefix: the alternative WWPN prefix
3166 *
3167 *  This function will read the EEPROM from the alternative SAN MAC address
3168 *  block to check the support for the alternative WWNN/WWPN prefix support.
3169 **/
3170s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3171                                        u16 *wwpn_prefix)
3172{
3173	u16 offset, caps;
3174	u16 alt_san_mac_blk_offset;
3175
3176	/* clear output first */
3177	*wwnn_prefix = 0xFFFF;
3178	*wwpn_prefix = 0xFFFF;
3179
3180	/* check if alternative SAN MAC is supported */
3181	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3182	                    &alt_san_mac_blk_offset);
3183
3184	if ((alt_san_mac_blk_offset == 0) ||
3185	    (alt_san_mac_blk_offset == 0xFFFF))
3186		goto wwn_prefix_out;
3187
3188	/* check capability in alternative san mac address block */
3189	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3190	hw->eeprom.ops.read(hw, offset, &caps);
3191	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3192		goto wwn_prefix_out;
3193
3194	/* get the corresponding prefix for WWNN/WWPN */
3195	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3196	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3197
3198	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3199	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3200
3201wwn_prefix_out:
3202	return 0;
3203}
3204
3205/**
3206 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
3207 *  control
3208 *  @hw: pointer to hardware structure
3209 *
3210 *  There are several phys that do not support autoneg flow control. This
3211 *  function check the device id to see if the associated phy supports
3212 *  autoneg flow control.
3213 **/
3214static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
3215{
3216
3217	switch (hw->device_id) {
3218	case IXGBE_DEV_ID_X540T:
3219		return 0;
3220	case IXGBE_DEV_ID_82599_T3_LOM:
3221		return 0;
3222	default:
3223		return IXGBE_ERR_FC_NOT_SUPPORTED;
3224	}
3225}
3226
3227/**
3228 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3229 *  @hw: pointer to hardware structure
3230 *  @enable: enable or disable switch for anti-spoofing
3231 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3232 *
3233 **/
3234void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3235{
3236	int j;
3237	int pf_target_reg = pf >> 3;
3238	int pf_target_shift = pf % 8;
3239	u32 pfvfspoof = 0;
3240
3241	if (hw->mac.type == ixgbe_mac_82598EB)
3242		return;
3243
3244	if (enable)
3245		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3246
3247	/*
3248	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3249	 * MAC anti-spoof enables in each register array element.
3250	 */
3251	for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3252		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3253
3254	/* If not enabling anti-spoofing then done */
3255	if (!enable)
3256		return;
3257
3258	/*
3259	 * The PF should be allowed to spoof so that it can support
3260	 * emulation mode NICs.  Reset the bit assigned to the PF
3261	 */
3262	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
3263	pfvfspoof ^= (1 << pf_target_shift);
3264	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
3265}
3266
3267/**
3268 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3269 *  @hw: pointer to hardware structure
3270 *  @enable: enable or disable switch for VLAN anti-spoofing
3271 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3272 *
3273 **/
3274void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3275{
3276	int vf_target_reg = vf >> 3;
3277	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3278	u32 pfvfspoof;
3279
3280	if (hw->mac.type == ixgbe_mac_82598EB)
3281		return;
3282
3283	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3284	if (enable)
3285		pfvfspoof |= (1 << vf_target_shift);
3286	else
3287		pfvfspoof &= ~(1 << vf_target_shift);
3288	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3289}
3290
3291/**
3292 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3293 *  @hw: pointer to hardware structure
3294 *  @device_caps: the EEPROM word with the extra device capabilities
3295 *
3296 *  This function will read the EEPROM location for the device capabilities,
3297 *  and return the word through device_caps.
3298 **/
3299s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3300{
3301	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3302
3303	return 0;
3304}
3305
3306/**
3307 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3308 * @hw: pointer to hardware structure
3309 * @num_pb: number of packet buffers to allocate
3310 * @headroom: reserve n KB of headroom
3311 * @strategy: packet buffer allocation strategy
3312 **/
3313void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3314			     int num_pb,
3315			     u32 headroom,
3316			     int strategy)
3317{
3318	u32 pbsize = hw->mac.rx_pb_size;
3319	int i = 0;
3320	u32 rxpktsize, txpktsize, txpbthresh;
3321
3322	/* Reserve headroom */
3323	pbsize -= headroom;
3324
3325	if (!num_pb)
3326		num_pb = 1;
3327
3328	/* Divide remaining packet buffer space amongst the number
3329	 * of packet buffers requested using supplied strategy.
3330	 */
3331	switch (strategy) {
3332	case (PBA_STRATEGY_WEIGHTED):
3333		/* pba_80_48 strategy weight first half of packet buffer with
3334		 * 5/8 of the packet buffer space.
3335		 */
3336		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3337		pbsize -= rxpktsize * (num_pb / 2);
3338		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3339		for (; i < (num_pb / 2); i++)
3340			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3341		/* Fall through to configure remaining packet buffers */
3342	case (PBA_STRATEGY_EQUAL):
3343		/* Divide the remaining Rx packet buffer evenly among the TCs */
3344		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3345		for (; i < num_pb; i++)
3346			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3347		break;
3348	default:
3349		break;
3350	}
3351
3352	/*
3353	 * Setup Tx packet buffer and threshold equally for all TCs
3354	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3355	 * 10 since the largest packet we support is just over 9K.
