1/*******************************************************************************
2  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3  ST Ethernet IPs are built around a Synopsys IP Core.
4
5	Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7  This program is free software; you can redistribute it and/or modify it
8  under the terms and conditions of the GNU General Public License,
9  version 2, as published by the Free Software Foundation.
10
11  This program is distributed in the hope it will be useful, but WITHOUT
12  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  more details.
15
16  You should have received a copy of the GNU General Public License along with
17  this program; if not, write to the Free Software Foundation, Inc.,
18  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20  The full GNU General Public License is included in this distribution in
21  the file called "COPYING".
22
23  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25  Documentation available at:
26	http://www.stlinux.com
27  Support available at:
28	https://bugzilla.stlinux.com/
29*******************************************************************************/
30
31#include <linux/kernel.h>
32#include <linux/interrupt.h>
33#include <linux/ip.h>
34#include <linux/tcp.h>
35#include <linux/skbuff.h>
36#include <linux/ethtool.h>
37#include <linux/if_ether.h>
38#include <linux/crc32.h>
39#include <linux/mii.h>
40#include <linux/if.h>
41#include <linux/if_vlan.h>
42#include <linux/dma-mapping.h>
43#include <linux/slab.h>
44#include <linux/prefetch.h>
45#ifdef CONFIG_STMMAC_DEBUG_FS
46#include <linux/debugfs.h>
47#include <linux/seq_file.h>
48#endif
49#include "stmmac.h"
50
51#undef STMMAC_DEBUG
52/*#define STMMAC_DEBUG*/
53#ifdef STMMAC_DEBUG
54#define DBG(nlevel, klevel, fmt, args...) \
55		((void)(netif_msg_##nlevel(priv) && \
56		printk(KERN_##klevel fmt, ## args)))
57#else
58#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
59#endif
60
61#undef STMMAC_RX_DEBUG
62/*#define STMMAC_RX_DEBUG*/
63#ifdef STMMAC_RX_DEBUG
64#define RX_DBG(fmt, args...)  printk(fmt, ## args)
65#else
66#define RX_DBG(fmt, args...)  do { } while (0)
67#endif
68
69#undef STMMAC_XMIT_DEBUG
70/*#define STMMAC_XMIT_DEBUG*/
71#ifdef STMMAC_TX_DEBUG
72#define TX_DBG(fmt, args...)  printk(fmt, ## args)
73#else
74#define TX_DBG(fmt, args...)  do { } while (0)
75#endif
76
77#define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
78#define JUMBO_LEN	9000
79
80/* Module parameters */
81#define TX_TIMEO 5000 /* default 5 seconds */
82static int watchdog = TX_TIMEO;
83module_param(watchdog, int, S_IRUGO | S_IWUSR);
84MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
85
86static int debug = -1;		/* -1: default, 0: no output, 16:  all */
87module_param(debug, int, S_IRUGO | S_IWUSR);
88MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
89
90int phyaddr = -1;
91module_param(phyaddr, int, S_IRUGO);
92MODULE_PARM_DESC(phyaddr, "Physical device address");
93
94#define DMA_TX_SIZE 256
95static int dma_txsize = DMA_TX_SIZE;
96module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
97MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
98
99#define DMA_RX_SIZE 256
100static int dma_rxsize = DMA_RX_SIZE;
101module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
102MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
103
104static int flow_ctrl = FLOW_OFF;
105module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
106MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
107
108static int pause = PAUSE_TIME;
109module_param(pause, int, S_IRUGO | S_IWUSR);
110MODULE_PARM_DESC(pause, "Flow Control Pause Time");
111
112#define TC_DEFAULT 64
113static int tc = TC_DEFAULT;
114module_param(tc, int, S_IRUGO | S_IWUSR);
115MODULE_PARM_DESC(tc, "DMA threshold control value");
116
117/* Pay attention to tune this parameter; take care of both
118 * hardware capability and network stabitily/performance impact.
119 * Many tests showed that ~4ms latency seems to be good enough. */
120#ifdef CONFIG_STMMAC_TIMER
121#define DEFAULT_PERIODIC_RATE	256
122static int tmrate = DEFAULT_PERIODIC_RATE;
123module_param(tmrate, int, S_IRUGO | S_IWUSR);
124MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
125#endif
126
127#define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
128static int buf_sz = DMA_BUFFER_SIZE;
129module_param(buf_sz, int, S_IRUGO | S_IWUSR);
130MODULE_PARM_DESC(buf_sz, "DMA buffer size");
131
132static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
133				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
134				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
135
136static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
137
138#ifdef CONFIG_STMMAC_DEBUG_FS
139static int stmmac_init_fs(struct net_device *dev);
140static void stmmac_exit_fs(void);
141#endif
142
143/**
144 * stmmac_verify_args - verify the driver parameters.
145 * Description: it verifies if some wrong parameter is passed to the driver.
146 * Note that wrong parameters are replaced with the default values.
147 */
148static void stmmac_verify_args(void)
149{
150	if (unlikely(watchdog < 0))
151		watchdog = TX_TIMEO;
152	if (unlikely(dma_rxsize < 0))
153		dma_rxsize = DMA_RX_SIZE;
154	if (unlikely(dma_txsize < 0))
155		dma_txsize = DMA_TX_SIZE;
156	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
157		buf_sz = DMA_BUFFER_SIZE;
158	if (unlikely(flow_ctrl > 1))
159		flow_ctrl = FLOW_AUTO;
160	else if (likely(flow_ctrl < 0))
161		flow_ctrl = FLOW_OFF;
162	if (unlikely((pause < 0) || (pause > 0xffff)))
163		pause = PAUSE_TIME;
164}
165
166#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
167static void print_pkt(unsigned char *buf, int len)
168{
169	int j;
170	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
171	for (j = 0; j < len; j++) {
172		if ((j % 16) == 0)
173			pr_info("\n %03x:", j);
174		pr_info(" %02x", buf[j]);
175	}
176	pr_info("\n");
177}
178#endif
179
180/* minimum number of free TX descriptors required to wake up TX process */
181#define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
182
183static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
184{
185	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
186}
187
188/* On some ST platforms, some HW system configuraton registers have to be
189 * set according to the link speed negotiated.
190 */
191static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
192{
193	struct phy_device *phydev = priv->phydev;
194
195	if (likely(priv->plat->fix_mac_speed))
196		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
197					  phydev->speed);
198}
199
200/**
201 * stmmac_adjust_link
202 * @dev: net device structure
203 * Description: it adjusts the link parameters.
204 */
205static void stmmac_adjust_link(struct net_device *dev)
206{
207	struct stmmac_priv *priv = netdev_priv(dev);
208	struct phy_device *phydev = priv->phydev;
209	unsigned long flags;
210	int new_state = 0;
211	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
212
213	if (phydev == NULL)
214		return;
215
216	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
217	    phydev->addr, phydev->link);
218
219	spin_lock_irqsave(&priv->lock, flags);
220	if (phydev->link) {
221		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
222
223		/* Now we make sure that we can be in full duplex mode.
224		 * If not, we operate in half-duplex mode. */
225		if (phydev->duplex != priv->oldduplex) {
226			new_state = 1;
227			if (!(phydev->duplex))
228				ctrl &= ~priv->hw->link.duplex;
229			else
230				ctrl |= priv->hw->link.duplex;
231			priv->oldduplex = phydev->duplex;
232		}
233		/* Flow Control operation */
234		if (phydev->pause)
235			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
236						 fc, pause_time);
237
238		if (phydev->speed != priv->speed) {
239			new_state = 1;
240			switch (phydev->speed) {
241			case 1000:
242				if (likely(priv->plat->has_gmac))
243					ctrl &= ~priv->hw->link.port;
244					stmmac_hw_fix_mac_speed(priv);
245				break;
246			case 100:
247			case 10:
248				if (priv->plat->has_gmac) {
249					ctrl |= priv->hw->link.port;
250					if (phydev->speed == SPEED_100) {
251						ctrl |= priv->hw->link.speed;
252					} else {
253						ctrl &= ~(priv->hw->link.speed);
254					}
255				} else {
256					ctrl &= ~priv->hw->link.port;
257				}
258				stmmac_hw_fix_mac_speed(priv);
259				break;
260			default:
261				if (netif_msg_link(priv))
262					pr_warning("%s: Speed (%d) is not 10"
263				       " or 100!\n", dev->name, phydev->speed);
264				break;
265			}
266
267			priv->speed = phydev->speed;
268		}
269
270		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
271
272		if (!priv->oldlink) {
273			new_state = 1;
274			priv->oldlink = 1;
275		}
276	} else if (priv->oldlink) {
277		new_state = 1;
278		priv->oldlink = 0;
279		priv->speed = 0;
280		priv->oldduplex = -1;
281	}
282
283	if (new_state && netif_msg_link(priv))
284		phy_print_status(phydev);
285
286	spin_unlock_irqrestore(&priv->lock, flags);
287
288	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
289}
290
291/**
292 * stmmac_init_phy - PHY initialization
293 * @dev: net device structure
294 * Description: it initializes the driver's PHY state, and attaches the PHY
295 * to the mac driver.
