1/*
2 * File Name:
3 *   skfddi.c
4 *
5 * Copyright Information:
6 *   Copyright SysKonnect 1998,1999.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * The information in this file is provided "AS IS" without warranty.
14 *
15 * Abstract:
16 *   A Linux device driver supporting the SysKonnect FDDI PCI controller
17 *   familie.
18 *
19 * Maintainers:
20 *   CG    Christoph Goos (cgoos@syskonnect.de)
21 *
22 * Contributors:
23 *   DM    David S. Miller
24 *
25 * Address all question to:
26 *   linux@syskonnect.de
27 *
28 * The technical manual for the adapters is available from SysKonnect's
29 * web pages: www.syskonnect.com
30 * Goto "Support" and search Knowledge Base for "manual".
31 *
32 * Driver Architecture:
33 *   The driver architecture is based on the DEC FDDI driver by
34 *   Lawrence V. Stefani and several ethernet drivers.
35 *   I also used an existing Windows NT miniport driver.
36 *   All hardware dependent functions are handled by the SysKonnect
37 *   Hardware Module.
38 *   The only headerfiles that are directly related to this source
39 *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
40 *   The others belong to the SysKonnect FDDI Hardware Module and
41 *   should better not be changed.
42 *
43 * Modification History:
44 *              Date            Name    Description
45 *              02-Mar-98       CG	Created.
46 *
47 *		10-Mar-99	CG	Support for 2.2.x added.
48 *		25-Mar-99	CG	Corrected IRQ routing for SMP (APIC)
49 *		26-Oct-99	CG	Fixed compilation error on 2.2.13
50 *		12-Nov-99	CG	Source code release
51 *		22-Nov-99	CG	Included in kernel source.
52 *		07-May-00	DM	64 bit fixes, new dma interface
53 *		31-Jul-03	DB	Audit copy_*_user in skfp_ioctl
54 *					  Daniele Bellucci <bellucda@tiscali.it>
55 *		03-Dec-03	SH	Convert to PCI device model
56 *
57 * Compilation options (-Dxxx):
58 *              DRIVERDEBUG     print lots of messages to log file
59 *              DUMPPACKETS     print received/transmitted packets to logfile
60 *
61 * Tested cpu architectures:
62 *	- i386
63 *	- sparc64
64 */
65
66/* Version information string - should be updated prior to */
67/* each new release!!! */
68#define VERSION		"2.07"
69
70static const char * const boot_msg =
71	"SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
72	"  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
73
74/* Include files */
75
76#include <linux/capability.h>
77#include <linux/module.h>
78#include <linux/kernel.h>
79#include <linux/errno.h>
80#include <linux/ioport.h>
81#include <linux/interrupt.h>
82#include <linux/pci.h>
83#include <linux/netdevice.h>
84#include <linux/fddidevice.h>
85#include <linux/skbuff.h>
86#include <linux/bitops.h>
87#include <linux/gfp.h>
88
89#include <asm/byteorder.h>
90#include <asm/io.h>
91#include <asm/uaccess.h>
92
93#include	"h/types.h"
94#undef ADDR			// undo Linux definition
95#include	"h/skfbi.h"
96#include	"h/fddi.h"
97#include	"h/smc.h"
98#include	"h/smtstate.h"
99
100
101// Define module-wide (static) routines
102static int skfp_driver_init(struct net_device *dev);
103static int skfp_open(struct net_device *dev);
104static int skfp_close(struct net_device *dev);
105static irqreturn_t skfp_interrupt(int irq, void *dev_id);
106static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
107static void skfp_ctl_set_multicast_list(struct net_device *dev);
108static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
109static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
110static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
111static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
112				       struct net_device *dev);
113static void send_queued_packets(struct s_smc *smc);
114static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
115static void ResetAdapter(struct s_smc *smc);
116
117
118// Functions needed by the hardware module
119void *mac_drv_get_space(struct s_smc *smc, u_int size);
120void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
121unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
122unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
123void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
124		  int flag);
125void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
126void llc_restart_tx(struct s_smc *smc);
127void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128			 int frag_count, int len);
129void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
130			 int frag_count);
131void mac_drv_fill_rxd(struct s_smc *smc);
132void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
133		       int frag_count);
134int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
135		    int la_len);
136void dump_data(unsigned char *Data, int length);
137
138// External functions from the hardware module
139extern u_int mac_drv_check_space(void);
140extern int mac_drv_init(struct s_smc *smc);
141extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
142			int len, int frame_status);
143extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
144		       int frame_len, int frame_status);
145extern void fddi_isr(struct s_smc *smc);
146extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
147			int len, int frame_status);
148extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
149extern void mac_drv_clear_rx_queue(struct s_smc *smc);
150extern void enable_tx_irq(struct s_smc *smc, u_short queue);
151
152static DEFINE_PCI_DEVICE_TABLE(skfddi_pci_tbl) = {
153	{ PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
154	{ }			/* Terminating entry */
155};
156MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
157MODULE_LICENSE("GPL");
158MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
159
160// Define module-wide (static) variables
161
162static int num_boards;	/* total number of adapters configured */
163
164static const struct net_device_ops skfp_netdev_ops = {
165	.ndo_open		= skfp_open,
166	.ndo_stop		= skfp_close,
167	.ndo_start_xmit		= skfp_send_pkt,
168	.ndo_get_stats		= skfp_ctl_get_stats,
169	.ndo_change_mtu		= fddi_change_mtu,
170	.ndo_set_rx_mode	= skfp_ctl_set_multicast_list,
171	.ndo_set_mac_address	= skfp_ctl_set_mac_address,
172	.ndo_do_ioctl		= skfp_ioctl,
173};
174
175/*
176 * =================
177 * = skfp_init_one =
178 * =================
179 *
180 * Overview:
181 *   Probes for supported FDDI PCI controllers
182 *
183 * Returns:
184 *   Condition code
185 *
186 * Arguments:
187 *   pdev - pointer to PCI device information
188 *
189 * Functional Description:
190 *   This is now called by PCI driver registration process
191 *   for each board found.
192 *
193 * Return Codes:
194 *   0           - This device (fddi0, fddi1, etc) configured successfully
195 *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
196 *                         present for this device name
197 *
198 *
199 * Side Effects:
200 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
201 *   initialized and the board resources are read and stored in
202 *   the device structure.