3356	 */
3357	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3358	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3359	for (i = 0; i < num_pb; i++) {
3360		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3361		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3362	}
3363
3364	/* Clear unused TCs, if any, to zero buffer size*/
3365	for (; i < IXGBE_MAX_PB; i++) {
3366		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3367		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3368		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3369	}
3370}
3371
3372/**
3373 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3374 *  @buffer: pointer to EEPROM
3375 *  @length: size of EEPROM to calculate a checksum for
3376 *  Calculates the checksum for some buffer on a specified length.  The
3377 *  checksum calculated is returned.
3378 **/
3379static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3380{
3381	u32 i;
3382	u8 sum = 0;
3383
3384	if (!buffer)
3385		return 0;
3386
3387	for (i = 0; i < length; i++)
3388		sum += buffer[i];
3389
3390	return (u8) (0 - sum);
3391}
3392
3393/**
3394 *  ixgbe_host_interface_command - Issue command to manageability block
3395 *  @hw: pointer to the HW structure
3396 *  @buffer: contains the command to write and where the return status will
3397 *           be placed
3398 *  @length: length of buffer, must be multiple of 4 bytes
3399 *
3400 *  Communicates with the manageability block.  On success return 0
3401 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3402 **/
3403static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3404					u32 length)
3405{
3406	u32 hicr, i, bi;
3407	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3408	u8 buf_len, dword_len;
3409
3410	s32 ret_val = 0;
3411
3412	if (length == 0 || length & 0x3 ||
3413	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3414		hw_dbg(hw, "Buffer length failure.\n");
3415		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3416		goto out;
3417	}
3418
3419	/* Check that the host interface is enabled. */
3420	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3421	if ((hicr & IXGBE_HICR_EN) == 0) {
3422		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3423		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3424		goto out;
3425	}
3426
3427	/* Calculate length in DWORDs */
3428	dword_len = length >> 2;
3429
3430	/*
3431	 * The device driver writes the relevant command block
3432	 * into the ram area.
3433	 */
3434	for (i = 0; i < dword_len; i++)
3435		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3436				      i, cpu_to_le32(buffer[i]));
3437
3438	/* Setting this bit tells the ARC that a new command is pending. */
3439	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3440
3441	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3442		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3443		if (!(hicr & IXGBE_HICR_C))
3444			break;
3445		usleep_range(1000, 2000);
3446	}
3447
3448	/* Check command successful completion. */
3449	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3450	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3451		hw_dbg(hw, "Command has failed with no status valid.\n");
3452		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3453		goto out;
3454	}
3455
3456	/* Calculate length in DWORDs */
3457	dword_len = hdr_size >> 2;
3458
3459	/* first pull in the header so we know the buffer length */
3460	for (bi = 0; bi < dword_len; bi++) {
3461		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3462		le32_to_cpus(&buffer[bi]);
3463	}
3464
3465	/* If there is any thing in data position pull it in */
3466	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3467	if (buf_len == 0)
3468		goto out;
3469
3470	if (length < (buf_len + hdr_size)) {
3471		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3472		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3473		goto out;
3474	}
3475
3476	/* Calculate length in DWORDs, add 3 for odd lengths */
3477	dword_len = (buf_len + 3) >> 2;
3478
3479	/* Pull in the rest of the buffer (bi is where we left off)*/
3480	for (; bi <= dword_len; bi++) {
3481		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3482		le32_to_cpus(&buffer[bi]);
3483	}
3484
3485out:
3486	return ret_val;
3487}
3488
3489/**
3490 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3491 *  @hw: pointer to the HW structure
3492 *  @maj: driver version major number
3493 *  @min: driver version minor number
3494 *  @build: driver version build number
3495 *  @sub: driver version sub build number
3496 *
3497 *  Sends driver version number to firmware through the manageability
3498 *  block.  On success return 0
3499 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3500 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3501 **/
3502s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3503				 u8 build, u8 sub)
3504{
3505	struct ixgbe_hic_drv_info fw_cmd;
3506	int i;
3507	s32 ret_val = 0;
3508
3509	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3510		ret_val = IXGBE_ERR_SWFW_SYNC;
3511		goto out;
3512	}
3513
3514	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3515	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3516	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3517	fw_cmd.port_num = (u8)hw->bus.func;
3518	fw_cmd.ver_maj = maj;
3519	fw_cmd.ver_min = min;
3520	fw_cmd.ver_build = build;
3521	fw_cmd.ver_sub = sub;
3522	fw_cmd.hdr.checksum = 0;
3523	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3524				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3525	fw_cmd.pad = 0;
3526	fw_cmd.pad2 = 0;
3527
3528	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3529		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3530						       sizeof(fw_cmd));
3531		if (ret_val != 0)
3532			continue;
3533
3534		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3535		    FW_CEM_RESP_STATUS_SUCCESS)
3536			ret_val = 0;
3537		else
3538			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3539
3540		break;
3541	}
3542
3543	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3544out:
3545	return ret_val;
3546}
3547
3548/**
3549 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3550 * @hw: pointer to the hardware structure
3551 *
3552 * The 82599 and x540 MACs can experience issues if TX work is still pending
3553 * when a reset occurs.  This function prevents this by flushing the PCIe
3554 * buffers on the system.
3555 **/
3556void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3557{
3558	u32 gcr_ext, hlreg0;
3559
3560	/*
3561	 * If double reset is not requested then all transactions should
3562	 * already be clear and as such there is no work to do
3563	 */
3564	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3565		return;
3566
3567	/*
3568	 * Set loopback enable to prevent any transmits from being sent
3569	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3570	 * has already been cleared.
3571	 */
3572	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3573	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3574
3575	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3576	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3577	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3578			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3579
3580	/* Flush all writes and allow 20usec for all transactions to clear */
3581	IXGBE_WRITE_FLUSH(hw);
3582	udelay(20);
3583
3584	/* restore previous register values */
3585	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3586	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3587}
3588