1/*
2 * File Name:
3 *   defxx.c
4 *
5 * Copyright Information:
6 *   Copyright Digital Equipment Corporation 1996.
7 *
8 *   This software may be used and distributed according to the terms of
9 *   the GNU General Public License, incorporated herein by reference.
10 *
11 * Abstract:
12 *   A Linux device driver supporting the Digital Equipment Corporation
13 *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
14 *   adapters include:
15 *
16 *		DEC FDDIcontroller/TURBOchannel (DEFTA)
17 *		DEC FDDIcontroller/EISA         (DEFEA)
18 *		DEC FDDIcontroller/PCI          (DEFPA)
19 *
20 * The original author:
21 *   LVS	Lawrence V. Stefani <lstefani@yahoo.com>
22 *
23 * Maintainers:
24 *   macro	Maciej W. Rozycki <macro@linux-mips.org>
25 *
26 * Credits:
27 *   I'd like to thank Patricia Cross for helping me get started with
28 *   Linux, David Davies for a lot of help upgrading and configuring
29 *   my development system and for answering many OS and driver
30 *   development questions, and Alan Cox for recommendations and
31 *   integration help on getting FDDI support into Linux.  LVS
32 *
33 * Driver Architecture:
34 *   The driver architecture is largely based on previous driver work
35 *   for other operating systems.  The upper edge interface and
36 *   functions were largely taken from existing Linux device drivers
37 *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38 *   driver.
39 *
40 *   Adapter Probe -
41 *		The driver scans for supported EISA adapters by reading the
42 *		SLOT ID register for each EISA slot and making a match
43 *		against the expected value.
44 *
45 *   Bus-Specific Initialization -
46 *		This driver currently supports both EISA and PCI controller
47 *		families.  While the custom DMA chip and FDDI logic is similar
48 *		or identical, the bus logic is very different.  After
49 *		initialization, the	only bus-specific differences is in how the
50 *		driver enables and disables interrupts.  Other than that, the
51 *		run-time critical code behaves the same on both families.
52 *		It's important to note that both adapter families are configured
53 *		to I/O map, rather than memory map, the adapter registers.
54 *
55 *   Driver Open/Close -
56 *		In the driver open routine, the driver ISR (interrupt service
57 *		routine) is registered and the adapter is brought to an
58 *		operational state.  In the driver close routine, the opposite
59 *		occurs; the driver ISR is deregistered and the adapter is
60 *		brought to a safe, but closed state.  Users may use consecutive
61 *		commands to bring the adapter up and down as in the following
62 *		example:
63 *					ifconfig fddi0 up
64 *					ifconfig fddi0 down
65 *					ifconfig fddi0 up
66 *
67 *   Driver Shutdown -
68 *		Apparently, there is no shutdown or halt routine support under
69 *		Linux.  This routine would be called during "reboot" or
70 *		"shutdown" to allow the driver to place the adapter in a safe
71 *		state before a warm reboot occurs.  To be really safe, the user
72 *		should close the adapter before shutdown (eg. ifconfig fddi0 down)
73 *		to ensure that the adapter DMA engine is taken off-line.  However,
74 *		the current driver code anticipates this problem and always issues
75 *		a soft reset of the adapter	at the beginning of driver initialization.
76 *		A future driver enhancement in this area may occur in 2.1.X where
77 *		Alan indicated that a shutdown handler may be implemented.
78 *
79 *   Interrupt Service Routine -
80 *		The driver supports shared interrupts, so the ISR is registered for
81 *		each board with the appropriate flag and the pointer to that board's
82 *		device structure.  This provides the context during interrupt
83 *		processing to support shared interrupts and multiple boards.
84 *
85 *		Interrupt enabling/disabling can occur at many levels.  At the host
86 *		end, you can disable system interrupts, or disable interrupts at the
87 *		PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
88 *		have a bus-logic chip interrupt enable/disable as well as a DMA
89 *		controller interrupt enable/disable.
90 *
91 *		The driver currently enables and disables adapter interrupts at the
92 *		bus-logic chip and assumes that Linux will take care of clearing or
93 *		acknowledging any host-based interrupt chips.
94 *
95 *   Control Functions -
96 *		Control functions are those used to support functions such as adding
97 *		or deleting multicast addresses, enabling or disabling packet
98 *		reception filters, or other custom/proprietary commands.  Presently,
99 *		the driver supports the "get statistics", "set multicast list", and
100 *		"set mac address" functions defined by Linux.  A list of possible
101 *		enhancements include:
102 *
103 *				- Custom ioctl interface for executing port interface commands
104 *				- Custom ioctl interface for adding unicast addresses to
105 *				  adapter CAM (to support bridge functions).
106 *				- Custom ioctl interface for supporting firmware upgrades.
107 *
108 *   Hardware (port interface) Support Routines -
109 *		The driver function names that start with "dfx_hw_" represent
110 *		low-level port interface routines that are called frequently.  They
111 *		include issuing a DMA or port control command to the adapter,
112 *		resetting the adapter, or reading the adapter state.  Since the
113 *		driver initialization and run-time code must make calls into the
114 *		port interface, these routines were written to be as generic and
115 *		usable as possible.
116 *
117 *   Receive Path -
118 *		The adapter DMA engine supports a 256 entry receive descriptor block
119 *		of which up to 255 entries can be used at any given time.  The
120 *		architecture is a standard producer, consumer, completion model in
121 *		which the driver "produces" receive buffers to the adapter, the
122 *		adapter "consumes" the receive buffers by DMAing incoming packet data,
123 *		and the driver "completes" the receive buffers by servicing the
124 *		incoming packet, then "produces" a new buffer and starts the cycle
125 *		again.  Receive buffers can be fragmented in up to 16 fragments
126 *		(descriptor	entries).  For simplicity, this driver posts
127 *		single-fragment receive buffers of 4608 bytes, then allocates a
128 *		sk_buff, copies the data, then reposts the buffer.  To reduce CPU
129 *		utilization, a better approach would be to pass up the receive
130 *		buffer (no extra copy) then allocate and post a replacement buffer.
131 *		This is a performance enhancement that should be looked into at
132 *		some point.
133 *
134 *   Transmit Path -
135 *		Like the receive path, the adapter DMA engine supports a 256 entry
136 *		transmit descriptor block of which up to 255 entries can be used at
137 *		any	given time.  Transmit buffers can be fragmented	in up to 255
138 *		fragments (descriptor entries).  This driver always posts one
139 *		fragment per transmit packet request.
140 *
141 *		The fragment contains the entire packet from FC to end of data.
142 *		Before posting the buffer to the adapter, the driver sets a three-byte
143 *		packet request header (PRH) which is required by the Motorola MAC chip
144 *		used on the adapters.  The PRH tells the MAC the type of token to
145 *		receive/send, whether or not to generate and append the CRC, whether
146 *		synchronous or asynchronous framing is used, etc.  Since the PRH
147 *		definition is not necessarily consistent across all FDDI chipsets,
148 *		the driver, rather than the common FDDI packet handler routines,
149 *		sets these bytes.
150 *
151 *		To reduce the amount of descriptor fetches needed per transmit request,
152 *		the driver takes advantage of the fact that there are at least three
153 *		bytes available before the skb->data field on the outgoing transmit
154 *		request.  This is guaranteed by having fddi_setup() in net_init.c set
155 *		dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
156 *		header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
157 *		bytes which we'll use to store the PRH.
158 *
159 *		There's a subtle advantage to adding these pad bytes to the
160 *		hard_header_len, it ensures that the data portion of the packet for
161 *		an 802.2 SNAP frame is longword aligned.  Other FDDI driver
162 *		implementations may not need the extra padding and can start copying
163 *		or DMAing directly from the FC byte which starts at skb->data.  Should
164 *		another driver implementation need ADDITIONAL padding, the net_init.c
165 *		module should be updated and dev->hard_header_len should be increased.
166 *		NOTE: To maintain the alignment on the data portion of the packet,
167 *		dev->hard_header_len should always be evenly divisible by 4 and at
168 *		least 24 bytes in size.
169 *
170 * Modification History:
171 *		Date		Name	Description
172 *		16-Aug-96	LVS		Created.
173 *		20-Aug-96	LVS		Updated dfx_probe so that version information
174 *							string is only displayed if 1 or more cards are
175 *							found.  Changed dfx_rcv_queue_process to copy
176 *							3 NULL bytes before FC to ensure that data is
177 *							longword aligned in receive buffer.
178 *		09-Sep-96	LVS		Updated dfx_ctl_set_multicast_list to enable
179 *							LLC group promiscuous mode if multicast list
180 *							is too large.  LLC individual/group promiscuous
181 *							mode is now disabled if IFF_PROMISC flag not set.
182 *							dfx_xmt_queue_pkt no longer checks for NULL skb
183 *							on Alan Cox recommendation.  Added node address
184 *							override support.
185 *		12-Sep-96	LVS		Reset current address to factory address during
186 *							device open.  Updated transmit path to post a
187 *							single fragment which includes PRH->end of data.
188 *		Mar 2000	AC		Did various cleanups for 2.3.x
189 *		Jun 2000	jgarzik		PCI and resource alloc cleanups
190 *		Jul 2000	tjeerd		Much cleanup and some bug fixes
191 *		Sep 2000	tjeerd		Fix leak on unload, cosmetic code cleanup
192 *		Feb 2001			Skb allocation fixes
193 *		Feb 2001	davej		PCI enable cleanups.
194 *		04 Aug 2003	macro		Converted to the DMA API.
195 *		14 Aug 2004	macro		Fix device names reported.
196 *		14 Jun 2005	macro		Use irqreturn_t.
197 *		23 Oct 2006	macro		Big-endian host support.
198 *		14 Dec 2006	macro		TURBOchannel support.
199 */
200
201/* Include files */
202#include <linux/bitops.h>
203#include <linux/compiler.h>
204#include <linux/delay.h>
205#include <linux/dma-mapping.h>
206#include <linux/eisa.h>
207#include <linux/errno.h>
208#include <linux/fddidevice.h>
209#include <linux/init.h>
210#include <linux/interrupt.h>
211#include <linux/ioport.h>
212#include <linux/kernel.h>
213#include <linux/module.h>
214#include <linux/netdevice.h>
215#include <linux/pci.h>
216#include <linux/skbuff.h>
217#include <linux/slab.h>
218#include <linux/string.h>
219#include <linux/tc.h>
220
221#include <asm/byteorder.h>
222#include <asm/io.h>
223
224#include "defxx.h"
225
226/* Version information string should be updated prior to each new release!  */
227#define DRV_NAME "defxx"
228#define DRV_VERSION "v1.10"
229#define DRV_RELDATE "2006/12/14"
230
231static char version[] __devinitdata =
232	DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233	"  Lawrence V. Stefani and others\n";
234
235#define DYNAMIC_BUFFERS 1
236
237#define SKBUFF_RX_COPYBREAK 200
238/*
239 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240 * alignment for compatibility with old EISA boards.
241 */
242#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243
244#ifdef CONFIG_PCI
245#define DFX_BUS_PCI(dev) (dev->bus == &pci_bus_type)
246#else
247#define DFX_BUS_PCI(dev) 0
248#endif
249
250#ifdef CONFIG_EISA
251#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
252#else
253#define DFX_BUS_EISA(dev) 0
254#endif
255
256#ifdef CONFIG_TC
257#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
258#else
259#define DFX_BUS_TC(dev) 0
260#endif
261
262#ifdef CONFIG_DEFXX_MMIO
263#define DFX_MMIO 1
264#else
265#define DFX_MMIO 0
266#endif
267
268/* Define module-wide (static) routines */
269
270static void		dfx_bus_init(struct net_device *dev);
271static void		dfx_bus_uninit(struct net_device *dev);
272static void		dfx_bus_config_check(DFX_board_t *bp);
273
274static int		dfx_driver_init(struct net_device *dev,
275					const char *print_name,
276					resource_size_t bar_start);
277static int		dfx_adap_init(DFX_board_t *bp, int get_buffers);
278
279static int		dfx_open(struct net_device *dev);
280static int		dfx_close(struct net_device *dev);
281
282static void		dfx_int_pr_halt_id(DFX_board_t *bp);
283static void		dfx_int_type_0_process(DFX_board_t *bp);
284static void		dfx_int_common(struct net_device *dev);
285static irqreturn_t	dfx_interrupt(int irq, void *dev_id);
286
287static struct		net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
288static void		dfx_ctl_set_multicast_list(struct net_device *dev);
289static int		dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
290static int		dfx_ctl_update_cam(DFX_board_t *bp);
291static int		dfx_ctl_update_filters(DFX_board_t *bp);
292
293static int		dfx_hw_dma_cmd_req(DFX_board_t *bp);
294static int		dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32	command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
295static void		dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
296static int		dfx_hw_adap_state_rd(DFX_board_t *bp);
297static int		dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
298
299static int		dfx_rcv_init(DFX_board_t *bp, int get_buffers);
300static void		dfx_rcv_queue_process(DFX_board_t *bp);
301static void		dfx_rcv_flush(DFX_board_t *bp);
302
303static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
304				     struct net_device *dev);
305static int		dfx_xmt_done(DFX_board_t *bp);
306static void		dfx_xmt_flush(DFX_board_t *bp);
307
308/* Define module-wide (static) variables */
309
310static struct pci_driver dfx_pci_driver;
311static struct eisa_driver dfx_eisa_driver;
312static struct tc_driver dfx_tc_driver;
313
314
315/*
316 * =======================
317 * = dfx_port_write_long =
318 * = dfx_port_read_long  =
319 * =======================
320 *
321 * Overview:
322 *   Routines for reading and writing values from/to adapter
323 *
324 * Returns:
325 *   None
326 *
327 * Arguments:
328 *   bp		- pointer to board information
329 *   offset	- register offset from base I/O address
330 *   data	- for dfx_port_write_long, this is a value to write;
331 *		  for dfx_port_read_long, this is a pointer to store
332 *		  the read value
333 *
334 * Functional Description:
335 *   These routines perform the correct operation to read or write
336 *   the adapter register.
337 *
338 *   EISA port block base addresses are based on the slot number in which the
339 *   controller is installed.  For example, if the EISA controller is installed
340 *   in slot 4, the port block base address is 0x4000.  If the controller is
341 *   installed in slot 2, the port block base address is 0x2000, and so on.
342 *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
343 *   registers using the register offsets defined in DEFXX.H.
344 *
345 *   PCI port block base addresses are assigned by the PCI BIOS or system
346 *   firmware.  There is one 128 byte port block which can be accessed.  It
347 *   allows for I/O mapping of both PDQ and PFI registers using the register
348 *   offsets defined in DEFXX.H.
349 *
350 * Return Codes:
351 *   None
352 *
353 * Assumptions:
354 *   bp->base is a valid base I/O address for this adapter.
355 *   offset is a valid register offset for this adapter.
356 *
357 * Side Effects:
358 *   Rather than produce macros for these functions, these routines
359 *   are defined using "inline" to ensure that the compiler will
360 *   generate inline code and not waste a procedure call and return.
