1/* epic100.c: A SMC 83c170 EPIC/100 Fast Ethernet driver for Linux. */
2/*
3	Written/copyright 1997-2001 by Donald Becker.
4
5	This software may be used and distributed according to the terms of
6	the GNU General Public License (GPL), incorporated herein by reference.
7	Drivers based on or derived from this code fall under the GPL and must
8	retain the authorship, copyright and license notice.  This file is not
9	a complete program and may only be used when the entire operating
10	system is licensed under the GPL.
11
12	This driver is for the SMC83c170/175 "EPIC" series, as used on the
13	SMC EtherPower II 9432 PCI adapter, and several CardBus cards.
14
15	The author may be reached as becker@scyld.com, or C/O
16	Scyld Computing Corporation
17	410 Severn Ave., Suite 210
18	Annapolis MD 21403
19
20	Information and updates available at
21	http://www.scyld.com/network/epic100.html
22	[this link no longer provides anything useful -jgarzik]
23
24	---------------------------------------------------------------------
25
26*/
27
28#define DRV_NAME        "epic100"
29#define DRV_VERSION     "2.1"
30#define DRV_RELDATE     "Sept 11, 2006"
31
32/* The user-configurable values.
33   These may be modified when a driver module is loaded.*/
34
35static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
36
37/* Used to pass the full-duplex flag, etc. */
38#define MAX_UNITS 8		/* More are supported, limit only on options */
39static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
40static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
41
42/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
43   Setting to > 1518 effectively disables this feature. */
44static int rx_copybreak;
45
46/* Operational parameters that are set at compile time. */
47
48/* Keep the ring sizes a power of two for operational efficiency.
49   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
50   Making the Tx ring too large decreases the effectiveness of channel
51   bonding and packet priority.
52   There are no ill effects from too-large receive rings. */
53#define TX_RING_SIZE	256
54#define TX_QUEUE_LEN	240		/* Limit ring entries actually used.  */
55#define RX_RING_SIZE	256
56#define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct epic_tx_desc)
57#define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct epic_rx_desc)
58
59/* Operational parameters that usually are not changed. */
60/* Time in jiffies before concluding the transmitter is hung. */
61#define TX_TIMEOUT  (2*HZ)
62
63#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
64
65/* Bytes transferred to chip before transmission starts. */
66/* Initial threshold, increased on underflow, rounded down to 4 byte units. */
67#define TX_FIFO_THRESH 256
68#define RX_FIFO_THRESH 1		/* 0-3, 0==32, 64,96, or 3==128 bytes  */
69
70#include <linux/module.h>
71#include <linux/kernel.h>
72#include <linux/string.h>
73#include <linux/timer.h>
74#include <linux/errno.h>
75#include <linux/ioport.h>
76#include <linux/interrupt.h>
77#include <linux/pci.h>
78#include <linux/delay.h>
79#include <linux/netdevice.h>
80#include <linux/etherdevice.h>
81#include <linux/skbuff.h>
82#include <linux/init.h>
83#include <linux/spinlock.h>
84#include <linux/ethtool.h>
85#include <linux/mii.h>
86#include <linux/crc32.h>
87#include <linux/bitops.h>
88#include <asm/io.h>
89#include <asm/uaccess.h>
90#include <asm/byteorder.h>
91
92/* These identify the driver base version and may not be removed. */
93static char version[] __devinitdata =
94DRV_NAME ".c:v1.11 1/7/2001 Written by Donald Becker <becker@scyld.com>\n";
95static char version2[] __devinitdata =
96"  (unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
97
98MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
99MODULE_DESCRIPTION("SMC 83c170 EPIC series Ethernet driver");
100MODULE_LICENSE("GPL");
101
102module_param(debug, int, 0);
103module_param(rx_copybreak, int, 0);
104module_param_array(options, int, NULL, 0);
105module_param_array(full_duplex, int, NULL, 0);
106MODULE_PARM_DESC(debug, "EPIC/100 debug level (0-5)");
107MODULE_PARM_DESC(options, "EPIC/100: Bits 0-3: media type, bit 4: full duplex");
108MODULE_PARM_DESC(rx_copybreak, "EPIC/100 copy breakpoint for copy-only-tiny-frames");
109MODULE_PARM_DESC(full_duplex, "EPIC/100 full duplex setting(s) (1)");
110
111/*
112				Theory of Operation
113
114I. Board Compatibility
115
116This device driver is designed for the SMC "EPIC/100", the SMC
117single-chip Ethernet controllers for PCI.  This chip is used on
118the SMC EtherPower II boards.
119
120II. Board-specific settings
121
122PCI bus devices are configured by the system at boot time, so no jumpers
123need to be set on the board.  The system BIOS will assign the
124PCI INTA signal to a (preferably otherwise unused) system IRQ line.
125Note: Kernel versions earlier than 1.3.73 do not support shared PCI
126interrupt lines.
127
128III. Driver operation
129
130IIIa. Ring buffers
131
132IVb. References
133
134http://www.smsc.com/media/Downloads_Public/discontinued/83c171.pdf
135http://www.smsc.com/media/Downloads_Public/discontinued/83c175.pdf
136http://scyld.com/expert/NWay.html
137http://www.national.com/pf/DP/DP83840A.html
138
139IVc. Errata
140
141*/
142
143
144enum chip_capability_flags { MII_PWRDWN=1, TYPE2_INTR=2, NO_MII=4 };
145
146#define EPIC_TOTAL_SIZE 0x100
147#define USE_IO_OPS 1
148
149typedef enum {
150	SMSC_83C170_0,
151	SMSC_83C170,
152	SMSC_83C175,
153} chip_t;
154
155
156struct epic_chip_info {
157	const char *name;
158        int drv_flags;                          /* Driver use, intended as capability flags. */
159};
160
161
162/* indexed by chip_t */
163static const struct epic_chip_info pci_id_tbl[] = {
164	{ "SMSC EPIC/100 83c170",	TYPE2_INTR | NO_MII | MII_PWRDWN },
165	{ "SMSC EPIC/100 83c170",	TYPE2_INTR },
166	{ "SMSC EPIC/C 83c175",		TYPE2_INTR | MII_PWRDWN },
167};
168
169
170static DEFINE_PCI_DEVICE_TABLE(epic_pci_tbl) = {
171	{ 0x10B8, 0x0005, 0x1092, 0x0AB4, 0, 0, SMSC_83C170_0 },
172	{ 0x10B8, 0x0005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, SMSC_83C170 },
173	{ 0x10B8, 0x0006, PCI_ANY_ID, PCI_ANY_ID,
174	  PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, SMSC_83C175 },
175	{ 0,}
176};
177MODULE_DEVICE_TABLE (pci, epic_pci_tbl);
178
179
180#ifndef USE_IO_OPS
181#undef inb
182#undef inw
183#undef inl
184#undef outb
185#undef outw
186#undef outl
187#define inb readb
188#define inw readw
189#define inl readl
190#define outb writeb
191#define outw writew
192#define outl writel
193#endif
194
195/* Offsets to registers, using the (ugh) SMC names. */
196enum epic_registers {
197  COMMAND=0, INTSTAT=4, INTMASK=8, GENCTL=0x0C, NVCTL=0x10, EECTL=0x14,
198  PCIBurstCnt=0x18,
199  TEST1=0x1C, CRCCNT=0x20, ALICNT=0x24, MPCNT=0x28,	/* Rx error counters. */
200  MIICtrl=0x30, MIIData=0x34, MIICfg=0x38,
201  LAN0=64,						/* MAC address. */
202  MC0=80,						/* Multicast filter table. */
203  RxCtrl=96, TxCtrl=112, TxSTAT=0x74,
204  PRxCDAR=0x84, RxSTAT=0xA4, EarlyRx=0xB0, PTxCDAR=0xC4, TxThresh=0xDC,
205};
206
207/* Interrupt register bits, using my own meaningful names. */
208enum IntrStatus {
209	TxIdle=0x40000, RxIdle=0x20000, IntrSummary=0x010000,
210	PCIBusErr170=0x7000, PCIBusErr175=0x1000, PhyEvent175=0x8000,
211	RxStarted=0x0800, RxEarlyWarn=0x0400, CntFull=0x0200, TxUnderrun=0x0100,
212	TxEmpty=0x0080, TxDone=0x0020, RxError=0x0010,
213	RxOverflow=0x0008, RxFull=0x0004, RxHeader=0x0002, RxDone=0x0001,
214};
215enum CommandBits {
216	StopRx=1, StartRx=2, TxQueued=4, RxQueued=8,
217	StopTxDMA=0x20, StopRxDMA=0x40, RestartTx=0x80,
218};
219
220#define EpicRemoved	0xffffffff	/* Chip failed or removed (CardBus) */
221
222#define EpicNapiEvent	(TxEmpty | TxDone | \
223			 RxDone | RxStarted | RxEarlyWarn | RxOverflow | RxFull)
224#define EpicNormalEvent	(0x0000ffff & ~EpicNapiEvent)
225
226static const u16 media2miictl[16] = {
227	0, 0x0C00, 0x0C00, 0x2000,  0x0100, 0x2100, 0, 0,
228	0, 0, 0, 0,  0, 0, 0, 0 };
229
230/*
231 * The EPIC100 Rx and Tx buffer descriptors.  Note that these
232 * really ARE host-endian; it's not a misannotation.  We tell
233 * the card to byteswap them internally on big-endian hosts -
234 * look for #ifdef __BIG_ENDIAN in epic_open().
