1/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2/*
3	Written/copyright 1999-2001 by Donald Becker.
4	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6	Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
7
8	This software may be used and distributed according to the terms of
9	the GNU General Public License (GPL), incorporated herein by reference.
10	Drivers based on or derived from this code fall under the GPL and must
11	retain the authorship, copyright and license notice.  This file is not
12	a complete program and may only be used when the entire operating
13	system is licensed under the GPL.  License for under other terms may be
14	available.  Contact the original author for details.
15
16	The original author may be reached as becker@scyld.com, or at
17	Scyld Computing Corporation
18	410 Severn Ave., Suite 210
19	Annapolis MD 21403
20
21	Support information and updates available at
22	http://www.scyld.com/network/netsemi.html
23	[link no longer provides useful info -jgarzik]
24
25
26	TODO:
27	* big endian support with CFG:BEM instead of cpu_to_le32
28*/
29
30#include <linux/module.h>
31#include <linux/kernel.h>
32#include <linux/string.h>
33#include <linux/timer.h>
34#include <linux/errno.h>
35#include <linux/ioport.h>
36#include <linux/slab.h>
37#include <linux/interrupt.h>
38#include <linux/pci.h>
39#include <linux/netdevice.h>
40#include <linux/etherdevice.h>
41#include <linux/skbuff.h>
42#include <linux/init.h>
43#include <linux/spinlock.h>
44#include <linux/ethtool.h>
45#include <linux/delay.h>
46#include <linux/rtnetlink.h>
47#include <linux/mii.h>
48#include <linux/crc32.h>
49#include <linux/bitops.h>
50#include <linux/prefetch.h>
51#include <asm/processor.h>	/* Processor type for cache alignment. */
52#include <asm/io.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55
56#define DRV_NAME	"natsemi"
57#define DRV_VERSION	"2.1"
58#define DRV_RELDATE	"Sept 11, 2006"
59
60#define RX_OFFSET	2
61
62/* Updated to recommendations in pci-skeleton v2.03. */
63
64/* The user-configurable values.
65   These may be modified when a driver module is loaded.*/
66
67#define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \
68				 NETIF_MSG_LINK		| \
69				 NETIF_MSG_WOL		| \
70				 NETIF_MSG_RX_ERR	| \
71				 NETIF_MSG_TX_ERR)
72static int debug = -1;
73
74static int mtu;
75
76/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77   This chip uses a 512 element hash table based on the Ethernet CRC.  */
78static const int multicast_filter_limit = 100;
79
80/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81   Setting to > 1518 effectively disables this feature. */
82static int rx_copybreak;
83
84static int dspcfg_workaround = 1;
85
86/* Used to pass the media type, etc.
87   Both 'options[]' and 'full_duplex[]' should exist for driver
88   interoperability.
89   The media type is usually passed in 'options[]'.
90*/
91#define MAX_UNITS 8		/* More are supported, limit only on options */
92static int options[MAX_UNITS];
93static int full_duplex[MAX_UNITS];
94
95/* Operational parameters that are set at compile time. */
96
97/* Keep the ring sizes a power of two for compile efficiency.
98   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99   Making the Tx ring too large decreases the effectiveness of channel
100   bonding and packet priority.
101   There are no ill effects from too-large receive rings. */
102#define TX_RING_SIZE	16
103#define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */
104#define RX_RING_SIZE	32
105
106/* Operational parameters that usually are not changed. */
107/* Time in jiffies before concluding the transmitter is hung. */
108#define TX_TIMEOUT  (2*HZ)
109
110#define NATSEMI_HW_TIMEOUT	400
111#define NATSEMI_TIMER_FREQ	5*HZ
112#define NATSEMI_PG0_NREGS	64
113#define NATSEMI_RFDR_NREGS	8
114#define NATSEMI_PG1_NREGS	4
115#define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116				 NATSEMI_PG1_NREGS)
117#define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */
118#define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32))
119
120/* Buffer sizes:
121 * The nic writes 32-bit values, even if the upper bytes of
122 * a 32-bit value are beyond the end of the buffer.
123 */
124#define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */
125#define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */
126#define NATSEMI_LONGPKT		1518	/* limit for normal packets */
127#define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */
128
129/* These identify the driver base version and may not be removed. */
130static const char version[] __devinitconst =
131  KERN_INFO DRV_NAME " dp8381x driver, version "
132      DRV_VERSION ", " DRV_RELDATE "\n"
133  "  originally by Donald Becker <becker@scyld.com>\n"
134  "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135
136MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138MODULE_LICENSE("GPL");
139
140module_param(mtu, int, 0);
141module_param(debug, int, 0);
142module_param(rx_copybreak, int, 0);
143module_param(dspcfg_workaround, int, 0);
144module_param_array(options, int, NULL, 0);
145module_param_array(full_duplex, int, NULL, 0);
146MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147MODULE_PARM_DESC(debug, "DP8381x default debug level");
148MODULE_PARM_DESC(rx_copybreak,
149	"DP8381x copy breakpoint for copy-only-tiny-frames");
150MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151MODULE_PARM_DESC(options,
152	"DP8381x: Bits 0-3: media type, bit 17: full duplex");
153MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154
155/*
156				Theory of Operation
157
158I. Board Compatibility
159
160This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161It also works with other chips in in the DP83810 series.
162
163II. Board-specific settings
164
165This driver requires the PCI interrupt line to be valid.
166It honors the EEPROM-set values.
167
168III. Driver operation
169
170IIIa. Ring buffers
171
172This driver uses two statically allocated fixed-size descriptor lists
173formed into rings by a branch from the final descriptor to the beginning of
174the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
175The NatSemi design uses a 'next descriptor' pointer that the driver forms
176into a list.
177
178IIIb/c. Transmit/Receive Structure
179
180This driver uses a zero-copy receive and transmit scheme.
181The driver allocates full frame size skbuffs for the Rx ring buffers at
182open() time and passes the skb->data field to the chip as receive data
183buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
184a fresh skbuff is allocated and the frame is copied to the new skbuff.
185When the incoming frame is larger, the skbuff is passed directly up the
186protocol stack.  Buffers consumed this way are replaced by newly allocated
187skbuffs in a later phase of receives.
188
189The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190using a full-sized skbuff for small frames vs. the copying costs of larger
191frames.  New boards are typically used in generously configured machines
192and the underfilled buffers have negligible impact compared to the benefit of
193a single allocation size, so the default value of zero results in never
194copying packets.  When copying is done, the cost is usually mitigated by using
195a combined copy/checksum routine.  Copying also preloads the cache, which is
196most useful with small frames.
197
198A subtle aspect of the operation is that unaligned buffers are not permitted
199by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
200longword aligned for further processing.  On copies frames are put into the
201skbuff at an offset of "+2", 16-byte aligning the IP header.
202
203IIId. Synchronization
204
205Most operations are synchronized on the np->lock irq spinlock, except the
206receive and transmit paths which are synchronised using a combination of
207hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
208
209IVb. References
210
211http://www.scyld.com/expert/100mbps.html
212http://www.scyld.com/expert/NWay.html
213Datasheet is available from:
214http://www.national.com/pf/DP/DP83815.html
215
216IVc. Errata
217
218None characterised.
219*/
220
221
222
223/*
224 * Support for fibre connections on Am79C874:
225 * This phy needs a special setup when connected to a fibre cable.
226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
227 */
228#define PHYID_AM79C874	0x0022561b
229
230enum {
231	MII_MCTRL	= 0x15,		/* mode control register */
232	MII_FX_SEL	= 0x0001,	/* 100BASE-FX (fiber) */
233	MII_EN_SCRM	= 0x0004,	/* enable scrambler (tp) */
234};
235
236enum {
237	NATSEMI_FLAG_IGNORE_PHY		= 0x1,
238};
239
240/* array of board data directly indexed by pci_tbl[x].driver_data */
241static struct {
242	const char *name;
243	unsigned long flags;
244	unsigned int eeprom_size;
245} natsemi_pci_info[] __devinitdata = {
246	{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247	{ "NatSemi DP8381[56]", 0, 24 },
248};
249
250static DEFINE_PCI_DEVICE_TABLE(natsemi_pci_tbl) = {
251	{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
252	{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253	{ }	/* terminate list */
254};
255MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256
257/* Offsets to the device registers.
258   Unlike software-only systems, device drivers interact with complex hardware.
259   It's not useful to define symbolic names for every register bit in the
260   device.
261*/
262enum register_offsets {
263	ChipCmd			= 0x00,
264	ChipConfig		= 0x04,
265	EECtrl			= 0x08,
266	PCIBusCfg		= 0x0C,
267	IntrStatus		= 0x10,
268	IntrMask		= 0x14,
269	IntrEnable		= 0x18,
270	IntrHoldoff		= 0x1C, /* DP83816 only */
271	TxRingPtr		= 0x20,
272	TxConfig		= 0x24,
273	RxRingPtr		= 0x30,
274	RxConfig		= 0x34,
275	ClkRun			= 0x3C,
276	WOLCmd			= 0x40,
277	PauseCmd		= 0x44,
278	RxFilterAddr		= 0x48,
279	RxFilterData		= 0x4C,
280	BootRomAddr		= 0x50,
281	BootRomData		= 0x54,
282	SiliconRev		= 0x58,
283	StatsCtrl		= 0x5C,
284	StatsData		= 0x60,
285	RxPktErrs		= 0x60,
286	RxMissed		= 0x68,
287	RxCRCErrs		= 0x64,
288	BasicControl		= 0x80,
289	BasicStatus		= 0x84,
290	AnegAdv			= 0x90,
291	AnegPeer		= 0x94,
292	PhyStatus		= 0xC0,
293	MIntrCtrl		= 0xC4,
294	MIntrStatus		= 0xC8,
295	PhyCtrl			= 0xE4,
296
297	/* These are from the spec, around page 78... on a separate table.
298	 * The meaning of these registers depend on the value of PGSEL. */
299	PGSEL			= 0xCC,
300	PMDCSR			= 0xE4,
301	TSTDAT			= 0xFC,
302	DSPCFG			= 0xF4,
303	SDCFG			= 0xF8
304};
305/* the values for the 'magic' registers above (PGSEL=1) */
306#define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */
307#define TSTDAT_VAL	0x0
308#define DSPCFG_VAL	0x5040
309#define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */
310#define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */
311#define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */
312#define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */
313
314/* misc PCI space registers */
315enum pci_register_offsets {
316	PCIPM			= 0x44,
317};
318
319enum ChipCmd_bits {
320	ChipReset		= 0x100,
321	RxReset			= 0x20,
322	TxReset			= 0x10,
323	RxOff			= 0x08,
324	RxOn			= 0x04,
325	TxOff			= 0x02,
326	TxOn			= 0x01,
327};
328
329enum ChipConfig_bits {
330	CfgPhyDis		= 0x200,
331	CfgPhyRst		= 0x400,
332	CfgExtPhy		= 0x1000,
333	CfgAnegEnable		= 0x2000,
334	CfgAneg100		= 0x4000,
335	CfgAnegFull		= 0x8000,
336	CfgAnegDone		= 0x8000000,
337	CfgFullDuplex		= 0x20000000,
338	CfgSpeed100		= 0x40000000,
339	CfgLink			= 0x80000000,
340};
341
342enum EECtrl_bits {
343	EE_ShiftClk		= 0x04,
344	EE_DataIn		= 0x01,
345	EE_ChipSelect		= 0x08,
346	EE_DataOut		= 0x02,
347	MII_Data 		= 0x10,
348	MII_Write		= 0x20,
349	MII_ShiftClk		= 0x40,
350};
351
352enum PCIBusCfg_bits {
353	EepromReload		= 0x4,
354};
355
356/* Bits in the interrupt status/mask registers. */
357enum IntrStatus_bits {
358	IntrRxDone		= 0x0001,
359	IntrRxIntr		= 0x0002,
360	IntrRxErr		= 0x0004,
361	IntrRxEarly		= 0x0008,
362	IntrRxIdle		= 0x0010,
363	IntrRxOverrun		= 0x0020,
364	IntrTxDone		= 0x0040,
365	IntrTxIntr		= 0x0080,
366	IntrTxErr		= 0x0100,
367	IntrTxIdle		= 0x0200,
368	IntrTxUnderrun		= 0x0400,
369	StatsMax		= 0x0800,
370	SWInt			= 0x1000,
371	WOLPkt			= 0x2000,
372	LinkChange		= 0x4000,
373	IntrHighBits		= 0x8000,
374	RxStatusFIFOOver	= 0x10000,
375	IntrPCIErr		= 0xf00000,
376	RxResetDone		= 0x1000000,
377	TxResetDone		= 0x2000000,
378	IntrAbnormalSummary	= 0xCD20,
379};
380
381/*
382 * Default Interrupts:
383 * Rx OK, Rx Packet Error, Rx Overrun,
384 * Tx OK, Tx Packet Error, Tx Underrun,
385 * MIB Service, Phy Interrupt, High Bits,
386 * Rx Status FIFO overrun,
387 * Received Target Abort, Received Master Abort,
388 * Signalled System Error, Received Parity Error
389 */
390#define DEFAULT_INTR 0x00f1cd65
391
392enum TxConfig_bits {
393	TxDrthMask		= 0x3f,
394	TxFlthMask		= 0x3f00,
395	TxMxdmaMask		= 0x700000,
396	TxMxdma_512		= 0x0,
397	TxMxdma_4		= 0x100000,
398	TxMxdma_8		= 0x200000,
399	TxMxdma_16		= 0x300000,
400	TxMxdma_32		= 0x400000,
401	TxMxdma_64		= 0x500000,
402	TxMxdma_128		= 0x600000,
403	TxMxdma_256		= 0x700000,
404	TxCollRetry		= 0x800000,
405	TxAutoPad		= 0x10000000,
406	TxMacLoop		= 0x20000000,
407	TxHeartIgn		= 0x40000000,
408	TxCarrierIgn		= 0x80000000
409};
410
411/*
412 * Tx Configuration:
413 * - 256 byte DMA burst length
414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
416 *   when 64 byte are in the fifo)
417 * - on tx underruns, increase drain threshold by 64.
418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
419 *   threshold and the drain threshold must be less than 2016 bytes.