361 *   This provides all the benefits of macros, but with the
362 *   advantage of strict data type checking.
363 */
364
365static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
366{
367	writel(data, bp->base.mem + offset);
368	mb();
369}
370
371static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
372{
373	outl(data, bp->base.port + offset);
374}
375
376static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
377{
378	struct device __maybe_unused *bdev = bp->bus_dev;
379	int dfx_bus_tc = DFX_BUS_TC(bdev);
380	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
381
382	if (dfx_use_mmio)
383		dfx_writel(bp, offset, data);
384	else
385		dfx_outl(bp, offset, data);
386}
387
388
389static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
390{
391	mb();
392	*data = readl(bp->base.mem + offset);
393}
394
395static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
396{
397	*data = inl(bp->base.port + offset);
398}
399
400static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
401{
402	struct device __maybe_unused *bdev = bp->bus_dev;
403	int dfx_bus_tc = DFX_BUS_TC(bdev);
404	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
405
406	if (dfx_use_mmio)
407		dfx_readl(bp, offset, data);
408	else
409		dfx_inl(bp, offset, data);
410}
411
412
413/*
414 * ================
415 * = dfx_get_bars =
416 * ================
417 *
418 * Overview:
419 *   Retrieves the address range used to access control and status
420 *   registers.
421 *
422 * Returns:
423 *   None
424 *
425 * Arguments:
426 *   bdev	- pointer to device information
427 *   bar_start	- pointer to store the start address
428 *   bar_len	- pointer to store the length of the area
429 *
430 * Assumptions:
431 *   I am sure there are some.
432 *
433 * Side Effects:
434 *   None
435 */
436static void dfx_get_bars(struct device *bdev,
437			 resource_size_t *bar_start, resource_size_t *bar_len)
438{
439	int dfx_bus_pci = DFX_BUS_PCI(bdev);
440	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
441	int dfx_bus_tc = DFX_BUS_TC(bdev);
442	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
443
444	if (dfx_bus_pci) {
445		int num = dfx_use_mmio ? 0 : 1;
446
447		*bar_start = pci_resource_start(to_pci_dev(bdev), num);
448		*bar_len = pci_resource_len(to_pci_dev(bdev), num);
449	}
450	if (dfx_bus_eisa) {
451		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
452		resource_size_t bar;
453
454		if (dfx_use_mmio) {
455			bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
456			bar <<= 8;
457			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
458			bar <<= 8;
459			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
460			bar <<= 16;
461			*bar_start = bar;
462			bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
463			bar <<= 8;
464			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
465			bar <<= 8;
466			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
467			bar <<= 16;
468			*bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
469		} else {
470			*bar_start = base_addr;
471			*bar_len = PI_ESIC_K_CSR_IO_LEN;
472		}
473	}
474	if (dfx_bus_tc) {
475		*bar_start = to_tc_dev(bdev)->resource.start +
476			     PI_TC_K_CSR_OFFSET;
477		*bar_len = PI_TC_K_CSR_LEN;
478	}
479}
480
481static const struct net_device_ops dfx_netdev_ops = {
482	.ndo_open		= dfx_open,
483	.ndo_stop		= dfx_close,
484	.ndo_start_xmit		= dfx_xmt_queue_pkt,
485	.ndo_get_stats		= dfx_ctl_get_stats,
486	.ndo_set_rx_mode	= dfx_ctl_set_multicast_list,
487	.ndo_set_mac_address	= dfx_ctl_set_mac_address,
488};
489
490/*
491 * ================
492 * = dfx_register =
493 * ================
494 *
495 * Overview:
496 *   Initializes a supported FDDI controller
497 *
498 * Returns:
499 *   Condition code
500 *
501 * Arguments:
502 *   bdev - pointer to device information
503 *
504 * Functional Description:
505 *
506 * Return Codes:
507 *   0		 - This device (fddi0, fddi1, etc) configured successfully
508 *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
509 *
510 * Assumptions:
511 *   It compiles so it should work :-( (PCI cards do :-)
512 *
513 * Side Effects:
514 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
515 *   initialized and the board resources are read and stored in
516 *   the device structure.
517 */
518static int __devinit dfx_register(struct device *bdev)
519{
520	static int version_disp;
521	int dfx_bus_pci = DFX_BUS_PCI(bdev);
522	int dfx_bus_tc = DFX_BUS_TC(bdev);
523	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
524	const char *print_name = dev_name(bdev);
525	struct net_device *dev;
526	DFX_board_t	  *bp;			/* board pointer */
527	resource_size_t bar_start = 0;		/* pointer to port */
528	resource_size_t bar_len = 0;		/* resource length */
529	int alloc_size;				/* total buffer size used */
530	struct resource *region;
531	int err = 0;
532
533	if (!version_disp) {	/* display version info if adapter is found */
534		version_disp = 1;	/* set display flag to TRUE so that */
535		printk(version);	/* we only display this string ONCE */
536	}
537
538	dev = alloc_fddidev(sizeof(*bp));
539	if (!dev) {
540		printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
541		       print_name);
542		return -ENOMEM;
543	}
544
545	/* Enable PCI device. */
546	if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
547		printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
548		       print_name);
549		goto err_out;
550	}
551
552	SET_NETDEV_DEV(dev, bdev);
553
554	bp = netdev_priv(dev);
555	bp->bus_dev = bdev;
556	dev_set_drvdata(bdev, dev);
557
558	dfx_get_bars(bdev, &bar_start, &bar_len);
559
560	if (dfx_use_mmio)
561		region = request_mem_region(bar_start, bar_len, print_name);
562	else
563		region = request_region(bar_start, bar_len, print_name);
564	if (!region) {
565		printk(KERN_ERR "%s: Cannot reserve I/O resource "
566		       "0x%lx @ 0x%lx, aborting\n",
567		       print_name, (long)bar_len, (long)bar_start);
568		err = -EBUSY;
569		goto err_out_disable;
570	}
571
572	/* Set up I/O base address. */
573	if (dfx_use_mmio) {
574		bp->base.mem = ioremap_nocache(bar_start, bar_len);
575		if (!bp->base.mem) {
576			printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
577			err = -ENOMEM;
578			goto err_out_region;
579		}
580	} else {
581		bp->base.port = bar_start;
582		dev->base_addr = bar_start;
583	}
584
585	/* Initialize new device structure */
586	dev->netdev_ops			= &dfx_netdev_ops;
587
588	if (dfx_bus_pci)
589		pci_set_master(to_pci_dev(bdev));
590
591	if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
592		err = -ENODEV;
593		goto err_out_unmap;
594	}
595
596	err = register_netdev(dev);
597	if (err)
598		goto err_out_kfree;
599
600	printk("%s: registered as %s\n", print_name, dev->name);
601	return 0;
602
603err_out_kfree:
604	alloc_size = sizeof(PI_DESCR_BLOCK) +
605		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
606#ifndef DYNAMIC_BUFFERS
607		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
608#endif
609		     sizeof(PI_CONSUMER_BLOCK) +
610		     (PI_ALIGN_K_DESC_BLK - 1);
611	if (bp->kmalloced)
612		dma_free_coherent(bdev, alloc_size,
613				  bp->kmalloced, bp->kmalloced_dma);
614
615err_out_unmap:
616	if (dfx_use_mmio)
617		iounmap(bp->base.mem);
618
619err_out_region:
620	if (dfx_use_mmio)
621		release_mem_region(bar_start, bar_len);
622	else
623		release_region(bar_start, bar_len);
624
625err_out_disable:
626	if (dfx_bus_pci)
627		pci_disable_device(to_pci_dev(bdev));
628
629err_out:
630	free_netdev(dev);
631	return err;
632}
633
634
635/*
636 * ================
637 * = dfx_bus_init =
638 * ================
639 *
640 * Overview:
641 *   Initializes the bus-specific controller logic.
642 *
643 * Returns:
644 *   None
645 *
646 * Arguments:
647 *   dev - pointer to device information
648 *
649 * Functional Description:
650 *   Determine and save adapter IRQ in device table,
651 *   then perform bus-specific logic initialization.
652 *
653 * Return Codes:
654 *   None
655 *
656 * Assumptions:
657 *   bp->base has already been set with the proper
658 *	 base I/O address for this device.
659 *
660 * Side Effects:
661 *   Interrupts are enabled at the adapter bus-specific logic.
662 *   Note:  Interrupts at the DMA engine (PDQ chip) are not
663 *   enabled yet.
664 */
665
666static void __devinit dfx_bus_init(struct net_device *dev)
667{
668	DFX_board_t *bp = netdev_priv(dev);
669	struct device *bdev = bp->bus_dev;
670	int dfx_bus_pci = DFX_BUS_PCI(bdev);
671	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
672	int dfx_bus_tc = DFX_BUS_TC(bdev);
673	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
674	u8 val;
675
676	DBG_printk("In dfx_bus_init...\n");
677
678	/* Initialize a pointer back to the net_device struct */
679	bp->dev = dev;
680
681	/* Initialize adapter based on bus type */
682
683	if (dfx_bus_tc)
684		dev->irq = to_tc_dev(bdev)->interrupt;
685	if (dfx_bus_eisa) {
686		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
687
688		/* Get the interrupt level from the ESIC chip.  */
689		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
690		val &= PI_CONFIG_STAT_0_M_IRQ;
691		val >>= PI_CONFIG_STAT_0_V_IRQ;
692
693		switch (val) {
694		case PI_CONFIG_STAT_0_IRQ_K_9:
695			dev->irq = 9;
696			break;
697
698		case PI_CONFIG_STAT_0_IRQ_K_10:
699			dev->irq = 10;
700			break;
701
702		case PI_CONFIG_STAT_0_IRQ_K_11:
703			dev->irq = 11;
704			break;
705
706		case PI_CONFIG_STAT_0_IRQ_K_15:
707			dev->irq = 15;
708			break;
709		}
710
711		/*
712		 * Enable memory decoding (MEMCS0) and/or port decoding
713		 * (IOCS1/IOCS0) as appropriate in Function Control
714		 * Register.  One of the port chip selects seems to be
715		 * used for the Burst Holdoff register, but this bit of
716		 * documentation is missing and as yet it has not been
717		 * determined which of the two.  This is also the reason
718		 * the size of the decoded port range is twice as large
719		 * as one required by the PDQ.
720		 */
721
722		/* Set the decode range of the board.  */
723		val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
724		outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
725		outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
726		outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
727		outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
728		val = PI_ESIC_K_CSR_IO_LEN - 1;
729		outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
730		outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
731		outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
732		outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
733
734		/* Enable the decoders.  */
735		val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
736		if (dfx_use_mmio)
737			val |= PI_FUNCTION_CNTRL_M_MEMCS0;
738		outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
739
740		/*
741		 * Enable access to the rest of the module
742		 * (including PDQ and packet memory).
743		 */
744		val = PI_SLOT_CNTRL_M_ENB;
745		outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
746
747		/*
748		 * Map PDQ registers into memory or port space.  This is
749		 * done with a bit in the Burst Holdoff register.
750		 */
751		val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
752		if (dfx_use_mmio)
753			val |= PI_BURST_HOLDOFF_V_MEM_MAP;
754		else
755			val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
756		outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
757
758		/* Enable interrupts at EISA bus interface chip (ESIC) */
759		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
760		val |= PI_CONFIG_STAT_0_M_INT_ENB;
761		outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
762	}
763	if (dfx_bus_pci) {
764		struct pci_dev *pdev = to_pci_dev(bdev);
765
766		/* Get the interrupt level from the PCI Configuration Table */
767
768		dev->irq = pdev->irq;
769
770		/* Check Latency Timer and set if less than minimal */
771
772		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
773		if (val < PFI_K_LAT_TIMER_MIN) {
774			val = PFI_K_LAT_TIMER_DEF;
775			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
776		}
777
778		/* Enable interrupts at PCI bus interface chip (PFI) */
779		val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
780		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
781	}
782}
783
784/*
785 * ==================
786 * = dfx_bus_uninit =
787 * ==================
788 *
789 * Overview:
790 *   Uninitializes the bus-specific controller logic.
791 *
792 * Returns:
793 *   None
794 *
795 * Arguments:
796 *   dev - pointer to device information
797 *
798 * Functional Description:
799 *   Perform bus-specific logic uninitialization.
800 *
801 * Return Codes:
802 *   None
803 *
804 * Assumptions:
805 *   bp->base has already been set with the proper
806 *	 base I/O address for this device.
807 *
808 * Side Effects:
809 *   Interrupts are disabled at the adapter bus-specific logic.
810 */
811
812static void __devexit dfx_bus_uninit(struct net_device *dev)
813{
814	DFX_board_t *bp = netdev_priv(dev);
815	struct device *bdev = bp->bus_dev;
816	int dfx_bus_pci = DFX_BUS_PCI(bdev);
817	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
818	u8 val;
819
820	DBG_printk("In dfx_bus_uninit...\n");
821
822	/* Uninitialize adapter based on bus type */
823
824	if (dfx_bus_eisa) {
825		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
826
827		/* Disable interrupts at EISA bus interface chip (ESIC) */
828		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
829		val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
830		outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
831	}
832	if (dfx_bus_pci) {
833		/* Disable interrupts at PCI bus interface chip (PFI) */
834		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
835	}
836}
837
838
839/*
840 * ========================
841 * = dfx_bus_config_check =
842 * ========================
843 *
844 * Overview:
845 *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
846 *   are illegal, then this routine will set new defaults.
847 *
848 * Returns:
849 *   None
850 *
851 * Arguments:
852 *   bp - pointer to board information
853 *
854 * Functional Description:
855 *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
856 *   PDQ, and all FDDI PCI controllers, all values are legal.
857 *
858 * Return Codes:
859 *   None
860 *
861 * Assumptions:
862 *   dfx_adap_init has NOT been called yet so burst size and other items have
863 *   not been set.
864 *
865 * Side Effects:
866 *   None
867 */
868
869static void __devinit dfx_bus_config_check(DFX_board_t *bp)
870{
871	struct device __maybe_unused *bdev = bp->bus_dev;
872	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
873	int	status;				/* return code from adapter port control call */
874	u32	host_data;			/* LW data returned from port control call */
875
876	DBG_printk("In dfx_bus_config_check...\n");
877
878	/* Configuration check only valid for EISA adapter */
879
880	if (dfx_bus_eisa) {
881		/*
882		 * First check if revision 2 EISA controller.  Rev. 1 cards used
883		 * PDQ revision B, so no workaround needed in this case.  Rev. 3
884		 * cards used PDQ revision E, so no workaround needed in this
885		 * case, either.  Only Rev. 2 cards used either Rev. D or E
886		 * chips, so we must verify the chip revision on Rev. 2 cards.
887		 */
888		if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
889			/*
890			 * Revision 2 FDDI EISA controller found,
891			 * so let's check PDQ revision of adapter.