235 */
236
237struct epic_tx_desc {
238	u32 txstatus;
239	u32 bufaddr;
240	u32 buflength;
241	u32 next;
242};
243
244struct epic_rx_desc {
245	u32 rxstatus;
246	u32 bufaddr;
247	u32 buflength;
248	u32 next;
249};
250
251enum desc_status_bits {
252	DescOwn=0x8000,
253};
254
255#define PRIV_ALIGN	15 	/* Required alignment mask */
256struct epic_private {
257	struct epic_rx_desc *rx_ring;
258	struct epic_tx_desc *tx_ring;
259	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
260	struct sk_buff* tx_skbuff[TX_RING_SIZE];
261	/* The addresses of receive-in-place skbuffs. */
262	struct sk_buff* rx_skbuff[RX_RING_SIZE];
263
264	dma_addr_t tx_ring_dma;
265	dma_addr_t rx_ring_dma;
266
267	/* Ring pointers. */
268	spinlock_t lock;				/* Group with Tx control cache line. */
269	spinlock_t napi_lock;
270	struct napi_struct napi;
271	unsigned int reschedule_in_poll;
272	unsigned int cur_tx, dirty_tx;
273
274	unsigned int cur_rx, dirty_rx;
275	u32 irq_mask;
276	unsigned int rx_buf_sz;				/* Based on MTU+slack. */
277
278	struct pci_dev *pci_dev;			/* PCI bus location. */
279	int chip_id, chip_flags;
280
281	struct timer_list timer;			/* Media selection timer. */
282	int tx_threshold;
283	unsigned char mc_filter[8];
284	signed char phys[4];				/* MII device addresses. */
285	u16 advertising;					/* NWay media advertisement */
286	int mii_phy_cnt;
287	struct mii_if_info mii;
288	unsigned int tx_full:1;				/* The Tx queue is full. */
289	unsigned int default_port:4;		/* Last dev->if_port value. */
290};
291
292static int epic_open(struct net_device *dev);
293static int read_eeprom(long ioaddr, int location);
294static int mdio_read(struct net_device *dev, int phy_id, int location);
295static void mdio_write(struct net_device *dev, int phy_id, int loc, int val);
296static void epic_restart(struct net_device *dev);
297static void epic_timer(unsigned long data);
298static void epic_tx_timeout(struct net_device *dev);
299static void epic_init_ring(struct net_device *dev);
300static netdev_tx_t epic_start_xmit(struct sk_buff *skb,
301				   struct net_device *dev);
302static int epic_rx(struct net_device *dev, int budget);
303static int epic_poll(struct napi_struct *napi, int budget);
304static irqreturn_t epic_interrupt(int irq, void *dev_instance);
305static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
306static const struct ethtool_ops netdev_ethtool_ops;
307static int epic_close(struct net_device *dev);
308static struct net_device_stats *epic_get_stats(struct net_device *dev);
309static void set_rx_mode(struct net_device *dev);
310
311static const struct net_device_ops epic_netdev_ops = {
312	.ndo_open		= epic_open,
313	.ndo_stop		= epic_close,
314	.ndo_start_xmit		= epic_start_xmit,
315	.ndo_tx_timeout 	= epic_tx_timeout,
316	.ndo_get_stats		= epic_get_stats,
317	.ndo_set_rx_mode	= set_rx_mode,
318	.ndo_do_ioctl 		= netdev_ioctl,
319	.ndo_change_mtu		= eth_change_mtu,
320	.ndo_set_mac_address 	= eth_mac_addr,
321	.ndo_validate_addr	= eth_validate_addr,
322};
323
324static int __devinit epic_init_one (struct pci_dev *pdev,
325				    const struct pci_device_id *ent)
326{
327	static int card_idx = -1;
328	long ioaddr;
329	int chip_idx = (int) ent->driver_data;
330	int irq;
331	struct net_device *dev;
332	struct epic_private *ep;
333	int i, ret, option = 0, duplex = 0;
334	void *ring_space;
335	dma_addr_t ring_dma;
336
337/* when built into the kernel, we only print version if device is found */
338#ifndef MODULE
339	static int printed_version;
340	if (!printed_version++)
341		printk(KERN_INFO "%s%s", version, version2);
342#endif
343
344	card_idx++;
345
346	ret = pci_enable_device(pdev);
347	if (ret)
348		goto out;
349	irq = pdev->irq;
350
351	if (pci_resource_len(pdev, 0) < EPIC_TOTAL_SIZE) {
352		dev_err(&pdev->dev, "no PCI region space\n");
353		ret = -ENODEV;
354		goto err_out_disable;
355	}
356
357	pci_set_master(pdev);
358
359	ret = pci_request_regions(pdev, DRV_NAME);
360	if (ret < 0)
361		goto err_out_disable;
362
363	ret = -ENOMEM;
364
365	dev = alloc_etherdev(sizeof (*ep));
366	if (!dev)
367		goto err_out_free_res;
368
369	SET_NETDEV_DEV(dev, &pdev->dev);
370
371#ifdef USE_IO_OPS
372	ioaddr = pci_resource_start (pdev, 0);
373#else
374	ioaddr = pci_resource_start (pdev, 1);
375	ioaddr = (long) pci_ioremap_bar(pdev, 1);
376	if (!ioaddr) {
377		dev_err(&pdev->dev, "ioremap failed\n");
378		goto err_out_free_netdev;
379	}
380#endif
381
382	pci_set_drvdata(pdev, dev);
383	ep = netdev_priv(dev);
384	ep->mii.dev = dev;
385	ep->mii.mdio_read = mdio_read;
386	ep->mii.mdio_write = mdio_write;
387	ep->mii.phy_id_mask = 0x1f;
388	ep->mii.reg_num_mask = 0x1f;
389
390	ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
391	if (!ring_space)
392		goto err_out_iounmap;
393	ep->tx_ring = ring_space;
394	ep->tx_ring_dma = ring_dma;
395
396	ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
397	if (!ring_space)
398		goto err_out_unmap_tx;
399	ep->rx_ring = ring_space;
400	ep->rx_ring_dma = ring_dma;
401
402	if (dev->mem_start) {
403		option = dev->mem_start;
404		duplex = (dev->mem_start & 16) ? 1 : 0;
405	} else if (card_idx >= 0  &&  card_idx < MAX_UNITS) {
406		if (options[card_idx] >= 0)
407			option = options[card_idx];
408		if (full_duplex[card_idx] >= 0)
409			duplex = full_duplex[card_idx];
410	}
411
412	dev->base_addr = ioaddr;
413	dev->irq = irq;
414
415	spin_lock_init(&ep->lock);
416	spin_lock_init(&ep->napi_lock);
417	ep->reschedule_in_poll = 0;
418
419	/* Bring the chip out of low-power mode. */
420	outl(0x4200, ioaddr + GENCTL);
421	/* Magic?!  If we don't set this bit the MII interface won't work. */
422	/* This magic is documented in SMSC app note 7.15 */
423	for (i = 16; i > 0; i--)
424		outl(0x0008, ioaddr + TEST1);
425
426	/* Turn on the MII transceiver. */
427	outl(0x12, ioaddr + MIICfg);
428	if (chip_idx == 1)
429		outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
430	outl(0x0200, ioaddr + GENCTL);
431
432	/* Note: the '175 does not have a serial EEPROM. */
433	for (i = 0; i < 3; i++)
434		((__le16 *)dev->dev_addr)[i] = cpu_to_le16(inw(ioaddr + LAN0 + i*4));
435
436	if (debug > 2) {
437		dev_printk(KERN_DEBUG, &pdev->dev, "EEPROM contents:\n");
438		for (i = 0; i < 64; i++)
439			printk(" %4.4x%s", read_eeprom(ioaddr, i),
440				   i % 16 == 15 ? "\n" : "");
441	}
442
443	ep->pci_dev = pdev;
444	ep->chip_id = chip_idx;
445	ep->chip_flags = pci_id_tbl[chip_idx].drv_flags;
446	ep->irq_mask =
447		(ep->chip_flags & TYPE2_INTR ?  PCIBusErr175 : PCIBusErr170)
448		 | CntFull | TxUnderrun | EpicNapiEvent;
449
450	/* Find the connected MII xcvrs.