296 *  Return value:
297 *  0 on success
298 */
299static int stmmac_init_phy(struct net_device *dev)
300{
301	struct stmmac_priv *priv = netdev_priv(dev);
302	struct phy_device *phydev;
303	char phy_id[MII_BUS_ID_SIZE + 3];
304	char bus_id[MII_BUS_ID_SIZE];
305	int interface = priv->plat->interface;
306	priv->oldlink = 0;
307	priv->speed = 0;
308	priv->oldduplex = -1;
309
310	snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x", priv->plat->bus_id);
311	snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
312		 priv->plat->phy_addr);
313	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id);
314
315	phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0, interface);
316
317	if (IS_ERR(phydev)) {
318		pr_err("%s: Could not attach to PHY\n", dev->name);
319		return PTR_ERR(phydev);
320	}
321
322	/* Stop Advertising 1000BASE Capability if interface is not GMII */
323	if ((interface == PHY_INTERFACE_MODE_MII) ||
324	    (interface == PHY_INTERFACE_MODE_RMII))
325		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
326					 SUPPORTED_1000baseT_Full);
327
328	/*
329	 * Broken HW is sometimes missing the pull-up resistor on the
330	 * MDIO line, which results in reads to non-existent devices returning
331	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
332	 * device as well.
333	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
334	 */
335	if (phydev->phy_id == 0) {
336		phy_disconnect(phydev);
337		return -ENODEV;
338	}
339	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
340		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
341
342	priv->phydev = phydev;
343
344	return 0;
345}
346
347/**
348 * display_ring
349 * @p: pointer to the ring.
350 * @size: size of the ring.
351 * Description: display all the descriptors within the ring.
352 */
353static void display_ring(struct dma_desc *p, int size)
354{
355	struct tmp_s {
356		u64 a;
357		unsigned int b;
358		unsigned int c;
359	};
360	int i;
361	for (i = 0; i < size; i++) {
362		struct tmp_s *x = (struct tmp_s *)(p + i);
363		pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
364		       i, (unsigned int)virt_to_phys(&p[i]),
365		       (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
366		       x->b, x->c);
367		pr_info("\n");
368	}
369}
370
371static int stmmac_set_bfsize(int mtu, int bufsize)
372{
373	int ret = bufsize;
374
375	if (mtu >= BUF_SIZE_4KiB)
376		ret = BUF_SIZE_8KiB;
377	else if (mtu >= BUF_SIZE_2KiB)
378		ret = BUF_SIZE_4KiB;
379	else if (mtu >= DMA_BUFFER_SIZE)
380		ret = BUF_SIZE_2KiB;
381	else
382		ret = DMA_BUFFER_SIZE;
383
384	return ret;
385}
386
387/**
388 * init_dma_desc_rings - init the RX/TX descriptor rings
389 * @dev: net device structure
390 * Description:  this function initializes the DMA RX/TX descriptors
391 * and allocates the socket buffers. It suppors the chained and ring
392 * modes.
393 */
394static void init_dma_desc_rings(struct net_device *dev)
395{
396	int i;
397	struct stmmac_priv *priv = netdev_priv(dev);
398	struct sk_buff *skb;
399	unsigned int txsize = priv->dma_tx_size;
400	unsigned int rxsize = priv->dma_rx_size;
401	unsigned int bfsize;
402	int dis_ic = 0;
403	int des3_as_data_buf = 0;
404
405	/* Set the max buffer size according to the DESC mode
406	 * and the MTU. Note that RING mode allows 16KiB bsize. */
407	bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
408
409	if (bfsize == BUF_SIZE_16KiB)
410		des3_as_data_buf = 1;
411	else
412		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
413
414#ifdef CONFIG_STMMAC_TIMER
415	/* Disable interrupts on completion for the reception if timer is on */
416	if (likely(priv->tm->enable))
417		dis_ic = 1;
418#endif
419
420	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
421	    txsize, rxsize, bfsize);
422
423	priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
424	priv->rx_skbuff =
425	    kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
426	priv->dma_rx =
427	    (struct dma_desc *)dma_alloc_coherent(priv->device,
428						  rxsize *
429						  sizeof(struct dma_desc),
430						  &priv->dma_rx_phy,
431						  GFP_KERNEL);
432	priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
433				       GFP_KERNEL);
434	priv->dma_tx =
435	    (struct dma_desc *)dma_alloc_coherent(priv->device,
436						  txsize *
437						  sizeof(struct dma_desc),
438						  &priv->dma_tx_phy,
439						  GFP_KERNEL);
440
441	if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
442		pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
443		return;
444	}
445
446	DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
447	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
448	    dev->name, priv->dma_rx, priv->dma_tx,
449	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
450
451	/* RX INITIALIZATION */
452	DBG(probe, INFO, "stmmac: SKB addresses:\n"
453			 "skb\t\tskb data\tdma data\n");
454
455	for (i = 0; i < rxsize; i++) {
456		struct dma_desc *p = priv->dma_rx + i;
457
458		skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
459					 GFP_KERNEL);
460		if (unlikely(skb == NULL)) {
461			pr_err("%s: Rx init fails; skb is NULL\n", __func__);
462			break;
463		}
464		skb_reserve(skb, NET_IP_ALIGN);
465		priv->rx_skbuff[i] = skb;
466		priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
467						bfsize, DMA_FROM_DEVICE);
468
469		p->des2 = priv->rx_skbuff_dma[i];
470
471		priv->hw->ring->init_desc3(des3_as_data_buf, p);
472
473		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
474			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
475	}
476	priv->cur_rx = 0;
477	priv->dirty_rx = (unsigned int)(i - rxsize);
478	priv->dma_buf_sz = bfsize;
479	buf_sz = bfsize;
480
481	/* TX INITIALIZATION */
482	for (i = 0; i < txsize; i++) {
483		priv->tx_skbuff[i] = NULL;
484		priv->dma_tx[i].des2 = 0;
485	}
486
487	/* In case of Chained mode this sets the des3 to the next
488	 * element in the chain */
489	priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
490	priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);
491
492	priv->dirty_tx = 0;
493	priv->cur_tx = 0;
494
495	/* Clear the Rx/Tx descriptors */
496	priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
497	priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
498
499	if (netif_msg_hw(priv)) {
500		pr_info("RX descriptor ring:\n");
501		display_ring(priv->dma_rx, rxsize);
502		pr_info("TX descriptor ring:\n");
503		display_ring(priv->dma_tx, txsize);
504	}
505}
506
507static void dma_free_rx_skbufs(struct stmmac_priv *priv)
508{
509	int i;
510
511	for (i = 0; i < priv->dma_rx_size; i++) {
512		if (priv->rx_skbuff[i]) {
513			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
514					 priv->dma_buf_sz, DMA_FROM_DEVICE);
515			dev_kfree_skb_any(priv->rx_skbuff[i]);
516		}
517		priv->rx_skbuff[i] = NULL;
518	}
519}
520
521static void dma_free_tx_skbufs(struct stmmac_priv *priv)
522{
523	int i;
524
525	for (i = 0; i < priv->dma_tx_size; i++) {
526		if (priv->tx_skbuff[i] != NULL) {
527			struct dma_desc *p = priv->dma_tx + i;
528			if (p->des2)
529				dma_unmap_single(priv->device, p->des2,
530						 priv->hw->desc->get_tx_len(p),
531						 DMA_TO_DEVICE);
532			dev_kfree_skb_any(priv->tx_skbuff[i]);
533			priv->tx_skbuff[i] = NULL;
534		}
535	}
536}
537
538static void free_dma_desc_resources(struct stmmac_priv *priv)
539{
540	/* Release the DMA TX/RX socket buffers */
541	dma_free_rx_skbufs(priv);
542	dma_free_tx_skbufs(priv);
543
544	/* Free the region of consistent memory previously allocated for
545	 * the DMA */
546	dma_free_coherent(priv->device,
547			  priv->dma_tx_size * sizeof(struct dma_desc),
548			  priv->dma_tx, priv->dma_tx_phy);
549	dma_free_coherent(priv->device,
550			  priv->dma_rx_size * sizeof(struct dma_desc),
551			  priv->dma_rx, priv->dma_rx_phy);
552	kfree(priv->rx_skbuff_dma);
553	kfree(priv->rx_skbuff);
554	kfree(priv->tx_skbuff);
555}
556
557/**
558 *  stmmac_dma_operation_mode - HW DMA operation mode
559 *  @priv : pointer to the private device structure.