203 */
204static int skfp_init_one(struct pci_dev *pdev,
205				const struct pci_device_id *ent)
206{
207	struct net_device *dev;
208	struct s_smc *smc;	/* board pointer */
209	void __iomem *mem;
210	int err;
211
212	pr_debug("entering skfp_init_one\n");
213
214	if (num_boards == 0)
215		printk("%s\n", boot_msg);
216
217	err = pci_enable_device(pdev);
218	if (err)
219		return err;
220
221	err = pci_request_regions(pdev, "skfddi");
222	if (err)
223		goto err_out1;
224
225	pci_set_master(pdev);
226
227#ifdef MEM_MAPPED_IO
228	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
229		printk(KERN_ERR "skfp: region is not an MMIO resource\n");
230		err = -EIO;
231		goto err_out2;
232	}
233
234	mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
235#else
236	if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
237		printk(KERN_ERR "skfp: region is not PIO resource\n");
238		err = -EIO;
239		goto err_out2;
240	}
241
242	mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
243#endif
244	if (!mem) {
245		printk(KERN_ERR "skfp:  Unable to map register, "
246				"FDDI adapter will be disabled.\n");
247		err = -EIO;
248		goto err_out2;
249	}
250
251	dev = alloc_fddidev(sizeof(struct s_smc));
252	if (!dev) {
253		printk(KERN_ERR "skfp: Unable to allocate fddi device, "
254				"FDDI adapter will be disabled.\n");
255		err = -ENOMEM;
256		goto err_out3;
257	}
258
259	dev->irq = pdev->irq;
260	dev->netdev_ops = &skfp_netdev_ops;
261
262	SET_NETDEV_DEV(dev, &pdev->dev);
263
264	/* Initialize board structure with bus-specific info */
265	smc = netdev_priv(dev);
266	smc->os.dev = dev;
267	smc->os.bus_type = SK_BUS_TYPE_PCI;
268	smc->os.pdev = *pdev;
269	smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
270	smc->os.MaxFrameSize = MAX_FRAME_SIZE;
271	smc->os.dev = dev;
272	smc->hw.slot = -1;
273	smc->hw.iop = mem;
274	smc->os.ResetRequested = FALSE;
275	skb_queue_head_init(&smc->os.SendSkbQueue);
276
277	dev->base_addr = (unsigned long)mem;
278
279	err = skfp_driver_init(dev);
280	if (err)
281		goto err_out4;
282
283	err = register_netdev(dev);
284	if (err)
285		goto err_out5;
286
287	++num_boards;
288	pci_set_drvdata(pdev, dev);
289
290	if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
291	    (pdev->subsystem_device & 0xff00) == 0x5800)
292		printk("%s: SysKonnect FDDI PCI adapter"
293		       " found (SK-%04X)\n", dev->name,
294		       pdev->subsystem_device);
295	else
296		printk("%s: FDDI PCI adapter found\n", dev->name);
297
298	return 0;
299err_out5:
300	if (smc->os.SharedMemAddr)
301		pci_free_consistent(pdev, smc->os.SharedMemSize,
302				    smc->os.SharedMemAddr,
303				    smc->os.SharedMemDMA);
304	pci_free_consistent(pdev, MAX_FRAME_SIZE,
305			    smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
306err_out4:
307	free_netdev(dev);
308err_out3:
309#ifdef MEM_MAPPED_IO
310	iounmap(mem);
311#else
312	ioport_unmap(mem);
313#endif
314err_out2:
315	pci_release_regions(pdev);
316err_out1:
317	pci_disable_device(pdev);
318	return err;
319}
320
321/*
322 * Called for each adapter board from pci_unregister_driver
323 */
324static void __devexit skfp_remove_one(struct pci_dev *pdev)
325{
326	struct net_device *p = pci_get_drvdata(pdev);
327	struct s_smc *lp = netdev_priv(p);
328
329	unregister_netdev(p);
330
331	if (lp->os.SharedMemAddr) {
332		pci_free_consistent(&lp->os.pdev,
333				    lp->os.SharedMemSize,
334				    lp->os.SharedMemAddr,
335				    lp->os.SharedMemDMA);
336		lp->os.SharedMemAddr = NULL;
337	}
338	if (lp->os.LocalRxBuffer) {
339		pci_free_consistent(&lp->os.pdev,
340				    MAX_FRAME_SIZE,
341				    lp->os.LocalRxBuffer,
342				    lp->os.LocalRxBufferDMA);
343		lp->os.LocalRxBuffer = NULL;
344	}
345#ifdef MEM_MAPPED_IO
346	iounmap(lp->hw.iop);
347#else
348	ioport_unmap(lp->hw.iop);
349#endif
350	pci_release_regions(pdev);
351	free_netdev(p);
352
353	pci_disable_device(pdev);
354	pci_set_drvdata(pdev, NULL);
355}
356
357/*
358 * ====================
359 * = skfp_driver_init =
360 * ====================
361 *
362 * Overview:
363 *   Initializes remaining adapter board structure information
364 *   and makes sure adapter is in a safe state prior to skfp_open().
365 *
366 * Returns:
367 *   Condition code
368 *
369 * Arguments:
370 *   dev - pointer to device information
371 *
372 * Functional Description:
373 *   This function allocates additional resources such as the host memory
374 *   blocks needed by the adapter.
375 *   The adapter is also reset. The OS must call skfp_open() to open
376 *   the adapter and bring it on-line.
377 *
378 * Return Codes:
379 *    0 - initialization succeeded
380 *   -1 - initialization failed
381 */
382static  int skfp_driver_init(struct net_device *dev)
383{
384	struct s_smc *smc = netdev_priv(dev);
385	skfddi_priv *bp = &smc->os;
386	int err = -EIO;
387
388	pr_debug("entering skfp_driver_init\n");
389
390	// set the io address in private structures
391	bp->base_addr = dev->base_addr;
392
393	// Get the interrupt level from the PCI Configuration Table
394	smc->hw.irq = dev->irq;
395
396	spin_lock_init(&bp->DriverLock);
397
398	// Allocate invalid frame
399	bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
400	if (!bp->LocalRxBuffer) {
401		printk("could not allocate mem for ");
402		printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
403		goto fail;
404	}
405
406	// Determine the required size of the 'shared' memory area.
407	bp->SharedMemSize = mac_drv_check_space();
408	pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
409	if (bp->SharedMemSize > 0) {
410		bp->SharedMemSize += 16;	// for descriptor alignment
411
412		bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
413							 bp->SharedMemSize,
414							 &bp->SharedMemDMA);
415		if (!bp->SharedMemAddr) {
416			printk("could not allocate mem for ");
417			printk("hardware module: %ld byte\n",
418			       bp->SharedMemSize);
419			goto fail;
420		}
421		bp->SharedMemHeap = 0;	// Nothing used yet.
422
423	} else {
424		bp->SharedMemAddr = NULL;
425		bp->SharedMemHeap = 0;
426	}			// SharedMemSize > 0
427
428	memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
429
430	card_stop(smc);		// Reset adapter.
431
432	pr_debug("mac_drv_init()..\n");
433	if (mac_drv_init(smc) != 0) {
434		pr_debug("mac_drv_init() failed\n");
435		goto fail;
436	}
437	read_address(smc, NULL);
438	pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
439	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
440
441	smt_reset_defaults(smc, 0);
442
443	return 0;
444
445fail:
446	if (bp->SharedMemAddr) {
447		pci_free_consistent(&bp->pdev,
448				    bp->SharedMemSize,
449				    bp->SharedMemAddr,
450				    bp->SharedMemDMA);
451		bp->SharedMemAddr = NULL;
452	}
453	if (bp->LocalRxBuffer) {
454		pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
455				    bp->LocalRxBuffer, bp->LocalRxBufferDMA);
456		bp->LocalRxBuffer = NULL;
457	}
458	return err;
459}				// skfp_driver_init
460
461
462/*
463 * =============
464 * = skfp_open =
465 * =============
466 *
467 * Overview:
468 *   Opens the adapter
469 *
470 * Returns:
471 *   Condition code
472 *
473 * Arguments:
474 *   dev - pointer to device information
475 *
476 * Functional Description:
477 *   This function brings the adapter to an operational state.
478 *
479 * Return Codes:
480 *   0           - Adapter was successfully opened
481 *   -EAGAIN - Could not register IRQ
482 */
483static int skfp_open(struct net_device *dev)
484{
485	struct s_smc *smc = netdev_priv(dev);
486	int err;
487
488	pr_debug("entering skfp_open\n");
489	/* Register IRQ - support shared interrupts by passing device ptr */
490	err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
491			  dev->name, dev);
492	if (err)
493		return err;
494
495	/*
496	 * Set current address to factory MAC address
497	 *
498	 * Note: We've already done this step in skfp_driver_init.