451	   Doing this in open() would allow detecting external xcvrs later, but
452	   takes much time and no cards have external MII. */
453	{
454		int phy, phy_idx = 0;
455		for (phy = 1; phy < 32 && phy_idx < sizeof(ep->phys); phy++) {
456			int mii_status = mdio_read(dev, phy, MII_BMSR);
457			if (mii_status != 0xffff  &&  mii_status != 0x0000) {
458				ep->phys[phy_idx++] = phy;
459				dev_info(&pdev->dev,
460					"MII transceiver #%d control "
461					"%4.4x status %4.4x.\n",
462					phy, mdio_read(dev, phy, 0), mii_status);
463			}
464		}
465		ep->mii_phy_cnt = phy_idx;
466		if (phy_idx != 0) {
467			phy = ep->phys[0];
468			ep->mii.advertising = mdio_read(dev, phy, MII_ADVERTISE);
469			dev_info(&pdev->dev,
470				"Autonegotiation advertising %4.4x link "
471				   "partner %4.4x.\n",
472				   ep->mii.advertising, mdio_read(dev, phy, 5));
473		} else if ( ! (ep->chip_flags & NO_MII)) {
474			dev_warn(&pdev->dev,
475				"***WARNING***: No MII transceiver found!\n");
476			/* Use the known PHY address of the EPII. */
477			ep->phys[0] = 3;
478		}
479		ep->mii.phy_id = ep->phys[0];
480	}
481
482	/* Turn off the MII xcvr (175 only!), leave the chip in low-power mode. */
483	if (ep->chip_flags & MII_PWRDWN)
484		outl(inl(ioaddr + NVCTL) & ~0x483C, ioaddr + NVCTL);
485	outl(0x0008, ioaddr + GENCTL);
486
487	/* The lower four bits are the media type. */
488	if (duplex) {
489		ep->mii.force_media = ep->mii.full_duplex = 1;
490		dev_info(&pdev->dev, "Forced full duplex requested.\n");
491	}
492	dev->if_port = ep->default_port = option;
493
494	/* The Epic-specific entries in the device structure. */
495	dev->netdev_ops = &epic_netdev_ops;
496	dev->ethtool_ops = &netdev_ethtool_ops;
497	dev->watchdog_timeo = TX_TIMEOUT;
498	netif_napi_add(dev, &ep->napi, epic_poll, 64);
499
500	ret = register_netdev(dev);
501	if (ret < 0)
502		goto err_out_unmap_rx;
503
504	printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n",
505	       dev->name, pci_id_tbl[chip_idx].name, ioaddr, dev->irq,
506	       dev->dev_addr);
507
508out:
509	return ret;
510
511err_out_unmap_rx:
512	pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma);
513err_out_unmap_tx:
514	pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma);
515err_out_iounmap:
516#ifndef USE_IO_OPS
517	iounmap(ioaddr);
518err_out_free_netdev:
519#endif
520	free_netdev(dev);
521err_out_free_res:
522	pci_release_regions(pdev);
523err_out_disable:
524	pci_disable_device(pdev);
525	goto out;
526}
527
528/* Serial EEPROM section. */
529
530/*  EEPROM_Ctrl bits. */
531#define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
532#define EE_CS			0x02	/* EEPROM chip select. */
533#define EE_DATA_WRITE	0x08	/* EEPROM chip data in. */
534#define EE_WRITE_0		0x01
535#define EE_WRITE_1		0x09
536#define EE_DATA_READ	0x10	/* EEPROM chip data out. */
537#define EE_ENB			(0x0001 | EE_CS)
538
539/* Delay between EEPROM clock transitions.