892			 */
893			status = dfx_hw_port_ctrl_req(bp,
894											PI_PCTRL_M_SUB_CMD,
895											PI_SUB_CMD_K_PDQ_REV_GET,
896											0,
897											&host_data);
898			if ((status != DFX_K_SUCCESS) || (host_data == 2))
899				{
900				/*
901				 * Either we couldn't determine the PDQ revision, or
902				 * we determined that it is at revision D.  In either case,
903				 * we need to implement the workaround.
904				 */
905
906				/* Ensure that the burst size is set to 8 longwords or less */
907
908				switch (bp->burst_size)
909					{
910					case PI_PDATA_B_DMA_BURST_SIZE_32:
911					case PI_PDATA_B_DMA_BURST_SIZE_16:
912						bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
913						break;
914
915					default:
916						break;
917					}
918
919				/* Ensure that full-duplex mode is not enabled */
920
921				bp->full_duplex_enb = PI_SNMP_K_FALSE;
922				}
923			}
924		}
925	}
926
927
928/*
929 * ===================
930 * = dfx_driver_init =
931 * ===================
932 *
933 * Overview:
934 *   Initializes remaining adapter board structure information
935 *   and makes sure adapter is in a safe state prior to dfx_open().
936 *
937 * Returns:
938 *   Condition code
939 *
940 * Arguments:
941 *   dev - pointer to device information
942 *   print_name - printable device name
943 *
944 * Functional Description:
945 *   This function allocates additional resources such as the host memory
946 *   blocks needed by the adapter (eg. descriptor and consumer blocks).
947 *	 Remaining bus initialization steps are also completed.  The adapter
948 *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
949 *   must call dfx_open() to open the adapter and bring it on-line.
950 *
951 * Return Codes:
952 *   DFX_K_SUCCESS	- initialization succeeded
953 *   DFX_K_FAILURE	- initialization failed - could not allocate memory
954 *						or read adapter MAC address
955 *
956 * Assumptions:
957 *   Memory allocated from pci_alloc_consistent() call is physically
958 *   contiguous, locked memory.
959 *
960 * Side Effects:
961 *   Adapter is reset and should be in DMA_UNAVAILABLE state before
962 *   returning from this routine.
963 */
964
965static int __devinit dfx_driver_init(struct net_device *dev,
966				     const char *print_name,
967				     resource_size_t bar_start)
968{
969	DFX_board_t *bp = netdev_priv(dev);
970	struct device *bdev = bp->bus_dev;
971	int dfx_bus_pci = DFX_BUS_PCI(bdev);
972	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
973	int dfx_bus_tc = DFX_BUS_TC(bdev);
974	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
975	int alloc_size;			/* total buffer size needed */
976	char *top_v, *curr_v;		/* virtual addrs into memory block */
977	dma_addr_t top_p, curr_p;	/* physical addrs into memory block */
978	u32 data;			/* host data register value */
979	__le32 le32;
980	char *board_name = NULL;
981
982	DBG_printk("In dfx_driver_init...\n");
983
984	/* Initialize bus-specific hardware registers */
985
986	dfx_bus_init(dev);
987
988	/*
989	 * Initialize default values for configurable parameters
990	 *
991	 * Note: All of these parameters are ones that a user may
992	 *       want to customize.  It'd be nice to break these
993	 *		 out into Space.c or someplace else that's more
994	 *		 accessible/understandable than this file.
995	 */
996
997	bp->full_duplex_enb		= PI_SNMP_K_FALSE;
998	bp->req_ttrt			= 8 * 12500;		/* 8ms in 80 nanosec units */
999	bp->burst_size			= PI_PDATA_B_DMA_BURST_SIZE_DEF;
1000	bp->rcv_bufs_to_post	= RCV_BUFS_DEF;
1001
1002	/*
1003	 * Ensure that HW configuration is OK
1004	 *
1005	 * Note: Depending on the hardware revision, we may need to modify
1006	 *       some of the configurable parameters to workaround hardware
1007	 *       limitations.  We'll perform this configuration check AFTER
1008	 *       setting the parameters to their default values.
1009	 */
1010
1011	dfx_bus_config_check(bp);
1012
1013	/* Disable PDQ interrupts first */
1014
1015	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1016
1017	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1018
1019	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1020
1021	/*  Read the factory MAC address from the adapter then save it */
1022
1023	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1024				 &data) != DFX_K_SUCCESS) {
1025		printk("%s: Could not read adapter factory MAC address!\n",
1026		       print_name);
1027		return DFX_K_FAILURE;
1028	}
1029	le32 = cpu_to_le32(data);
1030	memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1031
1032	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1033				 &data) != DFX_K_SUCCESS) {
1034		printk("%s: Could not read adapter factory MAC address!\n",
1035		       print_name);
1036		return DFX_K_FAILURE;
1037	}
1038	le32 = cpu_to_le32(data);
1039	memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1040
1041	/*
1042	 * Set current address to factory address
1043	 *
1044	 * Note: Node address override support is handled through
1045	 *       dfx_ctl_set_mac_address.
1046	 */
1047
1048	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1049	if (dfx_bus_tc)
1050		board_name = "DEFTA";
1051	if (dfx_bus_eisa)
1052		board_name = "DEFEA";
1053	if (dfx_bus_pci)
1054		board_name = "DEFPA";
1055	pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1056		print_name, board_name, dfx_use_mmio ? "" : "I/O ",
1057		(long long)bar_start, dev->irq, dev->dev_addr);
1058
1059	/*
1060	 * Get memory for descriptor block, consumer block, and other buffers
1061	 * that need to be DMA read or written to by the adapter.
1062	 */
1063
1064	alloc_size = sizeof(PI_DESCR_BLOCK) +
1065					PI_CMD_REQ_K_SIZE_MAX +
1066					PI_CMD_RSP_K_SIZE_MAX +
1067#ifndef DYNAMIC_BUFFERS
1068					(bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1069#endif
1070					sizeof(PI_CONSUMER_BLOCK) +
1071					(PI_ALIGN_K_DESC_BLK - 1);
1072	bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
1073						   &bp->kmalloced_dma,
1074						   GFP_ATOMIC);
1075	if (top_v == NULL) {
1076		printk("%s: Could not allocate memory for host buffers "
1077		       "and structures!\n", print_name);
1078		return DFX_K_FAILURE;
1079	}
1080	memset(top_v, 0, alloc_size);	/* zero out memory before continuing */
1081	top_p = bp->kmalloced_dma;	/* get physical address of buffer */
1082
1083	/*
1084	 *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1085	 *  plus the amount of memory needed was allocated.  The physical address
1086	 *	is now 8K aligned.  By carving up the memory in a specific order,
1087	 *  we'll guarantee the alignment requirements for all other structures.
1088	 *
1089	 *  Note: If the assumptions change regarding the non-paged, non-cached,
1090	 *		  physically contiguous nature of the memory block or the address
1091	 *		  alignments, then we'll need to implement a different algorithm
1092	 *		  for allocating the needed memory.
1093	 */
1094
1095	curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1096	curr_v = top_v + (curr_p - top_p);
1097
1098	/* Reserve space for descriptor block */
1099
1100	bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1101	bp->descr_block_phys = curr_p;
1102	curr_v += sizeof(PI_DESCR_BLOCK);
1103	curr_p += sizeof(PI_DESCR_BLOCK);
1104
1105	/* Reserve space for command request buffer */
1106
1107	bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1108	bp->cmd_req_phys = curr_p;
1109	curr_v += PI_CMD_REQ_K_SIZE_MAX;
1110	curr_p += PI_CMD_REQ_K_SIZE_MAX;
1111
1112	/* Reserve space for command response buffer */
1113
1114	bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1115	bp->cmd_rsp_phys = curr_p;
1116	curr_v += PI_CMD_RSP_K_SIZE_MAX;
1117	curr_p += PI_CMD_RSP_K_SIZE_MAX;
1118
1119	/* Reserve space for the LLC host receive queue buffers */
1120
1121	bp->rcv_block_virt = curr_v;
1122	bp->rcv_block_phys = curr_p;
1123
1124#ifndef DYNAMIC_BUFFERS
1125	curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1126	curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1127#endif
1128
1129	/* Reserve space for the consumer block */
1130
1131	bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1132	bp->cons_block_phys = curr_p;
1133
1134	/* Display virtual and physical addresses if debug driver */
1135
1136	DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
1137		   print_name,
1138		   (long)bp->descr_block_virt, bp->descr_block_phys);
1139	DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
1140		   print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
1141	DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
1142		   print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
1143	DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
1144		   print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
1145	DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
1146		   print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
1147
1148	return DFX_K_SUCCESS;
1149}
1150
1151
1152/*
1153 * =================
1154 * = dfx_adap_init =
1155 * =================
1156 *
1157 * Overview:
1158 *   Brings the adapter to the link avail/link unavailable state.
1159 *
1160 * Returns:
1161 *   Condition code
1162 *
1163 * Arguments:
1164 *   bp - pointer to board information
1165 *   get_buffers - non-zero if buffers to be allocated
1166 *
1167 * Functional Description:
1168 *   Issues the low-level firmware/hardware calls necessary to bring
1169 *   the adapter up, or to properly reset and restore adapter during
1170 *   run-time.
1171 *
1172 * Return Codes:
1173 *   DFX_K_SUCCESS - Adapter brought up successfully
1174 *   DFX_K_FAILURE - Adapter initialization failed
1175 *
1176 * Assumptions:
1177 *   bp->reset_type should be set to a valid reset type value before
1178 *   calling this routine.
1179 *
1180 * Side Effects:
1181 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1182 *   upon a successful return of this routine.
1183 */
1184
1185static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1186	{
1187	DBG_printk("In dfx_adap_init...\n");
1188
1189	/* Disable PDQ interrupts first */
1190
1191	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1192
1193	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1194
1195	if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1196		{
1197		printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1198		return DFX_K_FAILURE;
1199		}
1200
1201	/*
1202	 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1203	 * so we'll acknowledge all Type 0 interrupts now before continuing.
1204	 */
1205
1206	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1207
1208	/*
1209	 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1210	 *
1211	 * Note: We only need to clear host copies of these registers.  The PDQ reset
1212	 *       takes care of the on-board register values.
1213	 */
1214
1215	bp->cmd_req_reg.lword	= 0;
1216	bp->cmd_rsp_reg.lword	= 0;
1217	bp->rcv_xmt_reg.lword	= 0;
1218
1219	/* Clear consumer block before going to DMA_AVAILABLE state */
1220
1221	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1222
1223	/* Initialize the DMA Burst Size */
1224
1225	if (dfx_hw_port_ctrl_req(bp,
1226							PI_PCTRL_M_SUB_CMD,
1227							PI_SUB_CMD_K_BURST_SIZE_SET,
1228							bp->burst_size,
1229							NULL) != DFX_K_SUCCESS)
1230		{
1231		printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1232		return DFX_K_FAILURE;
1233		}
1234
1235	/*
1236	 * Set base address of Consumer Block
1237	 *
1238	 * Assumption: 32-bit physical address of consumer block is 64 byte
1239	 *			   aligned.  That is, bits 0-5 of the address must be zero.
1240	 */
1241
1242	if (dfx_hw_port_ctrl_req(bp,
1243							PI_PCTRL_M_CONS_BLOCK,
1244							bp->cons_block_phys,
1245							0,
1246							NULL) != DFX_K_SUCCESS)
1247		{
1248		printk("%s: Could not set consumer block address!\n", bp->dev->name);
1249		return DFX_K_FAILURE;
1250		}
1251
1252	/*
1253	 * Set the base address of Descriptor Block and bring adapter
1254	 * to DMA_AVAILABLE state.
1255	 *
1256	 * Note: We also set the literal and data swapping requirements
1257	 *       in this command.
1258	 *
1259	 * Assumption: 32-bit physical address of descriptor block
1260	 *       is 8Kbyte aligned.
1261	 */
1262	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1263				 (u32)(bp->descr_block_phys |
1264				       PI_PDATA_A_INIT_M_BSWAP_INIT),
1265				 0, NULL) != DFX_K_SUCCESS) {
1266		printk("%s: Could not set descriptor block address!\n",
1267		       bp->dev->name);
1268		return DFX_K_FAILURE;
1269	}
1270
1271	/* Set transmit flush timeout value */
1272
1273	bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1274	bp->cmd_req_virt->char_set.item[0].item_code	= PI_ITEM_K_FLUSH_TIME;
1275	bp->cmd_req_virt->char_set.item[0].value		= 3;	/* 3 seconds */
1276	bp->cmd_req_virt->char_set.item[0].item_index	= 0;
1277	bp->cmd_req_virt->char_set.item[1].item_code	= PI_ITEM_K_EOL;
1278	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1279		{
1280		printk("%s: DMA command request failed!\n", bp->dev->name);
1281		return DFX_K_FAILURE;
1282		}
1283
1284	/* Set the initial values for eFDXEnable and MACTReq MIB objects */
1285
1286	bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1287	bp->cmd_req_virt->snmp_set.item[0].item_code	= PI_ITEM_K_FDX_ENB_DIS;
1288	bp->cmd_req_virt->snmp_set.item[0].value		= bp->full_duplex_enb;
1289	bp->cmd_req_virt->snmp_set.item[0].item_index	= 0;
1290	bp->cmd_req_virt->snmp_set.item[1].item_code	= PI_ITEM_K_MAC_T_REQ;
1291	bp->cmd_req_virt->snmp_set.item[1].value		= bp->req_ttrt;
1292	bp->cmd_req_virt->snmp_set.item[1].item_index	= 0;
1293	bp->cmd_req_virt->snmp_set.item[2].item_code	= PI_ITEM_K_EOL;
1294	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1295		{
1296		printk("%s: DMA command request failed!\n", bp->dev->name);
1297		return DFX_K_FAILURE;
1298		}
1299
1300	/* Initialize adapter CAM */
1301
1302	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1303		{
1304		printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1305		return DFX_K_FAILURE;
1306		}
1307
1308	/* Initialize adapter filters */
1309
1310	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1311		{
1312		printk("%s: Adapter filters update failed!\n", bp->dev->name);
1313		return DFX_K_FAILURE;
1314		}
1315
1316	/*
1317	 * Remove any existing dynamic buffers (i.e. if the adapter is being
1318	 * reinitialized)
1319	 */
1320
1321	if (get_buffers)
1322		dfx_rcv_flush(bp);
1323
1324	/* Initialize receive descriptor block and produce buffers */
1325
1326	if (dfx_rcv_init(bp, get_buffers))
1327	        {
1328		printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1329		if (get_buffers)
1330			dfx_rcv_flush(bp);
1331		return DFX_K_FAILURE;
1332		}
1333
1334	/* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1335
1336	bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1337	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1338		{
1339		printk("%s: Start command failed\n", bp->dev->name);
1340		if (get_buffers)
1341			dfx_rcv_flush(bp);
1342		return DFX_K_FAILURE;
1343		}
1344
1345	/* Initialization succeeded, reenable PDQ interrupts */
1346
1347	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1348	return DFX_K_SUCCESS;
1349	}
1350
1351
1352/*
1353 * ============
1354 * = dfx_open =
1355 * ============
1356 *
1357 * Overview:
1358 *   Opens the adapter
1359 *
1360 * Returns:
1361 *   Condition code
1362 *
1363 * Arguments:
1364 *   dev - pointer to device information
1365 *
1366 * Functional Description:
1367 *   This function brings the adapter to an operational state.