420 *
421 */
422#define TX_FLTH_VAL		((512/32) << 8)
423#define TX_DRTH_VAL_START	(64/32)
424#define TX_DRTH_VAL_INC		2
425#define TX_DRTH_VAL_LIMIT	(1472/32)
426
427enum RxConfig_bits {
428	RxDrthMask		= 0x3e,
429	RxMxdmaMask		= 0x700000,
430	RxMxdma_512		= 0x0,
431	RxMxdma_4		= 0x100000,
432	RxMxdma_8		= 0x200000,
433	RxMxdma_16		= 0x300000,
434	RxMxdma_32		= 0x400000,
435	RxMxdma_64		= 0x500000,
436	RxMxdma_128		= 0x600000,
437	RxMxdma_256		= 0x700000,
438	RxAcceptLong		= 0x8000000,
439	RxAcceptTx		= 0x10000000,
440	RxAcceptRunt		= 0x40000000,
441	RxAcceptErr		= 0x80000000
442};
443#define RX_DRTH_VAL		(128/8)
444
445enum ClkRun_bits {
446	PMEEnable		= 0x100,
447	PMEStatus		= 0x8000,
448};
449
450enum WolCmd_bits {
451	WakePhy			= 0x1,
452	WakeUnicast		= 0x2,
453	WakeMulticast		= 0x4,
454	WakeBroadcast		= 0x8,
455	WakeArp			= 0x10,
456	WakePMatch0		= 0x20,
457	WakePMatch1		= 0x40,
458	WakePMatch2		= 0x80,
459	WakePMatch3		= 0x100,
460	WakeMagic		= 0x200,
461	WakeMagicSecure		= 0x400,
462	SecureHack		= 0x100000,
463	WokePhy			= 0x400000,
464	WokeUnicast		= 0x800000,
465	WokeMulticast		= 0x1000000,
466	WokeBroadcast		= 0x2000000,
467	WokeArp			= 0x4000000,
468	WokePMatch0		= 0x8000000,
469	WokePMatch1		= 0x10000000,
470	WokePMatch2		= 0x20000000,
471	WokePMatch3		= 0x40000000,
472	WokeMagic		= 0x80000000,
473	WakeOptsSummary		= 0x7ff
474};
475
476enum RxFilterAddr_bits {
477	RFCRAddressMask		= 0x3ff,
478	AcceptMulticast		= 0x00200000,
479	AcceptMyPhys		= 0x08000000,
480	AcceptAllPhys		= 0x10000000,
481	AcceptAllMulticast	= 0x20000000,
482	AcceptBroadcast		= 0x40000000,
483	RxFilterEnable		= 0x80000000
484};
485
486enum StatsCtrl_bits {
487	StatsWarn		= 0x1,
488	StatsFreeze		= 0x2,
489	StatsClear		= 0x4,
490	StatsStrobe		= 0x8,
491};
492
493enum MIntrCtrl_bits {
494	MICRIntEn		= 0x2,
495};
496
497enum PhyCtrl_bits {
498	PhyAddrMask		= 0x1f,
499};
500
501#define PHY_ADDR_NONE		32
502#define PHY_ADDR_INTERNAL	1
503
504/* values we might find in the silicon revision register */
505#define SRR_DP83815_C	0x0302
506#define SRR_DP83815_D	0x0403
507#define SRR_DP83816_A4	0x0504
508#define SRR_DP83816_A5	0x0505
509
510/* The Rx and Tx buffer descriptors. */
511/* Note that using only 32 bit fields simplifies conversion to big-endian
512   architectures. */
513struct netdev_desc {
514	__le32 next_desc;
515	__le32 cmd_status;
516	__le32 addr;
517	__le32 software_use;
518};
519
520/* Bits in network_desc.status */
521enum desc_status_bits {
522	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523	DescNoCRC=0x10000000, DescPktOK=0x08000000,
524	DescSizeMask=0xfff,
525
526	DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527	DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530
531	DescRxAbort=0x04000000, DescRxOver=0x02000000,
532	DescRxDest=0x01800000, DescRxLong=0x00400000,
533	DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534	DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535	DescRxLoop=0x00020000, DesRxColl=0x00010000,
536};
537
538struct netdev_private {
539	/* Descriptor rings first for alignment */
540	dma_addr_t ring_dma;
541	struct netdev_desc *rx_ring;
542	struct netdev_desc *tx_ring;
543	/* The addresses of receive-in-place skbuffs */
544	struct sk_buff *rx_skbuff[RX_RING_SIZE];
545	dma_addr_t rx_dma[RX_RING_SIZE];
546	/* address of a sent-in-place packet/buffer, for later free() */
547	struct sk_buff *tx_skbuff[TX_RING_SIZE];
548	dma_addr_t tx_dma[TX_RING_SIZE];
549	struct net_device *dev;
550	struct napi_struct napi;
551	/* Media monitoring timer */
552	struct timer_list timer;
553	/* Frequently used values: keep some adjacent for cache effect */
554	struct pci_dev *pci_dev;
555	struct netdev_desc *rx_head_desc;
556	/* Producer/consumer ring indices */
557	unsigned int cur_rx, dirty_rx;
558	unsigned int cur_tx, dirty_tx;
559	/* Based on MTU+slack. */
560	unsigned int rx_buf_sz;
561	int oom;
562	/* Interrupt status */
563	u32 intr_status;
564	/* Do not touch the nic registers */
565	int hands_off;
566	/* Don't pay attention to the reported link state. */
567	int ignore_phy;
568	/* external phy that is used: only valid if dev->if_port != PORT_TP */
569	int mii;
570	int phy_addr_external;
571	unsigned int full_duplex;
572	/* Rx filter */
573	u32 cur_rx_mode;
574	u32 rx_filter[16];
575	/* FIFO and PCI burst thresholds */
576	u32 tx_config, rx_config;
577	/* original contents of ClkRun register */
578	u32 SavedClkRun;
579	/* silicon revision */
580	u32 srr;
581	/* expected DSPCFG value */
582	u16 dspcfg;
583	int dspcfg_workaround;
584	/* parms saved in ethtool format */
585	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */
586	u8	duplex;		/* Duplex, half or full */
587	u8	autoneg;	/* Autonegotiation enabled */
588	/* MII transceiver section */
589	u16 advertising;
590	unsigned int iosize;
591	spinlock_t lock;
592	u32 msg_enable;
593	/* EEPROM data */
594	int eeprom_size;
595};
596
597static void move_int_phy(struct net_device *dev, int addr);
598static int eeprom_read(void __iomem *ioaddr, int location);
599static int mdio_read(struct net_device *dev, int reg);
600static void mdio_write(struct net_device *dev, int reg, u16 data);
601static void init_phy_fixup(struct net_device *dev);
602static int miiport_read(struct net_device *dev, int phy_id, int reg);
603static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
604static int find_mii(struct net_device *dev);
605static void natsemi_reset(struct net_device *dev);
606static void natsemi_reload_eeprom(struct net_device *dev);
607static void natsemi_stop_rxtx(struct net_device *dev);
608static int netdev_open(struct net_device *dev);
609static void do_cable_magic(struct net_device *dev);
610static void undo_cable_magic(struct net_device *dev);
611static void check_link(struct net_device *dev);
612static void netdev_timer(unsigned long data);
613static void dump_ring(struct net_device *dev);
614static void ns_tx_timeout(struct net_device *dev);
615static int alloc_ring(struct net_device *dev);
616static void refill_rx(struct net_device *dev);
617static void init_ring(struct net_device *dev);
618static void drain_tx(struct net_device *dev);
619static void drain_ring(struct net_device *dev);
620static void free_ring(struct net_device *dev);
621static void reinit_ring(struct net_device *dev);
622static void init_registers(struct net_device *dev);
623static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
624static irqreturn_t intr_handler(int irq, void *dev_instance);
625static void netdev_error(struct net_device *dev, int intr_status);
626static int natsemi_poll(struct napi_struct *napi, int budget);
627static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
628static void netdev_tx_done(struct net_device *dev);
629static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
630#ifdef CONFIG_NET_POLL_CONTROLLER
631static void natsemi_poll_controller(struct net_device *dev);
632#endif
633static void __set_rx_mode(struct net_device *dev);
634static void set_rx_mode(struct net_device *dev);
635static void __get_stats(struct net_device *dev);
636static struct net_device_stats *get_stats(struct net_device *dev);
637static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
638static int netdev_set_wol(struct net_device *dev, u32 newval);
639static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
640static int netdev_set_sopass(struct net_device *dev, u8 *newval);
641static int netdev_get_sopass(struct net_device *dev, u8 *data);
642static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
643static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
644static void enable_wol_mode(struct net_device *dev, int enable_intr);
645static int netdev_close(struct net_device *dev);
646static int netdev_get_regs(struct net_device *dev, u8 *buf);
647static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
648static const struct ethtool_ops ethtool_ops;
649
650#define NATSEMI_ATTR(_name) \
651static ssize_t natsemi_show_##_name(struct device *dev, \
652         struct device_attribute *attr, char *buf); \
653	 static ssize_t natsemi_set_##_name(struct device *dev, \
654		struct device_attribute *attr, \
655	        const char *buf, size_t count); \
656	 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
657
658#define NATSEMI_CREATE_FILE(_dev, _name) \
659         device_create_file(&_dev->dev, &dev_attr_##_name)
660#define NATSEMI_REMOVE_FILE(_dev, _name) \
661         device_remove_file(&_dev->dev, &dev_attr_##_name)
662
663NATSEMI_ATTR(dspcfg_workaround);
664
665static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
666				  	      struct device_attribute *attr,
667					      char *buf)
668{
669	struct netdev_private *np = netdev_priv(to_net_dev(dev));
670
671	return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
672}
673
674static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
675					     struct device_attribute *attr,
676					     const char *buf, size_t count)
677{
678	struct netdev_private *np = netdev_priv(to_net_dev(dev));
679	int new_setting;
680	unsigned long flags;
681
682        /* Find out the new setting */
683        if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
684                new_setting = 1;
685        else if (!strncmp("off", buf, count - 1) ||
686                 !strncmp("0", buf, count - 1))
687		new_setting = 0;
688	else
689                 return count;
690
691	spin_lock_irqsave(&np->lock, flags);
692
693	np->dspcfg_workaround = new_setting;
694
695	spin_unlock_irqrestore(&np->lock, flags);
696
697	return count;
698}
699
700static inline void __iomem *ns_ioaddr(struct net_device *dev)
701{
702	return (void __iomem *) dev->base_addr;
703}
704
705static inline void natsemi_irq_enable(struct net_device *dev)
706{
707	writel(1, ns_ioaddr(dev) + IntrEnable);
708	readl(ns_ioaddr(dev) + IntrEnable);
709}
710
711static inline void natsemi_irq_disable(struct net_device *dev)
712{
713	writel(0, ns_ioaddr(dev) + IntrEnable);
714	readl(ns_ioaddr(dev) + IntrEnable);
715}
716
717static void move_int_phy(struct net_device *dev, int addr)
718{
719	struct netdev_private *np = netdev_priv(dev);
720	void __iomem *ioaddr = ns_ioaddr(dev);
721	int target = 31;
722
723	/*
724	 * The internal phy is visible on the external mii bus. Therefore we must
725	 * move it away before we can send commands to an external phy.
726	 * There are two addresses we must avoid:
727	 * - the address on the external phy that is used for transmission.
728	 * - the address that we want to access. User space can access phys
729	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
730	 *   phy that is used for transmission.
731	 */
732
733	if (target == addr)
734		target--;
735	if (target == np->phy_addr_external)
736		target--;
737	writew(target, ioaddr + PhyCtrl);
738	readw(ioaddr + PhyCtrl);
739	udelay(1);
740}
741
742static void __devinit natsemi_init_media (struct net_device *dev)
743{
744	struct netdev_private *np = netdev_priv(dev);
745	u32 tmp;
746
747	if (np->ignore_phy)
748		netif_carrier_on(dev);
749	else
750		netif_carrier_off(dev);
751
752	/* get the initial settings from hardware */
753	tmp            = mdio_read(dev, MII_BMCR);
754	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
755	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
756	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
757	np->advertising= mdio_read(dev, MII_ADVERTISE);
758
759	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
760	    netif_msg_probe(np)) {
761		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
762			"10%s %s duplex.\n",
763			pci_name(np->pci_dev),
764			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
765			  "enabled, advertise" : "disabled, force",
766			(np->advertising &
767			  (ADVERTISE_100FULL|ADVERTISE_100HALF))?
768			    "0" : "",
769			(np->advertising &
770			  (ADVERTISE_100FULL|ADVERTISE_10FULL))?
771			    "full" : "half");
772	}
773	if (netif_msg_probe(np))
774		printk(KERN_INFO
775			"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
776			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
777			np->advertising);
778
779}
780
781static const struct net_device_ops natsemi_netdev_ops = {
782	.ndo_open		= netdev_open,
783	.ndo_stop		= netdev_close,
784	.ndo_start_xmit		= start_tx,
785	.ndo_get_stats		= get_stats,
786	.ndo_set_rx_mode	= set_rx_mode,
787	.ndo_change_mtu		= natsemi_change_mtu,
788	.ndo_do_ioctl		= netdev_ioctl,
789	.ndo_tx_timeout 	= ns_tx_timeout,
790	.ndo_set_mac_address 	= eth_mac_addr,
791	.ndo_validate_addr	= eth_validate_addr,
792#ifdef CONFIG_NET_POLL_CONTROLLER
793	.ndo_poll_controller	= natsemi_poll_controller,
794#endif
795};
796
797static int __devinit natsemi_probe1 (struct pci_dev *pdev,
798	const struct pci_device_id *ent)
799{
800	struct net_device *dev;
801	struct netdev_private *np;
802	int i, option, irq, chip_idx = ent->driver_data;
803	static int find_cnt = -1;
804	resource_size_t iostart;
805	unsigned long iosize;
806	void __iomem *ioaddr;
807	const int pcibar = 1; /* PCI base address register */
808	int prev_eedata;
809	u32 tmp;
810
811/* when built into the kernel, we only print version if device is found */
812#ifndef MODULE
813	static int printed_version;
814	if (!printed_version++)
815		printk(version);
816#endif
817
818	i = pci_enable_device(pdev);
819	if (i) return i;
820
821	/* natsemi has a non-standard PM control register
822	 * in PCI config space.  Some boards apparently need
823	 * to be brought to D0 in this manner.