540   This serves to flush the operation to the PCI bus.
541 */
542
543#define eeprom_delay()	inl(ee_addr)
544
545/* The EEPROM commands include the alway-set leading bit. */
546#define EE_WRITE_CMD	(5 << 6)
547#define EE_READ64_CMD	(6 << 6)
548#define EE_READ256_CMD	(6 << 8)
549#define EE_ERASE_CMD	(7 << 6)
550
551static void epic_disable_int(struct net_device *dev, struct epic_private *ep)
552{
553	long ioaddr = dev->base_addr;
554
555	outl(0x00000000, ioaddr + INTMASK);
556}
557
558static inline void __epic_pci_commit(long ioaddr)
559{
560#ifndef USE_IO_OPS
561	inl(ioaddr + INTMASK);
562#endif
563}
564
565static inline void epic_napi_irq_off(struct net_device *dev,
566				     struct epic_private *ep)
567{
568	long ioaddr = dev->base_addr;
569
570	outl(ep->irq_mask & ~EpicNapiEvent, ioaddr + INTMASK);
571	__epic_pci_commit(ioaddr);
572}
573
574static inline void epic_napi_irq_on(struct net_device *dev,
575				    struct epic_private *ep)
576{
577	long ioaddr = dev->base_addr;
578
579	/* No need to commit possible posted write */
580	outl(ep->irq_mask | EpicNapiEvent, ioaddr + INTMASK);
581}
582
583static int __devinit read_eeprom(long ioaddr, int location)
584{
585	int i;
586	int retval = 0;
587	long ee_addr = ioaddr + EECTL;
588	int read_cmd = location |
589		(inl(ee_addr) & 0x40 ? EE_READ64_CMD : EE_READ256_CMD);
590
591	outl(EE_ENB & ~EE_CS, ee_addr);
592	outl(EE_ENB, ee_addr);
593
594	/* Shift the read command bits out. */
595	for (i = 12; i >= 0; i--) {
596		short dataval = (read_cmd & (1 << i)) ? EE_WRITE_1 : EE_WRITE_0;
597		outl(EE_ENB | dataval, ee_addr);
598		eeprom_delay();
599		outl(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
600		eeprom_delay();
601	}
602	outl(EE_ENB, ee_addr);
603
604	for (i = 16; i > 0; i--) {
605		outl(EE_ENB | EE_SHIFT_CLK, ee_addr);
606		eeprom_delay();
607		retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0);
608		outl(EE_ENB, ee_addr);
609		eeprom_delay();
610	}
611
612	/* Terminate the EEPROM access. */
613	outl(EE_ENB & ~EE_CS, ee_addr);
614	return retval;
615}
616
617#define MII_READOP		1
618#define MII_WRITEOP		2
619static int mdio_read(struct net_device *dev, int phy_id, int location)
620{
621	long ioaddr = dev->base_addr;
622	int read_cmd = (phy_id << 9) | (location << 4) | MII_READOP;
623	int i;
624
625	outl(read_cmd, ioaddr + MIICtrl);
626	/* Typical operation takes 25 loops. */
627	for (i = 400; i > 0; i--) {
628		barrier();
629		if ((inl(ioaddr + MIICtrl) & MII_READOP) == 0) {
630			/* Work around read failure bug. */
631			if (phy_id == 1 && location < 6 &&
632			    inw(ioaddr + MIIData) == 0xffff) {
633				outl(read_cmd, ioaddr + MIICtrl);
634				continue;
635			}
636			return inw(ioaddr + MIIData);
637		}
638	}
639	return 0xffff;
640}
641
642static void mdio_write(struct net_device *dev, int phy_id, int loc, int value)
643{
644	long ioaddr = dev->base_addr;
645	int i;
646
647	outw(value, ioaddr + MIIData);
648	outl((phy_id << 9) | (loc << 4) | MII_WRITEOP, ioaddr + MIICtrl);
649	for (i = 10000; i > 0; i--) {
650		barrier();
651		if ((inl(ioaddr + MIICtrl) & MII_WRITEOP) == 0)
652			break;
653	}
654}
655
656
657static int epic_open(struct net_device *dev)
658{
659	struct epic_private *ep = netdev_priv(dev);
660	long ioaddr = dev->base_addr;
661	int i;
662	int retval;
663
664	/* Soft reset the chip. */
665	outl(0x4001, ioaddr + GENCTL);
666
667	napi_enable(&ep->napi);
668	if ((retval = request_irq(dev->irq, epic_interrupt, IRQF_SHARED, dev->name, dev))) {
669		napi_disable(&ep->napi);
670		return retval;
671	}
672
673	epic_init_ring(dev);
674
675	outl(0x4000, ioaddr + GENCTL);
676	/* This magic is documented in SMSC app note 7.15 */
677	for (i = 16; i > 0; i--)
678		outl(0x0008, ioaddr + TEST1);
679
680	/* Pull the chip out of low-power mode, enable interrupts, and set for
681	   PCI read multiple.  The MIIcfg setting and strange write order are
682	   required by the details of which bits are reset and the transceiver
683	   wiring on the Ositech CardBus card.
684	*/
685#if 0
686	outl(dev->if_port == 1 ? 0x13 : 0x12, ioaddr + MIICfg);
687#endif
688	if (ep->chip_flags & MII_PWRDWN)
689		outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
690
691	/* Tell the chip to byteswap descriptors on big-endian hosts */
692#ifdef __BIG_ENDIAN
693	outl(0x4432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
694	inl(ioaddr + GENCTL);
695	outl(0x0432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
696#else
697	outl(0x4412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
698	inl(ioaddr + GENCTL);
699	outl(0x0412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
700#endif
701
702	udelay(20); /* Looks like EPII needs that if you want reliable RX init. FIXME: pci posting bug? */
703
704	for (i = 0; i < 3; i++)
705		outl(le16_to_cpu(((__le16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4);
706
707	ep->tx_threshold = TX_FIFO_THRESH;
708	outl(ep->tx_threshold, ioaddr + TxThresh);
709
710	if (media2miictl[dev->if_port & 15]) {
711		if (ep->mii_phy_cnt)
712			mdio_write(dev, ep->phys[0], MII_BMCR, media2miictl[dev->if_port&15]);
713		if (dev->if_port == 1) {
714			if (debug > 1)
715				printk(KERN_INFO "%s: Using the 10base2 transceiver, MII "
716					   "status %4.4x.\n",
717					   dev->name, mdio_read(dev, ep->phys[0], MII_BMSR));
718		}
719	} else {
720		int mii_lpa = mdio_read(dev, ep->phys[0], MII_LPA);
721		if (mii_lpa != 0xffff) {
722			if ((mii_lpa & LPA_100FULL) || (mii_lpa & 0x01C0) == LPA_10FULL)
723				ep->mii.full_duplex = 1;
724			else if (! (mii_lpa & LPA_LPACK))
725				mdio_write(dev, ep->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
726			if (debug > 1)
727				printk(KERN_INFO "%s: Setting %s-duplex based on MII xcvr %d"
728					   " register read of %4.4x.\n", dev->name,
729					   ep->mii.full_duplex ? "full" : "half",
730					   ep->phys[0], mii_lpa);
731		}
732	}
733
734	outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
735	outl(ep->rx_ring_dma, ioaddr + PRxCDAR);
736	outl(ep->tx_ring_dma, ioaddr + PTxCDAR);
737
738	/* Start the chip's Rx process. */
739	set_rx_mode(dev);
740	outl(StartRx | RxQueued, ioaddr + COMMAND);
741
742	netif_start_queue(dev);
743
744	/* Enable interrupts by setting the interrupt mask. */
745	outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
746		 | CntFull | TxUnderrun
747		 | RxError | RxHeader | EpicNapiEvent, ioaddr + INTMASK);
748
749	if (debug > 1)
750		printk(KERN_DEBUG "%s: epic_open() ioaddr %lx IRQ %d status %4.4x "
751			   "%s-duplex.\n",
752			   dev->name, ioaddr, dev->irq, (int)inl(ioaddr + GENCTL),
753			   ep->mii.full_duplex ? "full" : "half");
754
755	/* Set the timer to switch to check for link beat and perhaps switch
756	   to an alternate media type. */
757	init_timer(&ep->timer);
758	ep->timer.expires = jiffies + 3*HZ;
759	ep->timer.data = (unsigned long)dev;
760	ep->timer.function = epic_timer;				/* timer handler */
761	add_timer(&ep->timer);
762
763	return 0;
764}
765
766/* Reset the chip to recover from a PCI transaction error.
