1/*
2 * Xilinx Axi Ethernet device driver
3 *
4 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
5 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8 * Copyright (c) 2010 - 2011 PetaLogix
9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
10 *
11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12 * and Spartan6.
13 *
14 * TODO:
15 *  - Add Axi Fifo support.
16 *  - Factor out Axi DMA code into separate driver.
17 *  - Test and fix basic multicast filtering.
18 *  - Add support for extended multicast filtering.
19 *  - Test basic VLAN support.
20 *  - Add support for extended VLAN support.
21 */
22
23#include <linux/delay.h>
24#include <linux/etherdevice.h>
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/netdevice.h>
28#include <linux/of_mdio.h>
29#include <linux/of_platform.h>
30#include <linux/of_address.h>
31#include <linux/skbuff.h>
32#include <linux/spinlock.h>
33#include <linux/phy.h>
34#include <linux/mii.h>
35#include <linux/ethtool.h>
36
37#include "xilinx_axienet.h"
38
39/* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
40#define TX_BD_NUM		64
41#define RX_BD_NUM		128
42
43/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
44#define DRIVER_NAME		"xaxienet"
45#define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
46#define DRIVER_VERSION		"1.00a"
47
48#define AXIENET_REGS_N		32
49
50/* Match table for of_platform binding */
51static struct of_device_id axienet_of_match[] __devinitdata = {
52	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
53	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
54	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
55	{},
56};
57
58MODULE_DEVICE_TABLE(of, axienet_of_match);
59
60/* Option table for setting up Axi Ethernet hardware options */
61static struct axienet_option axienet_options[] = {
62	/* Turn on jumbo packet support for both Rx and Tx */
63	{
64		.opt = XAE_OPTION_JUMBO,
65		.reg = XAE_TC_OFFSET,
66		.m_or = XAE_TC_JUM_MASK,
67	}, {
68		.opt = XAE_OPTION_JUMBO,
69		.reg = XAE_RCW1_OFFSET,
70		.m_or = XAE_RCW1_JUM_MASK,
71	}, { /* Turn on VLAN packet support for both Rx and Tx */
72		.opt = XAE_OPTION_VLAN,
73		.reg = XAE_TC_OFFSET,
74		.m_or = XAE_TC_VLAN_MASK,
75	}, {
76		.opt = XAE_OPTION_VLAN,
77		.reg = XAE_RCW1_OFFSET,
78		.m_or = XAE_RCW1_VLAN_MASK,
79	}, { /* Turn on FCS stripping on receive packets */
80		.opt = XAE_OPTION_FCS_STRIP,
81		.reg = XAE_RCW1_OFFSET,
82		.m_or = XAE_RCW1_FCS_MASK,
83	}, { /* Turn on FCS insertion on transmit packets */
84		.opt = XAE_OPTION_FCS_INSERT,
85		.reg = XAE_TC_OFFSET,
86		.m_or = XAE_TC_FCS_MASK,
87	}, { /* Turn off length/type field checking on receive packets */
88		.opt = XAE_OPTION_LENTYPE_ERR,
89		.reg = XAE_RCW1_OFFSET,
90		.m_or = XAE_RCW1_LT_DIS_MASK,
91	}, { /* Turn on Rx flow control */
92		.opt = XAE_OPTION_FLOW_CONTROL,
93		.reg = XAE_FCC_OFFSET,
94		.m_or = XAE_FCC_FCRX_MASK,
95	}, { /* Turn on Tx flow control */
96		.opt = XAE_OPTION_FLOW_CONTROL,
97		.reg = XAE_FCC_OFFSET,
98		.m_or = XAE_FCC_FCTX_MASK,
99	}, { /* Turn on promiscuous frame filtering */
100		.opt = XAE_OPTION_PROMISC,
101		.reg = XAE_FMI_OFFSET,
102		.m_or = XAE_FMI_PM_MASK,
103	}, { /* Enable transmitter */
104		.opt = XAE_OPTION_TXEN,
105		.reg = XAE_TC_OFFSET,
106		.m_or = XAE_TC_TX_MASK,
107	}, { /* Enable receiver */
108		.opt = XAE_OPTION_RXEN,
109		.reg = XAE_RCW1_OFFSET,
110		.m_or = XAE_RCW1_RX_MASK,
111	},
112	{}
113};
114
115/**
116 * axienet_dma_in32 - Memory mapped Axi DMA register read
117 * @lp:		Pointer to axienet local structure
118 * @reg:	Address offset from the base address of the Axi DMA core
119 *
120 * returns: The contents of the Axi DMA register
121 *
122 * This function returns the contents of the corresponding Axi DMA register.
123 */
124static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
125{
126	return in_be32(lp->dma_regs + reg);
127}
128
129/**
130 * axienet_dma_out32 - Memory mapped Axi DMA register write.
131 * @lp:		Pointer to axienet local structure
132 * @reg:	Address offset from the base address of the Axi DMA core
133 * @value:	Value to be written into the Axi DMA register
134 *
135 * This function writes the desired value into the corresponding Axi DMA
136 * register.
137 */
138static inline void axienet_dma_out32(struct axienet_local *lp,
139				     off_t reg, u32 value)
140{
141	out_be32((lp->dma_regs + reg), value);
142}
143
144/**
145 * axienet_dma_bd_release - Release buffer descriptor rings
146 * @ndev:	Pointer to the net_device structure
147 *
148 * This function is used to release the descriptors allocated in
149 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
150 * driver stop api is called.
151 */
152static void axienet_dma_bd_release(struct net_device *ndev)
153{
154	int i;
155	struct axienet_local *lp = netdev_priv(ndev);
156
157	for (i = 0; i < RX_BD_NUM; i++) {
158		dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
159				 lp->max_frm_size, DMA_FROM_DEVICE);
160		dev_kfree_skb((struct sk_buff *)
161			      (lp->rx_bd_v[i].sw_id_offset));
162	}
163
164	if (lp->rx_bd_v) {
165		dma_free_coherent(ndev->dev.parent,
166				  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
167				  lp->rx_bd_v,
168				  lp->rx_bd_p);
169	}
170	if (lp->tx_bd_v) {
171		dma_free_coherent(ndev->dev.parent,
172				  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
173				  lp->tx_bd_v,
174				  lp->tx_bd_p);
175	}
176}
177
178/**
179 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
180 * @ndev:	Pointer to the net_device structure
181 *
182 * returns: 0, on success
183 *	    -ENOMEM, on failure
184 *
185 * This function is called to initialize the Rx and Tx DMA descriptor
186 * rings. This initializes the descriptors with required default values
187 * and is called when Axi Ethernet driver reset is called.
188 */
189static int axienet_dma_bd_init(struct net_device *ndev)
190{
191	u32 cr;
192	int i;
193	struct sk_buff *skb;
194	struct axienet_local *lp = netdev_priv(ndev);
195
196	/* Reset the indexes which are used for accessing the BDs */
197	lp->tx_bd_ci = 0;
198	lp->tx_bd_tail = 0;
199	lp->rx_bd_ci = 0;
200
201	/*
202	 * Allocate the Tx and Rx buffer descriptors.