824	 */
825	pci_read_config_dword(pdev, PCIPM, &tmp);
826	if (tmp & PCI_PM_CTRL_STATE_MASK) {
827		/* D0 state, disable PME assertion */
828		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
829		pci_write_config_dword(pdev, PCIPM, newtmp);
830	}
831
832	find_cnt++;
833	iostart = pci_resource_start(pdev, pcibar);
834	iosize = pci_resource_len(pdev, pcibar);
835	irq = pdev->irq;
836
837	pci_set_master(pdev);
838
839	dev = alloc_etherdev(sizeof (struct netdev_private));
840	if (!dev)
841		return -ENOMEM;
842	SET_NETDEV_DEV(dev, &pdev->dev);
843
844	i = pci_request_regions(pdev, DRV_NAME);
845	if (i)
846		goto err_pci_request_regions;
847
848	ioaddr = ioremap(iostart, iosize);
849	if (!ioaddr) {
850		i = -ENOMEM;
851		goto err_ioremap;
852	}
853
854	/* Work around the dropped serial bit. */
855	prev_eedata = eeprom_read(ioaddr, 6);
856	for (i = 0; i < 3; i++) {
857		int eedata = eeprom_read(ioaddr, i + 7);
858		dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
859		dev->dev_addr[i*2+1] = eedata >> 7;
860		prev_eedata = eedata;
861	}
862
863	/* Store MAC Address in perm_addr */
864	memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
865
866	dev->base_addr = (unsigned long __force) ioaddr;
867	dev->irq = irq;
868
869	np = netdev_priv(dev);
870	netif_napi_add(dev, &np->napi, natsemi_poll, 64);
871	np->dev = dev;
872
873	np->pci_dev = pdev;
874	pci_set_drvdata(pdev, dev);
875	np->iosize = iosize;
876	spin_lock_init(&np->lock);
877	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
878	np->hands_off = 0;
879	np->intr_status = 0;
880	np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
881	if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
882		np->ignore_phy = 1;
883	else
884		np->ignore_phy = 0;
885	np->dspcfg_workaround = dspcfg_workaround;
886
887	/* Initial port:
888	 * - If configured to ignore the PHY set up for external.
889	 * - If the nic was configured to use an external phy and if find_mii
890	 *   finds a phy: use external port, first phy that replies.
891	 * - Otherwise: internal port.
892	 * Note that the phy address for the internal phy doesn't matter:
893	 * The address would be used to access a phy over the mii bus, but
894	 * the internal phy is accessed through mapped registers.
895	 */
896	if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
897		dev->if_port = PORT_MII;
898	else
899		dev->if_port = PORT_TP;
900	/* Reset the chip to erase previous misconfiguration. */
901	natsemi_reload_eeprom(dev);
902	natsemi_reset(dev);
903
904	if (dev->if_port != PORT_TP) {
905		np->phy_addr_external = find_mii(dev);
906		/* If we're ignoring the PHY it doesn't matter if we can't
907		 * find one. */
908		if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
909			dev->if_port = PORT_TP;
910			np->phy_addr_external = PHY_ADDR_INTERNAL;
911		}
912	} else {
913		np->phy_addr_external = PHY_ADDR_INTERNAL;
914	}
915
916	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
917	if (dev->mem_start)
918		option = dev->mem_start;
919
920	/* The lower four bits are the media type. */
921	if (option) {
922		if (option & 0x200)
923			np->full_duplex = 1;
924		if (option & 15)
925			printk(KERN_INFO
926				"natsemi %s: ignoring user supplied media type %d",
927				pci_name(np->pci_dev), option & 15);
928	}
929	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
930		np->full_duplex = 1;
931
932	dev->netdev_ops = &natsemi_netdev_ops;
933	dev->watchdog_timeo = TX_TIMEOUT;
934
935	SET_ETHTOOL_OPS(dev, &ethtool_ops);
936
937	if (mtu)
938		dev->mtu = mtu;
939
940	natsemi_init_media(dev);
941
942	/* save the silicon revision for later querying */
943	np->srr = readl(ioaddr + SiliconRev);
944	if (netif_msg_hw(np))
945		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
946				pci_name(np->pci_dev), np->srr);
947
948	i = register_netdev(dev);
949	if (i)
950		goto err_register_netdev;
951
952	if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround))
953		goto err_create_file;
954
955	if (netif_msg_drv(np)) {
956		printk(KERN_INFO "natsemi %s: %s at %#08llx "
957		       "(%s), %pM, IRQ %d",
958		       dev->name, natsemi_pci_info[chip_idx].name,
959		       (unsigned long long)iostart, pci_name(np->pci_dev),
960		       dev->dev_addr, irq);
961		if (dev->if_port == PORT_TP)
962			printk(", port TP.\n");
963		else if (np->ignore_phy)
964			printk(", port MII, ignoring PHY\n");
965		else
966			printk(", port MII, phy ad %d.\n", np->phy_addr_external);
967	}
968	return 0;
969
970 err_create_file:
971 	unregister_netdev(dev);
972
973 err_register_netdev:
974	iounmap(ioaddr);
975
976 err_ioremap:
977	pci_release_regions(pdev);
978	pci_set_drvdata(pdev, NULL);
979
980 err_pci_request_regions:
981	free_netdev(dev);
982	return i;
983}
984
985
986/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
987   The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
988
989/* Delay between EEPROM clock transitions.
990   No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
991   a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
992   made udelay() unreliable.
993   The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
994   deprecated.
995*/
996#define eeprom_delay(ee_addr)	readl(ee_addr)
997
998#define EE_Write0 (EE_ChipSelect)
999#define EE_Write1 (EE_ChipSelect | EE_DataIn)
1000
1001/* The EEPROM commands include the alway-set leading bit. */
1002enum EEPROM_Cmds {
1003	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1004};
1005
1006static int eeprom_read(void __iomem *addr, int location)
1007{
1008	int i;
1009	int retval = 0;
1010	void __iomem *ee_addr = addr + EECtrl;
1011	int read_cmd = location | EE_ReadCmd;
1012
1013	writel(EE_Write0, ee_addr);
1014
1015	/* Shift the read command bits out. */
1016	for (i = 10; i >= 0; i--) {
1017		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1018		writel(dataval, ee_addr);
1019		eeprom_delay(ee_addr);
1020		writel(dataval | EE_ShiftClk, ee_addr);
1021		eeprom_delay(ee_addr);
1022	}
1023	writel(EE_ChipSelect, ee_addr);
1024	eeprom_delay(ee_addr);
1025
1026	for (i = 0; i < 16; i++) {
1027		writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1028		eeprom_delay(ee_addr);
1029		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1030		writel(EE_ChipSelect, ee_addr);
1031		eeprom_delay(ee_addr);
1032	}
1033
1034	/* Terminate the EEPROM access. */
1035	writel(EE_Write0, ee_addr);
1036	writel(0, ee_addr);
1037	return retval;
1038}
1039
1040/* MII transceiver control section.
1041 * The 83815 series has an internal transceiver, and we present the
1042 * internal management registers as if they were MII connected.
1043 * External Phy registers are referenced through the MII interface.
1044 */
1045
1046/* clock transitions >= 20ns (25MHz)
1047 * One readl should be good to PCI @ 100MHz
1048 */
1049#define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1050
1051static int mii_getbit (struct net_device *dev)
1052{
1053	int data;
1054	void __iomem *ioaddr = ns_ioaddr(dev);
1055
1056	writel(MII_ShiftClk, ioaddr + EECtrl);
1057	data = readl(ioaddr + EECtrl);
1058	writel(0, ioaddr + EECtrl);
1059	mii_delay(ioaddr);
1060	return (data & MII_Data)? 1 : 0;
1061}
1062
1063static void mii_send_bits (struct net_device *dev, u32 data, int len)
1064{
1065	u32 i;
1066	void __iomem *ioaddr = ns_ioaddr(dev);
1067
1068	for (i = (1 << (len-1)); i; i >>= 1)
1069	{
1070		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1071		writel(mdio_val, ioaddr + EECtrl);
1072		mii_delay(ioaddr);
1073		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1074		mii_delay(ioaddr);
1075	}
1076	writel(0, ioaddr + EECtrl);
1077	mii_delay(ioaddr);
1078}
1079
1080static int miiport_read(struct net_device *dev, int phy_id, int reg)
1081{
1082	u32 cmd;
1083	int i;
1084	u32 retval = 0;
1085
1086	/* Ensure sync */
1087	mii_send_bits (dev, 0xffffffff, 32);
1088	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1089	/* ST,OP = 0110'b for read operation */
1090	cmd = (0x06 << 10) | (phy_id << 5) | reg;
1091	mii_send_bits (dev, cmd, 14);
1092	/* Turnaround */
1093	if (mii_getbit (dev))
1094		return 0;
1095	/* Read data */
1096	for (i = 0; i < 16; i++) {
1097		retval <<= 1;
1098		retval |= mii_getbit (dev);
1099	}
1100	/* End cycle */
1101	mii_getbit (dev);
1102	return retval;
1103}
1104
1105static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1106{
1107	u32 cmd;
1108
1109	/* Ensure sync */
1110	mii_send_bits (dev, 0xffffffff, 32);
1111	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1112	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1113	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1114	mii_send_bits (dev, cmd, 32);
1115	/* End cycle */
1116	mii_getbit (dev);
1117}
1118
1119static int mdio_read(struct net_device *dev, int reg)
1120{
1121	struct netdev_private *np = netdev_priv(dev);
1122	void __iomem *ioaddr = ns_ioaddr(dev);
1123
1124	/* The 83815 series has two ports:
1125	 * - an internal transceiver
1126	 * - an external mii bus
1127	 */
1128	if (dev->if_port == PORT_TP)
1129		return readw(ioaddr+BasicControl+(reg<<2));
1130	else
1131		return miiport_read(dev, np->phy_addr_external, reg);
1132}
1133
1134static void mdio_write(struct net_device *dev, int reg, u16 data)
1135{
1136	struct netdev_private *np = netdev_priv(dev);
1137	void __iomem *ioaddr = ns_ioaddr(dev);
1138
1139	/* The 83815 series has an internal transceiver; handle separately */
1140	if (dev->if_port == PORT_TP)
1141		writew(data, ioaddr+BasicControl+(reg<<2));
1142	else
1143		miiport_write(dev, np->phy_addr_external, reg, data);
1144}
1145
1146static void init_phy_fixup(struct net_device *dev)
1147{
1148	struct netdev_private *np = netdev_priv(dev);
1149	void __iomem *ioaddr = ns_ioaddr(dev);
1150	int i;
1151	u32 cfg;
1152	u16 tmp;
1153
1154	/* restore stuff lost when power was out */
1155	tmp = mdio_read(dev, MII_BMCR);
1156	if (np->autoneg == AUTONEG_ENABLE) {
1157		/* renegotiate if something changed */
1158		if ((tmp & BMCR_ANENABLE) == 0 ||
1159		    np->advertising != mdio_read(dev, MII_ADVERTISE))
1160		{
1161			/* turn on autonegotiation and force negotiation */
1162			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1163			mdio_write(dev, MII_ADVERTISE, np->advertising);
1164		}
1165	} else {
1166		/* turn off auto negotiation, set speed and duplexity */
1167		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1168		if (np->speed == SPEED_100)
1169			tmp |= BMCR_SPEED100;
1170		if (np->duplex == DUPLEX_FULL)
1171			tmp |= BMCR_FULLDPLX;
1172		/*
1173		 * Note: there is no good way to inform the link partner
1174		 * that our capabilities changed. The user has to unplug
1175		 * and replug the network cable after some changes, e.g.
1176		 * after switching from 10HD, autoneg off to 100 HD,
1177		 * autoneg off.
1178		 */
1179	}
1180	mdio_write(dev, MII_BMCR, tmp);
1181	readl(ioaddr + ChipConfig);
1182	udelay(1);
1183
1184	/* find out what phy this is */
1185	np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1186				+ mdio_read(dev, MII_PHYSID2);
1187
1188	/* handle external phys here */
1189	switch (np->mii) {
1190	case PHYID_AM79C874:
1191		/* phy specific configuration for fibre/tp operation */
1192		tmp = mdio_read(dev, MII_MCTRL);
1193		tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1194		if (dev->if_port == PORT_FIBRE)
1195			tmp |= MII_FX_SEL;
1196		else
1197			tmp |= MII_EN_SCRM;
1198		mdio_write(dev, MII_MCTRL, tmp);
1199		break;
1200	default:
1201		break;
1202	}
1203	cfg = readl(ioaddr + ChipConfig);
1204	if (cfg & CfgExtPhy)
1205		return;
1206
1207	/* On page 78 of the spec, they recommend some settings for "optimum
1208	   performance" to be done in sequence.  These settings optimize some
1209	   of the 100Mbit autodetection circuitry.  They say we only want to
1210	   do this for rev C of the chip, but engineers at NSC (Bradley
1211	   Kennedy) recommends always setting them.  If you don't, you get
1212	   errors on some autonegotiations that make the device unusable.
1213
1214	   It seems that the DSP needs a few usec to reinitialize after
1215	   the start of the phy. Just retry writing these values until they
1216	   stick.
1217	*/
1218	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1219
1220		int dspcfg;
1221		writew(1, ioaddr + PGSEL);
1222		writew(PMDCSR_VAL, ioaddr + PMDCSR);
1223		writew(TSTDAT_VAL, ioaddr + TSTDAT);
1224		np->dspcfg = (np->srr <= SRR_DP83815_C)?
1225			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1226		writew(np->dspcfg, ioaddr + DSPCFG);
1227		writew(SDCFG_VAL, ioaddr + SDCFG);
1228		writew(0, ioaddr + PGSEL);
1229		readl(ioaddr + ChipConfig);
1230		udelay(10);
1231
1232		writew(1, ioaddr + PGSEL);
1233		dspcfg = readw(ioaddr + DSPCFG);
1234		writew(0, ioaddr + PGSEL);
1235		if (np->dspcfg == dspcfg)
1236			break;
1237	}
1238
1239	if (netif_msg_link(np)) {
1240		if (i==NATSEMI_HW_TIMEOUT) {
1241			printk(KERN_INFO
1242				"%s: DSPCFG mismatch after retrying for %d usec.\n",
1243				dev->name, i*10);
1244		} else {
1245			printk(KERN_INFO
1246				"%s: DSPCFG accepted after %d usec.\n",
1247				dev->name, i*10);
1248		}
1249	}
1250	/*
1251	 * Enable PHY Specific event based interrupts.  Link state change
1252	 * and Auto-Negotiation Completion are among the affected.
1253	 * Read the intr status to clear it (needed for wake events).