767   This may occur at interrupt time. */
768static void epic_pause(struct net_device *dev)
769{
770	long ioaddr = dev->base_addr;
771
772	netif_stop_queue (dev);
773
774	/* Disable interrupts by clearing the interrupt mask. */
775	outl(0x00000000, ioaddr + INTMASK);
776	/* Stop the chip's Tx and Rx DMA processes. */
777	outw(StopRx | StopTxDMA | StopRxDMA, ioaddr + COMMAND);
778
779	/* Update the error counts. */
780	if (inw(ioaddr + COMMAND) != 0xffff) {
781		dev->stats.rx_missed_errors += inb(ioaddr + MPCNT);
782		dev->stats.rx_frame_errors += inb(ioaddr + ALICNT);
783		dev->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
784	}
785
786	/* Remove the packets on the Rx queue. */
787	epic_rx(dev, RX_RING_SIZE);
788}
789
790static void epic_restart(struct net_device *dev)
791{
792	long ioaddr = dev->base_addr;
793	struct epic_private *ep = netdev_priv(dev);
794	int i;
795
796	/* Soft reset the chip. */
797	outl(0x4001, ioaddr + GENCTL);
798
799	printk(KERN_DEBUG "%s: Restarting the EPIC chip, Rx %d/%d Tx %d/%d.\n",
800		   dev->name, ep->cur_rx, ep->dirty_rx, ep->dirty_tx, ep->cur_tx);
801	udelay(1);
802
803	/* This magic is documented in SMSC app note 7.15 */
804	for (i = 16; i > 0; i--)
805		outl(0x0008, ioaddr + TEST1);
806
807#ifdef __BIG_ENDIAN
808	outl(0x0432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
809#else
810	outl(0x0412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
811#endif
812	outl(dev->if_port == 1 ? 0x13 : 0x12, ioaddr + MIICfg);
813	if (ep->chip_flags & MII_PWRDWN)
814		outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
815
816	for (i = 0; i < 3; i++)
817		outl(le16_to_cpu(((__le16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4);
818
819	ep->tx_threshold = TX_FIFO_THRESH;
820	outl(ep->tx_threshold, ioaddr + TxThresh);
821	outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
822	outl(ep->rx_ring_dma + (ep->cur_rx%RX_RING_SIZE)*
823		sizeof(struct epic_rx_desc), ioaddr + PRxCDAR);
824	outl(ep->tx_ring_dma + (ep->dirty_tx%TX_RING_SIZE)*
825		 sizeof(struct epic_tx_desc), ioaddr + PTxCDAR);
826
827	/* Start the chip's Rx process. */
828	set_rx_mode(dev);
829	outl(StartRx | RxQueued, ioaddr + COMMAND);
830
831	/* Enable interrupts by setting the interrupt mask. */
832	outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
833		 | CntFull | TxUnderrun
834		 | RxError | RxHeader | EpicNapiEvent, ioaddr + INTMASK);
835
836	printk(KERN_DEBUG "%s: epic_restart() done, cmd status %4.4x, ctl %4.4x"
837		   " interrupt %4.4x.\n",
838		   dev->name, (int)inl(ioaddr + COMMAND), (int)inl(ioaddr + GENCTL),
839		   (int)inl(ioaddr + INTSTAT));
840}
841
842static void check_media(struct net_device *dev)
843{
844	struct epic_private *ep = netdev_priv(dev);
845	long ioaddr = dev->base_addr;
846	int mii_lpa = ep->mii_phy_cnt ? mdio_read(dev, ep->phys[0], MII_LPA) : 0;
847	int negotiated = mii_lpa & ep->mii.advertising;
848	int duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
849
850	if (ep->mii.force_media)
851		return;
852	if (mii_lpa == 0xffff)		/* Bogus read */
853		return;
854	if (ep->mii.full_duplex != duplex) {
855		ep->mii.full_duplex = duplex;
856		printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d link"
857			   " partner capability of %4.4x.\n", dev->name,
858			   ep->mii.full_duplex ? "full" : "half", ep->phys[0], mii_lpa);
859		outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
860	}
861}
862
863static void epic_timer(unsigned long data)
864{
865	struct net_device *dev = (struct net_device *)data;
866	struct epic_private *ep = netdev_priv(dev);
867	long ioaddr = dev->base_addr;
868	int next_tick = 5*HZ;
869
870	if (debug > 3) {
871		printk(KERN_DEBUG "%s: Media monitor tick, Tx status %8.8x.\n",
872			   dev->name, (int)inl(ioaddr + TxSTAT));
873		printk(KERN_DEBUG "%s: Other registers are IntMask %4.4x "
874			   "IntStatus %4.4x RxStatus %4.4x.\n",
875			   dev->name, (int)inl(ioaddr + INTMASK),
876			   (int)inl(ioaddr + INTSTAT), (int)inl(ioaddr + RxSTAT));
877	}
878
879	check_media(dev);
880
881	ep->timer.expires = jiffies + next_tick;
882	add_timer(&ep->timer);
883}
884
885static void epic_tx_timeout(struct net_device *dev)
886{
887	struct epic_private *ep = netdev_priv(dev);
888	long ioaddr = dev->base_addr;
889
890	if (debug > 0) {
891		printk(KERN_WARNING "%s: Transmit timeout using MII device, "
892			   "Tx status %4.4x.\n",
893			   dev->name, (int)inw(ioaddr + TxSTAT));
894		if (debug > 1) {
895			printk(KERN_DEBUG "%s: Tx indices: dirty_tx %d, cur_tx %d.\n",
896				   dev->name, ep->dirty_tx, ep->cur_tx);
897		}
898	}
899	if (inw(ioaddr + TxSTAT) & 0x10) {		/* Tx FIFO underflow. */
900		dev->stats.tx_fifo_errors++;
901		outl(RestartTx, ioaddr + COMMAND);
902	} else {
903		epic_restart(dev);
904		outl(TxQueued, dev->base_addr + COMMAND);
905	}
906
907	dev->trans_start = jiffies; /* prevent tx timeout */
908	dev->stats.tx_errors++;
909	if (!ep->tx_full)
910		netif_wake_queue(dev);
911}
912
913/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
914static void epic_init_ring(struct net_device *dev)
915{
916	struct epic_private *ep = netdev_priv(dev);
917	int i;
918
919	ep->tx_full = 0;
920	ep->dirty_tx = ep->cur_tx = 0;
921	ep->cur_rx = ep->dirty_rx = 0;
922	ep->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
923
924	/* Initialize all Rx descriptors. */
925	for (i = 0; i < RX_RING_SIZE; i++) {
926		ep->rx_ring[i].rxstatus = 0;
927		ep->rx_ring[i].buflength = ep->rx_buf_sz;
928		ep->rx_ring[i].next = ep->rx_ring_dma +
929				      (i+1)*sizeof(struct epic_rx_desc);
930		ep->rx_skbuff[i] = NULL;
931	}
932	/* Mark the last entry as wrapping the ring. */
933	ep->rx_ring[i-1].next = ep->rx_ring_dma;
934
935	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
936	for (i = 0; i < RX_RING_SIZE; i++) {
937		struct sk_buff *skb = netdev_alloc_skb(dev, ep->rx_buf_sz + 2);
938		ep->rx_skbuff[i] = skb;
939		if (skb == NULL)
940			break;
941		skb_reserve(skb, 2);	/* 16 byte align the IP header. */
942		ep->rx_ring[i].bufaddr = pci_map_single(ep->pci_dev,
943			skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
944		ep->rx_ring[i].rxstatus = DescOwn;
945	}
946	ep->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
947
948	/* The Tx buffer descriptor is filled in as needed, but we
949	   do need to clear the ownership bit. */
950	for (i = 0; i < TX_RING_SIZE; i++) {
951		ep->tx_skbuff[i] = NULL;
952		ep->tx_ring[i].txstatus = 0x0000;
953		ep->tx_ring[i].next = ep->tx_ring_dma +
954			(i+1)*sizeof(struct epic_tx_desc);
955	}
956	ep->tx_ring[i-1].next = ep->tx_ring_dma;
957}
958
959static netdev_tx_t epic_start_xmit(struct sk_buff *skb, struct net_device *dev)
960{
961	struct epic_private *ep = netdev_priv(dev);
962	int entry, free_count;
963	u32 ctrl_word;
964	unsigned long flags;
965
966	if (skb_padto(skb, ETH_ZLEN))
967		return NETDEV_TX_OK;
968
969	/* Caution: the write order is important here, set the field with the
970	   "ownership" bit last. */
971
972	/* Calculate the next Tx descriptor entry. */
973	spin_lock_irqsave(&ep->lock, flags);
974	free_count = ep->cur_tx - ep->dirty_tx;
975	entry = ep->cur_tx % TX_RING_SIZE;
976
977	ep->tx_skbuff[entry] = skb;
978	ep->tx_ring[entry].bufaddr = pci_map_single(ep->pci_dev, skb->data,
979		 			            skb->len, PCI_DMA_TODEVICE);
980	if (free_count < TX_QUEUE_LEN/2) {/* Typical path */
981		ctrl_word = 0x100000; /* No interrupt */
982	} else if (free_count == TX_QUEUE_LEN/2) {
983		ctrl_word = 0x140000; /* Tx-done intr. */
984	} else if (free_count < TX_QUEUE_LEN - 1) {
985		ctrl_word = 0x100000; /* No Tx-done intr. */
986	} else {
987		/* Leave room for an additional entry. */
988		ctrl_word = 0x140000; /* Tx-done intr. */
989		ep->tx_full = 1;
990	}
991	ep->tx_ring[entry].buflength = ctrl_word | skb->len;
992	ep->tx_ring[entry].txstatus =
993		((skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN) << 16)
994			    | DescOwn;
995
996	ep->cur_tx++;
997	if (ep->tx_full)
998		netif_stop_queue(dev);
999
1000	spin_unlock_irqrestore(&ep->lock, flags);
1001	/* Trigger an immediate transmit demand. */
1002	outl(TxQueued, dev->base_addr + COMMAND);
1003
1004	if (debug > 4)
1005		printk(KERN_DEBUG "%s: Queued Tx packet size %d to slot %d, "
1006			   "flag %2.2x Tx status %8.8x.\n",
1007			   dev->name, (int)skb->len, entry, ctrl_word,
1008			   (int)inl(dev->base_addr + TxSTAT));
1009
1010	return NETDEV_TX_OK;
1011}
1012
1013static void epic_tx_error(struct net_device *dev, struct epic_private *ep,
1014			  int status)
1015{
1016	struct net_device_stats *stats = &dev->stats;
1017
1018#ifndef final_version
1019	/* There was an major error, log it. */
1020	if (debug > 1)
1021		printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n",
1022		       dev->name, status);
1023#endif
1024	stats->tx_errors++;
1025	if (status & 0x1050)
1026		stats->tx_aborted_errors++;
1027	if (status & 0x0008)
1028		stats->tx_carrier_errors++;
1029	if (status & 0x0040)
1030		stats->tx_window_errors++;
1031	if (status & 0x0010)
1032		stats->tx_fifo_errors++;
1033}
1034
1035static void epic_tx(struct net_device *dev, struct epic_private *ep)
1036{
1037	unsigned int dirty_tx, cur_tx;
1038
1039	/*
1040	 * Note: if this lock becomes a problem we can narrow the locked
1041	 * region at the cost of occasionally grabbing the lock more times.