1368 *
1369 * Return Codes:
1370 *   0		 - Adapter was successfully opened
1371 *   -EAGAIN - Could not register IRQ or adapter initialization failed
1372 *
1373 * Assumptions:
1374 *   This routine should only be called for a device that was
1375 *   initialized successfully.
1376 *
1377 * Side Effects:
1378 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1379 *   if the open is successful.
1380 */
1381
1382static int dfx_open(struct net_device *dev)
1383{
1384	DFX_board_t *bp = netdev_priv(dev);
1385	int ret;
1386
1387	DBG_printk("In dfx_open...\n");
1388
1389	/* Register IRQ - support shared interrupts by passing device ptr */
1390
1391	ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1392			  dev);
1393	if (ret) {
1394		printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1395		return ret;
1396	}
1397
1398	/*
1399	 * Set current address to factory MAC address
1400	 *
1401	 * Note: We've already done this step in dfx_driver_init.
1402	 *       However, it's possible that a user has set a node
1403	 *		 address override, then closed and reopened the
1404	 *		 adapter.  Unless we reset the device address field
1405	 *		 now, we'll continue to use the existing modified
1406	 *		 address.
1407	 */
1408
1409	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1410
1411	/* Clear local unicast/multicast address tables and counts */
1412
1413	memset(bp->uc_table, 0, sizeof(bp->uc_table));
1414	memset(bp->mc_table, 0, sizeof(bp->mc_table));
1415	bp->uc_count = 0;
1416	bp->mc_count = 0;
1417
1418	/* Disable promiscuous filter settings */
1419
1420	bp->ind_group_prom	= PI_FSTATE_K_BLOCK;
1421	bp->group_prom		= PI_FSTATE_K_BLOCK;
1422
1423	spin_lock_init(&bp->lock);
1424
1425	/* Reset and initialize adapter */
1426
1427	bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;	/* skip self-test */
1428	if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1429	{
1430		printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1431		free_irq(dev->irq, dev);
1432		return -EAGAIN;
1433	}
1434
1435	/* Set device structure info */
1436	netif_start_queue(dev);
1437	return 0;
1438}
1439
1440
1441/*
1442 * =============
1443 * = dfx_close =
1444 * =============
1445 *
1446 * Overview:
1447 *   Closes the device/module.
1448 *
1449 * Returns:
1450 *   Condition code
1451 *
1452 * Arguments:
1453 *   dev - pointer to device information
1454 *
1455 * Functional Description:
1456 *   This routine closes the adapter and brings it to a safe state.
1457 *   The interrupt service routine is deregistered with the OS.
1458 *   The adapter can be opened again with another call to dfx_open().
1459 *
1460 * Return Codes:
1461 *   Always return 0.
1462 *
1463 * Assumptions:
1464 *   No further requests for this adapter are made after this routine is
1465 *   called.  dfx_open() can be called to reset and reinitialize the
1466 *   adapter.
1467 *
1468 * Side Effects:
1469 *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1470 *   routine.
1471 */
1472
1473static int dfx_close(struct net_device *dev)
1474{
1475	DFX_board_t *bp = netdev_priv(dev);
1476
1477	DBG_printk("In dfx_close...\n");
1478
1479	/* Disable PDQ interrupts first */
1480
1481	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1482
1483	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1484
1485	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1486
1487	/*
1488	 * Flush any pending transmit buffers
1489	 *
1490	 * Note: It's important that we flush the transmit buffers
1491	 *		 BEFORE we clear our copy of the Type 2 register.
1492	 *		 Otherwise, we'll have no idea how many buffers
1493	 *		 we need to free.
1494	 */
1495
1496	dfx_xmt_flush(bp);
1497
1498	/*
1499	 * Clear Type 1 and Type 2 registers after adapter reset
1500	 *
1501	 * Note: Even though we're closing the adapter, it's
1502	 *       possible that an interrupt will occur after
1503	 *		 dfx_close is called.  Without some assurance to
1504	 *		 the contrary we want to make sure that we don't
1505	 *		 process receive and transmit LLC frames and update
1506	 *		 the Type 2 register with bad information.
1507	 */
1508
1509	bp->cmd_req_reg.lword	= 0;
1510	bp->cmd_rsp_reg.lword	= 0;
1511	bp->rcv_xmt_reg.lword	= 0;
1512
1513	/* Clear consumer block for the same reason given above */
1514
1515	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1516
1517	/* Release all dynamically allocate skb in the receive ring. */
1518
1519	dfx_rcv_flush(bp);
1520
1521	/* Clear device structure flags */
1522
1523	netif_stop_queue(dev);
1524
1525	/* Deregister (free) IRQ */
1526
1527	free_irq(dev->irq, dev);
1528
1529	return 0;
1530}
1531
1532
1533/*
1534 * ======================
1535 * = dfx_int_pr_halt_id =
1536 * ======================
1537 *
1538 * Overview:
1539 *   Displays halt id's in string form.
1540 *
1541 * Returns:
1542 *   None
1543 *
1544 * Arguments:
1545 *   bp - pointer to board information
1546 *
1547 * Functional Description:
1548 *   Determine current halt id and display appropriate string.
1549 *
1550 * Return Codes:
1551 *   None
1552 *
1553 * Assumptions:
1554 *   None
1555 *
1556 * Side Effects:
1557 *   None
1558 */
1559
1560static void dfx_int_pr_halt_id(DFX_board_t	*bp)
1561	{
1562	PI_UINT32	port_status;			/* PDQ port status register value */
1563	PI_UINT32	halt_id;				/* PDQ port status halt ID */
1564
1565	/* Read the latest port status */
1566
1567	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1568
1569	/* Display halt state transition information */
1570
1571	halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1572	switch (halt_id)
1573		{
1574		case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1575			printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1576			break;
1577
1578		case PI_HALT_ID_K_PARITY_ERROR:
1579			printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1580			break;
1581
1582		case PI_HALT_ID_K_HOST_DIR_HALT:
1583			printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1584			break;
1585
1586		case PI_HALT_ID_K_SW_FAULT:
1587			printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1588			break;
1589
1590		case PI_HALT_ID_K_HW_FAULT:
1591			printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1592			break;
1593
1594		case PI_HALT_ID_K_PC_TRACE:
1595			printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1596			break;
1597
1598		case PI_HALT_ID_K_DMA_ERROR:
1599			printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1600			break;
1601
1602		case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1603			printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1604			break;
1605
1606		case PI_HALT_ID_K_BUS_EXCEPTION:
1607			printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1608			break;
1609
1610		default:
1611			printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1612			break;
1613		}
1614	}
1615
1616
1617/*
1618 * ==========================
1619 * = dfx_int_type_0_process =
1620 * ==========================
1621 *
1622 * Overview:
1623 *   Processes Type 0 interrupts.
1624 *
1625 * Returns:
1626 *   None
1627 *
1628 * Arguments:
1629 *   bp - pointer to board information
1630 *
1631 * Functional Description:
1632 *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1633 *   is a serious fault on the adapter, then an error message is displayed
1634 *   and the adapter is reset.
1635 *
1636 *   One tricky potential timing window is the rapid succession of "link avail"
1637 *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1638 *   interrupt must be done before reading the state from the Port Status
1639 *   register.  This is true because a state change could occur after reading
1640 *   the data, but before acknowledging the interrupt.  If this state change
1641 *   does happen, it would be lost because the driver is using the old state,
1642 *   and it will never know about the new state because it subsequently
1643 *   acknowledges the state change interrupt.
1644 *
1645 *          INCORRECT                                      CORRECT
1646 *      read type 0 int reasons                   read type 0 int reasons
1647 *      read adapter state                        ack type 0 interrupts
1648 *      ack type 0 interrupts                     read adapter state
1649 *      ... process interrupt ...                 ... process interrupt ...
1650 *
1651 * Return Codes:
1652 *   None
1653 *
1654 * Assumptions:
1655 *   None
1656 *
1657 * Side Effects:
1658 *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1659 *   or if the port status indicates that the adapter is halted.  The driver
1660 *   is responsible for reinitializing the adapter with the current CAM
1661 *   contents and adapter filter settings.
1662 */
1663
1664static void dfx_int_type_0_process(DFX_board_t	*bp)
1665
1666	{
1667	PI_UINT32	type_0_status;		/* Host Interrupt Type 0 register */
1668	PI_UINT32	state;				/* current adap state (from port status) */
1669
1670	/*
1671	 * Read host interrupt Type 0 register to determine which Type 0
1672	 * interrupts are pending.  Immediately write it back out to clear
1673	 * those interrupts.
1674	 */
1675
1676	dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1677	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1678
1679	/* Check for Type 0 error interrupts */
1680
1681	if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1682							PI_TYPE_0_STAT_M_PM_PAR_ERR |
1683							PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1684		{
1685		/* Check for Non-Existent Memory error */
1686
1687		if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1688			printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1689
1690		/* Check for Packet Memory Parity error */
1691
1692		if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1693			printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1694
1695		/* Check for Host Bus Parity error */
1696
1697		if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1698			printk("%s: Host Bus Parity Error\n", bp->dev->name);
1699
1700		/* Reset adapter and bring it back on-line */
1701
1702		bp->link_available = PI_K_FALSE;	/* link is no longer available */
1703		bp->reset_type = 0;					/* rerun on-board diagnostics */
1704		printk("%s: Resetting adapter...\n", bp->dev->name);
1705		if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1706			{
1707			printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1708			dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1709			return;
1710			}
1711		printk("%s: Adapter reset successful!\n", bp->dev->name);
1712		return;
1713		}
1714
1715	/* Check for transmit flush interrupt */
1716
1717	if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1718		{
1719		/* Flush any pending xmt's and acknowledge the flush interrupt */
1720
1721		bp->link_available = PI_K_FALSE;		/* link is no longer available */
1722		dfx_xmt_flush(bp);						/* flush any outstanding packets */
1723		(void) dfx_hw_port_ctrl_req(bp,
1724									PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1725									0,
1726									0,
1727									NULL);
1728		}
1729
1730	/* Check for adapter state change */
1731
1732	if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1733		{
1734		/* Get latest adapter state */
1735
1736		state = dfx_hw_adap_state_rd(bp);	/* get adapter state */
1737		if (state == PI_STATE_K_HALTED)
1738			{
1739			/*
1740			 * Adapter has transitioned to HALTED state, try to reset
1741			 * adapter to bring it back on-line.  If reset fails,
1742			 * leave the adapter in the broken state.
1743			 */
1744
1745			printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1746			dfx_int_pr_halt_id(bp);			/* display halt id as string */
1747
1748			/* Reset adapter and bring it back on-line */
1749
1750			bp->link_available = PI_K_FALSE;	/* link is no longer available */
1751			bp->reset_type = 0;					/* rerun on-board diagnostics */
1752			printk("%s: Resetting adapter...\n", bp->dev->name);
1753			if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1754				{
1755				printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1756				dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1757				return;
1758				}
1759			printk("%s: Adapter reset successful!\n", bp->dev->name);
1760			}
1761		else if (state == PI_STATE_K_LINK_AVAIL)
1762			{
1763			bp->link_available = PI_K_TRUE;		/* set link available flag */
1764			}
1765		}
1766	}
1767
1768
1769/*
1770 * ==================
1771 * = dfx_int_common =
1772 * ==================
1773 *
1774 * Overview:
1775 *   Interrupt service routine (ISR)
1776 *
1777 * Returns:
1778 *   None
1779 *
1780 * Arguments:
1781 *   bp - pointer to board information
1782 *
1783 * Functional Description:
1784 *   This is the ISR which processes incoming adapter interrupts.
1785 *
1786 * Return Codes:
1787 *   None
1788 *
1789 * Assumptions:
1790 *   This routine assumes PDQ interrupts have not been disabled.
1791 *   When interrupts are disabled at the PDQ, the Port Status register
1792 *   is automatically cleared.  This routine uses the Port Status
1793 *   register value to determine whether a Type 0 interrupt occurred,
1794 *   so it's important that adapter interrupts are not normally
1795 *   enabled/disabled at the PDQ.
1796 *
1797 *   It's vital that this routine is NOT reentered for the
1798 *   same board and that the OS is not in another section of
1799 *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1800 *   different thread.
1801 *
1802 * Side Effects:
1803 *   Pending interrupts are serviced.  Depending on the type of
1804 *   interrupt, acknowledging and clearing the interrupt at the
1805 *   PDQ involves writing a register to clear the interrupt bit
1806 *   or updating completion indices.
1807 */
1808
1809static void dfx_int_common(struct net_device *dev)
1810{
1811	DFX_board_t *bp = netdev_priv(dev);
1812	PI_UINT32	port_status;		/* Port Status register */
1813
1814	/* Process xmt interrupts - frequent case, so always call this routine */
1815
1816	if(dfx_xmt_done(bp))				/* free consumed xmt packets */
1817		netif_wake_queue(dev);
1818
1819	/* Process rcv interrupts - frequent case, so always call this routine */
1820
1821	dfx_rcv_queue_process(bp);		/* service received LLC frames */
1822
1823	/*
1824	 * Transmit and receive producer and completion indices are updated on the
1825	 * adapter by writing to the Type 2 Producer register.  Since the frequent
1826	 * case is that we'll be processing either LLC transmit or receive buffers,
1827	 * we'll optimize I/O writes by doing a single register write here.
1828	 */
1829
1830	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1831
1832	/* Read PDQ Port Status register to find out which interrupts need processing */
1833
1834	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1835
1836	/* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1837
1838	if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1839		dfx_int_type_0_process(bp);	/* process Type 0 interrupts */
1840	}
1841
1842
1843/*
1844 * =================
1845 * = dfx_interrupt =
1846 * =================
1847 *
1848 * Overview:
1849 *   Interrupt processing routine
1850 *
1851 * Returns:
1852 *   Whether a valid interrupt was seen.
1853 *
1854 * Arguments:
1855 *   irq	- interrupt vector
1856 *   dev_id	- pointer to device information
1857 *
1858 * Functional Description:
1859 *   This routine calls the interrupt processing routine for this adapter.  It
1860 *   disables and reenables adapter interrupts, as appropriate.  We can support
1861 *   shared interrupts since the incoming dev_id pointer provides our device
1862 *   structure context.
1863 *
1864 * Return Codes:
1865 *   IRQ_HANDLED - an IRQ was handled.
1866 *   IRQ_NONE    - no IRQ was handled.
1867 *
1868 * Assumptions:
1869 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1870 *   on Intel-based systems) is done by the operating system outside this
1871 *   routine.