499	 *       However, it's possible that a user has set a node
500	 *               address override, then closed and reopened the
501	 *               adapter.  Unless we reset the device address field
502	 *               now, we'll continue to use the existing modified
503	 *               address.
504	 */
505	read_address(smc, NULL);
506	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
507
508	init_smt(smc, NULL);
509	smt_online(smc, 1);
510	STI_FBI();
511
512	/* Clear local multicast address tables */
513	mac_clear_multicast(smc);
514
515	/* Disable promiscuous filter settings */
516	mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
517
518	netif_start_queue(dev);
519	return 0;
520}				// skfp_open
521
522
523/*
524 * ==============
525 * = skfp_close =
526 * ==============
527 *
528 * Overview:
529 *   Closes the device/module.
530 *
531 * Returns:
532 *   Condition code
533 *
534 * Arguments:
535 *   dev - pointer to device information
536 *
537 * Functional Description:
538 *   This routine closes the adapter and brings it to a safe state.
539 *   The interrupt service routine is deregistered with the OS.
540 *   The adapter can be opened again with another call to skfp_open().
541 *
542 * Return Codes:
543 *   Always return 0.
544 *
545 * Assumptions:
546 *   No further requests for this adapter are made after this routine is
547 *   called.  skfp_open() can be called to reset and reinitialize the
548 *   adapter.
549 */
550static int skfp_close(struct net_device *dev)
551{
552	struct s_smc *smc = netdev_priv(dev);
553	skfddi_priv *bp = &smc->os;
554
555	CLI_FBI();
556	smt_reset_defaults(smc, 1);
557	card_stop(smc);
558	mac_drv_clear_tx_queue(smc);
559	mac_drv_clear_rx_queue(smc);
560
561	netif_stop_queue(dev);
562	/* Deregister (free) IRQ */
563	free_irq(dev->irq, dev);
564
565	skb_queue_purge(&bp->SendSkbQueue);
566	bp->QueueSkb = MAX_TX_QUEUE_LEN;
567
568	return 0;
569}				// skfp_close
570
571
572/*
573 * ==================
574 * = skfp_interrupt =
575 * ==================
576 *
577 * Overview:
578 *   Interrupt processing routine
579 *
580 * Returns:
581 *   None
582 *
583 * Arguments:
584 *   irq        - interrupt vector
585 *   dev_id     - pointer to device information
586 *
587 * Functional Description:
588 *   This routine calls the interrupt processing routine for this adapter.  It
589 *   disables and reenables adapter interrupts, as appropriate.  We can support
590 *   shared interrupts since the incoming dev_id pointer provides our device
591 *   structure context. All the real work is done in the hardware module.
592 *
593 * Return Codes:
594 *   None
595 *
596 * Assumptions:
597 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
598 *   on Intel-based systems) is done by the operating system outside this
599 *   routine.
600 *
601 *       System interrupts are enabled through this call.
602 *
603 * Side Effects:
604 *   Interrupts are disabled, then reenabled at the adapter.
605 */
606
607static irqreturn_t skfp_interrupt(int irq, void *dev_id)
608{
609	struct net_device *dev = dev_id;
610	struct s_smc *smc;	/* private board structure pointer */
611	skfddi_priv *bp;
612
613	smc = netdev_priv(dev);
614	bp = &smc->os;
615
616	// IRQs enabled or disabled ?
617	if (inpd(ADDR(B0_IMSK)) == 0) {
618		// IRQs are disabled: must be shared interrupt
619		return IRQ_NONE;
620	}
621	// Note: At this point, IRQs are enabled.
622	if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {	// IRQ?
623		// Adapter did not issue an IRQ: must be shared interrupt
624		return IRQ_NONE;
625	}
626	CLI_FBI();		// Disable IRQs from our adapter.
627	spin_lock(&bp->DriverLock);
628
629	// Call interrupt handler in hardware module (HWM).
630	fddi_isr(smc);
631
632	if (smc->os.ResetRequested) {
633		ResetAdapter(smc);
634		smc->os.ResetRequested = FALSE;
635	}
636	spin_unlock(&bp->DriverLock);
637	STI_FBI();		// Enable IRQs from our adapter.
638
639	return IRQ_HANDLED;
640}				// skfp_interrupt
641
642
643/*
644 * ======================
645 * = skfp_ctl_get_stats =
646 * ======================
647 *
648 * Overview:
649 *   Get statistics for FDDI adapter
650 *
651 * Returns:
652 *   Pointer to FDDI statistics structure
653 *
654 * Arguments:
655 *   dev - pointer to device information
656 *
657 * Functional Description:
658 *   Gets current MIB objects from adapter, then
659 *   returns FDDI statistics structure as defined
660 *   in if_fddi.h.
661 *
662 *   Note: Since the FDDI statistics structure is
663 *   still new and the device structure doesn't
664 *   have an FDDI-specific get statistics handler,
665 *   we'll return the FDDI statistics structure as
666 *   a pointer to an Ethernet statistics structure.
667 *   That way, at least the first part of the statistics
668 *   structure can be decoded properly.
669 *   We'll have to pay attention to this routine as the
670 *   device structure becomes more mature and LAN media
671 *   independent.
672 *
673 */
674static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
675{
676	struct s_smc *bp = netdev_priv(dev);
677
678	/* Fill the bp->stats structure with driver-maintained counters */
679
680	bp->os.MacStat.port_bs_flag[0] = 0x1234;
681	bp->os.MacStat.port_bs_flag[1] = 0x5678;
682// goos: need to fill out fddi statistic
683#if 0
684	/* Get FDDI SMT MIB objects */
685
686/* Fill the bp->stats structure with the SMT MIB object values */
687
688	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
689	bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
690	bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
691	bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
692	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
693	bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
694	bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
695	bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
696	bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
697	bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
698	bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
699	bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
700	bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
701	bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
702	bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
703	bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
704	bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
705	bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
706	bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
707	bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
708	bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
709	bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
710	bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
711	bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
712	bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
713	bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
714	bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
715	bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
716	bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
717	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
718	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
719	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
720	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
721	bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
722	bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
723	bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
724	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
725	bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
726	bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
727	bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
728	bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
729	bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
730	bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
731	bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
732	bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
733	bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
734	bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
735	bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
736	bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
737	bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
738	bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
739	bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
740	bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
741	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
742	bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
743	bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
744	bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
745	bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
746	bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
747	bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
748	bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
749	bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
750	bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
751	bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
752	memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
753	memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
754	bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
755	bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
756	bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
757	bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
758	bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
759	bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
760	bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
761	bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
762	bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
763	bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
764	bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
765	bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
766	bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
767	bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
768	bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
769	bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
770	bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
771	bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
772	bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
773	bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
774	bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
775	bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
776	bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
777	bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
778	bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
779	bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
780
781
782	/* Fill the bp->stats structure with the FDDI counter values */
783
784	bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
785	bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
786	bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
787	bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
788	bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
789	bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
790	bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
791	bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
792	bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
793	bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
794	bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
795
796#endif
797	return (struct net_device_stats *)&bp->os.MacStat;
798}				// ctl_get_stat
799
800
801/*
802 * ==============================
803 * = skfp_ctl_set_multicast_list =
804 * ==============================
805 *
806 * Overview:
807 *   Enable/Disable LLC frame promiscuous mode reception
808 *   on the adapter and/or update multicast address table.