203	 */
204	lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
205					 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
206					 &lp->tx_bd_p,
207					 GFP_KERNEL);
208	if (!lp->tx_bd_v) {
209		dev_err(&ndev->dev, "unable to allocate DMA Tx buffer "
210			"descriptors");
211		goto out;
212	}
213
214	lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
215					 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
216					 &lp->rx_bd_p,
217					 GFP_KERNEL);
218	if (!lp->rx_bd_v) {
219		dev_err(&ndev->dev, "unable to allocate DMA Rx buffer "
220			"descriptors");
221		goto out;
222	}
223
224	memset(lp->tx_bd_v, 0, sizeof(*lp->tx_bd_v) * TX_BD_NUM);
225	for (i = 0; i < TX_BD_NUM; i++) {
226		lp->tx_bd_v[i].next = lp->tx_bd_p +
227				      sizeof(*lp->tx_bd_v) *
228				      ((i + 1) % TX_BD_NUM);
229	}
230
231	memset(lp->rx_bd_v, 0, sizeof(*lp->rx_bd_v) * RX_BD_NUM);
232	for (i = 0; i < RX_BD_NUM; i++) {
233		lp->rx_bd_v[i].next = lp->rx_bd_p +
234				      sizeof(*lp->rx_bd_v) *
235				      ((i + 1) % RX_BD_NUM);
236
237		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
238		if (!skb) {
239			dev_err(&ndev->dev, "alloc_skb error %d\n", i);
240			goto out;
241		}
242
243		lp->rx_bd_v[i].sw_id_offset = (u32) skb;
244		lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
245						     skb->data,
246						     lp->max_frm_size,
247						     DMA_FROM_DEVICE);
248		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
249	}
250
251	/* Start updating the Rx channel control register */
252	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
253	/* Update the interrupt coalesce count */
254	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
255	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
256	/* Update the delay timer count */
257	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
258	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
259	/* Enable coalesce, delay timer and error interrupts */
260	cr |= XAXIDMA_IRQ_ALL_MASK;
261	/* Write to the Rx channel control register */
262	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
263
264	/* Start updating the Tx channel control register */
265	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
266	/* Update the interrupt coalesce count */
267	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
268	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
269	/* Update the delay timer count */
270	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
271	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
272	/* Enable coalesce, delay timer and error interrupts */
273	cr |= XAXIDMA_IRQ_ALL_MASK;
274	/* Write to the Tx channel control register */
275	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
276
277	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
278	 * halted state. This will make the Rx side ready for reception.*/
279	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
280	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
281	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
282			  cr | XAXIDMA_CR_RUNSTOP_MASK);
283	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
284			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
285
286	/* Write to the RS (Run-stop) bit in the Tx channel control register.
287	 * Tx channel is now ready to run. But only after we write to the
288	 * tail pointer register that the Tx channel will start transmitting */
289	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
290	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
291	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
292			  cr | XAXIDMA_CR_RUNSTOP_MASK);
293
294	return 0;
295out:
296	axienet_dma_bd_release(ndev);
297	return -ENOMEM;
298}
299
300/**
301 * axienet_set_mac_address - Write the MAC address
302 * @ndev:	Pointer to the net_device structure
303 * @address:	6 byte Address to be written as MAC address
304 *
305 * This function is called to initialize the MAC address of the Axi Ethernet
306 * core. It writes to the UAW0 and UAW1 registers of the core.
307 */
308static void axienet_set_mac_address(struct net_device *ndev, void *address)
309{
310	struct axienet_local *lp = netdev_priv(ndev);
311
312	if (address)
313		memcpy(ndev->dev_addr, address, ETH_ALEN);
314	if (!is_valid_ether_addr(ndev->dev_addr))
315		random_ether_addr(ndev->dev_addr);
316
317	/* Set up unicast MAC address filter set its mac address */
318	axienet_iow(lp, XAE_UAW0_OFFSET,
319		    (ndev->dev_addr[0]) |
320		    (ndev->dev_addr[1] << 8) |
321		    (ndev->dev_addr[2] << 16) |
322		    (ndev->dev_addr[3] << 24));
323	axienet_iow(lp, XAE_UAW1_OFFSET,
324		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
325		      ~XAE_UAW1_UNICASTADDR_MASK) |
326		     (ndev->dev_addr[4] |
327		     (ndev->dev_addr[5] << 8))));
328}
329
330/**
331 * netdev_set_mac_address - Write the MAC address (from outside the driver)
332 * @ndev:	Pointer to the net_device structure
333 * @p:		6 byte Address to be written as MAC address
334 *
335 * returns: 0 for all conditions. Presently, there is no failure case.
336 *
337 * This function is called to initialize the MAC address of the Axi Ethernet
338 * core. It calls the core specific axienet_set_mac_address. This is the
339 * function that goes into net_device_ops structure entry ndo_set_mac_address.
340 */
341static int netdev_set_mac_address(struct net_device *ndev, void *p)
342{
343	struct sockaddr *addr = p;
344	axienet_set_mac_address(ndev, addr->sa_data);
345	return 0;
346}
347
348/**
349 * axienet_set_multicast_list - Prepare the multicast table
350 * @ndev:	Pointer to the net_device structure
351 *
352 * This function is called to initialize the multicast table during
353 * initialization. The Axi Ethernet basic multicast support has a four-entry
354 * multicast table which is initialized here. Additionally this function
355 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
356 * means whenever the multicast table entries need to be updated this
357 * function gets called.
358 */
359static void axienet_set_multicast_list(struct net_device *ndev)
360{
361	int i;
362	u32 reg, af0reg, af1reg;
363	struct axienet_local *lp = netdev_priv(ndev);
364
365	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
366	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
367		/* We must make the kernel realize we had to move into
368		 * promiscuous mode. If it was a promiscuous mode request
369		 * the flag is already set. If not we set it. */
370		ndev->flags |= IFF_PROMISC;
371		reg = axienet_ior(lp, XAE_FMI_OFFSET);
372		reg |= XAE_FMI_PM_MASK;
373		axienet_iow(lp, XAE_FMI_OFFSET, reg);
374		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
375	} else if (!netdev_mc_empty(ndev)) {
376		struct netdev_hw_addr *ha;
377
378		i = 0;
379		netdev_for_each_mc_addr(ha, ndev) {
380			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
381				break;
382
383			af0reg = (ha->addr[0]);
384			af0reg |= (ha->addr[1] << 8);
385			af0reg |= (ha->addr[2] << 16);
386			af0reg |= (ha->addr[3] << 24);
387
388			af1reg = (ha->addr[4]);
389			af1reg |= (ha->addr[5] << 8);
390
391			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
392			reg |= i;
393
394			axienet_iow(lp, XAE_FMI_OFFSET, reg);
395			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
396			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
397			i++;
398		}
399	} else {
400		reg = axienet_ior(lp, XAE_FMI_OFFSET);
401		reg &= ~XAE_FMI_PM_MASK;
402
403		axienet_iow(lp, XAE_FMI_OFFSET, reg);
404
405		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
406			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
407			reg |= i;
408
409			axienet_iow(lp, XAE_FMI_OFFSET, reg);
410			axienet_iow(lp, XAE_AF0_OFFSET, 0);
411			axienet_iow(lp, XAE_AF1_OFFSET, 0);
412		}
413
414		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
415	}
416}
417
418/**
419 * axienet_setoptions - Set an Axi Ethernet option
420 * @ndev:	Pointer to the net_device structure
421 * @options:	Option to be enabled/disabled
422 *
423 * The Axi Ethernet core has multiple features which can be selectively turned
424 * on or off. The typical options could be jumbo frame option, basic VLAN
425 * option, promiscuous mode option etc. This function is used to set or clear
426 * these options in the Axi Ethernet hardware. This is done through
427 * axienet_option structure .