1042	 */
1043	cur_tx = ep->cur_tx;
1044	for (dirty_tx = ep->dirty_tx; cur_tx - dirty_tx > 0; dirty_tx++) {
1045		struct sk_buff *skb;
1046		int entry = dirty_tx % TX_RING_SIZE;
1047		int txstatus = ep->tx_ring[entry].txstatus;
1048
1049		if (txstatus & DescOwn)
1050			break;	/* It still hasn't been Txed */
1051
1052		if (likely(txstatus & 0x0001)) {
1053			dev->stats.collisions += (txstatus >> 8) & 15;
1054			dev->stats.tx_packets++;
1055			dev->stats.tx_bytes += ep->tx_skbuff[entry]->len;
1056		} else
1057			epic_tx_error(dev, ep, txstatus);
1058
1059		/* Free the original skb. */
1060		skb = ep->tx_skbuff[entry];
1061		pci_unmap_single(ep->pci_dev, ep->tx_ring[entry].bufaddr,
1062				 skb->len, PCI_DMA_TODEVICE);
1063		dev_kfree_skb_irq(skb);
1064		ep->tx_skbuff[entry] = NULL;
1065	}
1066
1067#ifndef final_version
1068	if (cur_tx - dirty_tx > TX_RING_SIZE) {
1069		printk(KERN_WARNING
1070		       "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1071		       dev->name, dirty_tx, cur_tx, ep->tx_full);
1072		dirty_tx += TX_RING_SIZE;
1073	}
1074#endif
1075	ep->dirty_tx = dirty_tx;
1076	if (ep->tx_full && cur_tx - dirty_tx < TX_QUEUE_LEN - 4) {
1077		/* The ring is no longer full, allow new TX entries. */
1078		ep->tx_full = 0;
1079		netif_wake_queue(dev);
1080	}
1081}
1082
1083/* The interrupt handler does all of the Rx thread work and cleans up
1084   after the Tx thread. */
1085static irqreturn_t epic_interrupt(int irq, void *dev_instance)
1086{
1087	struct net_device *dev = dev_instance;
1088	struct epic_private *ep = netdev_priv(dev);
1089	long ioaddr = dev->base_addr;
1090	unsigned int handled = 0;
1091	int status;
1092
1093	status = inl(ioaddr + INTSTAT);
1094	/* Acknowledge all of the current interrupt sources ASAP. */
1095	outl(status & EpicNormalEvent, ioaddr + INTSTAT);
1096
1097	if (debug > 4) {
1098		printk(KERN_DEBUG "%s: Interrupt, status=%#8.8x new "
1099				   "intstat=%#8.8x.\n", dev->name, status,
1100				   (int)inl(ioaddr + INTSTAT));
1101	}
1102
1103	if ((status & IntrSummary) == 0)
1104		goto out;
1105
1106	handled = 1;
1107
1108	if ((status & EpicNapiEvent) && !ep->reschedule_in_poll) {
1109		spin_lock(&ep->napi_lock);
1110		if (napi_schedule_prep(&ep->napi)) {
1111			epic_napi_irq_off(dev, ep);
1112			__napi_schedule(&ep->napi);
1113		} else
1114			ep->reschedule_in_poll++;
1115		spin_unlock(&ep->napi_lock);
1116	}
1117	status &= ~EpicNapiEvent;
1118
1119	/* Check uncommon events all at once. */
1120	if (status & (CntFull | TxUnderrun | PCIBusErr170 | PCIBusErr175)) {
1121		if (status == EpicRemoved)
1122			goto out;
1123
1124		/* Always update the error counts to avoid overhead later. */
1125		dev->stats.rx_missed_errors += inb(ioaddr + MPCNT);
1126		dev->stats.rx_frame_errors += inb(ioaddr + ALICNT);
1127		dev->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
1128
1129		if (status & TxUnderrun) { /* Tx FIFO underflow. */
1130			dev->stats.tx_fifo_errors++;
1131			outl(ep->tx_threshold += 128, ioaddr + TxThresh);
1132			/* Restart the transmit process. */
1133			outl(RestartTx, ioaddr + COMMAND);
1134		}
1135		if (status & PCIBusErr170) {
1136			printk(KERN_ERR "%s: PCI Bus Error! status %4.4x.\n",
1137					 dev->name, status);
1138			epic_pause(dev);
1139			epic_restart(dev);
1140		}
1141		/* Clear all error sources. */
1142		outl(status & 0x7f18, ioaddr + INTSTAT);
1143	}
1144
1145out:
1146	if (debug > 3) {
1147		printk(KERN_DEBUG "%s: exit interrupt, intr_status=%#4.4x.\n",
1148				   dev->name, status);
1149	}
1150
1151	return IRQ_RETVAL(handled);
1152}
1153
1154static int epic_rx(struct net_device *dev, int budget)
1155{
1156	struct epic_private *ep = netdev_priv(dev);
1157	int entry = ep->cur_rx % RX_RING_SIZE;
1158	int rx_work_limit = ep->dirty_rx + RX_RING_SIZE - ep->cur_rx;
1159	int work_done = 0;
1160
1161	if (debug > 4)
1162		printk(KERN_DEBUG " In epic_rx(), entry %d %8.8x.\n", entry,
1163			   ep->rx_ring[entry].rxstatus);
1164
1165	if (rx_work_limit > budget)
1166		rx_work_limit = budget;
1167
1168	/* If we own the next entry, it's a new packet. Send it up. */
1169	while ((ep->rx_ring[entry].rxstatus & DescOwn) == 0) {
1170		int status = ep->rx_ring[entry].rxstatus;
1171
1172		if (debug > 4)
1173			printk(KERN_DEBUG "  epic_rx() status was %8.8x.\n", status);
1174		if (--rx_work_limit < 0)
1175			break;
1176		if (status & 0x2006) {
1177			if (debug > 2)
1178				printk(KERN_DEBUG "%s: epic_rx() error status was %8.8x.\n",
1179					   dev->name, status);
1180			if (status & 0x2000) {
1181				printk(KERN_WARNING "%s: Oversized Ethernet frame spanned "
1182					   "multiple buffers, status %4.4x!\n", dev->name, status);
1183				dev->stats.rx_length_errors++;
1184			} else if (status & 0x0006)
1185				/* Rx Frame errors are counted in hardware. */
1186				dev->stats.rx_errors++;
1187		} else {
1188			/* Malloc up new buffer, compatible with net-2e. */
1189			/* Omit the four octet CRC from the length. */
1190			short pkt_len = (status >> 16) - 4;
1191			struct sk_buff *skb;
1192
1193			if (pkt_len > PKT_BUF_SZ - 4) {
1194				printk(KERN_ERR "%s: Oversized Ethernet frame, status %x "
1195					   "%d bytes.\n",
1196					   dev->name, status, pkt_len);