1254	 */
1255	readw(ioaddr + MIntrStatus);
1256	writew(MICRIntEn, ioaddr + MIntrCtrl);
1257}
1258
1259static int switch_port_external(struct net_device *dev)
1260{
1261	struct netdev_private *np = netdev_priv(dev);
1262	void __iomem *ioaddr = ns_ioaddr(dev);
1263	u32 cfg;
1264
1265	cfg = readl(ioaddr + ChipConfig);
1266	if (cfg & CfgExtPhy)
1267		return 0;
1268
1269	if (netif_msg_link(np)) {
1270		printk(KERN_INFO "%s: switching to external transceiver.\n",
1271				dev->name);
1272	}
1273
1274	/* 1) switch back to external phy */
1275	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1276	readl(ioaddr + ChipConfig);
1277	udelay(1);
1278
1279	/* 2) reset the external phy: */
1280	/* resetting the external PHY has been known to cause a hub supplying
1281	 * power over Ethernet to kill the power.  We don't want to kill
1282	 * power to this computer, so we avoid resetting the phy.
1283	 */
1284
1285	/* 3) reinit the phy fixup, it got lost during power down. */
1286	move_int_phy(dev, np->phy_addr_external);
1287	init_phy_fixup(dev);
1288
1289	return 1;
1290}
1291
1292static int switch_port_internal(struct net_device *dev)
1293{
1294	struct netdev_private *np = netdev_priv(dev);
1295	void __iomem *ioaddr = ns_ioaddr(dev);
1296	int i;
1297	u32 cfg;
1298	u16 bmcr;
1299
1300	cfg = readl(ioaddr + ChipConfig);
1301	if (!(cfg &CfgExtPhy))
1302		return 0;
1303
1304	if (netif_msg_link(np)) {
1305		printk(KERN_INFO "%s: switching to internal transceiver.\n",
1306				dev->name);
1307	}
1308	/* 1) switch back to internal phy: */
1309	cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1310	writel(cfg, ioaddr + ChipConfig);
1311	readl(ioaddr + ChipConfig);
1312	udelay(1);
1313
1314	/* 2) reset the internal phy: */
1315	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1316	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1317	readl(ioaddr + ChipConfig);
1318	udelay(10);
1319	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1320		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1321		if (!(bmcr & BMCR_RESET))
1322			break;
1323		udelay(10);
1324	}
1325	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1326		printk(KERN_INFO
1327			"%s: phy reset did not complete in %d usec.\n",
1328			dev->name, i*10);
1329	}
1330	/* 3) reinit the phy fixup, it got lost during power down. */
1331	init_phy_fixup(dev);
1332
1333	return 1;
1334}
1335
1336/* Scan for a PHY on the external mii bus.
1337 * There are two tricky points:
1338 * - Do not scan while the internal phy is enabled. The internal phy will
1339 *   crash: e.g. reads from the DSPCFG register will return odd values and
1340 *   the nasty random phy reset code will reset the nic every few seconds.
1341 * - The internal phy must be moved around, an external phy could
1342 *   have the same address as the internal phy.
1343 */
1344static int find_mii(struct net_device *dev)
1345{
1346	struct netdev_private *np = netdev_priv(dev);
1347	int tmp;
1348	int i;
1349	int did_switch;
1350
1351	/* Switch to external phy */
1352	did_switch = switch_port_external(dev);
1353
1354	/* Scan the possible phy addresses:
1355	 *
1356	 * PHY address 0 means that the phy is in isolate mode. Not yet
1357	 * supported due to lack of test hardware. User space should
1358	 * handle it through ethtool.
1359	 */
1360	for (i = 1; i <= 31; i++) {
1361		move_int_phy(dev, i);
1362		tmp = miiport_read(dev, i, MII_BMSR);
1363		if (tmp != 0xffff && tmp != 0x0000) {
1364			/* found something! */
1365			np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1366					+ mdio_read(dev, MII_PHYSID2);
1367	 		if (netif_msg_probe(np)) {
1368				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1369						pci_name(np->pci_dev), np->mii, i);
1370			}
1371			break;
1372		}
1373	}
1374	/* And switch back to internal phy: */
1375	if (did_switch)
1376		switch_port_internal(dev);
1377	return i;
1378}
1379
1380/* CFG bits [13:16] [18:23] */
1381#define CFG_RESET_SAVE 0xfde000
1382/* WCSR bits [0:4] [9:10] */
1383#define WCSR_RESET_SAVE 0x61f
1384/* RFCR bits [20] [22] [27:31] */
1385#define RFCR_RESET_SAVE 0xf8500000
1386
1387static void natsemi_reset(struct net_device *dev)
1388{
1389	int i;
1390	u32 cfg;
1391	u32 wcsr;
1392	u32 rfcr;
1393	u16 pmatch[3];
1394	u16 sopass[3];
1395	struct netdev_private *np = netdev_priv(dev);
1396	void __iomem *ioaddr = ns_ioaddr(dev);
1397
1398	/*
1399	 * Resetting the chip causes some registers to be lost.
1400	 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1401	 * we save the state that would have been loaded from EEPROM
1402	 * on a normal power-up (see the spec EEPROM map).  This assumes
1403	 * whoever calls this will follow up with init_registers() eventually.
1404	 */
1405
1406	/* CFG */
1407	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1408	/* WCSR */
1409	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1410	/* RFCR */
1411	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1412	/* PMATCH */
1413	for (i = 0; i < 3; i++) {
1414		writel(i*2, ioaddr + RxFilterAddr);
1415		pmatch[i] = readw(ioaddr + RxFilterData);
1416	}
1417	/* SOPAS */
1418	for (i = 0; i < 3; i++) {
1419		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1420		sopass[i] = readw(ioaddr + RxFilterData);
1421	}
1422
1423	/* now whack the chip */
1424	writel(ChipReset, ioaddr + ChipCmd);
1425	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1426		if (!(readl(ioaddr + ChipCmd) & ChipReset))
1427			break;
1428		udelay(5);
1429	}
1430	if (i==NATSEMI_HW_TIMEOUT) {
1431		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1432			dev->name, i*5);
1433	} else if (netif_msg_hw(np)) {
1434		printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1435			dev->name, i*5);
1436	}
1437
1438	/* restore CFG */
1439	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1440	/* turn on external phy if it was selected */
1441	if (dev->if_port == PORT_TP)
1442		cfg &= ~(CfgExtPhy | CfgPhyDis);
1443	else
1444		cfg |= (CfgExtPhy | CfgPhyDis);
1445	writel(cfg, ioaddr + ChipConfig);
1446	/* restore WCSR */
1447	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1448	writel(wcsr, ioaddr + WOLCmd);
1449	/* read RFCR */
1450	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1451	/* restore PMATCH */
1452	for (i = 0; i < 3; i++) {
1453		writel(i*2, ioaddr + RxFilterAddr);
1454		writew(pmatch[i], ioaddr + RxFilterData);
1455	}
1456	for (i = 0; i < 3; i++) {
1457		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1458		writew(sopass[i], ioaddr + RxFilterData);
1459	}
1460	/* restore RFCR */
1461	writel(rfcr, ioaddr + RxFilterAddr);
1462}
1463
1464static void reset_rx(struct net_device *dev)
1465{
1466	int i;
1467	struct netdev_private *np = netdev_priv(dev);
1468	void __iomem *ioaddr = ns_ioaddr(dev);
1469
1470	np->intr_status &= ~RxResetDone;
1471
1472	writel(RxReset, ioaddr + ChipCmd);
1473
1474	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1475		np->intr_status |= readl(ioaddr + IntrStatus);
1476		if (np->intr_status & RxResetDone)
1477			break;
1478		udelay(15);
1479	}
1480	if (i==NATSEMI_HW_TIMEOUT) {
1481		printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1482		       dev->name, i*15);
1483	} else if (netif_msg_hw(np)) {
1484		printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1485		       dev->name, i*15);
1486	}
1487}
1488
1489static void natsemi_reload_eeprom(struct net_device *dev)
1490{
1491	struct netdev_private *np = netdev_priv(dev);
1492	void __iomem *ioaddr = ns_ioaddr(dev);
1493	int i;
1494
1495	writel(EepromReload, ioaddr + PCIBusCfg);
1496	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1497		udelay(50);
1498		if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1499			break;
1500	}
1501	if (i==NATSEMI_HW_TIMEOUT) {
1502		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1503			pci_name(np->pci_dev), i*50);
1504	} else if (netif_msg_hw(np)) {
1505		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1506			pci_name(np->pci_dev), i*50);
1507	}
1508}
1509
1510static void natsemi_stop_rxtx(struct net_device *dev)
1511{
1512	void __iomem * ioaddr = ns_ioaddr(dev);
1513	struct netdev_private *np = netdev_priv(dev);
1514	int i;
1515
1516	writel(RxOff | TxOff, ioaddr + ChipCmd);
1517	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1518		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1519			break;
1520		udelay(5);
1521	}
1522	if (i==NATSEMI_HW_TIMEOUT) {
1523		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1524			dev->name, i*5);
1525	} else if (netif_msg_hw(np)) {
1526		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1527			dev->name, i*5);
1528	}
1529}
1530
1531static int netdev_open(struct net_device *dev)
1532{
1533	struct netdev_private *np = netdev_priv(dev);
1534	void __iomem * ioaddr = ns_ioaddr(dev);
1535	int i;
1536
1537	/* Reset the chip, just in case. */
1538	natsemi_reset(dev);
1539
1540	i = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
1541	if (i) return i;
1542
1543	if (netif_msg_ifup(np))
1544		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1545			dev->name, dev->irq);
1546	i = alloc_ring(dev);
1547	if (i < 0) {
1548		free_irq(dev->irq, dev);
1549		return i;
1550	}
1551	napi_enable(&np->napi);
1552
1553	init_ring(dev);
1554	spin_lock_irq(&np->lock);
1555	init_registers(dev);
1556	/* now set the MAC address according to dev->dev_addr */
1557	for (i = 0; i < 3; i++) {
1558		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1559
1560		writel(i*2, ioaddr + RxFilterAddr);
1561		writew(mac, ioaddr + RxFilterData);
1562	}
1563	writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1564	spin_unlock_irq(&np->lock);
1565
1566	netif_start_queue(dev);
1567
1568	if (netif_msg_ifup(np))
1569		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1570			dev->name, (int)readl(ioaddr + ChipCmd));
1571
1572	/* Set the timer to check for link beat. */
1573	init_timer(&np->timer);
1574	np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1575	np->timer.data = (unsigned long)dev;
1576	np->timer.function = netdev_timer; /* timer handler */
1577	add_timer(&np->timer);
1578
1579	return 0;
1580}
1581
1582static void do_cable_magic(struct net_device *dev)
1583{
1584	struct netdev_private *np = netdev_priv(dev);
1585	void __iomem *ioaddr = ns_ioaddr(dev);
1586
1587	if (dev->if_port != PORT_TP)
1588		return;
1589
1590	if (np->srr >= SRR_DP83816_A5)
1591		return;
1592
1593	/*
1594	 * 100 MBit links with short cables can trip an issue with the chip.
1595	 * The problem manifests as lots of CRC errors and/or flickering
1596	 * activity LED while idle.  This process is based on instructions
1597	 * from engineers at National.
1598	 */
1599	if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1600		u16 data;
1601
1602		writew(1, ioaddr + PGSEL);
1603		/*
1604		 * coefficient visibility should already be enabled via
1605		 * DSPCFG | 0x1000
1606		 */
1607		data = readw(ioaddr + TSTDAT) & 0xff;
1608		/*
1609		 * the value must be negative, and within certain values
1610		 * (these values all come from National)
1611		 */
1612		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1613			np = netdev_priv(dev);
1614
1615			/* the bug has been triggered - fix the coefficient */
1616			writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1617			/* lock the value */
1618			data = readw(ioaddr + DSPCFG);
1619			np->dspcfg = data | DSPCFG_LOCK;
1620			writew(np->dspcfg, ioaddr + DSPCFG);
1621		}
1622		writew(0, ioaddr + PGSEL);
1623	}
1624}
1625
1626static void undo_cable_magic(struct net_device *dev)
1627{
1628	u16 data;
1629	struct netdev_private *np = netdev_priv(dev);
1630	void __iomem * ioaddr = ns_ioaddr(dev);
1631
1632	if (dev->if_port != PORT_TP)
1633		return;
1634
1635	if (np->srr >= SRR_DP83816_A5)
1636		return;
1637
1638	writew(1, ioaddr + PGSEL);
1639	/* make sure the lock bit is clear */
1640	data = readw(ioaddr + DSPCFG);
1641	np->dspcfg = data & ~DSPCFG_LOCK;
1642	writew(np->dspcfg, ioaddr + DSPCFG);
1643	writew(0, ioaddr + PGSEL);
1644}
1645
1646static void check_link(struct net_device *dev)
1647{
1648	struct netdev_private *np = netdev_priv(dev);
1649	void __iomem * ioaddr = ns_ioaddr(dev);
1650	int duplex = np->duplex;
1651	u16 bmsr;
1652
1653	/* If we are ignoring the PHY then don't try reading it. */
1654	if (np->ignore_phy)
1655		goto propagate_state;
1656
1657	/* The link status field is latched: it remains low after a temporary
1658	 * link failure until it's read. We need the current link status,
1659	 * thus read twice.