428 */
429static void axienet_setoptions(struct net_device *ndev, u32 options)
430{
431	int reg;
432	struct axienet_local *lp = netdev_priv(ndev);
433	struct axienet_option *tp = &axienet_options[0];
434
435	while (tp->opt) {
436		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
437		if (options & tp->opt)
438			reg |= tp->m_or;
439		axienet_iow(lp, tp->reg, reg);
440		tp++;
441	}
442
443	lp->options |= options;
444}
445
446static void __axienet_device_reset(struct axienet_local *lp,
447				   struct device *dev, off_t offset)
448{
449	u32 timeout;
450	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
451	 * process of Axi DMA takes a while to complete as all pending
452	 * commands/transfers will be flushed or completed during this
453	 * reset process. */
454	axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
455	timeout = DELAY_OF_ONE_MILLISEC;
456	while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
457		udelay(1);
458		if (--timeout == 0) {
459			dev_err(dev, "axienet_device_reset DMA "
460				"reset timeout!\n");
461			break;
462		}
463	}
464}
465
466/**
467 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
468 * @ndev:	Pointer to the net_device structure
469 *
470 * This function is called to reset and initialize the Axi Ethernet core. This
471 * is typically called during initialization. It does a reset of the Axi DMA
472 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
473 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
474 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
475 * core.
476 */
477static void axienet_device_reset(struct net_device *ndev)
478{
479	u32 axienet_status;
480	struct axienet_local *lp = netdev_priv(ndev);
481
482	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
483	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
484
485	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
486	lp->options &= (~XAE_OPTION_JUMBO);
487
488	if ((ndev->mtu > XAE_MTU) &&
489	    (ndev->mtu <= XAE_JUMBO_MTU) &&
490	    (lp->jumbo_support)) {
491		lp->max_frm_size = ndev->mtu + XAE_HDR_VLAN_SIZE +
492				   XAE_TRL_SIZE;
493		lp->options |= XAE_OPTION_JUMBO;
494	}
495
496	if (axienet_dma_bd_init(ndev)) {
497		dev_err(&ndev->dev, "axienet_device_reset descriptor "
498			"allocation failed\n");
499	}
500
501	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
502	axienet_status &= ~XAE_RCW1_RX_MASK;
503	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
504
505	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
506	if (axienet_status & XAE_INT_RXRJECT_MASK)
507		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
508
509	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
510
511	/* Sync default options with HW but leave receiver and
512	 * transmitter disabled.*/
513	axienet_setoptions(ndev, lp->options &
514			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
515	axienet_set_mac_address(ndev, NULL);
516	axienet_set_multicast_list(ndev);
517	axienet_setoptions(ndev, lp->options);
518
519	ndev->trans_start = jiffies;
520}
521
522/**
523 * axienet_adjust_link - Adjust the PHY link speed/duplex.
524 * @ndev:	Pointer to the net_device structure
525 *
526 * This function is called to change the speed and duplex setting after
527 * auto negotiation is done by the PHY. This is the function that gets
528 * registered with the PHY interface through the "of_phy_connect" call.
529 */
530static void axienet_adjust_link(struct net_device *ndev)
531{
532	u32 emmc_reg;
533	u32 link_state;
534	u32 setspeed = 1;
535	struct axienet_local *lp = netdev_priv(ndev);
536	struct phy_device *phy = lp->phy_dev;
537
538	link_state = phy->speed | (phy->duplex << 1) | phy->link;
539	if (lp->last_link != link_state) {
540		if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
541			if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
542				setspeed = 0;
543		} else {
544			if ((phy->speed == SPEED_1000) &&
545			    (lp->phy_type == XAE_PHY_TYPE_MII))
546				setspeed = 0;
547		}
548
549		if (setspeed == 1) {
550			emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
551			emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
552
553			switch (phy->speed) {
554			case SPEED_1000:
555				emmc_reg |= XAE_EMMC_LINKSPD_1000;
556				break;
557			case SPEED_100:
558				emmc_reg |= XAE_EMMC_LINKSPD_100;
559				break;
560			case SPEED_10:
561				emmc_reg |= XAE_EMMC_LINKSPD_10;
562				break;
563			default:
564				dev_err(&ndev->dev, "Speed other than 10, 100 "
565					"or 1Gbps is not supported\n");
566				break;
567			}
568
569			axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
570			lp->last_link = link_state;
571			phy_print_status(phy);
572		} else {
573			dev_err(&ndev->dev, "Error setting Axi Ethernet "
574				"mac speed\n");
575		}
576	}
577}
578
579/**
580 * axienet_start_xmit_done - Invoked once a transmit is completed by the
581 * Axi DMA Tx channel.
582 * @ndev:	Pointer to the net_device structure
583 *
584 * This function is invoked from the Axi DMA Tx isr to notify the completion
585 * of transmit operation. It clears fields in the corresponding Tx BDs and
586 * unmaps the corresponding buffer so that CPU can regain ownership of the
587 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
588 * required.
589 */
590static void axienet_start_xmit_done(struct net_device *ndev)
591{
592	u32 size = 0;
593	u32 packets = 0;
594	struct axienet_local *lp = netdev_priv(ndev);
595	struct axidma_bd *cur_p;
596	unsigned int status = 0;
597
598	cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
599	status = cur_p->status;
600	while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
601		dma_unmap_single(ndev->dev.parent, cur_p->phys,
602				(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
603				DMA_TO_DEVICE);
604		if (cur_p->app4)
605			dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
606		/*cur_p->phys = 0;*/
607		cur_p->app0 = 0;
608		cur_p->app1 = 0;
609		cur_p->app2 = 0;
610		cur_p->app4 = 0;
611		cur_p->status = 0;
612
613		size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
614		packets++;
615
616		lp->tx_bd_ci = ++lp->tx_bd_ci % TX_BD_NUM;
617		cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
618		status = cur_p->status;
619	}
620
621	ndev->stats.tx_packets += packets;
622	ndev->stats.tx_bytes += size;
623	netif_wake_queue(ndev);
624}
625
626/**
627 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
628 * @lp:		Pointer to the axienet_local structure
629 * @num_frag:	The number of BDs to check for
630 *
631 * returns: 0, on success
632 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
633 *
634 * This function is invoked before BDs are allocated and transmission starts.