1197				pkt_len = 1514;
1198			}
1199			/* Check if the packet is long enough to accept without copying
1200			   to a minimally-sized skbuff. */
1201			if (pkt_len < rx_copybreak &&
1202			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1203				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1204				pci_dma_sync_single_for_cpu(ep->pci_dev,
1205							    ep->rx_ring[entry].bufaddr,
1206							    ep->rx_buf_sz,
1207							    PCI_DMA_FROMDEVICE);
1208				skb_copy_to_linear_data(skb, ep->rx_skbuff[entry]->data, pkt_len);
1209				skb_put(skb, pkt_len);
1210				pci_dma_sync_single_for_device(ep->pci_dev,
1211							       ep->rx_ring[entry].bufaddr,
1212							       ep->rx_buf_sz,
1213							       PCI_DMA_FROMDEVICE);
1214			} else {
1215				pci_unmap_single(ep->pci_dev,
1216					ep->rx_ring[entry].bufaddr,
1217					ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1218				skb_put(skb = ep->rx_skbuff[entry], pkt_len);
1219				ep->rx_skbuff[entry] = NULL;
1220			}
1221			skb->protocol = eth_type_trans(skb, dev);
1222			netif_receive_skb(skb);
1223			dev->stats.rx_packets++;
1224			dev->stats.rx_bytes += pkt_len;
1225		}
1226		work_done++;
1227		entry = (++ep->cur_rx) % RX_RING_SIZE;
1228	}
1229
1230	/* Refill the Rx ring buffers. */
1231	for (; ep->cur_rx - ep->dirty_rx > 0; ep->dirty_rx++) {
1232		entry = ep->dirty_rx % RX_RING_SIZE;
1233		if (ep->rx_skbuff[entry] == NULL) {
1234			struct sk_buff *skb;
1235			skb = ep->rx_skbuff[entry] = netdev_alloc_skb(dev, ep->rx_buf_sz + 2);
1236			if (skb == NULL)
1237				break;
1238			skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
1239			ep->rx_ring[entry].bufaddr = pci_map_single(ep->pci_dev,
1240				skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1241			work_done++;
1242		}
1243		/* AV: shouldn't we add a barrier here? */
1244		ep->rx_ring[entry].rxstatus = DescOwn;
1245	}
1246	return work_done;
1247}
1248
1249static void epic_rx_err(struct net_device *dev, struct epic_private *ep)
1250{
1251	long ioaddr = dev->base_addr;
1252	int status;
1253
1254	status = inl(ioaddr + INTSTAT);
1255
1256	if (status == EpicRemoved)
1257		return;
1258	if (status & RxOverflow) 	/* Missed a Rx frame. */
1259		dev->stats.rx_errors++;
1260	if (status & (RxOverflow | RxFull))
1261		outw(RxQueued, ioaddr + COMMAND);
1262}
1263
1264static int epic_poll(struct napi_struct *napi, int budget)
1265{
1266	struct epic_private *ep = container_of(napi, struct epic_private, napi);
1267	struct net_device *dev = ep->mii.dev;
1268	int work_done = 0;
1269	long ioaddr = dev->base_addr;
1270
1271rx_action:
1272
1273	epic_tx(dev, ep);
1274
1275	work_done += epic_rx(dev, budget);
1276
1277	epic_rx_err(dev, ep);
1278
1279	if (work_done < budget) {
1280		unsigned long flags;
1281		int more;
1282
1283		/* A bit baroque but it avoids a (space hungry) spin_unlock */
1284
1285		spin_lock_irqsave(&ep->napi_lock, flags);
1286
1287		more = ep->reschedule_in_poll;
1288		if (!more) {
1289			__napi_complete(napi);
1290			outl(EpicNapiEvent, ioaddr + INTSTAT);
1291			epic_napi_irq_on(dev, ep);
1292		} else
1293			ep->reschedule_in_poll--;
1294
1295		spin_unlock_irqrestore(&ep->napi_lock, flags);
1296
1297		if (more)
1298			goto rx_action;
1299	}
1300
1301	return work_done;
1302}
1303
1304static int epic_close(struct net_device *dev)
1305{
1306	long ioaddr = dev->base_addr;
1307	struct epic_private *ep = netdev_priv(dev);
1308	struct sk_buff *skb;
1309	int i;
1310
1311	netif_stop_queue(dev);
1312	napi_disable(&ep->napi);
1313
1314	if (debug > 1)
1315		printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
1316			   dev->name, (int)inl(ioaddr + INTSTAT));
1317
1318	del_timer_sync(&ep->timer);
1319
1320	epic_disable_int(dev, ep);
1321
1322	free_irq(dev->irq, dev);
1323
1324	epic_pause(dev);
1325
1326	/* Free all the skbuffs in the Rx queue. */
1327	for (i = 0; i < RX_RING_SIZE; i++) {
1328		skb = ep->rx_skbuff[i];
1329		ep->rx_skbuff[i] = NULL;
1330		ep->rx_ring[i].rxstatus = 0;		/* Not owned by Epic chip. */
1331		ep->rx_ring[i].buflength = 0;
1332		if (skb) {
1333			pci_unmap_single(ep->pci_dev, ep->rx_ring[i].bufaddr,
1334				 	 ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1335			dev_kfree_skb(skb);
1336		}
1337		ep->rx_ring[i].bufaddr = 0xBADF00D0; /* An invalid address. */
1338	}
1339	for (i = 0; i < TX_RING_SIZE; i++) {
1340		skb = ep->tx_skbuff[i];
1341		ep->tx_skbuff[i] = NULL;
1342		if (!skb)
1343			continue;
1344		pci_unmap_single(ep->pci_dev, ep->tx_ring[i].bufaddr,
1345				 skb->len, PCI_DMA_TODEVICE);
1346		dev_kfree_skb(skb);
1347	}
1348
1349	/* Green! Leave the chip in low-power mode. */
1350	outl(0x0008, ioaddr + GENCTL);
1351
1352	return 0;
1353}
1354
1355static struct net_device_stats *epic_get_stats(struct net_device *dev)
1356{
1357	long ioaddr = dev->base_addr;
1358
1359	if (netif_running(dev)) {
1360		/* Update the error counts. */
1361		dev->stats.rx_missed_errors += inb(ioaddr + MPCNT);
1362		dev->stats.rx_frame_errors += inb(ioaddr + ALICNT);
1363		dev->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
1364	}
1365
1366	return &dev->stats;
1367}
1368
1369/* Set or clear the multicast filter for this adaptor.