1660	 */
1661	mdio_read(dev, MII_BMSR);
1662	bmsr = mdio_read(dev, MII_BMSR);
1663
1664	if (!(bmsr & BMSR_LSTATUS)) {
1665		if (netif_carrier_ok(dev)) {
1666			if (netif_msg_link(np))
1667				printk(KERN_NOTICE "%s: link down.\n",
1668				       dev->name);
1669			netif_carrier_off(dev);
1670			undo_cable_magic(dev);
1671		}
1672		return;
1673	}
1674	if (!netif_carrier_ok(dev)) {
1675		if (netif_msg_link(np))
1676			printk(KERN_NOTICE "%s: link up.\n", dev->name);
1677		netif_carrier_on(dev);
1678		do_cable_magic(dev);
1679	}
1680
1681	duplex = np->full_duplex;
1682	if (!duplex) {
1683		if (bmsr & BMSR_ANEGCOMPLETE) {
1684			int tmp = mii_nway_result(
1685				np->advertising & mdio_read(dev, MII_LPA));
1686			if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1687				duplex = 1;
1688		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1689			duplex = 1;
1690	}
1691
1692propagate_state:
1693	/* if duplex is set then bit 28 must be set, too */
1694	if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1695		if (netif_msg_link(np))
1696			printk(KERN_INFO
1697				"%s: Setting %s-duplex based on negotiated "
1698				"link capability.\n", dev->name,
1699				duplex ? "full" : "half");
1700		if (duplex) {
1701			np->rx_config |= RxAcceptTx;
1702			np->tx_config |= TxCarrierIgn | TxHeartIgn;
1703		} else {
1704			np->rx_config &= ~RxAcceptTx;
1705			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1706		}
1707		writel(np->tx_config, ioaddr + TxConfig);
1708		writel(np->rx_config, ioaddr + RxConfig);
1709	}
1710}
1711
1712static void init_registers(struct net_device *dev)
1713{
1714	struct netdev_private *np = netdev_priv(dev);
1715	void __iomem * ioaddr = ns_ioaddr(dev);
1716
1717	init_phy_fixup(dev);
1718
1719	/* clear any interrupts that are pending, such as wake events */
1720	readl(ioaddr + IntrStatus);
1721
1722	writel(np->ring_dma, ioaddr + RxRingPtr);
1723	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1724		ioaddr + TxRingPtr);
1725
1726	/* Initialize other registers.
1727	 * Configure the PCI bus bursts and FIFO thresholds.
1728	 * Configure for standard, in-spec Ethernet.
1729	 * Start with half-duplex. check_link will update
1730	 * to the correct settings.
1731	 */
1732
1733	/* DRTH: 2: start tx if 64 bytes are in the fifo
1734	 * FLTH: 0x10: refill with next packet if 512 bytes are free
1735	 * MXDMA: 0: up to 256 byte bursts.
1736	 * 	MXDMA must be <= FLTH
1737	 * ECRETRY=1
1738	 * ATP=1
1739	 */
1740	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1741				TX_FLTH_VAL | TX_DRTH_VAL_START;
1742	writel(np->tx_config, ioaddr + TxConfig);
1743
1744	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1745	 * MXDMA 0: up to 256 byte bursts
1746	 */
1747	np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1748	/* if receive ring now has bigger buffers than normal, enable jumbo */
1749	if (np->rx_buf_sz > NATSEMI_LONGPKT)
1750		np->rx_config |= RxAcceptLong;
1751
1752	writel(np->rx_config, ioaddr + RxConfig);
1753
1754	/* Disable PME:
1755	 * The PME bit is initialized from the EEPROM contents.
1756	 * PCI cards probably have PME disabled, but motherboard
1757	 * implementations may have PME set to enable WakeOnLan.
1758	 * With PME set the chip will scan incoming packets but
1759	 * nothing will be written to memory. */
1760	np->SavedClkRun = readl(ioaddr + ClkRun);
1761	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1762	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1763		printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1764			dev->name, readl(ioaddr + WOLCmd));
1765	}
1766
1767	check_link(dev);
1768	__set_rx_mode(dev);
1769
1770	/* Enable interrupts by setting the interrupt mask. */
1771	writel(DEFAULT_INTR, ioaddr + IntrMask);
1772	natsemi_irq_enable(dev);
1773
1774	writel(RxOn | TxOn, ioaddr + ChipCmd);
1775	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1776}
1777
1778/*
1779 * netdev_timer:
1780 * Purpose:
1781 * 1) check for link changes. Usually they are handled by the MII interrupt
1782 *    but it doesn't hurt to check twice.
1783 * 2) check for sudden death of the NIC:
1784 *    It seems that a reference set for this chip went out with incorrect info,
1785 *    and there exist boards that aren't quite right.  An unexpected voltage
1786 *    drop can cause the PHY to get itself in a weird state (basically reset).
1787 *    NOTE: this only seems to affect revC chips.  The user can disable
1788 *    this check via dspcfg_workaround sysfs option.
1789 * 3) check of death of the RX path due to OOM
1790 */
1791static void netdev_timer(unsigned long data)
1792{
1793	struct net_device *dev = (struct net_device *)data;
1794	struct netdev_private *np = netdev_priv(dev);
1795	void __iomem * ioaddr = ns_ioaddr(dev);
1796	int next_tick = NATSEMI_TIMER_FREQ;
1797
1798	if (netif_msg_timer(np)) {
1799		/* DO NOT read the IntrStatus register,
1800		 * a read clears any pending interrupts.
1801		 */
1802		printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1803			dev->name);
1804	}
1805
1806	if (dev->if_port == PORT_TP) {
1807		u16 dspcfg;
1808
1809		spin_lock_irq(&np->lock);
1810		/* check for a nasty random phy-reset - use dspcfg as a flag */
1811		writew(1, ioaddr+PGSEL);
1812		dspcfg = readw(ioaddr+DSPCFG);
1813		writew(0, ioaddr+PGSEL);
1814		if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1815			if (!netif_queue_stopped(dev)) {
1816				spin_unlock_irq(&np->lock);
1817				if (netif_msg_drv(np))
1818					printk(KERN_NOTICE "%s: possible phy reset: "
1819						"re-initializing\n", dev->name);
1820				disable_irq(dev->irq);
1821				spin_lock_irq(&np->lock);
1822				natsemi_stop_rxtx(dev);
1823				dump_ring(dev);
1824				reinit_ring(dev);
1825				init_registers(dev);
1826				spin_unlock_irq(&np->lock);
1827				enable_irq(dev->irq);
1828			} else {
1829				/* hurry back */
1830				next_tick = HZ;
1831				spin_unlock_irq(&np->lock);
1832			}
1833		} else {
1834			/* init_registers() calls check_link() for the above case */
1835			check_link(dev);
1836			spin_unlock_irq(&np->lock);
1837		}
1838	} else {
1839		spin_lock_irq(&np->lock);
1840		check_link(dev);
1841		spin_unlock_irq(&np->lock);
1842	}
1843	if (np->oom) {
1844		disable_irq(dev->irq);
1845		np->oom = 0;
1846		refill_rx(dev);
1847		enable_irq(dev->irq);
1848		if (!np->oom) {
1849			writel(RxOn, ioaddr + ChipCmd);
1850		} else {
1851			next_tick = 1;
1852		}
1853	}
1854
1855	if (next_tick > 1)
1856		mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1857	else
1858		mod_timer(&np->timer, jiffies + next_tick);
1859}
1860
1861static void dump_ring(struct net_device *dev)
1862{
1863	struct netdev_private *np = netdev_priv(dev);
1864
1865	if (netif_msg_pktdata(np)) {
1866		int i;
1867		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1868		for (i = 0; i < TX_RING_SIZE; i++) {
1869			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1870				i, np->tx_ring[i].next_desc,
1871				np->tx_ring[i].cmd_status,
1872				np->tx_ring[i].addr);
1873		}
1874		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1875		for (i = 0; i < RX_RING_SIZE; i++) {
1876			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1877				i, np->rx_ring[i].next_desc,
1878				np->rx_ring[i].cmd_status,
1879				np->rx_ring[i].addr);
1880		}
1881	}
1882}
1883
1884static void ns_tx_timeout(struct net_device *dev)
1885{
1886	struct netdev_private *np = netdev_priv(dev);
1887	void __iomem * ioaddr = ns_ioaddr(dev);
1888
1889	disable_irq(dev->irq);
1890	spin_lock_irq(&np->lock);
1891	if (!np->hands_off) {
1892		if (netif_msg_tx_err(np))
1893			printk(KERN_WARNING
1894				"%s: Transmit timed out, status %#08x,"
1895				" resetting...\n",
1896				dev->name, readl(ioaddr + IntrStatus));
1897		dump_ring(dev);
1898
1899		natsemi_reset(dev);
1900		reinit_ring(dev);
1901		init_registers(dev);
1902	} else {
1903		printk(KERN_WARNING
1904			"%s: tx_timeout while in hands_off state?\n",
1905			dev->name);
1906	}
1907	spin_unlock_irq(&np->lock);
1908	enable_irq(dev->irq);
1909
1910	dev->trans_start = jiffies; /* prevent tx timeout */
1911	dev->stats.tx_errors++;
1912	netif_wake_queue(dev);
1913}
1914
1915static int alloc_ring(struct net_device *dev)
1916{
1917	struct netdev_private *np = netdev_priv(dev);
1918	np->rx_ring = pci_alloc_consistent(np->pci_dev,
1919		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1920		&np->ring_dma);
1921	if (!np->rx_ring)
1922		return -ENOMEM;
1923	np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1924	return 0;
1925}
1926
1927static void refill_rx(struct net_device *dev)
1928{
1929	struct netdev_private *np = netdev_priv(dev);
1930
1931	/* Refill the Rx ring buffers. */
1932	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1933		struct sk_buff *skb;
1934		int entry = np->dirty_rx % RX_RING_SIZE;
1935		if (np->rx_skbuff[entry] == NULL) {
1936			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1937			skb = netdev_alloc_skb(dev, buflen);
1938			np->rx_skbuff[entry] = skb;
1939			if (skb == NULL)
1940				break; /* Better luck next round. */
1941			np->rx_dma[entry] = pci_map_single(np->pci_dev,
1942				skb->data, buflen, PCI_DMA_FROMDEVICE);
1943			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1944		}
1945		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1946	}
1947	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1948		if (netif_msg_rx_err(np))
1949			printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1950		np->oom = 1;
1951	}
1952}
1953
1954static void set_bufsize(struct net_device *dev)
1955{
1956	struct netdev_private *np = netdev_priv(dev);
1957	if (dev->mtu <= ETH_DATA_LEN)
1958		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1959	else
1960		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1961}
1962
1963/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1964static void init_ring(struct net_device *dev)
1965{
1966	struct netdev_private *np = netdev_priv(dev);
1967	int i;
1968
1969	/* 1) TX ring */
1970	np->dirty_tx = np->cur_tx = 0;
1971	for (i = 0; i < TX_RING_SIZE; i++) {
1972		np->tx_skbuff[i] = NULL;
1973		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1974			+sizeof(struct netdev_desc)
1975			*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1976		np->tx_ring[i].cmd_status = 0;
1977	}
1978
1979	/* 2) RX ring */
1980	np->dirty_rx = 0;
1981	np->cur_rx = RX_RING_SIZE;
1982	np->oom = 0;
1983	set_bufsize(dev);
1984
1985	np->rx_head_desc = &np->rx_ring[0];
1986
1987	/* Please be careful before changing this loop - at least gcc-2.95.1
1988	 * miscompiles it otherwise.
1989	 */
1990	/* Initialize all Rx descriptors. */
1991	for (i = 0; i < RX_RING_SIZE; i++) {
1992		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1993				+sizeof(struct netdev_desc)
1994				*((i+1)%RX_RING_SIZE));
1995		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1996		np->rx_skbuff[i] = NULL;
1997	}
1998	refill_rx(dev);
1999	dump_ring(dev);
2000}
2001
2002static void drain_tx(struct net_device *dev)
2003{
2004	struct netdev_private *np = netdev_priv(dev);
2005	int i;
2006
2007	for (i = 0; i < TX_RING_SIZE; i++) {
2008		if (np->tx_skbuff[i]) {
2009			pci_unmap_single(np->pci_dev,
2010				np->tx_dma[i], np->tx_skbuff[i]->len,
2011				PCI_DMA_TODEVICE);
2012			dev_kfree_skb(np->tx_skbuff[i]);
2013			dev->stats.tx_dropped++;
2014		}
2015		np->tx_skbuff[i] = NULL;
2016	}
2017}
2018
2019static void drain_rx(struct net_device *dev)
2020{
2021	struct netdev_private *np = netdev_priv(dev);
2022	unsigned int buflen = np->rx_buf_sz;
2023	int i;
2024
2025	/* Free all the skbuffs in the Rx queue. */
2026	for (i = 0; i < RX_RING_SIZE; i++) {
2027		np->rx_ring[i].cmd_status = 0;
2028		np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2029		if (np->rx_skbuff[i]) {
2030			pci_unmap_single(np->pci_dev, np->rx_dma[i],
2031				buflen + NATSEMI_PADDING,
2032				PCI_DMA_FROMDEVICE);
2033			dev_kfree_skb(np->rx_skbuff[i]);
2034		}
2035		np->rx_skbuff[i] = NULL;
2036	}
2037}
2038
2039static void drain_ring(struct net_device *dev)
2040{
2041	drain_rx(dev);
2042	drain_tx(dev);
2043}
2044
2045static void free_ring(struct net_device *dev)
2046{
2047	struct netdev_private *np = netdev_priv(dev);
2048	pci_free_consistent(np->pci_dev,
2049		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2050		np->rx_ring, np->ring_dma);
2051}
2052
2053static void reinit_rx(struct net_device *dev)
2054{
2055	struct netdev_private *np = netdev_priv(dev);
2056	int i;
2057
2058	/* RX Ring */
2059	np->dirty_rx = 0;
2060	np->cur_rx = RX_RING_SIZE;
2061	np->rx_head_desc = &np->rx_ring[0];
2062	/* Initialize all Rx descriptors. */
2063	for (i = 0; i < RX_RING_SIZE; i++)
2064		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2065
2066	refill_rx(dev);
2067}
2068
2069static void reinit_ring(struct net_device *dev)
2070{
2071	struct netdev_private *np = netdev_priv(dev);
2072	int i;
2073
2074	/* drain TX ring */
2075	drain_tx(dev);
2076	np->dirty_tx = np->cur_tx = 0;
2077	for (i=0;i<TX_RING_SIZE;i++)
2078		np->tx_ring[i].cmd_status = 0;
2079
2080	reinit_rx(dev);
2081}
2082
2083static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2084{
2085	struct netdev_private *np = netdev_priv(dev);
2086	void __iomem * ioaddr = ns_ioaddr(dev);
2087	unsigned entry;
2088	unsigned long flags;
2089
2090	/* Note: Ordering is important here, set the field with the
2091	   "ownership" bit last, and only then increment cur_tx. */
2092
2093	/* Calculate the next Tx descriptor entry. */
2094	entry = np->cur_tx % TX_RING_SIZE;
2095
2096	np->tx_skbuff[entry] = skb;
2097	np->tx_dma[entry] = pci_map_single(np->pci_dev,
2098				skb->data,skb->len, PCI_DMA_TODEVICE);
2099
2100	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2101
2102	spin_lock_irqsave(&np->lock, flags);
2103
2104	if (!np->hands_off) {
2105		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2106		/* StrongARM: Explicitly cache flush np->tx_ring and
2107		 * skb->data,skb->len. */
2108		wmb();
2109		np->cur_tx++;
2110		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2111			netdev_tx_done(dev);
2112			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2113				netif_stop_queue(dev);
2114		}
2115		/* Wake the potentially-idle transmit channel. */
2116		writel(TxOn, ioaddr + ChipCmd);
2117	} else {
2118		dev_kfree_skb_irq(skb);
2119		dev->stats.tx_dropped++;
2120	}
2121	spin_unlock_irqrestore(&np->lock, flags);
2122
2123	if (netif_msg_tx_queued(np)) {
2124		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2125			dev->name, np->cur_tx, entry);
2126	}
2127	return NETDEV_TX_OK;
2128}
2129
2130static void netdev_tx_done(struct net_device *dev)
2131{
2132	struct netdev_private *np = netdev_priv(dev);
2133
2134	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2135		int entry = np->dirty_tx % TX_RING_SIZE;
2136		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2137			break;
2138		if (netif_msg_tx_done(np))
2139			printk(KERN_DEBUG
2140				"%s: tx frame #%d finished, status %#08x.\n",
2141					dev->name, np->dirty_tx,
2142					le32_to_cpu(np->tx_ring[entry].cmd_status));
2143		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2144			dev->stats.tx_packets++;
2145			dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2146		} else { /* Various Tx errors */
2147			int tx_status =
2148				le32_to_cpu(np->tx_ring[entry].cmd_status);
2149			if (tx_status & (DescTxAbort|DescTxExcColl))
2150				dev->stats.tx_aborted_errors++;
2151			if (tx_status & DescTxFIFO)
2152				dev->stats.tx_fifo_errors++;
2153			if (tx_status & DescTxCarrier)
2154				dev->stats.tx_carrier_errors++;
2155			if (tx_status & DescTxOOWCol)
2156				dev->stats.tx_window_errors++;
2157			dev->stats.tx_errors++;
2158		}
2159		pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2160					np->tx_skbuff[entry]->len,
2161					PCI_DMA_TODEVICE);
2162		/* Free the original skb. */
2163		dev_kfree_skb_irq(np->tx_skbuff[entry]);
2164		np->tx_skbuff[entry] = NULL;
2165	}
2166	if (netif_queue_stopped(dev) &&
2167	    np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2168		/* The ring is no longer full, wake queue. */
2169		netif_wake_queue(dev);
2170	}
2171}
2172
2173/* The interrupt handler doesn't actually handle interrupts itself, it
2174 * schedules a NAPI poll if there is anything to do. */
2175static irqreturn_t intr_handler(int irq, void *dev_instance)
2176{
2177	struct net_device *dev = dev_instance;
2178	struct netdev_private *np = netdev_priv(dev);
2179	void __iomem * ioaddr = ns_ioaddr(dev);
2180
2181	/* Reading IntrStatus automatically acknowledges so don't do
2182	 * that while interrupts are disabled, (for example, while a
2183	 * poll is scheduled).  */
2184	if (np->hands_off || !readl(ioaddr + IntrEnable))
2185		return IRQ_NONE;
2186
2187	np->intr_status = readl(ioaddr + IntrStatus);
2188
2189	if (!np->intr_status)
2190		return IRQ_NONE;
2191
2192	if (netif_msg_intr(np))
2193		printk(KERN_DEBUG
2194		       "%s: Interrupt, status %#08x, mask %#08x.\n",
2195		       dev->name, np->intr_status,
2196		       readl(ioaddr + IntrMask));
2197
2198	prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2199
2200	if (napi_schedule_prep(&np->napi)) {
2201		/* Disable interrupts and register for poll */
2202		natsemi_irq_disable(dev);
2203		__napi_schedule(&np->napi);
2204	} else
2205		printk(KERN_WARNING
2206	       	       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2207		       dev->name, np->intr_status,
2208		       readl(ioaddr + IntrMask));
2209
2210	return IRQ_HANDLED;
2211}
2212
2213/* This is the NAPI poll routine.  As well as the standard RX handling
2214 * it also handles all other interrupts that the chip might raise.