1872 *
1873 *	 System interrupts are enabled through this call.
1874 *
1875 * Side Effects:
1876 *   Interrupts are disabled, then reenabled at the adapter.
1877 */
1878
1879static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1880{
1881	struct net_device *dev = dev_id;
1882	DFX_board_t *bp = netdev_priv(dev);
1883	struct device *bdev = bp->bus_dev;
1884	int dfx_bus_pci = DFX_BUS_PCI(bdev);
1885	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1886	int dfx_bus_tc = DFX_BUS_TC(bdev);
1887
1888	/* Service adapter interrupts */
1889
1890	if (dfx_bus_pci) {
1891		u32 status;
1892
1893		dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1894		if (!(status & PFI_STATUS_M_PDQ_INT))
1895			return IRQ_NONE;
1896
1897		spin_lock(&bp->lock);
1898
1899		/* Disable PDQ-PFI interrupts at PFI */
1900		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1901				    PFI_MODE_M_DMA_ENB);
1902
1903		/* Call interrupt service routine for this adapter */
1904		dfx_int_common(dev);
1905
1906		/* Clear PDQ interrupt status bit and reenable interrupts */
1907		dfx_port_write_long(bp, PFI_K_REG_STATUS,
1908				    PFI_STATUS_M_PDQ_INT);
1909		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1910				    (PFI_MODE_M_PDQ_INT_ENB |
1911				     PFI_MODE_M_DMA_ENB));
1912
1913		spin_unlock(&bp->lock);
1914	}
1915	if (dfx_bus_eisa) {
1916		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1917		u8 status;
1918
1919		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1920		if (!(status & PI_CONFIG_STAT_0_M_PEND))
1921			return IRQ_NONE;
1922
1923		spin_lock(&bp->lock);
1924
1925		/* Disable interrupts at the ESIC */
1926		status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1927		outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1928
1929		/* Call interrupt service routine for this adapter */
1930		dfx_int_common(dev);
1931
1932		/* Reenable interrupts at the ESIC */
1933		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1934		status |= PI_CONFIG_STAT_0_M_INT_ENB;
1935		outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1936
1937		spin_unlock(&bp->lock);
1938	}
1939	if (dfx_bus_tc) {
1940		u32 status;
1941
1942		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1943		if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1944				PI_PSTATUS_M_XMT_DATA_PENDING |
1945				PI_PSTATUS_M_SMT_HOST_PENDING |
1946				PI_PSTATUS_M_UNSOL_PENDING |
1947				PI_PSTATUS_M_CMD_RSP_PENDING |
1948				PI_PSTATUS_M_CMD_REQ_PENDING |
1949				PI_PSTATUS_M_TYPE_0_PENDING)))
1950			return IRQ_NONE;
1951
1952		spin_lock(&bp->lock);
1953
1954		/* Call interrupt service routine for this adapter */
1955		dfx_int_common(dev);
1956
1957		spin_unlock(&bp->lock);
1958	}
1959
1960	return IRQ_HANDLED;
1961}
1962
1963
1964/*
1965 * =====================
1966 * = dfx_ctl_get_stats =
1967 * =====================
1968 *
1969 * Overview:
1970 *   Get statistics for FDDI adapter
1971 *
1972 * Returns:
1973 *   Pointer to FDDI statistics structure
1974 *
1975 * Arguments:
1976 *   dev - pointer to device information
1977 *
1978 * Functional Description:
1979 *   Gets current MIB objects from adapter, then
1980 *   returns FDDI statistics structure as defined
1981 *   in if_fddi.h.
1982 *
1983 *   Note: Since the FDDI statistics structure is
1984 *   still new and the device structure doesn't
1985 *   have an FDDI-specific get statistics handler,
1986 *   we'll return the FDDI statistics structure as
1987 *   a pointer to an Ethernet statistics structure.
1988 *   That way, at least the first part of the statistics
1989 *   structure can be decoded properly, and it allows
1990 *   "smart" applications to perform a second cast to
1991 *   decode the FDDI-specific statistics.
1992 *
1993 *   We'll have to pay attention to this routine as the
1994 *   device structure becomes more mature and LAN media
1995 *   independent.
1996 *
1997 * Return Codes:
1998 *   None
1999 *
2000 * Assumptions:
2001 *   None
2002 *
2003 * Side Effects:
2004 *   None
2005 */
2006
2007static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2008	{
2009	DFX_board_t *bp = netdev_priv(dev);
2010
2011	/* Fill the bp->stats structure with driver-maintained counters */
2012
2013	bp->stats.gen.rx_packets = bp->rcv_total_frames;
2014	bp->stats.gen.tx_packets = bp->xmt_total_frames;
2015	bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2016	bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2017	bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2018				   bp->rcv_frame_status_errors +
2019				   bp->rcv_length_errors;
2020	bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2021	bp->stats.gen.rx_dropped = bp->rcv_discards;
2022	bp->stats.gen.tx_dropped = bp->xmt_discards;
2023	bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2024	bp->stats.gen.collisions = 0;		/* always zero (0) for FDDI */
2025
2026	/* Get FDDI SMT MIB objects */
2027
2028	bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2029	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2030		return (struct net_device_stats *)&bp->stats;
2031
2032	/* Fill the bp->stats structure with the SMT MIB object values */
2033
2034	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2035	bp->stats.smt_op_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2036	bp->stats.smt_hi_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2037	bp->stats.smt_lo_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2038	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2039	bp->stats.smt_mib_version_id				= bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2040	bp->stats.smt_mac_cts						= bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2041	bp->stats.smt_non_master_cts				= bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2042	bp->stats.smt_master_cts					= bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2043	bp->stats.smt_available_paths				= bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2044	bp->stats.smt_config_capabilities			= bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2045	bp->stats.smt_config_policy					= bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2046	bp->stats.smt_connection_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2047	bp->stats.smt_t_notify						= bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2048	bp->stats.smt_stat_rpt_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2049	bp->stats.smt_trace_max_expiration			= bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2050	bp->stats.smt_bypass_present				= bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2051	bp->stats.smt_ecm_state						= bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2052	bp->stats.smt_cf_state						= bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2053	bp->stats.smt_remote_disconnect_flag		= bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2054	bp->stats.smt_station_status				= bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2055	bp->stats.smt_peer_wrap_flag				= bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2056	bp->stats.smt_time_stamp					= bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2057	bp->stats.smt_transition_time_stamp			= bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2058	bp->stats.mac_frame_status_functions		= bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2059	bp->stats.mac_t_max_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2060	bp->stats.mac_tvx_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2061	bp->stats.mac_available_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2062	bp->stats.mac_current_path					= bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2063	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2064	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2065	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2066	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2067	bp->stats.mac_dup_address_test				= bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2068	bp->stats.mac_requested_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2069	bp->stats.mac_downstream_port_type			= bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2070	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2071	bp->stats.mac_t_req							= bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2072	bp->stats.mac_t_neg							= bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2073	bp->stats.mac_t_max							= bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2074	bp->stats.mac_tvx_value						= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2075	bp->stats.mac_frame_error_threshold			= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2076	bp->stats.mac_frame_error_ratio				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2077	bp->stats.mac_rmt_state						= bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2078	bp->stats.mac_da_flag						= bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2079	bp->stats.mac_una_da_flag					= bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2080	bp->stats.mac_frame_error_flag				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2081	bp->stats.mac_ma_unitdata_available			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2082	bp->stats.mac_hardware_present				= bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2083	bp->stats.mac_ma_unitdata_enable			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2084	bp->stats.path_tvx_lower_bound				= bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2085	bp->stats.path_t_max_lower_bound			= bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2086	bp->stats.path_max_t_req					= bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2087	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2088	bp->stats.port_my_type[0]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2089	bp->stats.port_my_type[1]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2090	bp->stats.port_neighbor_type[0]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2091	bp->stats.port_neighbor_type[1]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2092	bp->stats.port_connection_policies[0]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2093	bp->stats.port_connection_policies[1]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2094	bp->stats.port_mac_indicated[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2095	bp->stats.port_mac_indicated[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2096	bp->stats.port_current_path[0]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2097	bp->stats.port_current_path[1]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2098	memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2099	memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2100	bp->stats.port_mac_placement[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2101	bp->stats.port_mac_placement[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2102	bp->stats.port_available_paths[0]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2103	bp->stats.port_available_paths[1]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2104	bp->stats.port_pmd_class[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2105	bp->stats.port_pmd_class[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2106	bp->stats.port_connection_capabilities[0]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2107	bp->stats.port_connection_capabilities[1]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2108	bp->stats.port_bs_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2109	bp->stats.port_bs_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2110	bp->stats.port_ler_estimate[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2111	bp->stats.port_ler_estimate[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2112	bp->stats.port_ler_cutoff[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2113	bp->stats.port_ler_cutoff[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2114	bp->stats.port_ler_alarm[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2115	bp->stats.port_ler_alarm[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2116	bp->stats.port_connect_state[0]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2117	bp->stats.port_connect_state[1]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2118	bp->stats.port_pcm_state[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2119	bp->stats.port_pcm_state[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2120	bp->stats.port_pc_withhold[0]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2121	bp->stats.port_pc_withhold[1]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2122	bp->stats.port_ler_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2123	bp->stats.port_ler_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2124	bp->stats.port_hardware_present[0]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2125	bp->stats.port_hardware_present[1]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2126
2127	/* Get FDDI counters */
2128
2129	bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2130	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2131		return (struct net_device_stats *)&bp->stats;
2132
2133	/* Fill the bp->stats structure with the FDDI counter values */
2134
2135	bp->stats.mac_frame_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2136	bp->stats.mac_copied_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2137	bp->stats.mac_transmit_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2138	bp->stats.mac_error_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2139	bp->stats.mac_lost_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2140	bp->stats.port_lct_fail_cts[0]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2141	bp->stats.port_lct_fail_cts[1]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2142	bp->stats.port_lem_reject_cts[0]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2143	bp->stats.port_lem_reject_cts[1]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2144	bp->stats.port_lem_cts[0]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2145	bp->stats.port_lem_cts[1]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2146
2147	return (struct net_device_stats *)&bp->stats;
2148	}
2149
2150
2151/*
2152 * ==============================
2153 * = dfx_ctl_set_multicast_list =
2154 * ==============================
2155 *
2156 * Overview:
2157 *   Enable/Disable LLC frame promiscuous mode reception
2158 *   on the adapter and/or update multicast address table.
2159 *
2160 * Returns:
2161 *   None
2162 *
2163 * Arguments:
2164 *   dev - pointer to device information
2165 *
2166 * Functional Description:
2167 *   This routine follows a fairly simple algorithm for setting the
2168 *   adapter filters and CAM:
2169 *
2170 *		if IFF_PROMISC flag is set
2171 *			enable LLC individual/group promiscuous mode
2172 *		else
2173 *			disable LLC individual/group promiscuous mode
2174 *			if number of incoming multicast addresses >
2175 *					(CAM max size - number of unicast addresses in CAM)
2176 *				enable LLC group promiscuous mode
2177 *				set driver-maintained multicast address count to zero
2178 *			else
2179 *				disable LLC group promiscuous mode
2180 *				set driver-maintained multicast address count to incoming count
2181 *			update adapter CAM
2182 *		update adapter filters
2183 *
2184 * Return Codes:
2185 *   None
2186 *
2187 * Assumptions:
2188 *   Multicast addresses are presented in canonical (LSB) format.
2189 *
2190 * Side Effects:
2191 *   On-board adapter CAM and filters are updated.
2192 */
2193
2194static void dfx_ctl_set_multicast_list(struct net_device *dev)
2195{
2196	DFX_board_t *bp = netdev_priv(dev);
2197	int					i;			/* used as index in for loop */
2198	struct netdev_hw_addr *ha;
2199
2200	/* Enable LLC frame promiscuous mode, if necessary */
2201
2202	if (dev->flags & IFF_PROMISC)
2203		bp->ind_group_prom = PI_FSTATE_K_PASS;		/* Enable LLC ind/group prom mode */
2204
2205	/* Else, update multicast address table */
2206
2207	else
2208		{
2209		bp->ind_group_prom = PI_FSTATE_K_BLOCK;		/* Disable LLC ind/group prom mode */
2210		/*
2211		 * Check whether incoming multicast address count exceeds table size
2212		 *
2213		 * Note: The adapters utilize an on-board 64 entry CAM for
2214		 *       supporting perfect filtering of multicast packets
2215		 *		 and bridge functions when adding unicast addresses.
2216		 *		 There is no hash function available.  To support
2217		 *		 additional multicast addresses, the all multicast
2218		 *		 filter (LLC group promiscuous mode) must be enabled.
2219		 *
2220		 *		 The firmware reserves two CAM entries for SMT-related
2221		 *		 multicast addresses, which leaves 62 entries available.
2222		 *		 The following code ensures that we're not being asked
2223		 *		 to add more than 62 addresses to the CAM.  If we are,
2224		 *		 the driver will enable the all multicast filter.
2225		 *		 Should the number of multicast addresses drop below
2226		 *		 the high water mark, the filter will be disabled and
2227		 *		 perfect filtering will be used.
2228		 */
2229
2230		if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2231			{
2232			bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2233			bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2234			}
2235		else
2236			{
2237			bp->group_prom	= PI_FSTATE_K_BLOCK;	/* Disable LLC group prom mode */
2238			bp->mc_count	= netdev_mc_count(dev);		/* Add mc addrs to CAM */
2239			}
2240
2241		/* Copy addresses to multicast address table, then update adapter CAM */
2242
2243		i = 0;
2244		netdev_for_each_mc_addr(ha, dev)
2245			memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2246			       ha->addr, FDDI_K_ALEN);
2247
2248		if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2249			{
2250			DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2251			}
2252		else
2253			{
2254			DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2255			}
2256		}
2257
2258	/* Update adapter filters */
2259
2260	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2261		{
2262		DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2263		}
2264	else
2265		{
2266		DBG_printk("%s: Adapter filters updated!\n", dev->name);
2267		}
2268	}
2269
2270
2271/*
2272 * ===========================
2273 * = dfx_ctl_set_mac_address =
2274 * ===========================
2275 *
2276 * Overview:
2277 *   Add node address override (unicast address) to adapter
2278 *   CAM and update dev_addr field in device table.
2279 *
2280 * Returns:
2281 *   None
2282 *
2283 * Arguments:
2284 *   dev  - pointer to device information
2285 *   addr - pointer to sockaddr structure containing unicast address to add
2286 *
2287 * Functional Description:
2288 *   The adapter supports node address overrides by adding one or more
2289 *   unicast addresses to the adapter CAM.  This is similar to adding
2290 *   multicast addresses.  In this routine we'll update the driver and
2291 *   device structures with the new address, then update the adapter CAM
2292 *   to ensure that the adapter will copy and strip frames destined and
2293 *   sourced by that address.
2294 *
2295 * Return Codes:
2296 *   Always returns zero.