560 *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
561 *  or Store-And-Forward capability.
562 */
563static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
564{
565	if (likely(priv->plat->force_sf_dma_mode ||
566		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
567		/*
568		 * In case of GMAC, SF mode can be enabled
569		 * to perform the TX COE in HW. This depends on:
570		 * 1) TX COE if actually supported
571		 * 2) There is no bugged Jumbo frame support
572		 *    that needs to not insert csum in the TDES.
573		 */
574		priv->hw->dma->dma_mode(priv->ioaddr,
575					SF_DMA_MODE, SF_DMA_MODE);
576		tc = SF_DMA_MODE;
577	} else
578		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
579}
580
581/**
582 * stmmac_tx:
583 * @priv: private driver structure
584 * Description: it reclaims resources after transmission completes.
585 */
586static void stmmac_tx(struct stmmac_priv *priv)
587{
588	unsigned int txsize = priv->dma_tx_size;
589
590	spin_lock(&priv->tx_lock);
591
592	while (priv->dirty_tx != priv->cur_tx) {
593		int last;
594		unsigned int entry = priv->dirty_tx % txsize;
595		struct sk_buff *skb = priv->tx_skbuff[entry];
596		struct dma_desc *p = priv->dma_tx + entry;
597
598		/* Check if the descriptor is owned by the DMA. */
599		if (priv->hw->desc->get_tx_owner(p))
600			break;
601
602		/* Verify tx error by looking at the last segment */
603		last = priv->hw->desc->get_tx_ls(p);
604		if (likely(last)) {
605			int tx_error =
606				priv->hw->desc->tx_status(&priv->dev->stats,
607							  &priv->xstats, p,
608							  priv->ioaddr);
609			if (likely(tx_error == 0)) {
610				priv->dev->stats.tx_packets++;
611				priv->xstats.tx_pkt_n++;
612			} else
613				priv->dev->stats.tx_errors++;
614		}
615		TX_DBG("%s: curr %d, dirty %d\n", __func__,
616			priv->cur_tx, priv->dirty_tx);
617
618		if (likely(p->des2))
619			dma_unmap_single(priv->device, p->des2,
620					 priv->hw->desc->get_tx_len(p),
621					 DMA_TO_DEVICE);
622		priv->hw->ring->clean_desc3(p);
623
624		if (likely(skb != NULL)) {
625			/*
626			 * If there's room in the queue (limit it to size)
627			 * we add this skb back into the pool,
628			 * if it's the right size.
629			 */
630			if ((skb_queue_len(&priv->rx_recycle) <
631				priv->dma_rx_size) &&
632				skb_recycle_check(skb, priv->dma_buf_sz))
633				__skb_queue_head(&priv->rx_recycle, skb);
634			else
635				dev_kfree_skb(skb);
636
637			priv->tx_skbuff[entry] = NULL;
638		}
639
640		priv->hw->desc->release_tx_desc(p);
641
642		entry = (++priv->dirty_tx) % txsize;
643	}
644	if (unlikely(netif_queue_stopped(priv->dev) &&
645		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
646		netif_tx_lock(priv->dev);
647		if (netif_queue_stopped(priv->dev) &&
648		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
649			TX_DBG("%s: restart transmit\n", __func__);
650			netif_wake_queue(priv->dev);
651		}
652		netif_tx_unlock(priv->dev);
653	}
654	spin_unlock(&priv->tx_lock);
655}
656
657static inline void stmmac_enable_irq(struct stmmac_priv *priv)
658{
659#ifdef CONFIG_STMMAC_TIMER
660	if (likely(priv->tm->enable))
661		priv->tm->timer_start(tmrate);
662	else
663#endif
664		priv->hw->dma->enable_dma_irq(priv->ioaddr);
665}
666
667static inline void stmmac_disable_irq(struct stmmac_priv *priv)
668{
669#ifdef CONFIG_STMMAC_TIMER
670	if (likely(priv->tm->enable))
671		priv->tm->timer_stop();
672	else
673#endif
674		priv->hw->dma->disable_dma_irq(priv->ioaddr);
675}
676
677static int stmmac_has_work(struct stmmac_priv *priv)
678{
679	unsigned int has_work = 0;
680	int rxret, tx_work = 0;
681
682	rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
683		(priv->cur_rx % priv->dma_rx_size));
684
685	if (priv->dirty_tx != priv->cur_tx)
686		tx_work = 1;
687
688	if (likely(!rxret || tx_work))
689		has_work = 1;
690
691	return has_work;
692}
693
694static inline void _stmmac_schedule(struct stmmac_priv *priv)
695{
696	if (likely(stmmac_has_work(priv))) {
697		stmmac_disable_irq(priv);
698		napi_schedule(&priv->napi);
699	}
700}
701
702#ifdef CONFIG_STMMAC_TIMER
703void stmmac_schedule(struct net_device *dev)
704{
705	struct stmmac_priv *priv = netdev_priv(dev);
706
707	priv->xstats.sched_timer_n++;
708
709	_stmmac_schedule(priv);
710}
711
712static void stmmac_no_timer_started(unsigned int x)
713{;
714};
715
716static void stmmac_no_timer_stopped(void)
717{;
718};
719#endif
720
721/**
722 * stmmac_tx_err:
723 * @priv: pointer to the private device structure
724 * Description: it cleans the descriptors and restarts the transmission
725 * in case of errors.
726 */
727static void stmmac_tx_err(struct stmmac_priv *priv)
728{
729	netif_stop_queue(priv->dev);
730
731	priv->hw->dma->stop_tx(priv->ioaddr);
732	dma_free_tx_skbufs(priv);
733	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
734	priv->dirty_tx = 0;
735	priv->cur_tx = 0;
736	priv->hw->dma->start_tx(priv->ioaddr);
737
738	priv->dev->stats.tx_errors++;
739	netif_wake_queue(priv->dev);
740}
741
742
743static void stmmac_dma_interrupt(struct stmmac_priv *priv)
744{
745	int status;
746
747	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
748	if (likely(status == handle_tx_rx))
749		_stmmac_schedule(priv);
750
751	else if (unlikely(status == tx_hard_error_bump_tc)) {
752		/* Try to bump up the dma threshold on this failure */
753		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
754			tc += 64;
755			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
756			priv->xstats.threshold = tc;
757		}
758	} else if (unlikely(status == tx_hard_error))
759		stmmac_tx_err(priv);
760}
761
762static void stmmac_mmc_setup(struct stmmac_priv *priv)
763{
764	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
765			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
766
767	/* Mask MMC irq, counters are managed in SW and registers
768	 * are cleared on each READ eventually. */
769	dwmac_mmc_intr_all_mask(priv->ioaddr);
770
771	if (priv->dma_cap.rmon) {
772		dwmac_mmc_ctrl(priv->ioaddr, mode);
773		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
774	} else
775		pr_info(" No MAC Management Counters available\n");
776}
777
778static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
779{
780	u32 hwid = priv->hw->synopsys_uid;
781
782	/* Only check valid Synopsys Id because old MAC chips
783	 * have no HW registers where get the ID */
784	if (likely(hwid)) {
785		u32 uid = ((hwid & 0x0000ff00) >> 8);
786		u32 synid = (hwid & 0x000000ff);
787
788		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
789			uid, synid);
790
791		return synid;
792	}
793	return 0;
794}
795
796/**
797 * stmmac_selec_desc_mode
798 * @dev : device pointer
799 * Description: select the Enhanced/Alternate or Normal descriptors */
800static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
801{
802	if (priv->plat->enh_desc) {
803		pr_info(" Enhanced/Alternate descriptors\n");
804		priv->hw->desc = &enh_desc_ops;
805	} else {
806		pr_info(" Normal descriptors\n");
807		priv->hw->desc = &ndesc_ops;
808	}
809}
810
811/**
812 * stmmac_get_hw_features
813 * @priv : private device pointer
814 * Description:
815 *  new GMAC chip generations have a new register to indicate the
816 *  presence of the optional feature/functions.