2215 */
2216static int natsemi_poll(struct napi_struct *napi, int budget)
2217{
2218	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2219	struct net_device *dev = np->dev;
2220	void __iomem * ioaddr = ns_ioaddr(dev);
2221	int work_done = 0;
2222
2223	do {
2224		if (netif_msg_intr(np))
2225			printk(KERN_DEBUG
2226			       "%s: Poll, status %#08x, mask %#08x.\n",
2227			       dev->name, np->intr_status,
2228			       readl(ioaddr + IntrMask));
2229
2230		/* netdev_rx() may read IntrStatus again if the RX state
2231		 * machine falls over so do it first. */
2232		if (np->intr_status &
2233		    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2234		     IntrRxErr | IntrRxOverrun)) {
2235			netdev_rx(dev, &work_done, budget);
2236		}
2237
2238		if (np->intr_status &
2239		    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2240			spin_lock(&np->lock);
2241			netdev_tx_done(dev);
2242			spin_unlock(&np->lock);
2243		}
2244
2245		/* Abnormal error summary/uncommon events handlers. */
2246		if (np->intr_status & IntrAbnormalSummary)
2247			netdev_error(dev, np->intr_status);
2248
2249		if (work_done >= budget)
2250			return work_done;
2251
2252		np->intr_status = readl(ioaddr + IntrStatus);
2253	} while (np->intr_status);
2254
2255	napi_complete(napi);
2256
2257	/* Reenable interrupts providing nothing is trying to shut
2258	 * the chip down. */
2259	spin_lock(&np->lock);
2260	if (!np->hands_off)
2261		natsemi_irq_enable(dev);
2262	spin_unlock(&np->lock);
2263
2264	return work_done;
2265}
2266
2267/* This routine is logically part of the interrupt handler, but separated
2268   for clarity and better register allocation. */
2269static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2270{
2271	struct netdev_private *np = netdev_priv(dev);
2272	int entry = np->cur_rx % RX_RING_SIZE;
2273	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2274	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2275	unsigned int buflen = np->rx_buf_sz;
2276	void __iomem * ioaddr = ns_ioaddr(dev);
2277
2278	/* If the driver owns the next entry it's a new packet. Send it up. */
2279	while (desc_status < 0) { /* e.g. & DescOwn */
2280		int pkt_len;
2281		if (netif_msg_rx_status(np))
2282			printk(KERN_DEBUG
2283				"  netdev_rx() entry %d status was %#08x.\n",
2284				entry, desc_status);
2285		if (--boguscnt < 0)
2286			break;
2287
2288		if (*work_done >= work_to_do)
2289			break;
2290
2291		(*work_done)++;
2292
2293		pkt_len = (desc_status & DescSizeMask) - 4;
2294		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2295			if (desc_status & DescMore) {
2296				unsigned long flags;
2297
2298				if (netif_msg_rx_err(np))
2299					printk(KERN_WARNING
2300						"%s: Oversized(?) Ethernet "
2301						"frame spanned multiple "
2302						"buffers, entry %#08x "
2303						"status %#08x.\n", dev->name,
2304						np->cur_rx, desc_status);
2305				dev->stats.rx_length_errors++;
2306
2307				/* The RX state machine has probably
2308				 * locked up beneath us.  Follow the
2309				 * reset procedure documented in
2310				 * AN-1287. */
2311
2312				spin_lock_irqsave(&np->lock, flags);
2313				reset_rx(dev);
2314				reinit_rx(dev);
2315				writel(np->ring_dma, ioaddr + RxRingPtr);
2316				check_link(dev);
2317				spin_unlock_irqrestore(&np->lock, flags);
2318
2319				/* We'll enable RX on exit from this
2320				 * function. */
2321				break;
2322
2323			} else {
2324				/* There was an error. */
2325				dev->stats.rx_errors++;
2326				if (desc_status & (DescRxAbort|DescRxOver))
2327					dev->stats.rx_over_errors++;
2328				if (desc_status & (DescRxLong|DescRxRunt))
2329					dev->stats.rx_length_errors++;
2330				if (desc_status & (DescRxInvalid|DescRxAlign))
2331					dev->stats.rx_frame_errors++;
2332				if (desc_status & DescRxCRC)
2333					dev->stats.rx_crc_errors++;
2334			}
2335		} else if (pkt_len > np->rx_buf_sz) {
2336			/* if this is the tail of a double buffer
2337			 * packet, we've already counted the error
2338			 * on the first part.  Ignore the second half.
2339			 */
2340		} else {
2341			struct sk_buff *skb;
2342			/* Omit CRC size. */
2343			/* Check if the packet is long enough to accept
2344			 * without copying to a minimally-sized skbuff. */
2345			if (pkt_len < rx_copybreak &&
2346			    (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2347				/* 16 byte align the IP header */
2348				skb_reserve(skb, RX_OFFSET);
2349				pci_dma_sync_single_for_cpu(np->pci_dev,
2350					np->rx_dma[entry],
2351					buflen,
2352					PCI_DMA_FROMDEVICE);
2353				skb_copy_to_linear_data(skb,
2354					np->rx_skbuff[entry]->data, pkt_len);
2355				skb_put(skb, pkt_len);
2356				pci_dma_sync_single_for_device(np->pci_dev,
2357					np->rx_dma[entry],
2358					buflen,
2359					PCI_DMA_FROMDEVICE);
2360			} else {
2361				pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2362						 buflen + NATSEMI_PADDING,
2363						 PCI_DMA_FROMDEVICE);
2364				skb_put(skb = np->rx_skbuff[entry], pkt_len);
2365				np->rx_skbuff[entry] = NULL;
2366			}
2367			skb->protocol = eth_type_trans(skb, dev);
2368			netif_receive_skb(skb);
2369			dev->stats.rx_packets++;
2370			dev->stats.rx_bytes += pkt_len;
2371		}
2372		entry = (++np->cur_rx) % RX_RING_SIZE;
2373		np->rx_head_desc = &np->rx_ring[entry];
2374		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2375	}
2376	refill_rx(dev);
2377
2378	/* Restart Rx engine if stopped. */
2379	if (np->oom)
2380		mod_timer(&np->timer, jiffies + 1);
2381	else
2382		writel(RxOn, ioaddr + ChipCmd);
2383}
2384
2385static void netdev_error(struct net_device *dev, int intr_status)
2386{
2387	struct netdev_private *np = netdev_priv(dev);
2388	void __iomem * ioaddr = ns_ioaddr(dev);
2389
2390	spin_lock(&np->lock);
2391	if (intr_status & LinkChange) {
2392		u16 lpa = mdio_read(dev, MII_LPA);
2393		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2394		    netif_msg_link(np)) {
2395			printk(KERN_INFO
2396				"%s: Autonegotiation advertising"
2397				" %#04x  partner %#04x.\n", dev->name,
2398				np->advertising, lpa);
2399		}
2400
2401		/* read MII int status to clear the flag */
2402		readw(ioaddr + MIntrStatus);
2403		check_link(dev);
2404	}
2405	if (intr_status & StatsMax) {
2406		__get_stats(dev);
2407	}
2408	if (intr_status & IntrTxUnderrun) {
2409		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2410			np->tx_config += TX_DRTH_VAL_INC;
2411			if (netif_msg_tx_err(np))
2412				printk(KERN_NOTICE
2413					"%s: increased tx threshold, txcfg %#08x.\n",
2414					dev->name, np->tx_config);
2415		} else {
2416			if (netif_msg_tx_err(np))
2417				printk(KERN_NOTICE
2418					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2419					dev->name, np->tx_config);
2420		}
2421		writel(np->tx_config, ioaddr + TxConfig);
2422	}
2423	if (intr_status & WOLPkt && netif_msg_wol(np)) {
2424		int wol_status = readl(ioaddr + WOLCmd);
2425		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2426			dev->name, wol_status);
2427	}
2428	if (intr_status & RxStatusFIFOOver) {
2429		if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2430			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2431				dev->name);
2432		}
2433		dev->stats.rx_fifo_errors++;
2434		dev->stats.rx_errors++;
2435	}
2436	/* Hmmmmm, it's not clear how to recover from PCI faults. */
2437	if (intr_status & IntrPCIErr) {
2438		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2439			intr_status & IntrPCIErr);
2440		dev->stats.tx_fifo_errors++;
2441		dev->stats.tx_errors++;
2442		dev->stats.rx_fifo_errors++;
2443		dev->stats.rx_errors++;
2444	}
2445	spin_unlock(&np->lock);
2446}
2447
2448static void __get_stats(struct net_device *dev)
2449{
2450	void __iomem * ioaddr = ns_ioaddr(dev);
2451
2452	/* The chip only need report frame silently dropped. */
2453	dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2454	dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2455}
2456
2457static struct net_device_stats *get_stats(struct net_device *dev)
2458{
2459	struct netdev_private *np = netdev_priv(dev);
2460
2461	/* The chip only need report frame silently dropped. */
2462	spin_lock_irq(&np->lock);
2463	if (netif_running(dev) && !np->hands_off)
2464		__get_stats(dev);
2465	spin_unlock_irq(&np->lock);
2466
2467	return &dev->stats;
2468}
2469
2470#ifdef CONFIG_NET_POLL_CONTROLLER
2471static void natsemi_poll_controller(struct net_device *dev)
2472{
2473	disable_irq(dev->irq);
2474	intr_handler(dev->irq, dev);
2475	enable_irq(dev->irq);
2476}
2477#endif
2478
2479#define HASH_TABLE	0x200
2480static void __set_rx_mode(struct net_device *dev)
2481{
2482	void __iomem * ioaddr = ns_ioaddr(dev);
2483	struct netdev_private *np = netdev_priv(dev);
2484	u8 mc_filter[64]; /* Multicast hash filter */
2485	u32 rx_mode;
2486
2487	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2488		rx_mode = RxFilterEnable | AcceptBroadcast
2489			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2490	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2491		   (dev->flags & IFF_ALLMULTI)) {
2492		rx_mode = RxFilterEnable | AcceptBroadcast
2493			| AcceptAllMulticast | AcceptMyPhys;
2494	} else {
2495		struct netdev_hw_addr *ha;
2496		int i;
2497
2498		memset(mc_filter, 0, sizeof(mc_filter));
2499		netdev_for_each_mc_addr(ha, dev) {
2500			int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2501			mc_filter[b/8] |= (1 << (b & 0x07));
2502		}
2503		rx_mode = RxFilterEnable | AcceptBroadcast
2504			| AcceptMulticast | AcceptMyPhys;
2505		for (i = 0; i < 64; i += 2) {
2506			writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2507			writel((mc_filter[i + 1] << 8) + mc_filter[i],
2508			       ioaddr + RxFilterData);
2509		}
2510	}
2511	writel(rx_mode, ioaddr + RxFilterAddr);
2512	np->cur_rx_mode = rx_mode;
2513}
2514
2515static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2516{
2517	if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2518		return -EINVAL;
2519
2520	dev->mtu = new_mtu;
2521
2522	/* synchronized against open : rtnl_lock() held by caller */
2523	if (netif_running(dev)) {
2524		struct netdev_private *np = netdev_priv(dev);
2525		void __iomem * ioaddr = ns_ioaddr(dev);
2526
2527		disable_irq(dev->irq);
2528		spin_lock(&np->lock);
2529		/* stop engines */
2530		natsemi_stop_rxtx(dev);
2531		/* drain rx queue */
2532		drain_rx(dev);
2533		/* change buffers */
2534		set_bufsize(dev);
2535		reinit_rx(dev);
2536		writel(np->ring_dma, ioaddr + RxRingPtr);
2537		/* restart engines */
2538		writel(RxOn | TxOn, ioaddr + ChipCmd);
2539		spin_unlock(&np->lock);
2540		enable_irq(dev->irq);
2541	}
2542	return 0;
2543}
2544
2545static void set_rx_mode(struct net_device *dev)
2546{
2547	struct netdev_private *np = netdev_priv(dev);
2548	spin_lock_irq(&np->lock);
2549	if (!np->hands_off)
2550		__set_rx_mode(dev);
2551	spin_unlock_irq(&np->lock);
2552}
2553
2554static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2555{
2556	struct netdev_private *np = netdev_priv(dev);
2557	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2558	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2559	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2560}
2561
2562static int get_regs_len(struct net_device *dev)
2563{
2564	return NATSEMI_REGS_SIZE;