2297 *
2298 * Assumptions:
2299 *   The address pointed to by addr->sa_data is a valid unicast
2300 *   address and is presented in canonical (LSB) format.
2301 *
2302 * Side Effects:
2303 *   On-board adapter CAM is updated.  On-board adapter filters
2304 *   may be updated.
2305 */
2306
2307static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2308	{
2309	struct sockaddr	*p_sockaddr = (struct sockaddr *)addr;
2310	DFX_board_t *bp = netdev_priv(dev);
2311
2312	/* Copy unicast address to driver-maintained structs and update count */
2313
2314	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);	/* update device struct */
2315	memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);	/* update driver struct */
2316	bp->uc_count = 1;
2317
2318	/*
2319	 * Verify we're not exceeding the CAM size by adding unicast address
2320	 *
2321	 * Note: It's possible that before entering this routine we've
2322	 *       already filled the CAM with 62 multicast addresses.
2323	 *		 Since we need to place the node address override into
2324	 *		 the CAM, we have to check to see that we're not
2325	 *		 exceeding the CAM size.  If we are, we have to enable
2326	 *		 the LLC group (multicast) promiscuous mode filter as
2327	 *		 in dfx_ctl_set_multicast_list.
2328	 */
2329
2330	if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2331		{
2332		bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2333		bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2334
2335		/* Update adapter filters */
2336
2337		if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2338			{
2339			DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2340			}
2341		else
2342			{
2343			DBG_printk("%s: Adapter filters updated!\n", dev->name);
2344			}
2345		}
2346
2347	/* Update adapter CAM with new unicast address */
2348
2349	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2350		{
2351		DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2352		}
2353	else
2354		{
2355		DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2356		}
2357	return 0;			/* always return zero */
2358	}
2359
2360
2361/*
2362 * ======================
2363 * = dfx_ctl_update_cam =
2364 * ======================
2365 *
2366 * Overview:
2367 *   Procedure to update adapter CAM (Content Addressable Memory)
2368 *   with desired unicast and multicast address entries.
2369 *
2370 * Returns:
2371 *   Condition code
2372 *
2373 * Arguments:
2374 *   bp - pointer to board information
2375 *
2376 * Functional Description:
2377 *   Updates adapter CAM with current contents of board structure
2378 *   unicast and multicast address tables.  Since there are only 62
2379 *   free entries in CAM, this routine ensures that the command
2380 *   request buffer is not overrun.
2381 *
2382 * Return Codes:
2383 *   DFX_K_SUCCESS - Request succeeded
2384 *   DFX_K_FAILURE - Request failed
2385 *
2386 * Assumptions:
2387 *   All addresses being added (unicast and multicast) are in canonical
2388 *   order.
2389 *
2390 * Side Effects:
2391 *   On-board adapter CAM is updated.
2392 */
2393
2394static int dfx_ctl_update_cam(DFX_board_t *bp)
2395	{
2396	int			i;				/* used as index */
2397	PI_LAN_ADDR	*p_addr;		/* pointer to CAM entry */
2398
2399	/*
2400	 * Fill in command request information
2401	 *
2402	 * Note: Even though both the unicast and multicast address
2403	 *       table entries are stored as contiguous 6 byte entries,
2404	 *		 the firmware address filter set command expects each
2405	 *		 entry to be two longwords (8 bytes total).  We must be
2406	 *		 careful to only copy the six bytes of each unicast and
2407	 *		 multicast table entry into each command entry.  This
2408	 *		 is also why we must first clear the entire command
2409	 *		 request buffer.
2410	 */
2411
2412	memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);	/* first clear buffer */
2413	bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2414	p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2415
2416	/* Now add unicast addresses to command request buffer, if any */
2417
2418	for (i=0; i < (int)bp->uc_count; i++)
2419		{
2420		if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2421			{
2422			memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2423			p_addr++;			/* point to next command entry */
2424			}
2425		}
2426
2427	/* Now add multicast addresses to command request buffer, if any */
2428
2429	for (i=0; i < (int)bp->mc_count; i++)
2430		{
2431		if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2432			{
2433			memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2434			p_addr++;			/* point to next command entry */
2435			}
2436		}
2437
2438	/* Issue command to update adapter CAM, then return */
2439
2440	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2441		return DFX_K_FAILURE;
2442	return DFX_K_SUCCESS;
2443	}
2444
2445
2446/*
2447 * ==========================
2448 * = dfx_ctl_update_filters =
2449 * ==========================
2450 *
2451 * Overview:
2452 *   Procedure to update adapter filters with desired
2453 *   filter settings.
2454 *
2455 * Returns:
2456 *   Condition code
2457 *
2458 * Arguments:
2459 *   bp - pointer to board information
2460 *
2461 * Functional Description:
2462 *   Enables or disables filter using current filter settings.
2463 *
2464 * Return Codes:
2465 *   DFX_K_SUCCESS - Request succeeded.
2466 *   DFX_K_FAILURE - Request failed.
2467 *
2468 * Assumptions:
2469 *   We must always pass up packets destined to the broadcast
2470 *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2471 *   broadcast filter enabled.
2472 *
2473 * Side Effects:
2474 *   On-board adapter filters are updated.
2475 */
2476
2477static int dfx_ctl_update_filters(DFX_board_t *bp)
2478	{
2479	int	i = 0;					/* used as index */
2480
2481	/* Fill in command request information */
2482
2483	bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2484
2485	/* Initialize Broadcast filter - * ALWAYS ENABLED * */
2486
2487	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_BROADCAST;
2488	bp->cmd_req_virt->filter_set.item[i++].value	= PI_FSTATE_K_PASS;
2489
2490	/* Initialize LLC Individual/Group Promiscuous filter */
2491
2492	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_IND_GROUP_PROM;
2493	bp->cmd_req_virt->filter_set.item[i++].value	= bp->ind_group_prom;
2494
2495	/* Initialize LLC Group Promiscuous filter */
2496
2497	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_GROUP_PROM;
2498	bp->cmd_req_virt->filter_set.item[i++].value	= bp->group_prom;
2499
2500	/* Terminate the item code list */
2501
2502	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_EOL;
2503
2504	/* Issue command to update adapter filters, then return */
2505
2506	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2507		return DFX_K_FAILURE;
2508	return DFX_K_SUCCESS;
2509	}
2510
2511
2512/*
2513 * ======================
2514 * = dfx_hw_dma_cmd_req =
2515 * ======================
2516 *
2517 * Overview:
2518 *   Sends PDQ DMA command to adapter firmware
2519 *
2520 * Returns:
2521 *   Condition code
2522 *
2523 * Arguments:
2524 *   bp - pointer to board information
2525 *
2526 * Functional Description:
2527 *   The command request and response buffers are posted to the adapter in the manner
2528 *   described in the PDQ Port Specification:
2529 *
2530 *		1. Command Response Buffer is posted to adapter.
2531 *		2. Command Request Buffer is posted to adapter.
2532 *		3. Command Request consumer index is polled until it indicates that request
2533 *         buffer has been DMA'd to adapter.
2534 *		4. Command Response consumer index is polled until it indicates that response
2535 *         buffer has been DMA'd from adapter.
2536 *
2537 *   This ordering ensures that a response buffer is already available for the firmware
2538 *   to use once it's done processing the request buffer.
2539 *
2540 * Return Codes:
2541 *   DFX_K_SUCCESS	  - DMA command succeeded
2542 * 	 DFX_K_OUTSTATE   - Adapter is NOT in proper state
2543 *   DFX_K_HW_TIMEOUT - DMA command timed out
2544 *
2545 * Assumptions:
2546 *   Command request buffer has already been filled with desired DMA command.
2547 *
2548 * Side Effects:
2549 *   None
2550 */
2551
2552static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2553	{
2554	int status;			/* adapter status */
2555	int timeout_cnt;	/* used in for loops */
2556
2557	/* Make sure the adapter is in a state that we can issue the DMA command in */
2558
2559	status = dfx_hw_adap_state_rd(bp);
2560	if ((status == PI_STATE_K_RESET)		||
2561		(status == PI_STATE_K_HALTED)		||
2562		(status == PI_STATE_K_DMA_UNAVAIL)	||
2563		(status == PI_STATE_K_UPGRADE))
2564		return DFX_K_OUTSTATE;
2565
2566	/* Put response buffer on the command response queue */
2567
2568	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2569			((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2570	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2571
2572	/* Bump (and wrap) the producer index and write out to register */
2573
2574	bp->cmd_rsp_reg.index.prod += 1;
2575	bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2576	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2577
2578	/* Put request buffer on the command request queue */
2579
2580	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2581			PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2582	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2583
2584	/* Bump (and wrap) the producer index and write out to register */
2585
2586	bp->cmd_req_reg.index.prod += 1;
2587	bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2588	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2589
2590	/*
2591	 * Here we wait for the command request consumer index to be equal
2592	 * to the producer, indicating that the adapter has DMAed the request.
2593	 */
2594
2595	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2596		{
2597		if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2598			break;
2599		udelay(100);			/* wait for 100 microseconds */
2600		}
2601	if (timeout_cnt == 0)
2602		return DFX_K_HW_TIMEOUT;
2603
2604	/* Bump (and wrap) the completion index and write out to register */
2605
2606	bp->cmd_req_reg.index.comp += 1;
2607	bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2608	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2609
2610	/*
2611	 * Here we wait for the command response consumer index to be equal
2612	 * to the producer, indicating that the adapter has DMAed the response.
2613	 */
2614
2615	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2616		{
2617		if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2618			break;
2619		udelay(100);			/* wait for 100 microseconds */
2620		}
2621	if (timeout_cnt == 0)
2622		return DFX_K_HW_TIMEOUT;
2623
2624	/* Bump (and wrap) the completion index and write out to register */
2625
2626	bp->cmd_rsp_reg.index.comp += 1;
2627	bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2628	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2629	return DFX_K_SUCCESS;
2630	}
2631
2632
2633/*
2634 * ========================
2635 * = dfx_hw_port_ctrl_req =
2636 * ========================
2637 *
2638 * Overview:
2639 *   Sends PDQ port control command to adapter firmware
2640 *
2641 * Returns:
2642 *   Host data register value in host_data if ptr is not NULL
2643 *
2644 * Arguments:
2645 *   bp			- pointer to board information
2646 *	 command	- port control command
2647 *	 data_a		- port data A register value
2648 *	 data_b		- port data B register value
2649 *	 host_data	- ptr to host data register value
2650 *
2651 * Functional Description:
2652 *   Send generic port control command to adapter by writing
2653 *   to various PDQ port registers, then polling for completion.
2654 *
2655 * Return Codes:
2656 *   DFX_K_SUCCESS	  - port control command succeeded
2657 *   DFX_K_HW_TIMEOUT - port control command timed out
2658 *
2659 * Assumptions:
2660 *   None
2661 *
2662 * Side Effects:
2663 *   None
2664 */
2665
2666static int dfx_hw_port_ctrl_req(
2667	DFX_board_t	*bp,
2668	PI_UINT32	command,
2669	PI_UINT32	data_a,
2670	PI_UINT32	data_b,
2671	PI_UINT32	*host_data
2672	)
2673
2674	{
2675	PI_UINT32	port_cmd;		/* Port Control command register value */
2676	int			timeout_cnt;	/* used in for loops */
2677
2678	/* Set Command Error bit in command longword */
2679
2680	port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2681
2682	/* Issue port command to the adapter */
2683
2684	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2685	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2686	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2687
2688	/* Now wait for command to complete */
2689
2690	if (command == PI_PCTRL_M_BLAST_FLASH)
2691		timeout_cnt = 600000;	/* set command timeout count to 60 seconds */
2692	else
2693		timeout_cnt = 20000;	/* set command timeout count to 2 seconds */
2694
2695	for (; timeout_cnt > 0; timeout_cnt--)
2696		{
2697		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2698		if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2699			break;
2700		udelay(100);			/* wait for 100 microseconds */
2701		}
2702	if (timeout_cnt == 0)
2703		return DFX_K_HW_TIMEOUT;
2704
2705	/*
2706	 * If the address of host_data is non-zero, assume caller has supplied a
2707	 * non NULL pointer, and return the contents of the HOST_DATA register in
2708	 * it.
2709	 */
2710
2711	if (host_data != NULL)
2712		dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2713	return DFX_K_SUCCESS;
2714	}
2715
2716
2717/*
2718 * =====================
2719 * = dfx_hw_adap_reset =
2720 * =====================
2721 *
2722 * Overview:
2723 *   Resets adapter
2724 *
2725 * Returns:
2726 *   None
2727 *
2728 * Arguments:
2729 *   bp   - pointer to board information
2730 *   type - type of reset to perform
2731 *
2732 * Functional Description:
2733 *   Issue soft reset to adapter by writing to PDQ Port Reset
2734 *   register.  Use incoming reset type to tell adapter what
2735 *   kind of reset operation to perform.
2736 *
2737 * Return Codes:
2738 *   None
2739 *
2740 * Assumptions:
2741 *   This routine merely issues a soft reset to the adapter.
2742 *   It is expected that after this routine returns, the caller
2743 *   will appropriately poll the Port Status register for the
2744 *   adapter to enter the proper state.
2745 *
2746 * Side Effects:
2747 *   Internal adapter registers are cleared.
2748 */
2749
2750static void dfx_hw_adap_reset(
2751	DFX_board_t	*bp,
2752	PI_UINT32	type
2753	)
2754
2755	{
2756	/* Set Reset type and assert reset */
2757
2758	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);	/* tell adapter type of reset */
2759	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2760
2761	/* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2762
2763	udelay(20);
2764
2765	/* Deassert reset */
2766
2767	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2768	}
2769
2770
2771/*
2772 * ========================
2773 * = dfx_hw_adap_state_rd =
2774 * ========================
2775 *
2776 * Overview:
2777 *   Returns current adapter state
2778 *
2779 * Returns:
2780 *   Adapter state per PDQ Port Specification
2781 *
2782 * Arguments:
2783 *   bp - pointer to board information
2784 *
2785 * Functional Description:
2786 *   Reads PDQ Port Status register and returns adapter state.
2787 *
2788 * Return Codes:
2789 *   None
2790 *
2791 * Assumptions:
2792 *   None
2793 *
2794 * Side Effects:
2795 *   None
2796 */
2797
2798static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2799	{
2800	PI_UINT32 port_status;		/* Port Status register value */
2801
2802	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2803	return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2804	}
2805
2806
2807/*
2808 * =====================
2809 * = dfx_hw_dma_uninit =
2810 * =====================
2811 *
2812 * Overview:
2813 *   Brings adapter to DMA_UNAVAILABLE state
2814 *
2815 * Returns:
2816 *   Condition code
2817 *
2818 * Arguments:
2819 *   bp   - pointer to board information
2820 *   type - type of reset to perform
2821 *
2822 * Functional Description:
2823 *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2824 *		1. Set reset type bit in Port Data A Register then reset adapter.
2825 *		2. Check that adapter is in DMA_UNAVAILABLE state.