809 *
810 * Returns:
811 *   None
812 *
813 * Arguments:
814 *   dev - pointer to device information
815 *
816 * Functional Description:
817 *   This function acquires the driver lock and only calls
818 *   skfp_ctl_set_multicast_list_wo_lock then.
819 *   This routine follows a fairly simple algorithm for setting the
820 *   adapter filters and CAM:
821 *
822 *      if IFF_PROMISC flag is set
823 *              enable promiscuous mode
824 *      else
825 *              disable promiscuous mode
826 *              if number of multicast addresses <= max. multicast number
827 *                      add mc addresses to adapter table
828 *              else
829 *                      enable promiscuous mode
830 *              update adapter filters
831 *
832 * Assumptions:
833 *   Multicast addresses are presented in canonical (LSB) format.
834 *
835 * Side Effects:
836 *   On-board adapter filters are updated.
837 */
838static void skfp_ctl_set_multicast_list(struct net_device *dev)
839{
840	struct s_smc *smc = netdev_priv(dev);
841	skfddi_priv *bp = &smc->os;
842	unsigned long Flags;
843
844	spin_lock_irqsave(&bp->DriverLock, Flags);
845	skfp_ctl_set_multicast_list_wo_lock(dev);
846	spin_unlock_irqrestore(&bp->DriverLock, Flags);
847}				// skfp_ctl_set_multicast_list
848
849
850
851static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
852{
853	struct s_smc *smc = netdev_priv(dev);
854	struct netdev_hw_addr *ha;
855
856	/* Enable promiscuous mode, if necessary */
857	if (dev->flags & IFF_PROMISC) {
858		mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
859		pr_debug("PROMISCUOUS MODE ENABLED\n");
860	}
861	/* Else, update multicast address table */
862	else {
863		mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
864		pr_debug("PROMISCUOUS MODE DISABLED\n");
865
866		// Reset all MC addresses
867		mac_clear_multicast(smc);
868		mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
869
870		if (dev->flags & IFF_ALLMULTI) {
871			mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
872			pr_debug("ENABLE ALL MC ADDRESSES\n");
873		} else if (!netdev_mc_empty(dev)) {
874			if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
875				/* use exact filtering */
876
877				// point to first multicast addr
878				netdev_for_each_mc_addr(ha, dev) {
879					mac_add_multicast(smc,
880						(struct fddi_addr *)ha->addr,
881						1);
882
883					pr_debug("ENABLE MC ADDRESS: %pMF\n",
884						 ha->addr);
885				}
886
887			} else {	// more MC addresses than HW supports
888
889				mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
890				pr_debug("ENABLE ALL MC ADDRESSES\n");
891			}
892		} else {	// no MC addresses
893
894			pr_debug("DISABLE ALL MC ADDRESSES\n");
895		}
896
897		/* Update adapter filters */
898		mac_update_multicast(smc);
899	}
900}				// skfp_ctl_set_multicast_list_wo_lock
901
902
903/*
904 * ===========================
905 * = skfp_ctl_set_mac_address =
906 * ===========================
907 *
908 * Overview:
909 *   set new mac address on adapter and update dev_addr field in device table.
910 *
911 * Returns:
912 *   None
913 *
914 * Arguments:
915 *   dev  - pointer to device information
916 *   addr - pointer to sockaddr structure containing unicast address to set
917 *
918 * Assumptions:
919 *   The address pointed to by addr->sa_data is a valid unicast
920 *   address and is presented in canonical (LSB) format.
921 */
922static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
923{
924	struct s_smc *smc = netdev_priv(dev);
925	struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
926	skfddi_priv *bp = &smc->os;
927	unsigned long Flags;
928
929
930	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
931	spin_lock_irqsave(&bp->DriverLock, Flags);
932	ResetAdapter(smc);
933	spin_unlock_irqrestore(&bp->DriverLock, Flags);
934
935	return 0;		/* always return zero */
936}				// skfp_ctl_set_mac_address
937
938
939/*
940 * ==============
941 * = skfp_ioctl =
942 * ==============
943 *
944 * Overview:
945 *
946 * Perform IOCTL call functions here. Some are privileged operations and the
947 * effective uid is checked in those cases.
948 *
949 * Returns:
950 *   status value
951 *   0 - success
952 *   other - failure
953 *
954 * Arguments:
955 *   dev  - pointer to device information
956 *   rq - pointer to ioctl request structure
957 *   cmd - ?
958 *
959 */
960
961
962static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
963{
964	struct s_smc *smc = netdev_priv(dev);
965	skfddi_priv *lp = &smc->os;
966	struct s_skfp_ioctl ioc;
967	int status = 0;
968
969	if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
970		return -EFAULT;
971
972	switch (ioc.cmd) {
973	case SKFP_GET_STATS:	/* Get the driver statistics */
974		ioc.len = sizeof(lp->MacStat);
975		status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
976				? -EFAULT : 0;
977		break;
978	case SKFP_CLR_STATS:	/* Zero out the driver statistics */
979		if (!capable(CAP_NET_ADMIN)) {
980			status = -EPERM;
981		} else {
982			memset(&lp->MacStat, 0, sizeof(lp->MacStat));
983		}
984		break;
985	default:
986		printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
987		status = -EOPNOTSUPP;
988
989	}			// switch
990
991	return status;
992}				// skfp_ioctl
993
994
995/*
996 * =====================
997 * = skfp_send_pkt     =
998 * =====================
999 *
1000 * Overview:
1001 *   Queues a packet for transmission and try to transmit it.
1002 *
1003 * Returns:
1004 *   Condition code
1005 *
1006 * Arguments:
1007 *   skb - pointer to sk_buff to queue for transmission
1008 *   dev - pointer to device information
1009 *
1010 * Functional Description:
1011 *   Here we assume that an incoming skb transmit request
1012 *   is contained in a single physically contiguous buffer
1013 *   in which the virtual address of the start of packet
1014 *   (skb->data) can be converted to a physical address
1015 *   by using pci_map_single().
1016 *
1017 *   We have an internal queue for packets we can not send
1018 *   immediately. Packets in this queue can be given to the
1019 *   adapter if transmit buffers are freed.
1020 *
1021 *   We can't free the skb until after it's been DMA'd
1022 *   out by the adapter, so we'll keep it in the driver and
1023 *   return it in mac_drv_tx_complete.
1024 *
1025 * Return Codes:
1026 *   0 - driver has queued and/or sent packet
1027 *       1 - caller should requeue the sk_buff for later transmission
1028 *
1029 * Assumptions:
1030 *   The entire packet is stored in one physically
1031 *   contiguous buffer which is not cached and whose
1032 *   32-bit physical address can be determined.
1033 *
1034 *   It's vital that this routine is NOT reentered for the
1035 *   same board and that the OS is not in another section of
1036 *   code (eg. skfp_interrupt) for the same board on a
1037 *   different thread.
1038 *
1039 * Side Effects:
1040 *   None
1041 */
1042static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1043				       struct net_device *dev)
1044{
1045	struct s_smc *smc = netdev_priv(dev);
1046	skfddi_priv *bp = &smc->os;
1047
1048	pr_debug("skfp_send_pkt\n");
1049
1050	/*
1051	 * Verify that incoming transmit request is OK
1052	 *
1053	 * Note: The packet size check is consistent with other
1054	 *               Linux device drivers, although the correct packet
1055	 *               size should be verified before calling the
1056	 *               transmit routine.