2565}
2566
2567static int get_eeprom_len(struct net_device *dev)
2568{
2569	struct netdev_private *np = netdev_priv(dev);
2570	return np->eeprom_size;
2571}
2572
2573static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2574{
2575	struct netdev_private *np = netdev_priv(dev);
2576	spin_lock_irq(&np->lock);
2577	netdev_get_ecmd(dev, ecmd);
2578	spin_unlock_irq(&np->lock);
2579	return 0;
2580}
2581
2582static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2583{
2584	struct netdev_private *np = netdev_priv(dev);
2585	int res;
2586	spin_lock_irq(&np->lock);
2587	res = netdev_set_ecmd(dev, ecmd);
2588	spin_unlock_irq(&np->lock);
2589	return res;
2590}
2591
2592static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2593{
2594	struct netdev_private *np = netdev_priv(dev);
2595	spin_lock_irq(&np->lock);
2596	netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2597	netdev_get_sopass(dev, wol->sopass);
2598	spin_unlock_irq(&np->lock);
2599}
2600
2601static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2602{
2603	struct netdev_private *np = netdev_priv(dev);
2604	int res;
2605	spin_lock_irq(&np->lock);
2606	netdev_set_wol(dev, wol->wolopts);
2607	res = netdev_set_sopass(dev, wol->sopass);
2608	spin_unlock_irq(&np->lock);
2609	return res;
2610}
2611
2612static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2613{
2614	struct netdev_private *np = netdev_priv(dev);
2615	regs->version = NATSEMI_REGS_VER;
2616	spin_lock_irq(&np->lock);
2617	netdev_get_regs(dev, buf);
2618	spin_unlock_irq(&np->lock);
2619}
2620
2621static u32 get_msglevel(struct net_device *dev)
2622{
2623	struct netdev_private *np = netdev_priv(dev);
2624	return np->msg_enable;
2625}
2626
2627static void set_msglevel(struct net_device *dev, u32 val)
2628{
2629	struct netdev_private *np = netdev_priv(dev);
2630	np->msg_enable = val;
2631}
2632
2633static int nway_reset(struct net_device *dev)
2634{
2635	int tmp;
2636	int r = -EINVAL;
2637	/* if autoneg is off, it's an error */
2638	tmp = mdio_read(dev, MII_BMCR);
2639	if (tmp & BMCR_ANENABLE) {
2640		tmp |= (BMCR_ANRESTART);
2641		mdio_write(dev, MII_BMCR, tmp);
2642		r = 0;
2643	}
2644	return r;
2645}
2646
2647static u32 get_link(struct net_device *dev)
2648{
2649	/* LSTATUS is latched low until a read - so read twice */
2650	mdio_read(dev, MII_BMSR);
2651	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2652}
2653
2654static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2655{
2656	struct netdev_private *np = netdev_priv(dev);
2657	u8 *eebuf;
2658	int res;
2659
2660	eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2661	if (!eebuf)
2662		return -ENOMEM;
2663
2664	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2665	spin_lock_irq(&np->lock);
2666	res = netdev_get_eeprom(dev, eebuf);
2667	spin_unlock_irq(&np->lock);
2668	if (!res)
2669		memcpy(data, eebuf+eeprom->offset, eeprom->len);
2670	kfree(eebuf);
2671	return res;
2672}
2673
2674static const struct ethtool_ops ethtool_ops = {
2675	.get_drvinfo = get_drvinfo,
2676	.get_regs_len = get_regs_len,
2677	.get_eeprom_len = get_eeprom_len,
2678	.get_settings = get_settings,
2679	.set_settings = set_settings,
2680	.get_wol = get_wol,
2681	.set_wol = set_wol,
2682	.get_regs = get_regs,
2683	.get_msglevel = get_msglevel,
2684	.set_msglevel = set_msglevel,
2685	.nway_reset = nway_reset,
2686	.get_link = get_link,
2687	.get_eeprom = get_eeprom,
2688};
2689
2690static int netdev_set_wol(struct net_device *dev, u32 newval)
2691{
2692	struct netdev_private *np = netdev_priv(dev);
2693	void __iomem * ioaddr = ns_ioaddr(dev);
2694	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2695
2696	/* translate to bitmasks this chip understands */
2697	if (newval & WAKE_PHY)
2698		data |= WakePhy;
2699	if (newval & WAKE_UCAST)
2700		data |= WakeUnicast;
2701	if (newval & WAKE_MCAST)
2702		data |= WakeMulticast;
2703	if (newval & WAKE_BCAST)
2704		data |= WakeBroadcast;
2705	if (newval & WAKE_ARP)
2706		data |= WakeArp;
2707	if (newval & WAKE_MAGIC)
2708		data |= WakeMagic;
2709	if (np->srr >= SRR_DP83815_D) {
2710		if (newval & WAKE_MAGICSECURE) {
2711			data |= WakeMagicSecure;
2712		}
2713	}
2714
2715	writel(data, ioaddr + WOLCmd);
2716
2717	return 0;
2718}
2719
2720static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2721{
2722	struct netdev_private *np = netdev_priv(dev);
2723	void __iomem * ioaddr = ns_ioaddr(dev);
2724	u32 regval = readl(ioaddr + WOLCmd);
2725
2726	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2727			| WAKE_ARP | WAKE_MAGIC);
2728
2729	if (np->srr >= SRR_DP83815_D) {
2730		/* SOPASS works on revD and higher */
2731		*supported |= WAKE_MAGICSECURE;
2732	}
2733	*cur = 0;
2734
2735	/* translate from chip bitmasks */
2736	if (regval & WakePhy)
2737		*cur |= WAKE_PHY;
2738	if (regval & WakeUnicast)
2739		*cur |= WAKE_UCAST;
2740	if (regval & WakeMulticast)
2741		*cur |= WAKE_MCAST;
2742	if (regval & WakeBroadcast)
2743		*cur |= WAKE_BCAST;
2744	if (regval & WakeArp)
2745		*cur |= WAKE_ARP;
2746	if (regval & WakeMagic)
2747		*cur |= WAKE_MAGIC;
2748	if (regval & WakeMagicSecure) {
2749		/* this can be on in revC, but it's broken */
2750		*cur |= WAKE_MAGICSECURE;
2751	}
2752
2753	return 0;
2754}
2755
2756static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2757{
2758	struct netdev_private *np = netdev_priv(dev);
2759	void __iomem * ioaddr = ns_ioaddr(dev);
2760	u16 *sval = (u16 *)newval;
2761	u32 addr;
2762
2763	if (np->srr < SRR_DP83815_D) {
2764		return 0;
2765	}
2766
2767	/* enable writing to these registers by disabling the RX filter */
2768	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2769	addr &= ~RxFilterEnable;
2770	writel(addr, ioaddr + RxFilterAddr);
2771
2772	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2773	writel(addr | 0xa, ioaddr + RxFilterAddr);
2774	writew(sval[0], ioaddr + RxFilterData);
2775
2776	writel(addr | 0xc, ioaddr + RxFilterAddr);
2777	writew(sval[1], ioaddr + RxFilterData);
2778
2779	writel(addr | 0xe, ioaddr + RxFilterAddr);
2780	writew(sval[2], ioaddr + RxFilterData);
2781
2782	/* re-enable the RX filter */
2783	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2784
2785	return 0;
2786}
2787
2788static int netdev_get_sopass(struct net_device *dev, u8 *data)
2789{
2790	struct netdev_private *np = netdev_priv(dev);
2791	void __iomem * ioaddr = ns_ioaddr(dev);
2792	u16 *sval = (u16 *)data;
2793	u32 addr;
2794
2795	if (np->srr < SRR_DP83815_D) {
2796		sval[0] = sval[1] = sval[2] = 0;
2797		return 0;
2798	}
2799
2800	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2801	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2802
2803	writel(addr | 0xa, ioaddr + RxFilterAddr);
2804	sval[0] = readw(ioaddr + RxFilterData);
2805
2806	writel(addr | 0xc, ioaddr + RxFilterAddr);
2807	sval[1] = readw(ioaddr + RxFilterData);
2808
2809	writel(addr | 0xe, ioaddr + RxFilterAddr);
2810	sval[2] = readw(ioaddr + RxFilterData);
2811
2812	writel(addr, ioaddr + RxFilterAddr);
2813
2814	return 0;
2815}
2816
2817static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2818{
2819	struct netdev_private *np = netdev_priv(dev);
2820	u32 tmp;
2821
2822	ecmd->port        = dev->if_port;
2823	ethtool_cmd_speed_set(ecmd, np->speed);
2824	ecmd->duplex      = np->duplex;
2825	ecmd->autoneg     = np->autoneg;
2826	ecmd->advertising = 0;
2827	if (np->advertising & ADVERTISE_10HALF)
2828		ecmd->advertising |= ADVERTISED_10baseT_Half;
2829	if (np->advertising & ADVERTISE_10FULL)
2830		ecmd->advertising |= ADVERTISED_10baseT_Full;
2831	if (np->advertising & ADVERTISE_100HALF)
2832		ecmd->advertising |= ADVERTISED_100baseT_Half;
2833	if (np->advertising & ADVERTISE_100FULL)
2834		ecmd->advertising |= ADVERTISED_100baseT_Full;
2835	ecmd->supported   = (SUPPORTED_Autoneg |
2836		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2837		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2838		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2839	ecmd->phy_address = np->phy_addr_external;
2840	/*
2841	 * We intentionally report the phy address of the external
2842	 * phy, even if the internal phy is used. This is necessary
2843	 * to work around a deficiency of the ethtool interface:
2844	 * It's only possible to query the settings of the active
2845	 * port. Therefore
2846	 * # ethtool -s ethX port mii
2847	 * actually sends an ioctl to switch to port mii with the
2848	 * settings that are used for the current active port.
2849	 * If we would report a different phy address in this
2850	 * command, then
2851	 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2852	 * would unintentionally change the phy address.
2853	 *
2854	 * Fortunately the phy address doesn't matter with the
2855	 * internal phy...
2856	 */
2857
2858	/* set information based on active port type */
2859	switch (ecmd->port) {
2860	default:
2861	case PORT_TP:
2862		ecmd->advertising |= ADVERTISED_TP;
2863		ecmd->transceiver = XCVR_INTERNAL;
2864		break;
2865	case PORT_MII:
2866		ecmd->advertising |= ADVERTISED_MII;
2867		ecmd->transceiver = XCVR_EXTERNAL;
2868		break;
2869	case PORT_FIBRE:
2870		ecmd->advertising |= ADVERTISED_FIBRE;
2871		ecmd->transceiver = XCVR_EXTERNAL;
2872		break;
2873	}
2874
2875	/* if autonegotiation is on, try to return the active speed/duplex */
2876	if (ecmd->autoneg == AUTONEG_ENABLE) {
2877		ecmd->advertising |= ADVERTISED_Autoneg;
2878		tmp = mii_nway_result(
2879			np->advertising & mdio_read(dev, MII_LPA));
2880		if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2881			ethtool_cmd_speed_set(ecmd, SPEED_100);
2882		else
2883			ethtool_cmd_speed_set(ecmd, SPEED_10);
2884		if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2885			ecmd->duplex = DUPLEX_FULL;
2886		else
2887			ecmd->duplex = DUPLEX_HALF;
2888	}
2889
2890	/* ignore maxtxpkt, maxrxpkt for now */
2891
2892	return 0;
2893}
2894
2895static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2896{
2897	struct netdev_private *np = netdev_priv(dev);
2898
2899	if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2900		return -EINVAL;
2901	if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2902		return -EINVAL;
2903	if (ecmd->autoneg == AUTONEG_ENABLE) {
2904		if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2905					  ADVERTISED_10baseT_Full |
2906					  ADVERTISED_100baseT_Half |
2907					  ADVERTISED_100baseT_Full)) == 0) {
2908			return -EINVAL;
2909		}
2910	} else if (ecmd->autoneg == AUTONEG_DISABLE) {
2911		u32 speed = ethtool_cmd_speed(ecmd);
2912		if (speed != SPEED_10 && speed != SPEED_100)
2913			return -EINVAL;
2914		if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2915			return -EINVAL;
2916	} else {
2917		return -EINVAL;
2918	}
2919
2920	/*
2921	 * If we're ignoring the PHY then autoneg and the internal
2922	 * transceiver are really not going to work so don't let the
2923	 * user select them.
2924	 */
2925	if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2926			       ecmd->port == PORT_TP))
2927		return -EINVAL;
2928
2929	/*
2930	 * maxtxpkt, maxrxpkt: ignored for now.
2931	 *
2932	 * transceiver:
2933	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2934	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2935	 * selects based on ecmd->port.