635 * This function returns 0 if a BD or group of BDs can be allocated for
636 * transmission. If the BD or any of the BDs are not free the function
637 * returns a busy status. This is invoked from axienet_start_xmit.
638 */
639static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
640					    int num_frag)
641{
642	struct axidma_bd *cur_p;
643	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
644	if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
645		return NETDEV_TX_BUSY;
646	return 0;
647}
648
649/**
650 * axienet_start_xmit - Starts the transmission.
651 * @skb:	sk_buff pointer that contains data to be Txed.
652 * @ndev:	Pointer to net_device structure.
653 *
654 * returns: NETDEV_TX_OK, on success
655 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
656 *
657 * This function is invoked from upper layers to initiate transmission. The
658 * function uses the next available free BDs and populates their fields to
659 * start the transmission. Additionally if checksum offloading is supported,
660 * it populates AXI Stream Control fields with appropriate values.
661 */
662static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
663{
664	u32 ii;
665	u32 num_frag;
666	u32 csum_start_off;
667	u32 csum_index_off;
668	skb_frag_t *frag;
669	dma_addr_t tail_p;
670	struct axienet_local *lp = netdev_priv(ndev);
671	struct axidma_bd *cur_p;
672
673	num_frag = skb_shinfo(skb)->nr_frags;
674	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
675
676	if (axienet_check_tx_bd_space(lp, num_frag)) {
677		if (!netif_queue_stopped(ndev))
678			netif_stop_queue(ndev);
679		return NETDEV_TX_BUSY;
680	}
681
682	if (skb->ip_summed == CHECKSUM_PARTIAL) {
683		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
684			/* Tx Full Checksum Offload Enabled */
685			cur_p->app0 |= 2;
686		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
687			csum_start_off = skb_transport_offset(skb);
688			csum_index_off = csum_start_off + skb->csum_offset;
689			/* Tx Partial Checksum Offload Enabled */
690			cur_p->app0 |= 1;
691			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
692		}
693	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
694		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
695	}
696
697	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
698	cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
699				     skb_headlen(skb), DMA_TO_DEVICE);
700
701	for (ii = 0; ii < num_frag; ii++) {
702		lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
703		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
704		frag = &skb_shinfo(skb)->frags[ii];
705		cur_p->phys = dma_map_single(ndev->dev.parent,
706					     skb_frag_address(frag),
707					     skb_frag_size(frag),
708					     DMA_TO_DEVICE);
709		cur_p->cntrl = skb_frag_size(frag);
710	}
711
712	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
713	cur_p->app4 = (unsigned long)skb;
714
715	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
716	/* Start the transfer */
717	axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
718	lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
719
720	return NETDEV_TX_OK;
721}
722
723/**
724 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
725 *		  BD processing.
726 * @ndev:	Pointer to net_device structure.
727 *
728 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
729 * does minimal processing and invokes "netif_rx" to complete further
730 * processing.
731 */
732static void axienet_recv(struct net_device *ndev)
733{
734	u32 length;
735	u32 csumstatus;
736	u32 size = 0;
737	u32 packets = 0;
738	dma_addr_t tail_p;
739	struct axienet_local *lp = netdev_priv(ndev);
740	struct sk_buff *skb, *new_skb;
741	struct axidma_bd *cur_p;
742
743	tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
744	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
745
746	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
747		skb = (struct sk_buff *) (cur_p->sw_id_offset);
748		length = cur_p->app4 & 0x0000FFFF;
749
750		dma_unmap_single(ndev->dev.parent, cur_p->phys,
751				 lp->max_frm_size,
752				 DMA_FROM_DEVICE);
753
754		skb_put(skb, length);
755		skb->protocol = eth_type_trans(skb, ndev);
756		/*skb_checksum_none_assert(skb);*/
757		skb->ip_summed = CHECKSUM_NONE;
758
759		/* if we're doing Rx csum offload, set it up */
760		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
761			csumstatus = (cur_p->app2 &
762				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
763			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
764			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
765				skb->ip_summed = CHECKSUM_UNNECESSARY;
766			}
767		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
768			   skb->protocol == __constant_htons(ETH_P_IP) &&
769			   skb->len > 64) {
770			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
771			skb->ip_summed = CHECKSUM_COMPLETE;
772		}
773
774		netif_rx(skb);
775
776		size += length;
777		packets++;
778
779		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
780		if (!new_skb) {
781			dev_err(&ndev->dev, "no memory for new sk_buff\n");
782			return;
783		}
784		cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
785					     lp->max_frm_size,
786					     DMA_FROM_DEVICE);
787		cur_p->cntrl = lp->max_frm_size;
788		cur_p->status = 0;
789		cur_p->sw_id_offset = (u32) new_skb;
790
791		lp->rx_bd_ci = ++lp->rx_bd_ci % RX_BD_NUM;
792		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
793	}
794
795	ndev->stats.rx_packets += packets;
796	ndev->stats.rx_bytes += size;
797
798	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
799}
800
801/**
802 * axienet_tx_irq - Tx Done Isr.
803 * @irq:	irq number
804 * @_ndev:	net_device pointer
805 *
806 * returns: IRQ_HANDLED for all cases.
807 *
808 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
809 * to complete the BD processing.
810 */
811static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
812{
813	u32 cr;
814	unsigned int status;
815	struct net_device *ndev = _ndev;
816	struct axienet_local *lp = netdev_priv(ndev);
817
818	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
819	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
820		axienet_start_xmit_done(lp->ndev);
821		goto out;
822	}
823	if (!(status & XAXIDMA_IRQ_ALL_MASK))
824		dev_err(&ndev->dev, "No interrupts asserted in Tx path");
825	if (status & XAXIDMA_IRQ_ERROR_MASK) {
826		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
827		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
828			(lp->tx_bd_v[lp->tx_bd_ci]).phys);
829
830		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
831		/* Disable coalesce, delay timer and error interrupts */
832		cr &= (~XAXIDMA_IRQ_ALL_MASK);
833		/* Write to the Tx channel control register */
834		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
835
836		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
837		/* Disable coalesce, delay timer and error interrupts */
838		cr &= (~XAXIDMA_IRQ_ALL_MASK);
839		/* Write to the Rx channel control register */
840		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
841
842		tasklet_schedule(&lp->dma_err_tasklet);
843	}
844out:
845	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
846	return IRQ_HANDLED;
847}
848
849/**
850 * axienet_rx_irq - Rx Isr.
851 * @irq:	irq number
852 * @_ndev:	net_device pointer
853 *
854 * returns: IRQ_HANDLED for all cases.
855 *
856 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
857 * processing.