1057	 */
1058
1059	if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1060		bp->MacStat.gen.tx_errors++;	/* bump error counter */
1061		// dequeue packets from xmt queue and send them
1062		netif_start_queue(dev);
1063		dev_kfree_skb(skb);
1064		return NETDEV_TX_OK;	/* return "success" */
1065	}
1066	if (bp->QueueSkb == 0) {	// return with tbusy set: queue full
1067
1068		netif_stop_queue(dev);
1069		return NETDEV_TX_BUSY;
1070	}
1071	bp->QueueSkb--;
1072	skb_queue_tail(&bp->SendSkbQueue, skb);
1073	send_queued_packets(netdev_priv(dev));
1074	if (bp->QueueSkb == 0) {
1075		netif_stop_queue(dev);
1076	}
1077	return NETDEV_TX_OK;
1078
1079}				// skfp_send_pkt
1080
1081
1082/*
1083 * =======================
1084 * = send_queued_packets =
1085 * =======================
1086 *
1087 * Overview:
1088 *   Send packets from the driver queue as long as there are some and
1089 *   transmit resources are available.
1090 *
1091 * Returns:
1092 *   None
1093 *
1094 * Arguments:
1095 *   smc - pointer to smc (adapter) structure
1096 *
1097 * Functional Description:
1098 *   Take a packet from queue if there is any. If not, then we are done.
1099 *   Check if there are resources to send the packet. If not, requeue it
1100 *   and exit.
1101 *   Set packet descriptor flags and give packet to adapter.
1102 *   Check if any send resources can be freed (we do not use the
1103 *   transmit complete interrupt).
1104 */
1105static void send_queued_packets(struct s_smc *smc)
1106{
1107	skfddi_priv *bp = &smc->os;
1108	struct sk_buff *skb;
1109	unsigned char fc;
1110	int queue;
1111	struct s_smt_fp_txd *txd;	// Current TxD.
1112	dma_addr_t dma_address;
1113	unsigned long Flags;
1114
1115	int frame_status;	// HWM tx frame status.
1116
1117	pr_debug("send queued packets\n");
1118	for (;;) {
1119		// send first buffer from queue
1120		skb = skb_dequeue(&bp->SendSkbQueue);
1121
1122		if (!skb) {
1123			pr_debug("queue empty\n");
1124			return;
1125		}		// queue empty !
1126
1127		spin_lock_irqsave(&bp->DriverLock, Flags);
1128		fc = skb->data[0];
1129		queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1130#ifdef ESS
1131		// Check if the frame may/must be sent as a synchronous frame.
1132
1133		if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1134			// It's an LLC frame.
1135			if (!smc->ess.sync_bw_available)
1136				fc &= ~FC_SYNC_BIT; // No bandwidth available.
1137
1138			else {	// Bandwidth is available.
1139
1140				if (smc->mib.fddiESSSynchTxMode) {
1141					// Send as sync. frame.
1142					fc |= FC_SYNC_BIT;
1143				}
1144			}
1145		}
1146#endif				// ESS
1147		frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1148
1149		if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1150			// Unable to send the frame.
1151
1152			if ((frame_status & RING_DOWN) != 0) {
1153				// Ring is down.
1154				pr_debug("Tx attempt while ring down.\n");
1155			} else if ((frame_status & OUT_OF_TXD) != 0) {
1156				pr_debug("%s: out of TXDs.\n", bp->dev->name);
1157			} else {
1158				pr_debug("%s: out of transmit resources",
1159					bp->dev->name);
1160			}
1161
1162			// Note: We will retry the operation as soon as
1163			// transmit resources become available.
1164			skb_queue_head(&bp->SendSkbQueue, skb);
1165			spin_unlock_irqrestore(&bp->DriverLock, Flags);
1166			return;	// Packet has been queued.
1167
1168		}		// if (unable to send frame)
1169
1170		bp->QueueSkb++;	// one packet less in local queue
1171
1172		// source address in packet ?
1173		CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1174
1175		txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1176
1177		dma_address = pci_map_single(&bp->pdev, skb->data,
1178					     skb->len, PCI_DMA_TODEVICE);
1179		if (frame_status & LAN_TX) {
1180			txd->txd_os.skb = skb;			// save skb
1181			txd->txd_os.dma_addr = dma_address;	// save dma mapping
1182		}
1183		hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1184                      frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1185
1186		if (!(frame_status & LAN_TX)) {		// local only frame
1187			pci_unmap_single(&bp->pdev, dma_address,
1188					 skb->len, PCI_DMA_TODEVICE);
1189			dev_kfree_skb_irq(skb);
1190		}
1191		spin_unlock_irqrestore(&bp->DriverLock, Flags);
1192	}			// for
1193
1194	return;			// never reached
1195
1196}				// send_queued_packets
1197
1198
1199/************************
1200 *
1201 * CheckSourceAddress
1202 *
1203 * Verify if the source address is set. Insert it if necessary.
1204 *
1205 ************************/
1206static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1207{
1208	unsigned char SRBit;
1209
1210	if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1211
1212		return;
1213	if ((unsigned short) frame[1 + 10] != 0)
1214		return;
1215	SRBit = frame[1 + 6] & 0x01;
1216	memcpy(&frame[1 + 6], hw_addr, 6);
1217	frame[8] |= SRBit;
1218}				// CheckSourceAddress
1219
1220
1221/************************
1222 *
1223 *	ResetAdapter
1224 *
1225 *	Reset the adapter and bring it back to operational mode.
1226 * Args
1227 *	smc - A pointer to the SMT context struct.
1228 * Out
1229 *	Nothing.
1230 *
1231 ************************/
1232static void ResetAdapter(struct s_smc *smc)
1233{
1234
1235	pr_debug("[fddi: ResetAdapter]\n");
1236
1237	// Stop the adapter.
1238
1239	card_stop(smc);		// Stop all activity.
1240
1241	// Clear the transmit and receive descriptor queues.
1242	mac_drv_clear_tx_queue(smc);
1243	mac_drv_clear_rx_queue(smc);
1244
1245	// Restart the adapter.
1246
1247	smt_reset_defaults(smc, 1);	// Initialize the SMT module.
1248
1249	init_smt(smc, (smc->os.dev)->dev_addr);	// Initialize the hardware.
1250
1251	smt_online(smc, 1);	// Insert into the ring again.
1252	STI_FBI();
1253
1254	// Restore original receive mode (multicasts, promiscuous, etc.).
1255	skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1256}				// ResetAdapter
1257
1258
1259//--------------- functions called by hardware module ----------------
1260
1261/************************
1262 *
1263 *	llc_restart_tx
1264 *
1265 *	The hardware driver calls this routine when the transmit complete
1266 *	interrupt bits (end of frame) for the synchronous or asynchronous
1267 *	queue is set.
1268 *
1269 * NOTE The hardware driver calls this function also if no packets are queued.
1270 *	The routine must be able to handle this case.
1271 * Args
1272 *	smc - A pointer to the SMT context struct.
1273 * Out
1274 *	Nothing.