2826 *
2827 * Return Codes:
2828 *   DFX_K_SUCCESS	  - adapter is in DMA_UNAVAILABLE state
2829 *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2830 *
2831 * Assumptions:
2832 *   None
2833 *
2834 * Side Effects:
2835 *   Internal adapter registers are cleared.
2836 */
2837
2838static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2839	{
2840	int timeout_cnt;	/* used in for loops */
2841
2842	/* Set reset type bit and reset adapter */
2843
2844	dfx_hw_adap_reset(bp, type);
2845
2846	/* Now wait for adapter to enter DMA_UNAVAILABLE state */
2847
2848	for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2849		{
2850		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2851			break;
2852		udelay(100);					/* wait for 100 microseconds */
2853		}
2854	if (timeout_cnt == 0)
2855		return DFX_K_HW_TIMEOUT;
2856	return DFX_K_SUCCESS;
2857	}
2858
2859/*
2860 *	Align an sk_buff to a boundary power of 2
2861 *
2862 */
2863
2864static void my_skb_align(struct sk_buff *skb, int n)
2865{
2866	unsigned long x = (unsigned long)skb->data;
2867	unsigned long v;
2868
2869	v = ALIGN(x, n);	/* Where we want to be */
2870
2871	skb_reserve(skb, v - x);
2872}
2873
2874
2875/*
2876 * ================
2877 * = dfx_rcv_init =
2878 * ================
2879 *
2880 * Overview:
2881 *   Produces buffers to adapter LLC Host receive descriptor block
2882 *
2883 * Returns:
2884 *   None
2885 *
2886 * Arguments:
2887 *   bp - pointer to board information
2888 *   get_buffers - non-zero if buffers to be allocated
2889 *
2890 * Functional Description:
2891 *   This routine can be called during dfx_adap_init() or during an adapter
2892 *	 reset.  It initializes the descriptor block and produces all allocated
2893 *   LLC Host queue receive buffers.
2894 *
2895 * Return Codes:
2896 *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2897 *   dynamic buffer allocation). If the buffer allocation failed, the
2898 *   already allocated buffers will not be released and the caller should do
2899 *   this.
2900 *
2901 * Assumptions:
2902 *   The PDQ has been reset and the adapter and driver maintained Type 2
2903 *   register indices are cleared.
2904 *
2905 * Side Effects:
2906 *   Receive buffers are posted to the adapter LLC queue and the adapter
2907 *   is notified.
2908 */
2909
2910static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2911	{
2912	int	i, j;					/* used in for loop */
2913
2914	/*
2915	 *  Since each receive buffer is a single fragment of same length, initialize
2916	 *  first longword in each receive descriptor for entire LLC Host descriptor
2917	 *  block.  Also initialize second longword in each receive descriptor with
2918	 *  physical address of receive buffer.  We'll always allocate receive
2919	 *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2920	 *  block and produce new receive buffers by simply updating the receive
2921	 *  producer index.
2922	 *
2923	 * 	Assumptions:
2924	 *		To support all shipping versions of PDQ, the receive buffer size
2925	 *		must be mod 128 in length and the physical address must be 128 byte
2926	 *		aligned.  In other words, bits 0-6 of the length and address must
2927	 *		be zero for the following descriptor field entries to be correct on
2928	 *		all PDQ-based boards.  We guaranteed both requirements during
2929	 *		driver initialization when we allocated memory for the receive buffers.
2930	 */
2931
2932	if (get_buffers) {
2933#ifdef DYNAMIC_BUFFERS
2934	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2935		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2936		{
2937			struct sk_buff *newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, GFP_NOIO);
2938			if (!newskb)
2939				return -ENOMEM;
2940			bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2941				((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2942			/*
2943			 * align to 128 bytes for compatibility with
2944			 * the old EISA boards.
2945			 */
2946
2947			my_skb_align(newskb, 128);
2948			bp->descr_block_virt->rcv_data[i + j].long_1 =
2949				(u32)dma_map_single(bp->bus_dev, newskb->data,
2950						    NEW_SKB_SIZE,
2951						    DMA_FROM_DEVICE);
2952			/*
2953			 * p_rcv_buff_va is only used inside the
2954			 * kernel so we put the skb pointer here.
2955			 */
2956			bp->p_rcv_buff_va[i+j] = (char *) newskb;
2957		}
2958#else
2959	for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2960		for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2961			{
2962			bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2963				((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2964			bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2965			bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2966			}
2967#endif
2968	}
2969
2970	/* Update receive producer and Type 2 register */
2971
2972	bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2973	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2974	return 0;
2975	}
2976
2977
2978/*
2979 * =========================
2980 * = dfx_rcv_queue_process =
2981 * =========================
2982 *
2983 * Overview:
2984 *   Process received LLC frames.
2985 *
2986 * Returns:
2987 *   None
2988 *
2989 * Arguments:
2990 *   bp - pointer to board information
2991 *
2992 * Functional Description:
2993 *   Received LLC frames are processed until there are no more consumed frames.
2994 *   Once all frames are processed, the receive buffers are returned to the
2995 *   adapter.  Note that this algorithm fixes the length of time that can be spent
2996 *   in this routine, because there are a fixed number of receive buffers to
2997 *   process and buffers are not produced until this routine exits and returns
2998 *   to the ISR.
2999 *
3000 * Return Codes:
3001 *   None
3002 *
3003 * Assumptions:
3004 *   None
3005 *
3006 * Side Effects:
3007 *   None
3008 */
3009
3010static void dfx_rcv_queue_process(
3011	DFX_board_t *bp
3012	)
3013
3014	{
3015	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3016	char				*p_buff;			/* ptr to start of packet receive buffer (FMC descriptor) */
3017	u32					descr, pkt_len;		/* FMC descriptor field and packet length */
3018	struct sk_buff		*skb;				/* pointer to a sk_buff to hold incoming packet data */
3019
3020	/* Service all consumed LLC receive frames */
3021
3022	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3023	while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3024		{
3025		/* Process any errors */
3026
3027		int entry;
3028
3029		entry = bp->rcv_xmt_reg.index.rcv_comp;
3030#ifdef DYNAMIC_BUFFERS
3031		p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3032#else
3033		p_buff = (char *) bp->p_rcv_buff_va[entry];
3034#endif
3035		memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3036
3037		if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3038			{
3039			if (descr & PI_FMC_DESCR_M_RCC_CRC)
3040				bp->rcv_crc_errors++;
3041			else
3042				bp->rcv_frame_status_errors++;
3043			}
3044		else
3045		{
3046			int rx_in_place = 0;
3047
3048			/* The frame was received without errors - verify packet length */
3049
3050			pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3051			pkt_len -= 4;				/* subtract 4 byte CRC */
3052			if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3053				bp->rcv_length_errors++;
3054			else{
3055#ifdef DYNAMIC_BUFFERS
3056				if (pkt_len > SKBUFF_RX_COPYBREAK) {
3057					struct sk_buff *newskb;
3058
3059					newskb = dev_alloc_skb(NEW_SKB_SIZE);
3060					if (newskb){
3061						rx_in_place = 1;
3062
3063						my_skb_align(newskb, 128);
3064						skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3065						dma_unmap_single(bp->bus_dev,
3066							bp->descr_block_virt->rcv_data[entry].long_1,
3067							NEW_SKB_SIZE,
3068							DMA_FROM_DEVICE);
3069						skb_reserve(skb, RCV_BUFF_K_PADDING);
3070						bp->p_rcv_buff_va[entry] = (char *)newskb;
3071						bp->descr_block_virt->rcv_data[entry].long_1 =
3072							(u32)dma_map_single(bp->bus_dev,
3073								newskb->data,
3074								NEW_SKB_SIZE,
3075								DMA_FROM_DEVICE);
3076					} else
3077						skb = NULL;
3078				} else
3079#endif
3080					skb = dev_alloc_skb(pkt_len+3);	/* alloc new buffer to pass up, add room for PRH */
3081				if (skb == NULL)
3082					{
3083					printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3084					bp->rcv_discards++;
3085					break;
3086					}
3087				else {
3088#ifndef DYNAMIC_BUFFERS
3089					if (! rx_in_place)
3090#endif
3091					{
3092						/* Receive buffer allocated, pass receive packet up */
3093
3094						skb_copy_to_linear_data(skb,
3095							       p_buff + RCV_BUFF_K_PADDING,
3096							       pkt_len + 3);
3097					}
3098
3099					skb_reserve(skb,3);		/* adjust data field so that it points to FC byte */
3100					skb_put(skb, pkt_len);		/* pass up packet length, NOT including CRC */
3101					skb->protocol = fddi_type_trans(skb, bp->dev);
3102					bp->rcv_total_bytes += skb->len;
3103					netif_rx(skb);
3104
3105					/* Update the rcv counters */
3106					bp->rcv_total_frames++;
3107					if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3108						bp->rcv_multicast_frames++;
3109				}
3110			}
3111			}
3112
3113		/*
3114		 * Advance the producer (for recycling) and advance the completion
3115		 * (for servicing received frames).  Note that it is okay to
3116		 * advance the producer without checking that it passes the
3117		 * completion index because they are both advanced at the same
3118		 * rate.
3119		 */
3120
3121		bp->rcv_xmt_reg.index.rcv_prod += 1;
3122		bp->rcv_xmt_reg.index.rcv_comp += 1;
3123		}
3124	}
3125
3126
3127/*
3128 * =====================
3129 * = dfx_xmt_queue_pkt =
3130 * =====================
3131 *
3132 * Overview:
3133 *   Queues packets for transmission
3134 *
3135 * Returns:
3136 *   Condition code
3137 *
3138 * Arguments:
3139 *   skb - pointer to sk_buff to queue for transmission
3140 *   dev - pointer to device information
3141 *
3142 * Functional Description:
3143 *   Here we assume that an incoming skb transmit request
3144 *   is contained in a single physically contiguous buffer
3145 *   in which the virtual address of the start of packet
3146 *   (skb->data) can be converted to a physical address
3147 *   by using pci_map_single().
3148 *
3149 *   Since the adapter architecture requires a three byte
3150 *   packet request header to prepend the start of packet,
3151 *   we'll write the three byte field immediately prior to
3152 *   the FC byte.  This assumption is valid because we've
3153 *   ensured that dev->hard_header_len includes three pad
3154 *   bytes.  By posting a single fragment to the adapter,
3155 *   we'll reduce the number of descriptor fetches and
3156 *   bus traffic needed to send the request.
3157 *
3158 *   Also, we can't free the skb until after it's been DMA'd
3159 *   out by the adapter, so we'll queue it in the driver and
3160 *   return it in dfx_xmt_done.
3161 *
3162 * Return Codes:
3163 *   0 - driver queued packet, link is unavailable, or skbuff was bad
3164 *	 1 - caller should requeue the sk_buff for later transmission
3165 *
3166 * Assumptions:
3167 *	 First and foremost, we assume the incoming skb pointer
3168 *   is NOT NULL and is pointing to a valid sk_buff structure.
3169 *
3170 *   The outgoing packet is complete, starting with the
3171 *   frame control byte including the last byte of data,
3172 *   but NOT including the 4 byte CRC.  We'll let the
3173 *   adapter hardware generate and append the CRC.
3174 *
3175 *   The entire packet is stored in one physically
3176 *   contiguous buffer which is not cached and whose
3177 *   32-bit physical address can be determined.
3178 *
3179 *   It's vital that this routine is NOT reentered for the
3180 *   same board and that the OS is not in another section of
3181 *   code (eg. dfx_int_common) for the same board on a
3182 *   different thread.
3183 *
3184 * Side Effects:
3185 *   None
3186 */
3187
3188static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3189				     struct net_device *dev)
3190	{
3191	DFX_board_t		*bp = netdev_priv(dev);
3192	u8			prod;				/* local transmit producer index */
3193	PI_XMT_DESCR		*p_xmt_descr;		/* ptr to transmit descriptor block entry */
3194	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3195	unsigned long		flags;
3196
3197	netif_stop_queue(dev);
3198
3199	/*
3200	 * Verify that incoming transmit request is OK
3201	 *
3202	 * Note: The packet size check is consistent with other
3203	 *		 Linux device drivers, although the correct packet
3204	 *		 size should be verified before calling the
3205	 *		 transmit routine.
3206	 */
3207
3208	if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3209	{
3210		printk("%s: Invalid packet length - %u bytes\n",
3211			dev->name, skb->len);
3212		bp->xmt_length_errors++;		/* bump error counter */
3213		netif_wake_queue(dev);
3214		dev_kfree_skb(skb);
3215		return NETDEV_TX_OK;			/* return "success" */
3216	}
3217	/*
3218	 * See if adapter link is available, if not, free buffer
3219	 *
3220	 * Note: If the link isn't available, free buffer and return 0
3221	 *		 rather than tell the upper layer to requeue the packet.
3222	 *		 The methodology here is that by the time the link
3223	 *		 becomes available, the packet to be sent will be
3224	 *		 fairly stale.  By simply dropping the packet, the
3225	 *		 higher layer protocols will eventually time out
3226	 *		 waiting for response packets which it won't receive.
3227	 */
3228
3229	if (bp->link_available == PI_K_FALSE)
3230		{
3231		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)	/* is link really available? */
3232			bp->link_available = PI_K_TRUE;		/* if so, set flag and continue */
3233		else
3234			{
3235			bp->xmt_discards++;					/* bump error counter */
3236			dev_kfree_skb(skb);		/* free sk_buff now */
3237			netif_wake_queue(dev);
3238			return NETDEV_TX_OK;		/* return "success" */
3239			}
3240		}
3241
3242	spin_lock_irqsave(&bp->lock, flags);
3243
3244	/* Get the current producer and the next free xmt data descriptor */
3245
3246	prod		= bp->rcv_xmt_reg.index.xmt_prod;
3247	p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3248
3249	/*
3250	 * Get pointer to auxiliary queue entry to contain information
3251	 * for this packet.
3252	 *
3253	 * Note: The current xmt producer index will become the
3254	 *	 current xmt completion index when we complete this
3255	 *	 packet later on.  So, we'll get the pointer to the
3256	 *	 next auxiliary queue entry now before we bump the
3257	 *	 producer index.
3258	 */
3259
3260	p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);	/* also bump producer index */
3261
3262	/* Write the three PRH bytes immediately before the FC byte */
3263
3264	skb_push(skb,3);
3265	skb->data[0] = DFX_PRH0_BYTE;	/* these byte values are defined */
3266	skb->data[1] = DFX_PRH1_BYTE;	/* in the Motorola FDDI MAC chip */
3267	skb->data[2] = DFX_PRH2_BYTE;	/* specification */
3268
3269	/*
3270	 * Write the descriptor with buffer info and bump producer
3271	 *
3272	 * Note: Since we need to start DMA from the packet request
3273	 *		 header, we'll add 3 bytes to the DMA buffer length,
3274	 *		 and we'll determine the physical address of the
3275	 *		 buffer from the PRH, not skb->data.