858 */
859static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
860{
861	u32 cr;
862	unsigned int status;
863	struct net_device *ndev = _ndev;
864	struct axienet_local *lp = netdev_priv(ndev);
865
866	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
867	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
868		axienet_recv(lp->ndev);
869		goto out;
870	}
871	if (!(status & XAXIDMA_IRQ_ALL_MASK))
872		dev_err(&ndev->dev, "No interrupts asserted in Rx path");
873	if (status & XAXIDMA_IRQ_ERROR_MASK) {
874		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
875		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
876			(lp->rx_bd_v[lp->rx_bd_ci]).phys);
877
878		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
879		/* Disable coalesce, delay timer and error interrupts */
880		cr &= (~XAXIDMA_IRQ_ALL_MASK);
881		/* Finally write to the Tx channel control register */
882		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
883
884		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
885		/* Disable coalesce, delay timer and error interrupts */
886		cr &= (~XAXIDMA_IRQ_ALL_MASK);
887		/* write to the Rx channel control register */
888		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
889
890		tasklet_schedule(&lp->dma_err_tasklet);
891	}
892out:
893	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
894	return IRQ_HANDLED;
895}
896
897/**
898 * axienet_open - Driver open routine.
899 * @ndev:	Pointer to net_device structure
900 *
901 * returns: 0, on success.
902 *	    -ENODEV, if PHY cannot be connected to
903 *	    non-zero error value on failure
904 *
905 * This is the driver open routine. It calls phy_start to start the PHY device.
906 * It also allocates interrupt service routines, enables the interrupt lines
907 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
908 * descriptors are initialized.
909 */
910static int axienet_open(struct net_device *ndev)
911{
912	int ret, mdio_mcreg;
913	struct axienet_local *lp = netdev_priv(ndev);
914
915	dev_dbg(&ndev->dev, "axienet_open()\n");
916
917	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
918	ret = axienet_mdio_wait_until_ready(lp);
919	if (ret < 0)
920		return ret;
921	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
922	 * When we do an Axi Ethernet reset, it resets the complete core
923	 * including the MDIO. If MDIO is not disabled when the reset
924	 * process is started, MDIO will be broken afterwards. */
925	axienet_iow(lp, XAE_MDIO_MC_OFFSET,
926		    (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
927	axienet_device_reset(ndev);
928	/* Enable the MDIO */
929	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
930	ret = axienet_mdio_wait_until_ready(lp);
931	if (ret < 0)
932		return ret;
933
934	if (lp->phy_node) {
935		lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
936					     axienet_adjust_link, 0,
937					     PHY_INTERFACE_MODE_GMII);
938		if (!lp->phy_dev) {
939			dev_err(lp->dev, "of_phy_connect() failed\n");
940			return -ENODEV;
941		}
942		phy_start(lp->phy_dev);
943	}
944
945	/* Enable interrupts for Axi DMA Tx */
946	ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
947	if (ret)
948		goto err_tx_irq;
949	/* Enable interrupts for Axi DMA Rx */
950	ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
951	if (ret)
952		goto err_rx_irq;
953	/* Enable tasklets for Axi DMA error handling */
954	tasklet_enable(&lp->dma_err_tasklet);
955	return 0;
956
957err_rx_irq:
958	free_irq(lp->tx_irq, ndev);
959err_tx_irq:
960	if (lp->phy_dev)
961		phy_disconnect(lp->phy_dev);
962	lp->phy_dev = NULL;
963	dev_err(lp->dev, "request_irq() failed\n");
964	return ret;
965}
966
967/**
968 * axienet_stop - Driver stop routine.
969 * @ndev:	Pointer to net_device structure
970 *
971 * returns: 0, on success.
972 *
973 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
974 * device. It also removes the interrupt handlers and disables the interrupts.
975 * The Axi DMA Tx/Rx BDs are released.
976 */
977static int axienet_stop(struct net_device *ndev)
978{
979	u32 cr;
980	struct axienet_local *lp = netdev_priv(ndev);
981
982	dev_dbg(&ndev->dev, "axienet_close()\n");
983
984	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
985	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
986			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
987	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
988	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
989			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
990	axienet_setoptions(ndev, lp->options &
991			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
992
993	tasklet_disable(&lp->dma_err_tasklet);
994
995	free_irq(lp->tx_irq, ndev);
996	free_irq(lp->rx_irq, ndev);
997
998	if (lp->phy_dev)
999		phy_disconnect(lp->phy_dev);
1000	lp->phy_dev = NULL;
1001
1002	axienet_dma_bd_release(ndev);
1003	return 0;
1004}
1005
1006/**
1007 * axienet_change_mtu - Driver change mtu routine.
1008 * @ndev:	Pointer to net_device structure
1009 * @new_mtu:	New mtu value to be applied
1010 *
1011 * returns: Always returns 0 (success).
1012 *
1013 * This is the change mtu driver routine. It checks if the Axi Ethernet
1014 * hardware supports jumbo frames before changing the mtu. This can be
1015 * called only when the device is not up.
1016 */
1017static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1018{
1019	struct axienet_local *lp = netdev_priv(ndev);
1020
1021	if (netif_running(ndev))
1022		return -EBUSY;
1023	if (lp->jumbo_support) {
1024		if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1025			return -EINVAL;
1026		ndev->mtu = new_mtu;
1027	} else {
1028		if ((new_mtu > XAE_MTU) || (new_mtu < 64))
1029			return -EINVAL;
1030		ndev->mtu = new_mtu;
1031	}
1032
1033	return 0;
1034}
1035
1036#ifdef CONFIG_NET_POLL_CONTROLLER
1037/**
1038 * axienet_poll_controller - Axi Ethernet poll mechanism.
1039 * @ndev:	Pointer to net_device structure
1040 *
1041 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1042 * to polling the ISRs and are enabled back after the polling is done.
1043 */
1044static void axienet_poll_controller(struct net_device *ndev)
1045{
1046	struct axienet_local *lp = netdev_priv(ndev);
1047	disable_irq(lp->tx_irq);
1048	disable_irq(lp->rx_irq);
1049	axienet_rx_irq(lp->tx_irq, ndev);
1050	axienet_tx_irq(lp->rx_irq, ndev);
1051	enable_irq(lp->tx_irq);
1052	enable_irq(lp->rx_irq);
1053}
1054#endif
1055
1056static const struct net_device_ops axienet_netdev_ops = {
1057	.ndo_open = axienet_open,
1058	.ndo_stop = axienet_stop,
1059	.ndo_start_xmit = axienet_start_xmit,
1060	.ndo_change_mtu	= axienet_change_mtu,
1061	.ndo_set_mac_address = netdev_set_mac_address,
1062	.ndo_validate_addr = eth_validate_addr,
1063	.ndo_set_rx_mode = axienet_set_multicast_list,
1064#ifdef CONFIG_NET_POLL_CONTROLLER
1065	.ndo_poll_controller = axienet_poll_controller,
1066#endif
1067};
1068
1069/**
1070 * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1071 * @ndev:	Pointer to net_device structure
1072 * @ecmd:	Pointer to ethtool_cmd structure
1073 *
1074 * This implements ethtool command for getting PHY settings. If PHY could
1075 * not be found, the function returns -ENODEV. This function calls the
1076 * relevant PHY ethtool API to get the PHY settings.