2936	 *
2937	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2938	 * phys that are connected to the mii bus. It's used to apply fibre
2939	 * specific updates.
2940	 */
2941
2942	/* WHEW! now lets bang some bits */
2943
2944	/* save the parms */
2945	dev->if_port          = ecmd->port;
2946	np->autoneg           = ecmd->autoneg;
2947	np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2948	if (np->autoneg == AUTONEG_ENABLE) {
2949		/* advertise only what has been requested */
2950		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2951		if (ecmd->advertising & ADVERTISED_10baseT_Half)
2952			np->advertising |= ADVERTISE_10HALF;
2953		if (ecmd->advertising & ADVERTISED_10baseT_Full)
2954			np->advertising |= ADVERTISE_10FULL;
2955		if (ecmd->advertising & ADVERTISED_100baseT_Half)
2956			np->advertising |= ADVERTISE_100HALF;
2957		if (ecmd->advertising & ADVERTISED_100baseT_Full)
2958			np->advertising |= ADVERTISE_100FULL;
2959	} else {
2960		np->speed  = ethtool_cmd_speed(ecmd);
2961		np->duplex = ecmd->duplex;
2962		/* user overriding the initial full duplex parm? */
2963		if (np->duplex == DUPLEX_HALF)
2964			np->full_duplex = 0;
2965	}
2966
2967	/* get the right phy enabled */
2968	if (ecmd->port == PORT_TP)
2969		switch_port_internal(dev);
2970	else
2971		switch_port_external(dev);
2972
2973	/* set parms and see how this affected our link status */
2974	init_phy_fixup(dev);
2975	check_link(dev);
2976	return 0;
2977}
2978
2979static int netdev_get_regs(struct net_device *dev, u8 *buf)
2980{
2981	int i;
2982	int j;
2983	u32 rfcr;
2984	u32 *rbuf = (u32 *)buf;
2985	void __iomem * ioaddr = ns_ioaddr(dev);
2986
2987	/* read non-mii page 0 of registers */
2988	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2989		rbuf[i] = readl(ioaddr + i*4);
2990	}
2991
2992	/* read current mii registers */
2993	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2994		rbuf[i] = mdio_read(dev, i & 0x1f);
2995
2996	/* read only the 'magic' registers from page 1 */
2997	writew(1, ioaddr + PGSEL);
2998	rbuf[i++] = readw(ioaddr + PMDCSR);
2999	rbuf[i++] = readw(ioaddr + TSTDAT);
3000	rbuf[i++] = readw(ioaddr + DSPCFG);
3001	rbuf[i++] = readw(ioaddr + SDCFG);
3002	writew(0, ioaddr + PGSEL);
3003
3004	/* read RFCR indexed registers */
3005	rfcr = readl(ioaddr + RxFilterAddr);
3006	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3007		writel(j*2, ioaddr + RxFilterAddr);
3008		rbuf[i++] = readw(ioaddr + RxFilterData);
3009	}
3010	writel(rfcr, ioaddr + RxFilterAddr);
3011
3012	/* the interrupt status is clear-on-read - see if we missed any */
3013	if (rbuf[4] & rbuf[5]) {
3014		printk(KERN_WARNING
3015			"%s: shoot, we dropped an interrupt (%#08x)\n",
3016			dev->name, rbuf[4] & rbuf[5]);
3017	}
3018
3019	return 0;
3020}
3021
3022#define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3023			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3024			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3025			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3026			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3027			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3028			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3029			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3030
3031static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3032{
3033	int i;
3034	u16 *ebuf = (u16 *)buf;
3035	void __iomem * ioaddr = ns_ioaddr(dev);
3036	struct netdev_private *np = netdev_priv(dev);
3037
3038	/* eeprom_read reads 16 bits, and indexes by 16 bits */
3039	for (i = 0; i < np->eeprom_size/2; i++) {
3040		ebuf[i] = eeprom_read(ioaddr, i);
3041		/* The EEPROM itself stores data bit-swapped, but eeprom_read
3042		 * reads it back "sanely". So we swap it back here in order to
3043		 * present it to userland as it is stored. */
3044		ebuf[i] = SWAP_BITS(ebuf[i]);
3045	}
3046	return 0;
3047}
3048
3049static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3050{
3051	struct mii_ioctl_data *data = if_mii(rq);
3052	struct netdev_private *np = netdev_priv(dev);
3053
3054	switch(cmd) {
3055	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
3056		data->phy_id = np->phy_addr_external;
3057		/* Fall Through */
3058
3059	case SIOCGMIIREG:		/* Read MII PHY register. */
3060		/* The phy_id is not enough to uniquely identify
3061		 * the intended target. Therefore the command is sent to
3062		 * the given mii on the current port.
3063		 */
3064		if (dev->if_port == PORT_TP) {
3065			if ((data->phy_id & 0x1f) == np->phy_addr_external)
3066				data->val_out = mdio_read(dev,
3067							data->reg_num & 0x1f);
3068			else
3069				data->val_out = 0;
3070		} else {
3071			move_int_phy(dev, data->phy_id & 0x1f);
3072			data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3073							data->reg_num & 0x1f);
3074		}
3075		return 0;
3076
3077	case SIOCSMIIREG:		/* Write MII PHY register. */
3078		if (dev->if_port == PORT_TP) {
3079			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3080 				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3081					np->advertising = data->val_in;
3082				mdio_write(dev, data->reg_num & 0x1f,
3083							data->val_in);
3084			}
3085		} else {
3086			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3087 				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3088					np->advertising = data->val_in;
3089			}
3090			move_int_phy(dev, data->phy_id & 0x1f);
3091			miiport_write(dev, data->phy_id & 0x1f,
3092						data->reg_num & 0x1f,
3093						data->val_in);
3094		}
3095		return 0;
3096	default:
3097		return -EOPNOTSUPP;
3098	}
3099}
3100
3101static void enable_wol_mode(struct net_device *dev, int enable_intr)
3102{
3103	void __iomem * ioaddr = ns_ioaddr(dev);
3104	struct netdev_private *np = netdev_priv(dev);
3105
3106	if (netif_msg_wol(np))
3107		printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3108			dev->name);
3109
3110	/* For WOL we must restart the rx process in silent mode.
3111	 * Write NULL to the RxRingPtr. Only possible if
3112	 * rx process is stopped
3113	 */
3114	writel(0, ioaddr + RxRingPtr);
3115
3116	/* read WoL status to clear */
3117	readl(ioaddr + WOLCmd);
3118
3119	/* PME on, clear status */
3120	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3121
3122	/* and restart the rx process */
3123	writel(RxOn, ioaddr + ChipCmd);
3124
3125	if (enable_intr) {
3126		/* enable the WOL interrupt.
3127		 * Could be used to send a netlink message.
3128		 */
3129		writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3130		natsemi_irq_enable(dev);
3131	}
3132}
3133
3134static int netdev_close(struct net_device *dev)
3135{
3136	void __iomem * ioaddr = ns_ioaddr(dev);
3137	struct netdev_private *np = netdev_priv(dev);
3138
3139	if (netif_msg_ifdown(np))
3140		printk(KERN_DEBUG
3141			"%s: Shutting down ethercard, status was %#04x.\n",
3142			dev->name, (int)readl(ioaddr + ChipCmd));
3143	if (netif_msg_pktdata(np))
3144		printk(KERN_DEBUG
3145			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3146			dev->name, np->cur_tx, np->dirty_tx,
3147			np->cur_rx, np->dirty_rx);
3148
3149	napi_disable(&np->napi);
3150
3151	/*
3152	 * FIXME: what if someone tries to close a device
3153	 * that is suspended?
3154	 * Should we reenable the nic to switch to
3155	 * the final WOL settings?
3156	 */
3157
3158	del_timer_sync(&np->timer);
3159	disable_irq(dev->irq);
3160	spin_lock_irq(&np->lock);
3161	natsemi_irq_disable(dev);
3162	np->hands_off = 1;
3163	spin_unlock_irq(&np->lock);
3164	enable_irq(dev->irq);
3165
3166	free_irq(dev->irq, dev);
3167
3168	/* Interrupt disabled, interrupt handler released,
3169	 * queue stopped, timer deleted, rtnl_lock held
3170	 * All async codepaths that access the driver are disabled.
3171	 */
3172	spin_lock_irq(&np->lock);
3173	np->hands_off = 0;
3174	readl(ioaddr + IntrMask);
3175	readw(ioaddr + MIntrStatus);
3176
3177	/* Freeze Stats */
3178	writel(StatsFreeze, ioaddr + StatsCtrl);
3179
3180	/* Stop the chip's Tx and Rx processes. */
3181	natsemi_stop_rxtx(dev);
3182
3183	__get_stats(dev);
3184	spin_unlock_irq(&np->lock);
3185
3186	/* clear the carrier last - an interrupt could reenable it otherwise */
3187	netif_carrier_off(dev);
3188	netif_stop_queue(dev);
3189
3190	dump_ring(dev);
3191	drain_ring(dev);
3192	free_ring(dev);
3193
3194	{
3195		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3196		if (wol) {
3197			/* restart the NIC in WOL mode.
3198			 * The nic must be stopped for this.
3199			 */
3200			enable_wol_mode(dev, 0);
3201		} else {
3202			/* Restore PME enable bit unmolested */
3203			writel(np->SavedClkRun, ioaddr + ClkRun);
3204		}
3205	}
3206	return 0;
3207}
3208
3209
3210static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3211{
3212	struct net_device *dev = pci_get_drvdata(pdev);
3213	void __iomem * ioaddr = ns_ioaddr(dev);
3214
3215	NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3216	unregister_netdev (dev);
3217	pci_release_regions (pdev);
3218	iounmap(ioaddr);
3219	free_netdev (dev);
3220	pci_set_drvdata(pdev, NULL);
3221}
3222
3223#ifdef CONFIG_PM
3224
3225/*
3226 * The ns83815 chip doesn't have explicit RxStop bits.
3227 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3228 * of the nic, thus this function must be very careful:
3229 *
3230 * suspend/resume synchronization:
3231 * entry points:
3232 *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3233 *   start_tx, ns_tx_timeout
3234 *
3235 * No function accesses the hardware without checking np->hands_off.
3236 *	the check occurs under spin_lock_irq(&np->lock);
3237 * exceptions:
3238 *	* netdev_ioctl: noncritical access.
3239 *	* netdev_open: cannot happen due to the device_detach
3240 *	* netdev_close: doesn't hurt.
3241 *	* netdev_timer: timer stopped by natsemi_suspend.
3242 *	* intr_handler: doesn't acquire the spinlock. suspend calls
3243 *		disable_irq() to enforce synchronization.
3244 *      * natsemi_poll: checks before reenabling interrupts.  suspend
3245 *              sets hands_off, disables interrupts and then waits with
3246 *              napi_disable().
3247 *
3248 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3249 */
3250
3251static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3252{
3253	struct net_device *dev = pci_get_drvdata (pdev);
3254	struct netdev_private *np = netdev_priv(dev);
3255	void __iomem * ioaddr = ns_ioaddr(dev);
3256
3257	rtnl_lock();
3258	if (netif_running (dev)) {
3259		del_timer_sync(&np->timer);
3260
3261		disable_irq(dev->irq);
3262		spin_lock_irq(&np->lock);
3263
3264		natsemi_irq_disable(dev);
3265		np->hands_off = 1;
3266		natsemi_stop_rxtx(dev);
3267		netif_stop_queue(dev);
3268
3269		spin_unlock_irq(&np->lock);
3270		enable_irq(dev->irq);
3271
3272		napi_disable(&np->napi);
3273
3274		/* Update the error counts. */
3275		__get_stats(dev);
3276
3277		/* pci_power_off(pdev, -1); */
3278		drain_ring(dev);
3279		{
3280			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3281			/* Restore PME enable bit */
3282			if (wol) {
3283				/* restart the NIC in WOL mode.
3284				 * The nic must be stopped for this.
3285				 * FIXME: use the WOL interrupt
3286				 */
3287				enable_wol_mode(dev, 0);
3288			} else {
3289				/* Restore PME enable bit unmolested */
3290				writel(np->SavedClkRun, ioaddr + ClkRun);
3291			}
3292		}
3293	}
3294	netif_device_detach(dev);
3295	rtnl_unlock();
3296	return 0;
3297}
3298
3299
3300static int natsemi_resume (struct pci_dev *pdev)
3301{
3302	struct net_device *dev = pci_get_drvdata (pdev);
3303	struct netdev_private *np = netdev_priv(dev);
3304	int ret = 0;
3305
3306	rtnl_lock();
3307	if (netif_device_present(dev))
3308		goto out;
3309	if (netif_running(dev)) {
3310		BUG_ON(!np->hands_off);
3311		ret = pci_enable_device(pdev);
3312		if (ret < 0) {
3313			dev_err(&pdev->dev,
3314				"pci_enable_device() failed: %d\n", ret);
3315			goto out;
3316		}
3317	/*	pci_power_on(pdev); */
3318
3319		napi_enable(&np->napi);
3320
3321		natsemi_reset(dev);
3322		init_ring(dev);
3323		disable_irq(dev->irq);
3324		spin_lock_irq(&np->lock);
3325		np->hands_off = 0;
3326		init_registers(dev);
3327		netif_device_attach(dev);
3328		spin_unlock_irq(&np->lock);
3329		enable_irq(dev->irq);
3330
3331		mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3332	}
3333	netif_device_attach(dev);
3334out:
3335	rtnl_unlock();
3336	return ret;
3337}
3338
3339#endif /* CONFIG_PM */
3340
3341static struct pci_driver natsemi_driver = {
3342	.name		= DRV_NAME,
3343	.id_table	= natsemi_pci_tbl,
3344	.probe		= natsemi_probe1,
3345	.remove		= __devexit_p(natsemi_remove1),
3346#ifdef CONFIG_PM
3347	.suspend	= natsemi_suspend,
3348	.resume		= natsemi_resume,
3349#endif
3350};
3351
3352static int __init natsemi_init_mod (void)
3353{
3354/* when a module, this is printed whether or not devices are found in probe */
3355#ifdef MODULE
3356	printk(version);
3357#endif
3358
3359	return pci_register_driver(&natsemi_driver);
3360}
3361
3362static void __exit natsemi_exit_mod (void)
3363{
3364	pci_unregister_driver (&natsemi_driver);
3365}
3366
3367module_init(natsemi_init_mod);
3368module_exit(natsemi_exit_mod);
3369
3370