817 *  This can be also used to override the value passed through the
818 *  platform and necessary for old MAC10/100 and GMAC chips.
819 */
820static int stmmac_get_hw_features(struct stmmac_priv *priv)
821{
822	u32 hw_cap = 0;
823
824	if (priv->hw->dma->get_hw_feature) {
825		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
826
827		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
828		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
829		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
830		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
831		priv->dma_cap.multi_addr =
832			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
833		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
834		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
835		priv->dma_cap.pmt_remote_wake_up =
836			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
837		priv->dma_cap.pmt_magic_frame =
838			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
839		/* MMC */
840		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
841		/* IEEE 1588-2002*/
842		priv->dma_cap.time_stamp =
843			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
844		/* IEEE 1588-2008*/
845		priv->dma_cap.atime_stamp =
846			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
847		/* 802.3az - Energy-Efficient Ethernet (EEE) */
848		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
849		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
850		/* TX and RX csum */
851		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
852		priv->dma_cap.rx_coe_type1 =
853			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
854		priv->dma_cap.rx_coe_type2 =
855			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
856		priv->dma_cap.rxfifo_over_2048 =
857			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
858		/* TX and RX number of channels */
859		priv->dma_cap.number_rx_channel =
860			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
861		priv->dma_cap.number_tx_channel =
862			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
863		/* Alternate (enhanced) DESC mode*/
864		priv->dma_cap.enh_desc =
865			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
866
867	}
868
869	return hw_cap;
870}
871
872static void stmmac_check_ether_addr(struct stmmac_priv *priv)
873{
874	/* verify if the MAC address is valid, in case of failures it
875	 * generates a random MAC address */
876	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
877		priv->hw->mac->get_umac_addr((void __iomem *)
878					     priv->dev->base_addr,
879					     priv->dev->dev_addr, 0);
880		if  (!is_valid_ether_addr(priv->dev->dev_addr))
881			eth_hw_addr_random(priv->dev);
882	}
883	pr_warning("%s: device MAC address %pM\n", priv->dev->name,
884						   priv->dev->dev_addr);
885}
886
887/**
888 *  stmmac_open - open entry point of the driver
889 *  @dev : pointer to the device structure.
890 *  Description:
891 *  This function is the open entry point of the driver.
892 *  Return value:
893 *  0 on success and an appropriate (-)ve integer as defined in errno.h
894 *  file on failure.
895 */
896static int stmmac_open(struct net_device *dev)
897{
898	struct stmmac_priv *priv = netdev_priv(dev);
899	int ret;
900
901	stmmac_check_ether_addr(priv);
902
903	/* MDIO bus Registration */
904	ret = stmmac_mdio_register(dev);
905	if (ret < 0) {
906		pr_debug("%s: MDIO bus (id: %d) registration failed",
907			 __func__, priv->plat->bus_id);
908		return ret;
909	}
910
911#ifdef CONFIG_STMMAC_TIMER
912	priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
913	if (unlikely(priv->tm == NULL))
914		return -ENOMEM;
915
916	priv->tm->freq = tmrate;
917
918	/* Test if the external timer can be actually used.
919	 * In case of failure continue without timer. */
920	if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
921		pr_warning("stmmaceth: cannot attach the external timer.\n");
922		priv->tm->freq = 0;
923		priv->tm->timer_start = stmmac_no_timer_started;
924		priv->tm->timer_stop = stmmac_no_timer_stopped;
925	} else
926		priv->tm->enable = 1;
927#endif
928	ret = stmmac_init_phy(dev);
929	if (unlikely(ret)) {
930		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
931		goto open_error;
932	}
933
934	/* Create and initialize the TX/RX descriptors chains. */
935	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
936	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
937	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
938	init_dma_desc_rings(dev);
939
940	/* DMA initialization and SW reset */
941	ret = priv->hw->dma->init(priv->ioaddr, priv->plat->pbl,
942				  priv->dma_tx_phy, priv->dma_rx_phy);
943	if (ret < 0) {
944		pr_err("%s: DMA initialization failed\n", __func__);
945		goto open_error;
946	}
947
948	/* Copy the MAC addr into the HW  */
949	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
950
951	/* If required, perform hw setup of the bus. */
952	if (priv->plat->bus_setup)
953		priv->plat->bus_setup(priv->ioaddr);
954
955	/* Initialize the MAC Core */
956	priv->hw->mac->core_init(priv->ioaddr);
957
958	/* Request the IRQ lines */
959	ret = request_irq(dev->irq, stmmac_interrupt,
960			 IRQF_SHARED, dev->name, dev);
961	if (unlikely(ret < 0)) {
962		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
963		       __func__, dev->irq, ret);
964		goto open_error;
965	}
966
967	/* Request the Wake IRQ in case of another line is used for WoL */
968	if (priv->wol_irq != dev->irq) {
969		ret = request_irq(priv->wol_irq, stmmac_interrupt,
970				  IRQF_SHARED, dev->name, dev);
971		if (unlikely(ret < 0)) {
972			pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
973			       "(error: %d)\n",	__func__, priv->wol_irq, ret);
974			goto open_error_wolirq;
975		}
976	}
977
978	/* Enable the MAC Rx/Tx */
979	stmmac_set_mac(priv->ioaddr, true);
980
981	/* Set the HW DMA mode and the COE */
982	stmmac_dma_operation_mode(priv);
983
984	/* Extra statistics */
985	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
986	priv->xstats.threshold = tc;
987
988	stmmac_mmc_setup(priv);
989
990#ifdef CONFIG_STMMAC_DEBUG_FS
991	ret = stmmac_init_fs(dev);
992	if (ret < 0)
993		pr_warning("%s: failed debugFS registration\n", __func__);
994#endif
995	/* Start the ball rolling... */
996	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
997	priv->hw->dma->start_tx(priv->ioaddr);
998	priv->hw->dma->start_rx(priv->ioaddr);
999
1000#ifdef CONFIG_STMMAC_TIMER
1001	priv->tm->timer_start(tmrate);
1002#endif
1003
1004	/* Dump DMA/MAC registers */
1005	if (netif_msg_hw(priv)) {
1006		priv->hw->mac->dump_regs(priv->ioaddr);
1007		priv->hw->dma->dump_regs(priv->ioaddr);
1008	}
1009
1010	if (priv->phydev)
1011		phy_start(priv->phydev);
1012
1013	napi_enable(&priv->napi);
1014	skb_queue_head_init(&priv->rx_recycle);
1015	netif_start_queue(dev);
1016
1017	return 0;
1018
1019open_error_wolirq:
1020	free_irq(dev->irq, dev);
1021
1022open_error:
1023#ifdef CONFIG_STMMAC_TIMER
1024	kfree(priv->tm);
1025#endif
1026	if (priv->phydev)
1027		phy_disconnect(priv->phydev);
1028
1029	return ret;
1030}
1031
1032/**
1033 *  stmmac_release - close entry point of the driver
1034 *  @dev : device pointer.
1035 *  Description:
1036 *  This is the stop entry point of the driver.
1037 */
1038static int stmmac_release(struct net_device *dev)
1039{
1040	struct stmmac_priv *priv = netdev_priv(dev);
1041
1042	/* Stop and disconnect the PHY */
1043	if (priv->phydev) {
1044		phy_stop(priv->phydev);
1045		phy_disconnect(priv->phydev);
1046		priv->phydev = NULL;
1047	}
1048
1049	netif_stop_queue(dev);
1050
1051#ifdef CONFIG_STMMAC_TIMER
1052	/* Stop and release the timer */
1053	stmmac_close_ext_timer();
1054	if (priv->tm != NULL)
1055		kfree(priv->tm);
1056#endif
1057	napi_disable(&priv->napi);
1058	skb_queue_purge(&priv->rx_recycle);
1059
1060	/* Free the IRQ lines */
1061	free_irq(dev->irq, dev);
1062	if (priv->wol_irq != dev->irq)
1063		free_irq(priv->wol_irq, dev);
1064
1065	/* Stop TX/RX DMA and clear the descriptors */
1066	priv->hw->dma->stop_tx(priv->ioaddr);
1067	priv->hw->dma->stop_rx(priv->ioaddr);
1068
1069	/* Release and free the Rx/Tx resources */
1070	free_dma_desc_resources(priv);
1071
1072	/* Disable the MAC Rx/Tx */
1073	stmmac_set_mac(priv->ioaddr, false);
1074
1075	netif_carrier_off(dev);
1076
1077#ifdef CONFIG_STMMAC_DEBUG_FS
1078	stmmac_exit_fs();
1079#endif
1080	stmmac_mdio_unregister(dev);
1081
1082	return 0;
1083}
1084
1085/**
1086 *  stmmac_xmit:
1087 *  @skb : the socket buffer
1088 *  @dev : device pointer
1089 *  Description : Tx entry point of the driver.