1077 * Issue "ethtool ethX" under linux prompt to execute this function.
1078 */
1079static int axienet_ethtools_get_settings(struct net_device *ndev,
1080					 struct ethtool_cmd *ecmd)
1081{
1082	struct axienet_local *lp = netdev_priv(ndev);
1083	struct phy_device *phydev = lp->phy_dev;
1084	if (!phydev)
1085		return -ENODEV;
1086	return phy_ethtool_gset(phydev, ecmd);
1087}
1088
1089/**
1090 * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1091 * @ndev:	Pointer to net_device structure
1092 * @ecmd:	Pointer to ethtool_cmd structure
1093 *
1094 * This implements ethtool command for setting various PHY settings. If PHY
1095 * could not be found, the function returns -ENODEV. This function calls the
1096 * relevant PHY ethtool API to set the PHY.
1097 * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1098 * function.
1099 */
1100static int axienet_ethtools_set_settings(struct net_device *ndev,
1101					 struct ethtool_cmd *ecmd)
1102{
1103	struct axienet_local *lp = netdev_priv(ndev);
1104	struct phy_device *phydev = lp->phy_dev;
1105	if (!phydev)
1106		return -ENODEV;
1107	return phy_ethtool_sset(phydev, ecmd);
1108}
1109
1110/**
1111 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1112 * @ndev:	Pointer to net_device structure
1113 * @ed:		Pointer to ethtool_drvinfo structure
1114 *
1115 * This implements ethtool command for getting the driver information.
1116 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1117 */
1118static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1119					 struct ethtool_drvinfo *ed)
1120{
1121	memset(ed, 0, sizeof(struct ethtool_drvinfo));
1122	strcpy(ed->driver, DRIVER_NAME);
1123	strcpy(ed->version, DRIVER_VERSION);
1124	ed->regdump_len = sizeof(u32) * AXIENET_REGS_N;
1125}
1126
1127/**
1128 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1129 *				   AxiEthernet core.
1130 * @ndev:	Pointer to net_device structure
1131 *
1132 * This implements ethtool command for getting the total register length
1133 * information.
1134 */
1135static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1136{
1137	return sizeof(u32) * AXIENET_REGS_N;
1138}
1139
1140/**
1141 * axienet_ethtools_get_regs - Dump the contents of all registers present
1142 *			       in AxiEthernet core.
1143 * @ndev:	Pointer to net_device structure
1144 * @regs:	Pointer to ethtool_regs structure
1145 * @ret:	Void pointer used to return the contents of the registers.
1146 *
1147 * This implements ethtool command for getting the Axi Ethernet register dump.
1148 * Issue "ethtool -d ethX" to execute this function.
1149 */
1150static void axienet_ethtools_get_regs(struct net_device *ndev,
1151				      struct ethtool_regs *regs, void *ret)
1152{
1153	u32 *data = (u32 *) ret;
1154	size_t len = sizeof(u32) * AXIENET_REGS_N;
1155	struct axienet_local *lp = netdev_priv(ndev);
1156
1157	regs->version = 0;
1158	regs->len = len;
1159
1160	memset(data, 0, len);
1161	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1162	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1163	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1164	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1165	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1166	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1167	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1168	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1169	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1170	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1171	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1172	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1173	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1174	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1175	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1176	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1177	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1178	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1179	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1180	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1181	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1182	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1183	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1184	data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1185	data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1186	data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1187	data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1188	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1189	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1190	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1191	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1192	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1193}
1194
1195/**
1196 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1197 *				     Tx and Rx paths.
1198 * @ndev:	Pointer to net_device structure
1199 * @epauseparm:	Pointer to ethtool_pauseparam structure.
1200 *
1201 * This implements ethtool command for getting axi ethernet pause frame
1202 * setting. Issue "ethtool -a ethX" to execute this function.
1203 */
1204static void
1205axienet_ethtools_get_pauseparam(struct net_device *ndev,
1206				struct ethtool_pauseparam *epauseparm)
1207{
1208	u32 regval;
1209	struct axienet_local *lp = netdev_priv(ndev);
1210	epauseparm->autoneg  = 0;
1211	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1212	epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1213	epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1214}
1215
1216/**
1217 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1218 *				     settings.
1219 * @ndev:	Pointer to net_device structure
1220 * @epauseparam:Pointer to ethtool_pauseparam structure
1221 *
1222 * This implements ethtool command for enabling flow control on Rx and Tx
1223 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1224 * function.
1225 */
1226static int
1227axienet_ethtools_set_pauseparam(struct net_device *ndev,
1228				struct ethtool_pauseparam *epauseparm)
1229{
1230	u32 regval = 0;
1231	struct axienet_local *lp = netdev_priv(ndev);
1232
1233	if (netif_running(ndev)) {
1234		printk(KERN_ERR	"%s: Please stop netif before applying "
1235		       "configruation\n", ndev->name);
1236		return -EFAULT;
1237	}
1238
1239	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1240	if (epauseparm->tx_pause)
1241		regval |= XAE_FCC_FCTX_MASK;
1242	else
1243		regval &= ~XAE_FCC_FCTX_MASK;
1244	if (epauseparm->rx_pause)
1245		regval |= XAE_FCC_FCRX_MASK;
1246	else
1247		regval &= ~XAE_FCC_FCRX_MASK;
1248	axienet_iow(lp, XAE_FCC_OFFSET, regval);
1249
1250	return 0;
1251}
1252
1253/**
1254 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1255 * @ndev:	Pointer to net_device structure
1256 * @ecoalesce:	Pointer to ethtool_coalesce structure
1257 *
1258 * This implements ethtool command for getting the DMA interrupt coalescing
1259 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1260 * execute this function.
1261 */
1262static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1263					 struct ethtool_coalesce *ecoalesce)
1264{
1265	u32 regval = 0;
1266	struct axienet_local *lp = netdev_priv(ndev);
1267	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1268	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1269					     >> XAXIDMA_COALESCE_SHIFT;
1270	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1271	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1272					     >> XAXIDMA_COALESCE_SHIFT;
1273	return 0;
1274}
1275
1276/**
1277 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1278 * @ndev:	Pointer to net_device structure
1279 * @ecoalesce:	Pointer to ethtool_coalesce structure
1280 *
1281 * This implements ethtool command for setting the DMA interrupt coalescing
1282 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1283 * prompt to execute this function.