1275 *
1276 ************************/
1277void llc_restart_tx(struct s_smc *smc)
1278{
1279	skfddi_priv *bp = &smc->os;
1280
1281	pr_debug("[llc_restart_tx]\n");
1282
1283	// Try to send queued packets
1284	spin_unlock(&bp->DriverLock);
1285	send_queued_packets(smc);
1286	spin_lock(&bp->DriverLock);
1287	netif_start_queue(bp->dev);// system may send again if it was blocked
1288
1289}				// llc_restart_tx
1290
1291
1292/************************
1293 *
1294 *	mac_drv_get_space
1295 *
1296 *	The hardware module calls this function to allocate the memory
1297 *	for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1298 * Args
1299 *	smc - A pointer to the SMT context struct.
1300 *
1301 *	size - Size of memory in bytes to allocate.
1302 * Out
1303 *	!= 0	A pointer to the virtual address of the allocated memory.
1304 *	== 0	Allocation error.
1305 *
1306 ************************/
1307void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1308{
1309	void *virt;
1310
1311	pr_debug("mac_drv_get_space (%d bytes), ", size);
1312	virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1313
1314	if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1315		printk("Unexpected SMT memory size requested: %d\n", size);
1316		return NULL;
1317	}
1318	smc->os.SharedMemHeap += size;	// Move heap pointer.
1319
1320	pr_debug("mac_drv_get_space end\n");
1321	pr_debug("virt addr: %lx\n", (ulong) virt);
1322	pr_debug("bus  addr: %lx\n", (ulong)
1323	       (smc->os.SharedMemDMA +
1324		((char *) virt - (char *)smc->os.SharedMemAddr)));
1325	return virt;
1326}				// mac_drv_get_space
1327
1328
1329/************************
1330 *
1331 *	mac_drv_get_desc_mem
1332 *
1333 *	This function is called by the hardware dependent module.
1334 *	It allocates the memory for the RxD and TxD descriptors.
1335 *
1336 *	This memory must be non-cached, non-movable and non-swappable.
1337 *	This memory should start at a physical page boundary.
1338 * Args
1339 *	smc - A pointer to the SMT context struct.
1340 *
1341 *	size - Size of memory in bytes to allocate.
1342 * Out
1343 *	!= 0	A pointer to the virtual address of the allocated memory.
1344 *	== 0	Allocation error.
1345 *
1346 ************************/
1347void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1348{
1349
1350	char *virt;
1351
1352	pr_debug("mac_drv_get_desc_mem\n");
1353
1354	// Descriptor memory must be aligned on 16-byte boundary.
1355
1356	virt = mac_drv_get_space(smc, size);
1357
1358	size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1359	size = size % 16;
1360
1361	pr_debug("Allocate %u bytes alignment gap ", size);
1362	pr_debug("for descriptor memory.\n");
1363
1364	if (!mac_drv_get_space(smc, size)) {
1365		printk("fddi: Unable to align descriptor memory.\n");
1366		return NULL;
1367	}
1368	return virt + size;
1369}				// mac_drv_get_desc_mem
1370
1371
1372/************************
1373 *
1374 *	mac_drv_virt2phys
1375 *
1376 *	Get the physical address of a given virtual address.
1377 * Args
1378 *	smc - A pointer to the SMT context struct.
1379 *
1380 *	virt - A (virtual) pointer into our 'shared' memory area.
1381 * Out
1382 *	Physical address of the given virtual address.
1383 *
1384 ************************/
1385unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1386{
1387	return smc->os.SharedMemDMA +
1388		((char *) virt - (char *)smc->os.SharedMemAddr);
1389}				// mac_drv_virt2phys
1390
1391
1392/************************
1393 *
1394 *	dma_master
1395 *
1396 *	The HWM calls this function, when the driver leads through a DMA
1397 *	transfer. If the OS-specific module must prepare the system hardware
1398 *	for the DMA transfer, it should do it in this function.
1399 *
1400 *	The hardware module calls this dma_master if it wants to send an SMT
1401 *	frame.  This means that the virt address passed in here is part of
1402 *      the 'shared' memory area.
1403 * Args
1404 *	smc - A pointer to the SMT context struct.
1405 *
1406 *	virt - The virtual address of the data.
1407 *
1408 *	len - The length in bytes of the data.
1409 *
1410 *	flag - Indicates the transmit direction and the buffer type:
1411 *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1412 *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1413 *		SMT_BUF (0x80)	SMT buffer
1414 *
1415 *	>> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1416 * Out
1417 *	Returns the pyhsical address for the DMA transfer.
1418 *
1419 ************************/
1420u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1421{
1422	return smc->os.SharedMemDMA +
1423		((char *) virt - (char *)smc->os.SharedMemAddr);
1424}				// dma_master
1425
1426
1427/************************
1428 *
1429 *	dma_complete
1430 *
1431 *	The hardware module calls this routine when it has completed a DMA
1432 *	transfer. If the operating system dependent module has set up the DMA
1433 *	channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1434 *	the DMA channel.
1435 * Args
1436 *	smc - A pointer to the SMT context struct.
1437 *
1438 *	descr - A pointer to a TxD or RxD, respectively.
1439 *
1440 *	flag - Indicates the DMA transfer direction / SMT buffer:
1441 *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1442 *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1443 *		SMT_BUF (0x80)	SMT buffer (managed by HWM)
1444 * Out
1445 *	Nothing.
1446 *
1447 ************************/
1448void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1449{
1450	/* For TX buffers, there are two cases.  If it is an SMT transmit
1451	 * buffer, there is nothing to do since we use consistent memory
1452	 * for the 'shared' memory area.  The other case is for normal
1453	 * transmit packets given to us by the networking stack, and in
1454	 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1455	 * below.
1456	 *
1457	 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1458	 * because the hardware module is about to potentially look at
1459	 * the contents of the buffer.  If we did not call the PCI DMA
1460	 * unmap first, the hardware module could read inconsistent data.
1461	 */
1462	if (flag & DMA_WR) {
1463		skfddi_priv *bp = &smc->os;
1464		volatile struct s_smt_fp_rxd *r = &descr->r;
1465
1466		/* If SKB is NULL, we used the local buffer. */
1467		if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1468			int MaxFrameSize = bp->MaxFrameSize;
1469
1470			pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1471					 MaxFrameSize, PCI_DMA_FROMDEVICE);
1472			r->rxd_os.dma_addr = 0;
1473		}
1474	}
1475}				// dma_complete
1476
1477
1478/************************
1479 *
1480 *	mac_drv_tx_complete
1481 *
1482 *	Transmit of a packet is complete. Release the tx staging buffer.
1483 *
1484 * Args
1485 *	smc - A pointer to the SMT context struct.
1486 *
1487 *	txd - A pointer to the last TxD which is used by the frame.
1488 * Out
1489 *	Returns nothing.
1490 *
1491 ************************/
1492void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1493{
1494	struct sk_buff *skb;
1495
1496	pr_debug("entering mac_drv_tx_complete\n");
1497	// Check if this TxD points to a skb
1498
1499	if (!(skb = txd->txd_os.skb)) {
1500		pr_debug("TXD with no skb assigned.\n");
1501		return;
1502	}
1503	txd->txd_os.skb = NULL;
1504
1505	// release the DMA mapping
1506	pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1507			 skb->len, PCI_DMA_TODEVICE);
1508	txd->txd_os.dma_addr = 0;
1509
1510	smc->os.MacStat.gen.tx_packets++;	// Count transmitted packets.