1090 */
1091static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1092{
1093	struct stmmac_priv *priv = netdev_priv(dev);
1094	unsigned int txsize = priv->dma_tx_size;
1095	unsigned int entry;
1096	int i, csum_insertion = 0;
1097	int nfrags = skb_shinfo(skb)->nr_frags;
1098	struct dma_desc *desc, *first;
1099	unsigned int nopaged_len = skb_headlen(skb);
1100
1101	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1102		if (!netif_queue_stopped(dev)) {
1103			netif_stop_queue(dev);
1104			/* This is a hard error, log it. */
1105			pr_err("%s: BUG! Tx Ring full when queue awake\n",
1106				__func__);
1107		}
1108		return NETDEV_TX_BUSY;
1109	}
1110
1111	spin_lock(&priv->tx_lock);
1112
1113	entry = priv->cur_tx % txsize;
1114
1115#ifdef STMMAC_XMIT_DEBUG
1116	if ((skb->len > ETH_FRAME_LEN) || nfrags)
1117		pr_info("stmmac xmit:\n"
1118		       "\tskb addr %p - len: %d - nopaged_len: %d\n"
1119		       "\tn_frags: %d - ip_summed: %d - %s gso\n",
1120		       skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1121		       !skb_is_gso(skb) ? "isn't" : "is");
1122#endif
1123
1124	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1125
1126	desc = priv->dma_tx + entry;
1127	first = desc;
1128
1129#ifdef STMMAC_XMIT_DEBUG
1130	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1131		pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1132		       "\t\tn_frags: %d, ip_summed: %d\n",
1133		       skb->len, nopaged_len, nfrags, skb->ip_summed);
1134#endif
1135	priv->tx_skbuff[entry] = skb;
1136
1137	if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
1138		entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1139		desc = priv->dma_tx + entry;
1140	} else {
1141		desc->des2 = dma_map_single(priv->device, skb->data,
1142					nopaged_len, DMA_TO_DEVICE);
1143		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1144						csum_insertion);
1145	}
1146
1147	for (i = 0; i < nfrags; i++) {
1148		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1149		int len = skb_frag_size(frag);
1150
1151		entry = (++priv->cur_tx) % txsize;
1152		desc = priv->dma_tx + entry;
1153
1154		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1155		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1156					      DMA_TO_DEVICE);
1157		priv->tx_skbuff[entry] = NULL;
1158		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1159		wmb();
1160		priv->hw->desc->set_tx_owner(desc);
1161	}
1162
1163	/* Interrupt on completition only for the latest segment */
1164	priv->hw->desc->close_tx_desc(desc);
1165
1166#ifdef CONFIG_STMMAC_TIMER
1167	/* Clean IC while using timer */
1168	if (likely(priv->tm->enable))
1169		priv->hw->desc->clear_tx_ic(desc);
1170#endif
1171
1172	wmb();
1173
1174	/* To avoid raise condition */
1175	priv->hw->desc->set_tx_owner(first);
1176
1177	priv->cur_tx++;
1178
1179#ifdef STMMAC_XMIT_DEBUG
1180	if (netif_msg_pktdata(priv)) {
1181		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1182		       "first=%p, nfrags=%d\n",
1183		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1184		       entry, first, nfrags);
1185		display_ring(priv->dma_tx, txsize);
1186		pr_info(">>> frame to be transmitted: ");
1187		print_pkt(skb->data, skb->len);
1188	}
1189#endif
1190	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1191		TX_DBG("%s: stop transmitted packets\n", __func__);
1192		netif_stop_queue(dev);
1193	}
1194
1195	dev->stats.tx_bytes += skb->len;
1196
1197	skb_tx_timestamp(skb);
1198
1199	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1200
1201	spin_unlock(&priv->tx_lock);
1202
1203	return NETDEV_TX_OK;
1204}
1205
1206static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1207{
1208	unsigned int rxsize = priv->dma_rx_size;
1209	int bfsize = priv->dma_buf_sz;
1210	struct dma_desc *p = priv->dma_rx;
1211
1212	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1213		unsigned int entry = priv->dirty_rx % rxsize;
1214		if (likely(priv->rx_skbuff[entry] == NULL)) {
1215			struct sk_buff *skb;
1216
1217			skb = __skb_dequeue(&priv->rx_recycle);
1218			if (skb == NULL)
1219				skb = netdev_alloc_skb_ip_align(priv->dev,
1220								bfsize);
1221
1222			if (unlikely(skb == NULL))
1223				break;
1224
1225			priv->rx_skbuff[entry] = skb;
1226			priv->rx_skbuff_dma[entry] =
1227			    dma_map_single(priv->device, skb->data, bfsize,
1228					   DMA_FROM_DEVICE);
1229
1230			(p + entry)->des2 = priv->rx_skbuff_dma[entry];
1231
1232			if (unlikely(priv->plat->has_gmac))
1233				priv->hw->ring->refill_desc3(bfsize, p + entry);
1234
1235			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1236		}
1237		wmb();
1238		priv->hw->desc->set_rx_owner(p + entry);
1239	}
1240}
1241
1242static int stmmac_rx(struct stmmac_priv *priv, int limit)
1243{
1244	unsigned int rxsize = priv->dma_rx_size;
1245	unsigned int entry = priv->cur_rx % rxsize;
1246	unsigned int next_entry;
1247	unsigned int count = 0;
1248	struct dma_desc *p = priv->dma_rx + entry;
1249	struct dma_desc *p_next;
1250
1251#ifdef STMMAC_RX_DEBUG
1252	if (netif_msg_hw(priv)) {
1253		pr_debug(">>> stmmac_rx: descriptor ring:\n");
1254		display_ring(priv->dma_rx, rxsize);
1255	}
1256#endif
1257	count = 0;
1258	while (!priv->hw->desc->get_rx_owner(p)) {
1259		int status;
1260
1261		if (count >= limit)
1262			break;
1263
1264		count++;
1265
1266		next_entry = (++priv->cur_rx) % rxsize;
1267		p_next = priv->dma_rx + next_entry;
1268		prefetch(p_next);
1269
1270		/* read the status of the incoming frame */
1271		status = (priv->hw->desc->rx_status(&priv->dev->stats,
1272						    &priv->xstats, p));
1273		if (unlikely(status == discard_frame))
1274			priv->dev->stats.rx_errors++;
1275		else {
1276			struct sk_buff *skb;
1277			int frame_len;
1278
1279			frame_len = priv->hw->desc->get_rx_frame_len(p);
1280			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1281			 * Type frames (LLC/LLC-SNAP) */
1282			if (unlikely(status != llc_snap))
1283				frame_len -= ETH_FCS_LEN;
1284#ifdef STMMAC_RX_DEBUG
1285			if (frame_len > ETH_FRAME_LEN)
1286				pr_debug("\tRX frame size %d, COE status: %d\n",
1287					frame_len, status);
1288
1289			if (netif_msg_hw(priv))
1290				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1291					p, entry, p->des2);
1292#endif
1293			skb = priv->rx_skbuff[entry];
1294			if (unlikely(!skb)) {
1295				pr_err("%s: Inconsistent Rx descriptor chain\n",
1296					priv->dev->name);
1297				priv->dev->stats.rx_dropped++;
1298				break;
1299			}
1300			prefetch(skb->data - NET_IP_ALIGN);
1301			priv->rx_skbuff[entry] = NULL;
1302
1303			skb_put(skb, frame_len);
1304			dma_unmap_single(priv->device,
1305					 priv->rx_skbuff_dma[entry],
1306					 priv->dma_buf_sz, DMA_FROM_DEVICE);
1307#ifdef STMMAC_RX_DEBUG
1308			if (netif_msg_pktdata(priv)) {
1309				pr_info(" frame received (%dbytes)", frame_len);
1310				print_pkt(skb->data, frame_len);
1311			}
1312#endif
1313			skb->protocol = eth_type_trans(skb, priv->dev);
1314
1315			if (unlikely(!priv->rx_coe)) {
1316				/* No RX COE for old mac10/100 devices */
1317				skb_checksum_none_assert(skb);
1318				netif_receive_skb(skb);
1319			} else {
1320				skb->ip_summed = CHECKSUM_UNNECESSARY;
1321				napi_gro_receive(&priv->napi, skb);
1322			}
1323
1324			priv->dev->stats.rx_packets++;
1325			priv->dev->stats.rx_bytes += frame_len;
1326		}
1327		entry = next_entry;
1328		p = p_next;	/* use prefetched values */
1329	}
1330
1331	stmmac_rx_refill(priv);
1332
1333	priv->xstats.rx_pkt_n += count;
1334
1335	return count;
1336}
1337
1338/**
1339 *  stmmac_poll - stmmac poll method (NAPI)
1340 *  @napi : pointer to the napi structure.