1284 */
1285static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1286					 struct ethtool_coalesce *ecoalesce)
1287{
1288	struct axienet_local *lp = netdev_priv(ndev);
1289
1290	if (netif_running(ndev)) {
1291		printk(KERN_ERR	"%s: Please stop netif before applying "
1292		       "configruation\n", ndev->name);
1293		return -EFAULT;
1294	}
1295
1296	if ((ecoalesce->rx_coalesce_usecs) ||
1297	    (ecoalesce->rx_coalesce_usecs_irq) ||
1298	    (ecoalesce->rx_max_coalesced_frames_irq) ||
1299	    (ecoalesce->tx_coalesce_usecs) ||
1300	    (ecoalesce->tx_coalesce_usecs_irq) ||
1301	    (ecoalesce->tx_max_coalesced_frames_irq) ||
1302	    (ecoalesce->stats_block_coalesce_usecs) ||
1303	    (ecoalesce->use_adaptive_rx_coalesce) ||
1304	    (ecoalesce->use_adaptive_tx_coalesce) ||
1305	    (ecoalesce->pkt_rate_low) ||
1306	    (ecoalesce->rx_coalesce_usecs_low) ||
1307	    (ecoalesce->rx_max_coalesced_frames_low) ||
1308	    (ecoalesce->tx_coalesce_usecs_low) ||
1309	    (ecoalesce->tx_max_coalesced_frames_low) ||
1310	    (ecoalesce->pkt_rate_high) ||
1311	    (ecoalesce->rx_coalesce_usecs_high) ||
1312	    (ecoalesce->rx_max_coalesced_frames_high) ||
1313	    (ecoalesce->tx_coalesce_usecs_high) ||
1314	    (ecoalesce->tx_max_coalesced_frames_high) ||
1315	    (ecoalesce->rate_sample_interval))
1316		return -EOPNOTSUPP;
1317	if (ecoalesce->rx_max_coalesced_frames)
1318		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1319	if (ecoalesce->tx_max_coalesced_frames)
1320		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1321
1322	return 0;
1323}
1324
1325static struct ethtool_ops axienet_ethtool_ops = {
1326	.get_settings   = axienet_ethtools_get_settings,
1327	.set_settings   = axienet_ethtools_set_settings,
1328	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1329	.get_regs_len   = axienet_ethtools_get_regs_len,
1330	.get_regs       = axienet_ethtools_get_regs,
1331	.get_link       = ethtool_op_get_link,
1332	.get_pauseparam = axienet_ethtools_get_pauseparam,
1333	.set_pauseparam = axienet_ethtools_set_pauseparam,
1334	.get_coalesce   = axienet_ethtools_get_coalesce,
1335	.set_coalesce   = axienet_ethtools_set_coalesce,
1336};
1337
1338/**
1339 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1340 * @data:	Data passed
1341 *
1342 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1343 * Tx/Rx BDs.
1344 */
1345static void axienet_dma_err_handler(unsigned long data)
1346{
1347	u32 axienet_status;
1348	u32 cr, i;
1349	int mdio_mcreg;
1350	struct axienet_local *lp = (struct axienet_local *) data;
1351	struct net_device *ndev = lp->ndev;
1352	struct axidma_bd *cur_p;
1353
1354	axienet_setoptions(ndev, lp->options &
1355			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1356	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1357	axienet_mdio_wait_until_ready(lp);
1358	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1359	 * When we do an Axi Ethernet reset, it resets the complete core
1360	 * including the MDIO. So if MDIO is not disabled when the reset
1361	 * process is started, MDIO will be broken afterwards. */
1362	axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1363		    ~XAE_MDIO_MC_MDIOEN_MASK));
1364
1365	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1366	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1367
1368	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1369	axienet_mdio_wait_until_ready(lp);
1370
1371	for (i = 0; i < TX_BD_NUM; i++) {
1372		cur_p = &lp->tx_bd_v[i];
1373		if (cur_p->phys)
1374			dma_unmap_single(ndev->dev.parent, cur_p->phys,
1375					 (cur_p->cntrl &
1376					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1377					 DMA_TO_DEVICE);
1378		if (cur_p->app4)
1379			dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1380		cur_p->phys = 0;
1381		cur_p->cntrl = 0;
1382		cur_p->status = 0;
1383		cur_p->app0 = 0;
1384		cur_p->app1 = 0;
1385		cur_p->app2 = 0;
1386		cur_p->app3 = 0;
1387		cur_p->app4 = 0;
1388		cur_p->sw_id_offset = 0;
1389	}
1390
1391	for (i = 0; i < RX_BD_NUM; i++) {
1392		cur_p = &lp->rx_bd_v[i];
1393		cur_p->status = 0;
1394		cur_p->app0 = 0;
1395		cur_p->app1 = 0;
1396		cur_p->app2 = 0;
1397		cur_p->app3 = 0;
1398		cur_p->app4 = 0;
1399	}
1400
1401	lp->tx_bd_ci = 0;
1402	lp->tx_bd_tail = 0;
1403	lp->rx_bd_ci = 0;
1404
1405	/* Start updating the Rx channel control register */
1406	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1407	/* Update the interrupt coalesce count */
1408	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1409	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1410	/* Update the delay timer count */
1411	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1412	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1413	/* Enable coalesce, delay timer and error interrupts */
1414	cr |= XAXIDMA_IRQ_ALL_MASK;
1415	/* Finally write to the Rx channel control register */
1416	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1417
1418	/* Start updating the Tx channel control register */
1419	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1420	/* Update the interrupt coalesce count */
1421	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1422	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1423	/* Update the delay timer count */
1424	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1425	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1426	/* Enable coalesce, delay timer and error interrupts */
1427	cr |= XAXIDMA_IRQ_ALL_MASK;
1428	/* Finally write to the Tx channel control register */
1429	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1430
1431	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
1432	 * halted state. This will make the Rx side ready for reception.*/
1433	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1434	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1435	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1436			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1437	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1438			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1439
1440	/* Write to the RS (Run-stop) bit in the Tx channel control register.
1441	 * Tx channel is now ready to run. But only after we write to the
1442	 * tail pointer register that the Tx channel will start transmitting */
1443	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1444	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1445	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1446			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1447
1448	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1449	axienet_status &= ~XAE_RCW1_RX_MASK;
1450	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1451
1452	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1453	if (axienet_status & XAE_INT_RXRJECT_MASK)
1454		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1455	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1456
1457	/* Sync default options with HW but leave receiver and
1458	 * transmitter disabled.*/
1459	axienet_setoptions(ndev, lp->options &
1460			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1461	axienet_set_mac_address(ndev, NULL);
1462	axienet_set_multicast_list(ndev);
1463	axienet_setoptions(ndev, lp->options);
1464}
1465
1466/**
1467 * axienet_of_probe - Axi Ethernet probe function.
1468 * @op:		Pointer to platform device structure.
1469 * @match:	Pointer to device id structure
1470 *
1471 * returns: 0, on success
1472 *	    Non-zero error value on failure.
1473 *
1474 * This is the probe routine for Axi Ethernet driver. This is called before
1475 * any other driver routines are invoked. It allocates and sets up the Ethernet
1476 * device. Parses through device tree and populates fields of
1477 * axienet_local. It registers the Ethernet device.