1511	smc->os.MacStat.gen.tx_bytes+=skb->len;	// Count bytes
1512
1513	// free the skb
1514	dev_kfree_skb_irq(skb);
1515
1516	pr_debug("leaving mac_drv_tx_complete\n");
1517}				// mac_drv_tx_complete
1518
1519
1520/************************
1521 *
1522 * dump packets to logfile
1523 *
1524 ************************/
1525#ifdef DUMPPACKETS
1526void dump_data(unsigned char *Data, int length)
1527{
1528	int i, j;
1529	unsigned char s[255], sh[10];
1530	if (length > 64) {
1531		length = 64;
1532	}
1533	printk(KERN_INFO "---Packet start---\n");
1534	for (i = 0, j = 0; i < length / 8; i++, j += 8)
1535		printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1536		       Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1537		       Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1538	strcpy(s, "");
1539	for (i = 0; i < length % 8; i++) {
1540		sprintf(sh, "%02x ", Data[j + i]);
1541		strcat(s, sh);
1542	}
1543	printk(KERN_INFO "%s\n", s);
1544	printk(KERN_INFO "------------------\n");
1545}				// dump_data
1546#else
1547#define dump_data(data,len)
1548#endif				// DUMPPACKETS
1549
1550/************************
1551 *
1552 *	mac_drv_rx_complete
1553 *
1554 *	The hardware module calls this function if an LLC frame is received
1555 *	in a receive buffer. Also the SMT, NSA, and directed beacon frames
1556 *	from the network will be passed to the LLC layer by this function
1557 *	if passing is enabled.
1558 *
1559 *	mac_drv_rx_complete forwards the frame to the LLC layer if it should
1560 *	be received. It also fills the RxD ring with new receive buffers if
1561 *	some can be queued.
1562 * Args
1563 *	smc - A pointer to the SMT context struct.
1564 *
1565 *	rxd - A pointer to the first RxD which is used by the receive frame.
1566 *
1567 *	frag_count - Count of RxDs used by the received frame.
1568 *
1569 *	len - Frame length.
1570 * Out
1571 *	Nothing.
1572 *
1573 ************************/
1574void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1575			 int frag_count, int len)
1576{
1577	skfddi_priv *bp = &smc->os;
1578	struct sk_buff *skb;
1579	unsigned char *virt, *cp;
1580	unsigned short ri;
1581	u_int RifLength;
1582
1583	pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1584	if (frag_count != 1) {	// This is not allowed to happen.
1585
1586		printk("fddi: Multi-fragment receive!\n");
1587		goto RequeueRxd;	// Re-use the given RXD(s).
1588
1589	}
1590	skb = rxd->rxd_os.skb;
1591	if (!skb) {
1592		pr_debug("No skb in rxd\n");
1593		smc->os.MacStat.gen.rx_errors++;
1594		goto RequeueRxd;
1595	}
1596	virt = skb->data;
1597
1598	// The DMA mapping was released in dma_complete above.
1599
1600	dump_data(skb->data, len);
1601
1602	/*
1603	 * FDDI Frame format:
1604	 * +-------+-------+-------+------------+--------+------------+
1605	 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1606	 * +-------+-------+-------+------------+--------+------------+
1607	 *
1608	 * FC = Frame Control
1609	 * DA = Destination Address
1610	 * SA = Source Address
1611	 * RIF = Routing Information Field
1612	 * LLC = Logical Link Control
1613	 */
1614
1615	// Remove Routing Information Field (RIF), if present.
1616
1617	if ((virt[1 + 6] & FDDI_RII) == 0)
1618		RifLength = 0;
1619	else {
1620		int n;
1621// goos: RIF removal has still to be tested
1622		pr_debug("RIF found\n");
1623		// Get RIF length from Routing Control (RC) field.
1624		cp = virt + FDDI_MAC_HDR_LEN;	// Point behind MAC header.
1625
1626		ri = ntohs(*((__be16 *) cp));
1627		RifLength = ri & FDDI_RCF_LEN_MASK;
1628		if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1629			printk("fddi: Invalid RIF.\n");
1630			goto RequeueRxd;	// Discard the frame.
1631
1632		}
1633		virt[1 + 6] &= ~FDDI_RII;	// Clear RII bit.
1634		// regions overlap
1635
1636		virt = cp + RifLength;
1637		for (n = FDDI_MAC_HDR_LEN; n; n--)
1638			*--virt = *--cp;
1639		// adjust sbd->data pointer
1640		skb_pull(skb, RifLength);
1641		len -= RifLength;
1642		RifLength = 0;
1643	}
1644
1645	// Count statistics.
1646	smc->os.MacStat.gen.rx_packets++;	// Count indicated receive
1647						// packets.
1648	smc->os.MacStat.gen.rx_bytes+=len;	// Count bytes.
1649
1650	// virt points to header again
1651	if (virt[1] & 0x01) {	// Check group (multicast) bit.
1652
1653		smc->os.MacStat.gen.multicast++;
1654	}
1655
1656	// deliver frame to system
1657	rxd->rxd_os.skb = NULL;
1658	skb_trim(skb, len);
1659	skb->protocol = fddi_type_trans(skb, bp->dev);
1660
1661	netif_rx(skb);
1662
1663	HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1664	return;
1665
1666      RequeueRxd:
1667	pr_debug("Rx: re-queue RXD.\n");
1668	mac_drv_requeue_rxd(smc, rxd, frag_count);
1669	smc->os.MacStat.gen.rx_errors++;	// Count receive packets
1670						// not indicated.
1671
1672}				// mac_drv_rx_complete
1673
1674
1675/************************
1676 *
1677 *	mac_drv_requeue_rxd
1678 *
1679 *	The hardware module calls this function to request the OS-specific
1680 *	module to queue the receive buffer(s) represented by the pointer
1681 *	to the RxD and the frag_count into the receive queue again. This
1682 *	buffer was filled with an invalid frame or an SMT frame.
1683 * Args
1684 *	smc - A pointer to the SMT context struct.
1685 *
1686 *	rxd - A pointer to the first RxD which is used by the receive frame.
1687 *
1688 *	frag_count - Count of RxDs used by the received frame.
1689 * Out
1690 *	Nothing.
1691 *
1692 ************************/
1693void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1694			 int frag_count)
1695{
1696	volatile struct s_smt_fp_rxd *next_rxd;
1697	volatile struct s_smt_fp_rxd *src_rxd;
1698	struct sk_buff *skb;
1699	int MaxFrameSize;
1700	unsigned char *v_addr;
1701	dma_addr_t b_addr;
1702
1703	if (frag_count != 1)	// This is not allowed to happen.
1704
1705		printk("fddi: Multi-fragment requeue!\n");
1706
1707	MaxFrameSize = smc->os.MaxFrameSize;
1708	src_rxd = rxd;
1709	for (; frag_count > 0; frag_count--) {
1710		next_rxd = src_rxd->rxd_next;
1711		rxd = HWM_GET_CURR_RXD(smc);
1712
1713		skb = src_rxd->rxd_os.skb;
1714		if (skb == NULL) {	// this should not happen
1715
1716			pr_debug("Requeue with no skb in rxd!\n");
1717			skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1718			if (skb) {
1719				// we got a skb
1720				rxd->rxd_os.skb = skb;
1721				skb_reserve(skb, 3);
1722				skb_put(skb, MaxFrameSize);
1723				v_addr = skb->data;
1724				b_addr = pci_map_single(&smc->os.pdev,
1725							v_addr,
1726							MaxFrameSize,
1727							PCI_DMA_FROMDEVICE);
1728				rxd->rxd_os.dma_addr = b_addr;
1729			} else {
1730				// no skb available, use local buffer
1731				pr_debug("Queueing invalid buffer!\n");
1732				rxd->rxd_os.skb = NULL;
1733				v_addr = smc->os.LocalRxBuffer;
1734				b_addr = smc->os.LocalRxBufferDMA;
1735			}
1736		} else {
1737			// we use skb from old rxd
1738			rxd->rxd_os.skb = skb;
1739			v_addr = skb->data;
1740			b_addr = pci_map_single(&smc->os.pdev,
1741						v_addr,
1742						MaxFrameSize,
1743						PCI_DMA_FROMDEVICE);
1744			rxd->rxd_os.dma_addr = b_addr;
1745		}
1746		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1747			    FIRST_FRAG | LAST_FRAG);
1748
1749		src_rxd = next_rxd;
1750	}
1751}				// mac_drv_requeue_rxd
1752
1753
1754/************************
1755 *
1756 *	mac_drv_fill_rxd
1757 *
1758 *	The hardware module calls this function at initialization time
1759 *	to fill the RxD ring with receive buffers. It is also called by
1760 *	mac_drv_rx_complete if rx_free is large enough to queue some new
1761 *	receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1762 *	receive buffers as long as enough RxDs and receive buffers are
1763 *	available.