1341 *  @budget : maximum number of packets that the current CPU can receive from
1342 *	      all interfaces.
1343 *  Description :
1344 *   This function implements the the reception process.
1345 *   Also it runs the TX completion thread
1346 */
1347static int stmmac_poll(struct napi_struct *napi, int budget)
1348{
1349	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1350	int work_done = 0;
1351
1352	priv->xstats.poll_n++;
1353	stmmac_tx(priv);
1354	work_done = stmmac_rx(priv, budget);
1355
1356	if (work_done < budget) {
1357		napi_complete(napi);
1358		stmmac_enable_irq(priv);
1359	}
1360	return work_done;
1361}
1362
1363/**
1364 *  stmmac_tx_timeout
1365 *  @dev : Pointer to net device structure
1366 *  Description: this function is called when a packet transmission fails to
1367 *   complete within a reasonable tmrate. The driver will mark the error in the
1368 *   netdev structure and arrange for the device to be reset to a sane state
1369 *   in order to transmit a new packet.
1370 */
1371static void stmmac_tx_timeout(struct net_device *dev)
1372{
1373	struct stmmac_priv *priv = netdev_priv(dev);
1374
1375	/* Clear Tx resources and restart transmitting again */
1376	stmmac_tx_err(priv);
1377}
1378
1379/* Configuration changes (passed on by ifconfig) */
1380static int stmmac_config(struct net_device *dev, struct ifmap *map)
1381{
1382	if (dev->flags & IFF_UP)	/* can't act on a running interface */
1383		return -EBUSY;
1384
1385	/* Don't allow changing the I/O address */
1386	if (map->base_addr != dev->base_addr) {
1387		pr_warning("%s: can't change I/O address\n", dev->name);
1388		return -EOPNOTSUPP;
1389	}
1390
1391	/* Don't allow changing the IRQ */
1392	if (map->irq != dev->irq) {
1393		pr_warning("%s: can't change IRQ number %d\n",
1394		       dev->name, dev->irq);
1395		return -EOPNOTSUPP;
1396	}
1397
1398	/* ignore other fields */
1399	return 0;
1400}
1401
1402/**
1403 *  stmmac_set_rx_mode - entry point for multicast addressing
1404 *  @dev : pointer to the device structure
1405 *  Description:
1406 *  This function is a driver entry point which gets called by the kernel
1407 *  whenever multicast addresses must be enabled/disabled.
1408 *  Return value:
1409 *  void.
1410 */
1411static void stmmac_set_rx_mode(struct net_device *dev)
1412{
1413	struct stmmac_priv *priv = netdev_priv(dev);
1414
1415	spin_lock(&priv->lock);
1416	priv->hw->mac->set_filter(dev);
1417	spin_unlock(&priv->lock);
1418}
1419
1420/**
1421 *  stmmac_change_mtu - entry point to change MTU size for the device.
1422 *  @dev : device pointer.
1423 *  @new_mtu : the new MTU size for the device.
1424 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1425 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1426 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1427 *  Return value:
1428 *  0 on success and an appropriate (-)ve integer as defined in errno.h
1429 *  file on failure.
1430 */
1431static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1432{
1433	struct stmmac_priv *priv = netdev_priv(dev);
1434	int max_mtu;
1435
1436	if (netif_running(dev)) {
1437		pr_err("%s: must be stopped to change its MTU\n", dev->name);
1438		return -EBUSY;
1439	}
1440
1441	if (priv->plat->enh_desc)
1442		max_mtu = JUMBO_LEN;
1443	else
1444		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1445
1446	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1447		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1448		return -EINVAL;
1449	}
1450
1451	dev->mtu = new_mtu;
1452	netdev_update_features(dev);
1453
1454	return 0;
1455}
1456
1457static netdev_features_t stmmac_fix_features(struct net_device *dev,
1458	netdev_features_t features)
1459{
1460	struct stmmac_priv *priv = netdev_priv(dev);
1461
1462	if (!priv->rx_coe)
1463		features &= ~NETIF_F_RXCSUM;
1464	if (!priv->plat->tx_coe)
1465		features &= ~NETIF_F_ALL_CSUM;
1466
1467	/* Some GMAC devices have a bugged Jumbo frame support that
1468	 * needs to have the Tx COE disabled for oversized frames
1469	 * (due to limited buffer sizes). In this case we disable
1470	 * the TX csum insertionin the TDES and not use SF. */
1471	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1472		features &= ~NETIF_F_ALL_CSUM;
1473
1474	return features;
1475}
1476
1477static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1478{
1479	struct net_device *dev = (struct net_device *)dev_id;
1480	struct stmmac_priv *priv = netdev_priv(dev);
1481
1482	if (unlikely(!dev)) {
1483		pr_err("%s: invalid dev pointer\n", __func__);
1484		return IRQ_NONE;
1485	}
1486
1487	if (priv->plat->has_gmac)
1488		/* To handle GMAC own interrupts */
1489		priv->hw->mac->host_irq_status((void __iomem *) dev->base_addr);
1490
1491	stmmac_dma_interrupt(priv);
1492
1493	return IRQ_HANDLED;
1494}
1495
1496#ifdef CONFIG_NET_POLL_CONTROLLER
1497/* Polling receive - used by NETCONSOLE and other diagnostic tools
1498 * to allow network I/O with interrupts disabled. */
1499static void stmmac_poll_controller(struct net_device *dev)
1500{
1501	disable_irq(dev->irq);
1502	stmmac_interrupt(dev->irq, dev);
1503	enable_irq(dev->irq);
1504}
1505#endif
1506
1507/**
1508 *  stmmac_ioctl - Entry point for the Ioctl
1509 *  @dev: Device pointer.
1510 *  @rq: An IOCTL specefic structure, that can contain a pointer to
1511 *  a proprietary structure used to pass information to the driver.
1512 *  @cmd: IOCTL command
1513 *  Description:
1514 *  Currently there are no special functionality supported in IOCTL, just the
1515 *  phy_mii_ioctl(...) can be invoked.