1478 */
1479static int __devinit axienet_of_probe(struct platform_device *op)
1480{
1481	__be32 *p;
1482	int size, ret = 0;
1483	struct device_node *np;
1484	struct axienet_local *lp;
1485	struct net_device *ndev;
1486	const void *addr;
1487
1488	ndev = alloc_etherdev(sizeof(*lp));
1489	if (!ndev)
1490		return -ENOMEM;
1491
1492	ether_setup(ndev);
1493	dev_set_drvdata(&op->dev, ndev);
1494
1495	SET_NETDEV_DEV(ndev, &op->dev);
1496	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1497	ndev->features = NETIF_F_SG | NETIF_F_FRAGLIST;
1498	ndev->netdev_ops = &axienet_netdev_ops;
1499	ndev->ethtool_ops = &axienet_ethtool_ops;
1500
1501	lp = netdev_priv(ndev);
1502	lp->ndev = ndev;
1503	lp->dev = &op->dev;
1504	lp->options = XAE_OPTION_DEFAULTS;
1505	/* Map device registers */
1506	lp->regs = of_iomap(op->dev.of_node, 0);
1507	if (!lp->regs) {
1508		dev_err(&op->dev, "could not map Axi Ethernet regs.\n");
1509		goto nodev;
1510	}
1511	/* Setup checksum offload, but default to off if not specified */
1512	lp->features = 0;
1513
1514	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,txcsum", NULL);
1515	if (p) {
1516		switch (be32_to_cpup(p)) {
1517		case 1:
1518			lp->csum_offload_on_tx_path =
1519				XAE_FEATURE_PARTIAL_TX_CSUM;
1520			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1521			/* Can checksum TCP/UDP over IPv4. */
1522			ndev->features |= NETIF_F_IP_CSUM;
1523			break;
1524		case 2:
1525			lp->csum_offload_on_tx_path =
1526				XAE_FEATURE_FULL_TX_CSUM;
1527			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1528			/* Can checksum TCP/UDP over IPv4. */
1529			ndev->features |= NETIF_F_IP_CSUM;
1530			break;
1531		default:
1532			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1533		}
1534	}
1535	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxcsum", NULL);
1536	if (p) {
1537		switch (be32_to_cpup(p)) {
1538		case 1:
1539			lp->csum_offload_on_rx_path =
1540				XAE_FEATURE_PARTIAL_RX_CSUM;
1541			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1542			break;
1543		case 2:
1544			lp->csum_offload_on_rx_path =
1545				XAE_FEATURE_FULL_RX_CSUM;
1546			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1547			break;
1548		default:
1549			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1550		}
1551	}
1552	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1553	 * a larger Rx/Tx Memory. Typically, the size must be more than or
1554	 * equal to 16384 bytes, so that we can enable jumbo option and start
1555	 * supporting jumbo frames. Here we check for memory allocated for
1556	 * Rx/Tx in the hardware from the device-tree and accordingly set
1557	 * flags. */
1558	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxmem", NULL);
1559	if (p) {
1560		if ((be32_to_cpup(p)) >= 0x4000)
1561			lp->jumbo_support = 1;
1562	}
1563	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,temac-type",
1564				       NULL);
1565	if (p)
1566		lp->temac_type = be32_to_cpup(p);
1567	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,phy-type", NULL);
1568	if (p)
1569		lp->phy_type = be32_to_cpup(p);
1570
1571	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1572	np = of_parse_phandle(op->dev.of_node, "axistream-connected", 0);
1573	if (!np) {
1574		dev_err(&op->dev, "could not find DMA node\n");
1575		goto err_iounmap;
1576	}
1577	lp->dma_regs = of_iomap(np, 0);
1578	if (lp->dma_regs) {
1579		dev_dbg(&op->dev, "MEM base: %p\n", lp->dma_regs);
1580	} else {
1581		dev_err(&op->dev, "unable to map DMA registers\n");
1582		of_node_put(np);
1583	}
1584	lp->rx_irq = irq_of_parse_and_map(np, 1);
1585	lp->tx_irq = irq_of_parse_and_map(np, 0);
1586	of_node_put(np);
1587	if ((lp->rx_irq == NO_IRQ) || (lp->tx_irq == NO_IRQ)) {
1588		dev_err(&op->dev, "could not determine irqs\n");
1589		ret = -ENOMEM;
1590		goto err_iounmap_2;
1591	}
1592
1593	/* Retrieve the MAC address */
1594	addr = of_get_property(op->dev.of_node, "local-mac-address", &size);
1595	if ((!addr) || (size != 6)) {
1596		dev_err(&op->dev, "could not find MAC address\n");
1597		ret = -ENODEV;
1598		goto err_iounmap_2;
1599	}
1600	axienet_set_mac_address(ndev, (void *) addr);
1601
1602	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1603	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1604
1605	lp->phy_node = of_parse_phandle(op->dev.of_node, "phy-handle", 0);
1606	ret = axienet_mdio_setup(lp, op->dev.of_node);
1607	if (ret)
1608		dev_warn(&op->dev, "error registering MDIO bus\n");
1609
1610	ret = register_netdev(lp->ndev);
1611	if (ret) {
1612		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1613		goto err_iounmap_2;
1614	}
1615
1616	tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
1617		     (unsigned long) lp);
1618	tasklet_disable(&lp->dma_err_tasklet);
1619
1620	return 0;
1621
1622err_iounmap_2:
1623	if (lp->dma_regs)
1624		iounmap(lp->dma_regs);
1625err_iounmap:
1626	iounmap(lp->regs);
1627nodev:
1628	free_netdev(ndev);
1629	ndev = NULL;
1630	return ret;
1631}
1632
1633static int __devexit axienet_of_remove(struct platform_device *op)
1634{
1635	struct net_device *ndev = dev_get_drvdata(&op->dev);
1636	struct axienet_local *lp = netdev_priv(ndev);
1637
1638	axienet_mdio_teardown(lp);
1639	unregister_netdev(ndev);
1640
1641	if (lp->phy_node)
1642		of_node_put(lp->phy_node);
1643	lp->phy_node = NULL;
1644
1645	dev_set_drvdata(&op->dev, NULL);
1646
1647	iounmap(lp->regs);
1648	if (lp->dma_regs)
1649		iounmap(lp->dma_regs);
1650	free_netdev(ndev);
1651
1652	return 0;
1653}
1654
1655static struct platform_driver axienet_of_driver = {
1656	.probe = axienet_of_probe,
1657	.remove = __devexit_p(axienet_of_remove),
1658	.driver = {
1659		 .owner = THIS_MODULE,
1660		 .name = "xilinx_axienet",
1661		 .of_match_table = axienet_of_match,
1662	},
1663};
1664
1665module_platform_driver(axienet_of_driver);
1666
1667MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1668MODULE_AUTHOR("Xilinx");
1669MODULE_LICENSE("GPL");
1670