3276	 *
3277	 * Assumptions:
3278	 *		 1. Packet starts with the frame control (FC) byte
3279	 *		    at skb->data.
3280	 *		 2. The 4-byte CRC is not appended to the buffer or
3281	 *			included in the length.
3282	 *		 3. Packet length (skb->len) is from FC to end of
3283	 *			data, inclusive.
3284	 *		 4. The packet length does not exceed the maximum
3285	 *			FDDI LLC frame length of 4491 bytes.
3286	 *		 5. The entire packet is contained in a physically
3287	 *			contiguous, non-cached, locked memory space
3288	 *			comprised of a single buffer pointed to by
3289	 *			skb->data.
3290	 *		 6. The physical address of the start of packet
3291	 *			can be determined from the virtual address
3292	 *			by using pci_map_single() and is only 32-bits
3293	 *			wide.
3294	 */
3295
3296	p_xmt_descr->long_0	= (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3297	p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data,
3298						  skb->len, DMA_TO_DEVICE);
3299
3300	/*
3301	 * Verify that descriptor is actually available
3302	 *
3303	 * Note: If descriptor isn't available, return 1 which tells
3304	 *	 the upper layer to requeue the packet for later
3305	 *	 transmission.
3306	 *
3307	 *       We need to ensure that the producer never reaches the
3308	 *	 completion, except to indicate that the queue is empty.
3309	 */
3310
3311	if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3312	{
3313		skb_pull(skb,3);
3314		spin_unlock_irqrestore(&bp->lock, flags);
3315		return NETDEV_TX_BUSY;	/* requeue packet for later */
3316	}
3317
3318	/*
3319	 * Save info for this packet for xmt done indication routine
3320	 *
3321	 * Normally, we'd save the producer index in the p_xmt_drv_descr
3322	 * structure so that we'd have it handy when we complete this
3323	 * packet later (in dfx_xmt_done).  However, since the current
3324	 * transmit architecture guarantees a single fragment for the
3325	 * entire packet, we can simply bump the completion index by
3326	 * one (1) for each completed packet.
3327	 *
3328	 * Note: If this assumption changes and we're presented with
3329	 *	 an inconsistent number of transmit fragments for packet
3330	 *	 data, we'll need to modify this code to save the current
3331	 *	 transmit producer index.
3332	 */
3333
3334	p_xmt_drv_descr->p_skb = skb;
3335
3336	/* Update Type 2 register */
3337
3338	bp->rcv_xmt_reg.index.xmt_prod = prod;
3339	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3340	spin_unlock_irqrestore(&bp->lock, flags);
3341	netif_wake_queue(dev);
3342	return NETDEV_TX_OK;	/* packet queued to adapter */
3343	}
3344
3345
3346/*
3347 * ================
3348 * = dfx_xmt_done =
3349 * ================
3350 *
3351 * Overview:
3352 *   Processes all frames that have been transmitted.
3353 *
3354 * Returns:
3355 *   None
3356 *
3357 * Arguments:
3358 *   bp - pointer to board information
3359 *
3360 * Functional Description:
3361 *   For all consumed transmit descriptors that have not
3362 *   yet been completed, we'll free the skb we were holding
3363 *   onto using dev_kfree_skb and bump the appropriate
3364 *   counters.
3365 *
3366 * Return Codes:
3367 *   None
3368 *
3369 * Assumptions:
3370 *   The Type 2 register is not updated in this routine.  It is
3371 *   assumed that it will be updated in the ISR when dfx_xmt_done
3372 *   returns.
3373 *
3374 * Side Effects:
3375 *   None
3376 */
3377
3378static int dfx_xmt_done(DFX_board_t *bp)
3379	{
3380	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3381	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3382	u8			comp;			/* local transmit completion index */
3383	int 			freed = 0;		/* buffers freed */
3384
3385	/* Service all consumed transmit frames */
3386
3387	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3388	while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3389		{
3390		/* Get pointer to the transmit driver descriptor block information */
3391
3392		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3393
3394		/* Increment transmit counters */
3395
3396		bp->xmt_total_frames++;
3397		bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3398
3399		/* Return skb to operating system */
3400		comp = bp->rcv_xmt_reg.index.xmt_comp;
3401		dma_unmap_single(bp->bus_dev,
3402				 bp->descr_block_virt->xmt_data[comp].long_1,
3403				 p_xmt_drv_descr->p_skb->len,
3404				 DMA_TO_DEVICE);
3405		dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3406
3407		/*
3408		 * Move to start of next packet by updating completion index
3409		 *
3410		 * Here we assume that a transmit packet request is always
3411		 * serviced by posting one fragment.  We can therefore
3412		 * simplify the completion code by incrementing the
3413		 * completion index by one.  This code will need to be
3414		 * modified if this assumption changes.  See comments
3415		 * in dfx_xmt_queue_pkt for more details.
3416		 */
3417
3418		bp->rcv_xmt_reg.index.xmt_comp += 1;
3419		freed++;
3420		}
3421	return freed;
3422	}
3423
3424
3425/*
3426 * =================
3427 * = dfx_rcv_flush =
3428 * =================
3429 *
3430 * Overview:
3431 *   Remove all skb's in the receive ring.
3432 *
3433 * Returns:
3434 *   None
3435 *
3436 * Arguments:
3437 *   bp - pointer to board information
3438 *
3439 * Functional Description:
3440 *   Free's all the dynamically allocated skb's that are
3441 *   currently attached to the device receive ring. This
3442 *   function is typically only used when the device is
3443 *   initialized or reinitialized.
3444 *
3445 * Return Codes:
3446 *   None
3447 *
3448 * Side Effects:
3449 *   None
3450 */
3451#ifdef DYNAMIC_BUFFERS
3452static void dfx_rcv_flush( DFX_board_t *bp )
3453	{
3454	int i, j;
3455
3456	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3457		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3458		{
3459			struct sk_buff *skb;
3460			skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3461			if (skb)
3462				dev_kfree_skb(skb);
3463			bp->p_rcv_buff_va[i+j] = NULL;
3464		}
3465
3466	}
3467#else
3468static inline void dfx_rcv_flush( DFX_board_t *bp )
3469{
3470}
3471#endif /* DYNAMIC_BUFFERS */
3472
3473/*
3474 * =================
3475 * = dfx_xmt_flush =
3476 * =================
3477 *
3478 * Overview:
3479 *   Processes all frames whether they've been transmitted
3480 *   or not.
3481 *
3482 * Returns:
3483 *   None
3484 *
3485 * Arguments:
3486 *   bp - pointer to board information
3487 *
3488 * Functional Description:
3489 *   For all produced transmit descriptors that have not
3490 *   yet been completed, we'll free the skb we were holding
3491 *   onto using dev_kfree_skb and bump the appropriate
3492 *   counters.  Of course, it's possible that some of
3493 *   these transmit requests actually did go out, but we
3494 *   won't make that distinction here.  Finally, we'll
3495 *   update the consumer index to match the producer.
3496 *
3497 * Return Codes:
3498 *   None
3499 *
3500 * Assumptions:
3501 *   This routine does NOT update the Type 2 register.  It
3502 *   is assumed that this routine is being called during a
3503 *   transmit flush interrupt, or a shutdown or close routine.
3504 *
3505 * Side Effects:
3506 *   None
3507 */
3508
3509static void dfx_xmt_flush( DFX_board_t *bp )
3510	{
3511	u32			prod_cons;		/* rcv/xmt consumer block longword */
3512	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3513	u8			comp;			/* local transmit completion index */
3514
3515	/* Flush all outstanding transmit frames */
3516
3517	while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3518		{
3519		/* Get pointer to the transmit driver descriptor block information */
3520
3521		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3522
3523		/* Return skb to operating system */
3524		comp = bp->rcv_xmt_reg.index.xmt_comp;
3525		dma_unmap_single(bp->bus_dev,
3526				 bp->descr_block_virt->xmt_data[comp].long_1,
3527				 p_xmt_drv_descr->p_skb->len,
3528				 DMA_TO_DEVICE);
3529		dev_kfree_skb(p_xmt_drv_descr->p_skb);
3530
3531		/* Increment transmit error counter */
3532
3533		bp->xmt_discards++;
3534
3535		/*
3536		 * Move to start of next packet by updating completion index
3537		 *
3538		 * Here we assume that a transmit packet request is always
3539		 * serviced by posting one fragment.  We can therefore
3540		 * simplify the completion code by incrementing the
3541		 * completion index by one.  This code will need to be
3542		 * modified if this assumption changes.  See comments
3543		 * in dfx_xmt_queue_pkt for more details.
3544		 */
3545
3546		bp->rcv_xmt_reg.index.xmt_comp += 1;
3547		}
3548
3549	/* Update the transmit consumer index in the consumer block */
3550
3551	prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3552	prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3553	bp->cons_block_virt->xmt_rcv_data = prod_cons;
3554	}
3555
3556/*
3557 * ==================
3558 * = dfx_unregister =
3559 * ==================
3560 *
3561 * Overview:
3562 *   Shuts down an FDDI controller
3563 *
3564 * Returns:
3565 *   Condition code
3566 *
3567 * Arguments:
3568 *   bdev - pointer to device information
3569 *
3570 * Functional Description:
3571 *
3572 * Return Codes:
3573 *   None
3574 *
3575 * Assumptions:
3576 *   It compiles so it should work :-( (PCI cards do :-)
3577 *
3578 * Side Effects:
3579 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3580 *   freed.
3581 */
3582static void __devexit dfx_unregister(struct device *bdev)
3583{
3584	struct net_device *dev = dev_get_drvdata(bdev);
3585	DFX_board_t *bp = netdev_priv(dev);
3586	int dfx_bus_pci = DFX_BUS_PCI(bdev);
3587	int dfx_bus_tc = DFX_BUS_TC(bdev);
3588	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3589	resource_size_t bar_start = 0;		/* pointer to port */
3590	resource_size_t bar_len = 0;		/* resource length */
3591	int		alloc_size;		/* total buffer size used */
3592
3593	unregister_netdev(dev);
3594
3595	alloc_size = sizeof(PI_DESCR_BLOCK) +
3596		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3597#ifndef DYNAMIC_BUFFERS
3598		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3599#endif
3600		     sizeof(PI_CONSUMER_BLOCK) +
3601		     (PI_ALIGN_K_DESC_BLK - 1);
3602	if (bp->kmalloced)
3603		dma_free_coherent(bdev, alloc_size,
3604				  bp->kmalloced, bp->kmalloced_dma);
3605
3606	dfx_bus_uninit(dev);
3607
3608	dfx_get_bars(bdev, &bar_start, &bar_len);
3609	if (dfx_use_mmio) {
3610		iounmap(bp->base.mem);
3611		release_mem_region(bar_start, bar_len);
3612	} else
3613		release_region(bar_start, bar_len);
3614
3615	if (dfx_bus_pci)
3616		pci_disable_device(to_pci_dev(bdev));
3617
3618	free_netdev(dev);
3619}
3620
3621
3622static int __devinit __maybe_unused dfx_dev_register(struct device *);
3623static int __devexit __maybe_unused dfx_dev_unregister(struct device *);
3624
3625#ifdef CONFIG_PCI
3626static int __devinit dfx_pci_register(struct pci_dev *,
3627				      const struct pci_device_id *);
3628static void __devexit dfx_pci_unregister(struct pci_dev *);
3629
3630static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table) = {
3631	{ PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3632	{ }
3633};
3634MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3635
3636static struct pci_driver dfx_pci_driver = {
3637	.name		= "defxx",
3638	.id_table	= dfx_pci_table,
3639	.probe		= dfx_pci_register,
3640	.remove		= __devexit_p(dfx_pci_unregister),
3641};
3642
3643static __devinit int dfx_pci_register(struct pci_dev *pdev,
3644				      const struct pci_device_id *ent)
3645{
3646	return dfx_register(&pdev->dev);
3647}
3648
3649static void __devexit dfx_pci_unregister(struct pci_dev *pdev)
3650{
3651	dfx_unregister(&pdev->dev);
3652}
3653#endif /* CONFIG_PCI */
3654
3655#ifdef CONFIG_EISA
3656static struct eisa_device_id dfx_eisa_table[] = {
3657        { "DEC3001", DEFEA_PROD_ID_1 },
3658        { "DEC3002", DEFEA_PROD_ID_2 },
3659        { "DEC3003", DEFEA_PROD_ID_3 },
3660        { "DEC3004", DEFEA_PROD_ID_4 },
3661        { }
3662};
3663MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3664
3665static struct eisa_driver dfx_eisa_driver = {
3666	.id_table	= dfx_eisa_table,
3667	.driver		= {
3668		.name	= "defxx",
3669		.bus	= &eisa_bus_type,
3670		.probe	= dfx_dev_register,
3671		.remove	= __devexit_p(dfx_dev_unregister),
3672	},
3673};
3674#endif /* CONFIG_EISA */
3675
3676#ifdef CONFIG_TC
3677static struct tc_device_id const dfx_tc_table[] = {
3678	{ "DEC     ", "PMAF-FA " },
3679	{ "DEC     ", "PMAF-FD " },
3680	{ "DEC     ", "PMAF-FS " },
3681	{ "DEC     ", "PMAF-FU " },
3682	{ }
3683};
3684MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3685
3686static struct tc_driver dfx_tc_driver = {
3687	.id_table	= dfx_tc_table,
3688	.driver		= {
3689		.name	= "defxx",
3690		.bus	= &tc_bus_type,
3691		.probe	= dfx_dev_register,
3692		.remove	= __devexit_p(dfx_dev_unregister),
3693	},
3694};
3695#endif /* CONFIG_TC */
3696
3697static int __devinit __maybe_unused dfx_dev_register(struct device *dev)
3698{
3699	int status;
3700
3701	status = dfx_register(dev);
3702	if (!status)
3703		get_device(dev);
3704	return status;
3705}
3706
3707static int __devexit __maybe_unused dfx_dev_unregister(struct device *dev)
3708{
3709	put_device(dev);
3710	dfx_unregister(dev);
3711	return 0;
3712}
3713
3714
3715static int __devinit dfx_init(void)
3716{
3717	int status;
3718
3719	status = pci_register_driver(&dfx_pci_driver);
3720	if (!status)
3721		status = eisa_driver_register(&dfx_eisa_driver);
3722	if (!status)
3723		status = tc_register_driver(&dfx_tc_driver);
3724	return status;
3725}
3726
3727static void __devexit dfx_cleanup(void)
3728{
3729	tc_unregister_driver(&dfx_tc_driver);
3730	eisa_driver_unregister(&dfx_eisa_driver);
3731	pci_unregister_driver(&dfx_pci_driver);
3732}
3733
3734module_init(dfx_init);
3735module_exit(dfx_cleanup);
3736MODULE_AUTHOR("Lawrence V. Stefani");
3737MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3738		   DRV_VERSION " " DRV_RELDATE);
3739MODULE_LICENSE("GPL");
3740