1516 */
1517static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1518{
1519	struct stmmac_priv *priv = netdev_priv(dev);
1520	int ret;
1521
1522	if (!netif_running(dev))
1523		return -EINVAL;
1524
1525	if (!priv->phydev)
1526		return -EINVAL;
1527
1528	ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1529
1530	return ret;
1531}
1532
1533#ifdef CONFIG_STMMAC_DEBUG_FS
1534static struct dentry *stmmac_fs_dir;
1535static struct dentry *stmmac_rings_status;
1536static struct dentry *stmmac_dma_cap;
1537
1538static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
1539{
1540	struct tmp_s {
1541		u64 a;
1542		unsigned int b;
1543		unsigned int c;
1544	};
1545	int i;
1546	struct net_device *dev = seq->private;
1547	struct stmmac_priv *priv = netdev_priv(dev);
1548
1549	seq_printf(seq, "=======================\n");
1550	seq_printf(seq, " RX descriptor ring\n");
1551	seq_printf(seq, "=======================\n");
1552
1553	for (i = 0; i < priv->dma_rx_size; i++) {
1554		struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
1555		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1556			   i, (unsigned int)(x->a),
1557			   (unsigned int)((x->a) >> 32), x->b, x->c);
1558		seq_printf(seq, "\n");
1559	}
1560
1561	seq_printf(seq, "\n");
1562	seq_printf(seq, "=======================\n");
1563	seq_printf(seq, "  TX descriptor ring\n");
1564	seq_printf(seq, "=======================\n");
1565
1566	for (i = 0; i < priv->dma_tx_size; i++) {
1567		struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
1568		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1569			   i, (unsigned int)(x->a),
1570			   (unsigned int)((x->a) >> 32), x->b, x->c);
1571		seq_printf(seq, "\n");
1572	}
1573
1574	return 0;
1575}
1576
1577static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
1578{
1579	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
1580}
1581
1582static const struct file_operations stmmac_rings_status_fops = {
1583	.owner = THIS_MODULE,
1584	.open = stmmac_sysfs_ring_open,
1585	.read = seq_read,
1586	.llseek = seq_lseek,
1587	.release = seq_release,
1588};
1589
1590static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
1591{
1592	struct net_device *dev = seq->private;
1593	struct stmmac_priv *priv = netdev_priv(dev);
1594
1595	if (!priv->hw_cap_support) {
1596		seq_printf(seq, "DMA HW features not supported\n");
1597		return 0;
1598	}
1599
1600	seq_printf(seq, "==============================\n");
1601	seq_printf(seq, "\tDMA HW features\n");
1602	seq_printf(seq, "==============================\n");
1603
1604	seq_printf(seq, "\t10/100 Mbps %s\n",
1605		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
1606	seq_printf(seq, "\t1000 Mbps %s\n",
1607		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
1608	seq_printf(seq, "\tHalf duple %s\n",
1609		   (priv->dma_cap.half_duplex) ? "Y" : "N");
1610	seq_printf(seq, "\tHash Filter: %s\n",
1611		   (priv->dma_cap.hash_filter) ? "Y" : "N");
1612	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
1613		   (priv->dma_cap.multi_addr) ? "Y" : "N");
1614	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1615		   (priv->dma_cap.pcs) ? "Y" : "N");
1616	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
1617		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
1618	seq_printf(seq, "\tPMT Remote wake up: %s\n",
1619		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
1620	seq_printf(seq, "\tPMT Magic Frame: %s\n",
1621		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
1622	seq_printf(seq, "\tRMON module: %s\n",
1623		   (priv->dma_cap.rmon) ? "Y" : "N");
1624	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
1625		   (priv->dma_cap.time_stamp) ? "Y" : "N");
1626	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1627		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
1628	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1629		   (priv->dma_cap.eee) ? "Y" : "N");
1630	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
1631	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
1632		   (priv->dma_cap.tx_coe) ? "Y" : "N");
1633	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
1634		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
1635	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
1636		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
1637	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
1638		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
1639	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
1640		   priv->dma_cap.number_rx_channel);
1641	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
1642		   priv->dma_cap.number_tx_channel);
1643	seq_printf(seq, "\tEnhanced descriptors: %s\n",
1644		   (priv->dma_cap.enh_desc) ? "Y" : "N");
1645
1646	return 0;
1647}
1648
1649static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
1650{
1651	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
1652}
1653
1654static const struct file_operations stmmac_dma_cap_fops = {
1655	.owner = THIS_MODULE,
1656	.open = stmmac_sysfs_dma_cap_open,
1657	.read = seq_read,
1658	.llseek = seq_lseek,
1659	.release = seq_release,
1660};
1661
1662static int stmmac_init_fs(struct net_device *dev)
1663{
1664	/* Create debugfs entries */
1665	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
1666
1667	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
1668		pr_err("ERROR %s, debugfs create directory failed\n",
1669		       STMMAC_RESOURCE_NAME);
1670
1671		return -ENOMEM;
1672	}
1673
1674	/* Entry to report DMA RX/TX rings */
1675	stmmac_rings_status = debugfs_create_file("descriptors_status",
1676					   S_IRUGO, stmmac_fs_dir, dev,
1677					   &stmmac_rings_status_fops);
1678
1679	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
1680		pr_info("ERROR creating stmmac ring debugfs file\n");
1681		debugfs_remove(stmmac_fs_dir);
1682
1683		return -ENOMEM;
1684	}
1685
1686	/* Entry to report the DMA HW features */
1687	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
1688					     dev, &stmmac_dma_cap_fops);
1689
1690	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
1691		pr_info("ERROR creating stmmac MMC debugfs file\n");
1692		debugfs_remove(stmmac_rings_status);
1693		debugfs_remove(stmmac_fs_dir);
1694
1695		return -ENOMEM;
1696	}
1697
1698	return 0;
1699}
1700
1701static void stmmac_exit_fs(void)
1702{
1703	debugfs_remove(stmmac_rings_status);
1704	debugfs_remove(stmmac_dma_cap);
1705	debugfs_remove(stmmac_fs_dir);
1706}
1707#endif /* CONFIG_STMMAC_DEBUG_FS */
1708
1709static const struct net_device_ops stmmac_netdev_ops = {
1710	.ndo_open = stmmac_open,
1711	.ndo_start_xmit = stmmac_xmit,
1712	.ndo_stop = stmmac_release,
1713	.ndo_change_mtu = stmmac_change_mtu,
1714	.ndo_fix_features = stmmac_fix_features,
1715	.ndo_set_rx_mode = stmmac_set_rx_mode,
1716	.ndo_tx_timeout = stmmac_tx_timeout,
1717	.ndo_do_ioctl = stmmac_ioctl,
1718	.ndo_set_config = stmmac_config,
1719#ifdef CONFIG_NET_POLL_CONTROLLER
1720	.ndo_poll_controller = stmmac_poll_controller,
1721#endif
1722	.ndo_set_mac_address = eth_mac_addr,
1723};
1724
1725/**
1726 *  stmmac_hw_init - Init the MAC device
1727 *  @priv : pointer to the private device structure.
1728 *  Description: this function detects which MAC device
1729 *  (GMAC/MAC10-100) has to attached, checks the HW capability
1730 *  (if supported) and sets the driver's features (for example
1731 *  to use the ring or chaine mode or support the normal/enh
1732 *  descriptor structure).
1733 */
1734static int stmmac_hw_init(struct stmmac_priv *priv)
1735{
1736	int ret = 0;
1737	struct mac_device_info *mac;
1738
1739	/* Identify the MAC HW device */
1740	if (priv->plat->has_gmac) {
1741		priv->dev->priv_flags |= IFF_UNICAST_FLT;
1742		mac = dwmac1000_setup(priv->ioaddr);
1743	} else {
1744		mac = dwmac100_setup(priv->ioaddr);
1745	}
1746	if (!mac)
1747		return -ENOMEM;
1748
1749	priv->hw = mac;
1750
1751	/* To use the chained or ring mode */
1752	priv->hw->ring = &ring_mode_ops;
1753
1754	/* Get and dump the chip ID */
1755	stmmac_get_synopsys_id(priv);
1756
1757	/* Get the HW capability (new GMAC newer than 3.50a) */
1758	priv->hw_cap_support = stmmac_get_hw_features(priv);
1759	if (priv->hw_cap_support) {
1760		pr_info(" DMA HW capability register supported");
1761
1762		/* We can override some gmac/dma configuration fields: e.g.
1763		 * enh_desc, tx_coe (e.g. that are passed through the
1764		 * platform) with the values from the HW capability
1765		 * register (if supported).
1766		 */
1767		priv->plat->enh_desc = priv->dma_cap.enh_desc;
1768		priv->plat->tx_coe = priv->dma_cap.tx_coe;
1769		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1770	} else
1771		pr_info(" No HW DMA feature register supported");
1772
1773	/* Select the enhnaced/normal descriptor structures */
1774	stmmac_selec_desc_mode(priv);
1775
1776	priv->rx_coe = priv->hw->mac->rx_coe(priv->ioaddr);
1777	if (priv->rx_coe)
1778		pr_info(" RX Checksum Offload Engine supported\n");
1779	if (priv->plat->tx_coe)
1780		pr_info(" TX Checksum insertion supported\n");
1781
1782	if (priv->plat->pmt) {
1783		pr_info(" Wake-Up On Lan supported\n");
1784		device_set_wakeup_capable(priv->device, 1);
1785	}
1786
1787	return ret;
1788}
1789
1790/**
1791 * stmmac_dvr_probe
1792 * @device: device pointer
1793 * Description: this is the main probe function used to
1794 * call the alloc_etherdev, allocate the priv structure.