1370   Note that we only use exclusion around actually queueing the
1371   new frame, not around filling ep->setup_frame.  This is non-deterministic
1372   when re-entered but still correct. */
1373
1374static void set_rx_mode(struct net_device *dev)
1375{
1376	long ioaddr = dev->base_addr;
1377	struct epic_private *ep = netdev_priv(dev);
1378	unsigned char mc_filter[8];		 /* Multicast hash filter */
1379	int i;
1380
1381	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1382		outl(0x002C, ioaddr + RxCtrl);
1383		/* Unconditionally log net taps. */
1384		memset(mc_filter, 0xff, sizeof(mc_filter));
1385	} else if ((!netdev_mc_empty(dev)) || (dev->flags & IFF_ALLMULTI)) {
1386		/* There is apparently a chip bug, so the multicast filter
1387		   is never enabled. */
1388		/* Too many to filter perfectly -- accept all multicasts. */
1389		memset(mc_filter, 0xff, sizeof(mc_filter));
1390		outl(0x000C, ioaddr + RxCtrl);
1391	} else if (netdev_mc_empty(dev)) {
1392		outl(0x0004, ioaddr + RxCtrl);
1393		return;
1394	} else {					/* Never executed, for now. */
1395		struct netdev_hw_addr *ha;
1396
1397		memset(mc_filter, 0, sizeof(mc_filter));
1398		netdev_for_each_mc_addr(ha, dev) {
1399			unsigned int bit_nr =
1400				ether_crc_le(ETH_ALEN, ha->addr) & 0x3f;
1401			mc_filter[bit_nr >> 3] |= (1 << bit_nr);
1402		}
1403	}
1404	/* ToDo: perhaps we need to stop the Tx and Rx process here? */
1405	if (memcmp(mc_filter, ep->mc_filter, sizeof(mc_filter))) {
1406		for (i = 0; i < 4; i++)
1407			outw(((u16 *)mc_filter)[i], ioaddr + MC0 + i*4);
1408		memcpy(ep->mc_filter, mc_filter, sizeof(mc_filter));
1409	}
1410}
1411
1412static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1413{
1414	struct epic_private *np = netdev_priv(dev);
1415
1416	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1417	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1418	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1419}
1420
1421static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1422{
1423	struct epic_private *np = netdev_priv(dev);
1424	int rc;
1425
1426	spin_lock_irq(&np->lock);
1427	rc = mii_ethtool_gset(&np->mii, cmd);
1428	spin_unlock_irq(&np->lock);
1429
1430	return rc;
1431}
1432
1433static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1434{
1435	struct epic_private *np = netdev_priv(dev);
1436	int rc;
1437
1438	spin_lock_irq(&np->lock);
1439	rc = mii_ethtool_sset(&np->mii, cmd);
1440	spin_unlock_irq(&np->lock);
1441
1442	return rc;
1443}
1444
1445static int netdev_nway_reset(struct net_device *dev)
1446{
1447	struct epic_private *np = netdev_priv(dev);
1448	return mii_nway_restart(&np->mii);
1449}
1450
1451static u32 netdev_get_link(struct net_device *dev)
1452{
1453	struct epic_private *np = netdev_priv(dev);
1454	return mii_link_ok(&np->mii);
1455}
1456
1457static u32 netdev_get_msglevel(struct net_device *dev)
1458{
1459	return debug;
1460}
1461
1462static void netdev_set_msglevel(struct net_device *dev, u32 value)
1463{
1464	debug = value;
1465}
1466
1467static int ethtool_begin(struct net_device *dev)
1468{
1469	unsigned long ioaddr = dev->base_addr;
1470	/* power-up, if interface is down */
1471	if (! netif_running(dev)) {
1472		outl(0x0200, ioaddr + GENCTL);
1473		outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
1474	}
1475	return 0;
1476}
1477
1478static void ethtool_complete(struct net_device *dev)
1479{
1480	unsigned long ioaddr = dev->base_addr;
1481	/* power-down, if interface is down */
1482	if (! netif_running(dev)) {
1483		outl(0x0008, ioaddr + GENCTL);
1484		outl((inl(ioaddr + NVCTL) & ~0x483C) | 0x0000, ioaddr + NVCTL);
1485	}
1486}
1487
1488static const struct ethtool_ops netdev_ethtool_ops = {
1489	.get_drvinfo		= netdev_get_drvinfo,
1490	.get_settings		= netdev_get_settings,
1491	.set_settings		= netdev_set_settings,
1492	.nway_reset		= netdev_nway_reset,
1493	.get_link		= netdev_get_link,
1494	.get_msglevel		= netdev_get_msglevel,
1495	.set_msglevel		= netdev_set_msglevel,
1496	.begin			= ethtool_begin,
1497	.complete		= ethtool_complete
1498};
1499
1500static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1501{
1502	struct epic_private *np = netdev_priv(dev);
1503	long ioaddr = dev->base_addr;
1504	struct mii_ioctl_data *data = if_mii(rq);
1505	int rc;
1506
1507	/* power-up, if interface is down */
1508	if (! netif_running(dev)) {
1509		outl(0x0200, ioaddr + GENCTL);
1510		outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
1511	}
1512
1513	/* all non-ethtool ioctls (the SIOC[GS]MIIxxx ioctls) */
1514	spin_lock_irq(&np->lock);
1515	rc = generic_mii_ioctl(&np->mii, data, cmd, NULL);
1516	spin_unlock_irq(&np->lock);
1517
1518	/* power-down, if interface is down */
1519	if (! netif_running(dev)) {
1520		outl(0x0008, ioaddr + GENCTL);
1521		outl((inl(ioaddr + NVCTL) & ~0x483C) | 0x0000, ioaddr + NVCTL);
1522	}
1523	return rc;
1524}
1525
1526
1527static void __devexit epic_remove_one (struct pci_dev *pdev)
1528{
1529	struct net_device *dev = pci_get_drvdata(pdev);
1530	struct epic_private *ep = netdev_priv(dev);
1531
1532	pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma);
1533	pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma);
1534	unregister_netdev(dev);
1535#ifndef USE_IO_OPS
1536	iounmap((void*) dev->base_addr);
1537#endif
1538	pci_release_regions(pdev);
1539	free_netdev(dev);
1540	pci_disable_device(pdev);
1541	pci_set_drvdata(pdev, NULL);
1542	/* pci_power_off(pdev, -1); */
1543}
1544
1545
1546#ifdef CONFIG_PM
1547
1548static int epic_suspend (struct pci_dev *pdev, pm_message_t state)
1549{
1550	struct net_device *dev = pci_get_drvdata(pdev);
1551	long ioaddr = dev->base_addr;
1552
1553	if (!netif_running(dev))
1554		return 0;
1555	epic_pause(dev);
1556	/* Put the chip into low-power mode. */
1557	outl(0x0008, ioaddr + GENCTL);
1558	/* pci_power_off(pdev, -1); */
1559	return 0;
1560}
1561
1562
1563static int epic_resume (struct pci_dev *pdev)
1564{
1565	struct net_device *dev = pci_get_drvdata(pdev);
1566
1567	if (!netif_running(dev))
1568		return 0;
1569	epic_restart(dev);
1570	/* pci_power_on(pdev); */
1571	return 0;
1572}
1573
1574#endif /* CONFIG_PM */
1575
1576
1577static struct pci_driver epic_driver = {
1578	.name		= DRV_NAME,
1579	.id_table	= epic_pci_tbl,
1580	.probe		= epic_init_one,
1581	.remove		= __devexit_p(epic_remove_one),
1582#ifdef CONFIG_PM
1583	.suspend	= epic_suspend,
1584	.resume		= epic_resume,
1585#endif /* CONFIG_PM */
1586};
1587
1588
1589static int __init epic_init (void)
1590{
1591/* when a module, this is printed whether or not devices are found in probe */
1592#ifdef MODULE
1593	printk (KERN_INFO "%s%s",
1594		version, version2);
1595#endif
1596
1597	return pci_register_driver(&epic_driver);
1598}
1599
1600
1601static void __exit epic_cleanup (void)
1602{
1603	pci_unregister_driver (&epic_driver);
1604}
1605
1606
1607module_init(epic_init);
1608module_exit(epic_cleanup);
1609