1795 */
1796struct stmmac_priv *stmmac_dvr_probe(struct device *device,
1797				     struct plat_stmmacenet_data *plat_dat,
1798				     void __iomem *addr)
1799{
1800	int ret = 0;
1801	struct net_device *ndev = NULL;
1802	struct stmmac_priv *priv;
1803
1804	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1805	if (!ndev)
1806		return NULL;
1807
1808	SET_NETDEV_DEV(ndev, device);
1809
1810	priv = netdev_priv(ndev);
1811	priv->device = device;
1812	priv->dev = ndev;
1813
1814	ether_setup(ndev);
1815
1816	stmmac_set_ethtool_ops(ndev);
1817	priv->pause = pause;
1818	priv->plat = plat_dat;
1819	priv->ioaddr = addr;
1820	priv->dev->base_addr = (unsigned long)addr;
1821
1822	/* Verify driver arguments */
1823	stmmac_verify_args();
1824
1825	/* Override with kernel parameters if supplied XXX CRS XXX
1826	 * this needs to have multiple instances */
1827	if ((phyaddr >= 0) && (phyaddr <= 31))
1828		priv->plat->phy_addr = phyaddr;
1829
1830	/* Init MAC and get the capabilities */
1831	stmmac_hw_init(priv);
1832
1833	ndev->netdev_ops = &stmmac_netdev_ops;
1834
1835	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1836			    NETIF_F_RXCSUM;
1837	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1838	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1839#ifdef STMMAC_VLAN_TAG_USED
1840	/* Both mac100 and gmac support receive VLAN tag detection */
1841	ndev->features |= NETIF_F_HW_VLAN_RX;
1842#endif
1843	priv->msg_enable = netif_msg_init(debug, default_msg_level);
1844
1845	if (flow_ctrl)
1846		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
1847
1848	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
1849
1850	spin_lock_init(&priv->lock);
1851	spin_lock_init(&priv->tx_lock);
1852
1853	ret = register_netdev(ndev);
1854	if (ret) {
1855		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
1856		goto error;
1857	}
1858
1859	return priv;
1860
1861error:
1862	netif_napi_del(&priv->napi);
1863
1864	unregister_netdev(ndev);
1865	free_netdev(ndev);
1866
1867	return NULL;
1868}
1869
1870/**
1871 * stmmac_dvr_remove
1872 * @ndev: net device pointer
1873 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1874 * changes the link status, releases the DMA descriptor rings.
1875 */
1876int stmmac_dvr_remove(struct net_device *ndev)
1877{
1878	struct stmmac_priv *priv = netdev_priv(ndev);
1879
1880	pr_info("%s:\n\tremoving driver", __func__);
1881
1882	priv->hw->dma->stop_rx(priv->ioaddr);
1883	priv->hw->dma->stop_tx(priv->ioaddr);
1884
1885	stmmac_set_mac(priv->ioaddr, false);
1886	netif_carrier_off(ndev);
1887	unregister_netdev(ndev);
1888	free_netdev(ndev);
1889
1890	return 0;
1891}
1892
1893#ifdef CONFIG_PM
1894int stmmac_suspend(struct net_device *ndev)
1895{
1896	struct stmmac_priv *priv = netdev_priv(ndev);
1897	int dis_ic = 0;
1898
1899	if (!ndev || !netif_running(ndev))
1900		return 0;
1901
1902	if (priv->phydev)
1903		phy_stop(priv->phydev);
1904
1905	spin_lock(&priv->lock);
1906
1907	netif_device_detach(ndev);
1908	netif_stop_queue(ndev);
1909
1910#ifdef CONFIG_STMMAC_TIMER
1911	priv->tm->timer_stop();
1912	if (likely(priv->tm->enable))
1913		dis_ic = 1;
1914#endif
1915	napi_disable(&priv->napi);
1916
1917	/* Stop TX/RX DMA */
1918	priv->hw->dma->stop_tx(priv->ioaddr);
1919	priv->hw->dma->stop_rx(priv->ioaddr);
1920	/* Clear the Rx/Tx descriptors */
1921	priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
1922				     dis_ic);
1923	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
1924
1925	/* Enable Power down mode by programming the PMT regs */
1926	if (device_may_wakeup(priv->device))
1927		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
1928	else
1929		stmmac_set_mac(priv->ioaddr, false);
1930
1931	spin_unlock(&priv->lock);
1932	return 0;
1933}
1934
1935int stmmac_resume(struct net_device *ndev)
1936{
1937	struct stmmac_priv *priv = netdev_priv(ndev);
1938
1939	if (!netif_running(ndev))
1940		return 0;
1941
1942	spin_lock(&priv->lock);
1943
1944	/* Power Down bit, into the PM register, is cleared
1945	 * automatically as soon as a magic packet or a Wake-up frame
1946	 * is received. Anyway, it's better to manually clear
1947	 * this bit because it can generate problems while resuming
1948	 * from another devices (e.g. serial console). */
1949	if (device_may_wakeup(priv->device))
1950		priv->hw->mac->pmt(priv->ioaddr, 0);
1951
1952	netif_device_attach(ndev);
1953
1954	/* Enable the MAC and DMA */
1955	stmmac_set_mac(priv->ioaddr, true);
1956	priv->hw->dma->start_tx(priv->ioaddr);
1957	priv->hw->dma->start_rx(priv->ioaddr);
1958
1959#ifdef CONFIG_STMMAC_TIMER
1960	if (likely(priv->tm->enable))
1961		priv->tm->timer_start(tmrate);
1962#endif
1963	napi_enable(&priv->napi);
1964
1965	netif_start_queue(ndev);
1966
1967	spin_unlock(&priv->lock);
1968
1969	if (priv->phydev)
1970		phy_start(priv->phydev);
1971
1972	return 0;
1973}
1974
1975int stmmac_freeze(struct net_device *ndev)
1976{
1977	if (!ndev || !netif_running(ndev))
1978		return 0;
1979
1980	return stmmac_release(ndev);
1981}
1982
1983int stmmac_restore(struct net_device *ndev)
1984{
1985	if (!ndev || !netif_running(ndev))
1986		return 0;
1987
1988	return stmmac_open(ndev);
1989}
1990#endif /* CONFIG_PM */
1991
1992#ifndef MODULE
1993static int __init stmmac_cmdline_opt(char *str)
1994{
1995	char *opt;
1996
1997	if (!str || !*str)
1998		return -EINVAL;
1999	while ((opt = strsep(&str, ",")) != NULL) {
2000		if (!strncmp(opt, "debug:", 6)) {
2001			if (strict_strtoul(opt + 6, 0, (unsigned long *)&debug))
2002				goto err;
2003		} else if (!strncmp(opt, "phyaddr:", 8)) {
2004			if (strict_strtoul(opt + 8, 0,
2005					   (unsigned long *)&phyaddr))
2006				goto err;
2007		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2008			if (strict_strtoul(opt + 11, 0,
2009					   (unsigned long *)&dma_txsize))
2010				goto err;
2011		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2012			if (strict_strtoul(opt + 11, 0,
2013					   (unsigned long *)&dma_rxsize))
2014				goto err;
2015		} else if (!strncmp(opt, "buf_sz:", 7)) {
2016			if (strict_strtoul(opt + 7, 0,
2017					   (unsigned long *)&buf_sz))
2018				goto err;
2019		} else if (!strncmp(opt, "tc:", 3)) {
2020			if (strict_strtoul(opt + 3, 0, (unsigned long *)&tc))
2021				goto err;
2022		} else if (!strncmp(opt, "watchdog:", 9)) {
2023			if (strict_strtoul(opt + 9, 0,
2024					   (unsigned long *)&watchdog))
2025				goto err;
2026		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2027			if (strict_strtoul(opt + 10, 0,
2028					   (unsigned long *)&flow_ctrl))
2029				goto err;
2030		} else if (!strncmp(opt, "pause:", 6)) {
2031			if (strict_strtoul(opt + 6, 0, (unsigned long *)&pause))
2032				goto err;
2033#ifdef CONFIG_STMMAC_TIMER
2034		} else if (!strncmp(opt, "tmrate:", 7)) {
2035			if (strict_strtoul(opt + 7, 0,
2036					   (unsigned long *)&tmrate))
2037				goto err;
2038#endif
2039		}
2040	}
2041	return 0;
2042
2043err:
2044	pr_err("%s: ERROR broken module parameter conversion", __func__);
2045	return -EINVAL;
2046}
2047
2048__setup("stmmaceth=", stmmac_cmdline_opt);
2049#endif
2050
2051MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2052MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2053MODULE_LICENSE("GPL");
2054