1764 * Args
1765 *	smc - A pointer to the SMT context struct.
1766 * Out
1767 *	Nothing.
1768 *
1769 ************************/
1770void mac_drv_fill_rxd(struct s_smc *smc)
1771{
1772	int MaxFrameSize;
1773	unsigned char *v_addr;
1774	unsigned long b_addr;
1775	struct sk_buff *skb;
1776	volatile struct s_smt_fp_rxd *rxd;
1777
1778	pr_debug("entering mac_drv_fill_rxd\n");
1779
1780	// Walk through the list of free receive buffers, passing receive
1781	// buffers to the HWM as long as RXDs are available.
1782
1783	MaxFrameSize = smc->os.MaxFrameSize;
1784	// Check if there is any RXD left.
1785	while (HWM_GET_RX_FREE(smc) > 0) {
1786		pr_debug(".\n");
1787
1788		rxd = HWM_GET_CURR_RXD(smc);
1789		skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1790		if (skb) {
1791			// we got a skb
1792			skb_reserve(skb, 3);
1793			skb_put(skb, MaxFrameSize);
1794			v_addr = skb->data;
1795			b_addr = pci_map_single(&smc->os.pdev,
1796						v_addr,
1797						MaxFrameSize,
1798						PCI_DMA_FROMDEVICE);
1799			rxd->rxd_os.dma_addr = b_addr;
1800		} else {
1801			// no skb available, use local buffer
1802			// System has run out of buffer memory, but we want to
1803			// keep the receiver running in hope of better times.
1804			// Multiple descriptors may point to this local buffer,
1805			// so data in it must be considered invalid.
1806			pr_debug("Queueing invalid buffer!\n");
1807			v_addr = smc->os.LocalRxBuffer;
1808			b_addr = smc->os.LocalRxBufferDMA;
1809		}
1810
1811		rxd->rxd_os.skb = skb;
1812
1813		// Pass receive buffer to HWM.
1814		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1815			    FIRST_FRAG | LAST_FRAG);
1816	}
1817	pr_debug("leaving mac_drv_fill_rxd\n");
1818}				// mac_drv_fill_rxd
1819
1820
1821/************************
1822 *
1823 *	mac_drv_clear_rxd
1824 *
1825 *	The hardware module calls this function to release unused
1826 *	receive buffers.
1827 * Args
1828 *	smc - A pointer to the SMT context struct.
1829 *
1830 *	rxd - A pointer to the first RxD which is used by the receive buffer.
1831 *
1832 *	frag_count - Count of RxDs used by the receive buffer.
1833 * Out
1834 *	Nothing.
1835 *
1836 ************************/
1837void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1838		       int frag_count)
1839{
1840
1841	struct sk_buff *skb;
1842
1843	pr_debug("entering mac_drv_clear_rxd\n");
1844
1845	if (frag_count != 1)	// This is not allowed to happen.
1846
1847		printk("fddi: Multi-fragment clear!\n");
1848
1849	for (; frag_count > 0; frag_count--) {
1850		skb = rxd->rxd_os.skb;
1851		if (skb != NULL) {
1852			skfddi_priv *bp = &smc->os;
1853			int MaxFrameSize = bp->MaxFrameSize;
1854
1855			pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1856					 MaxFrameSize, PCI_DMA_FROMDEVICE);
1857
1858			dev_kfree_skb(skb);
1859			rxd->rxd_os.skb = NULL;
1860		}
1861		rxd = rxd->rxd_next;	// Next RXD.
1862
1863	}
1864}				// mac_drv_clear_rxd
1865
1866
1867/************************
1868 *
1869 *	mac_drv_rx_init
1870 *
1871 *	The hardware module calls this routine when an SMT or NSA frame of the
1872 *	local SMT should be delivered to the LLC layer.
1873 *
1874 *	It is necessary to have this function, because there is no other way to
1875 *	copy the contents of SMT MBufs into receive buffers.
1876 *
1877 *	mac_drv_rx_init allocates the required target memory for this frame,
1878 *	and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1879 * Args
1880 *	smc - A pointer to the SMT context struct.
1881 *
1882 *	len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1883 *
1884 *	fc - The Frame Control field of the received frame.
1885 *
1886 *	look_ahead - A pointer to the lookahead data buffer (may be NULL).
1887 *
1888 *	la_len - The length of the lookahead data stored in the lookahead
1889 *	buffer (may be zero).
1890 * Out
1891 *	Always returns zero (0).
1892 *
1893 ************************/
1894int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1895		    char *look_ahead, int la_len)
1896{
1897	struct sk_buff *skb;
1898
1899	pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1900
1901	// "Received" a SMT or NSA frame of the local SMT.
1902
1903	if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1904		pr_debug("fddi: Discard invalid local SMT frame\n");
1905		pr_debug("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1906		       len, la_len, (unsigned long) look_ahead);
1907		return 0;
1908	}
1909	skb = alloc_skb(len + 3, GFP_ATOMIC);
1910	if (!skb) {
1911		pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1912		return 0;
1913	}
1914	skb_reserve(skb, 3);
1915	skb_put(skb, len);
1916	skb_copy_to_linear_data(skb, look_ahead, len);
1917
1918	// deliver frame to system
1919	skb->protocol = fddi_type_trans(skb, smc->os.dev);
1920	netif_rx(skb);
1921
1922	return 0;
1923}				// mac_drv_rx_init
1924
1925
1926/************************
1927 *
1928 *	smt_timer_poll
1929 *
1930 *	This routine is called periodically by the SMT module to clean up the
1931 *	driver.
1932 *
1933 *	Return any queued frames back to the upper protocol layers if the ring
1934 *	is down.
1935 * Args
1936 *	smc - A pointer to the SMT context struct.
1937 * Out
1938 *	Nothing.
1939 *
1940 ************************/
1941void smt_timer_poll(struct s_smc *smc)
1942{
1943}				// smt_timer_poll
1944
1945
1946/************************
1947 *
1948 *	ring_status_indication
1949 *
1950 *	This function indicates a change of the ring state.
1951 * Args
1952 *	smc - A pointer to the SMT context struct.
1953 *
1954 *	status - The current ring status.
1955 * Out
1956 *	Nothing.
1957 *
1958 ************************/
1959void ring_status_indication(struct s_smc *smc, u_long status)
1960{
1961	pr_debug("ring_status_indication( ");
1962	if (status & RS_RES15)
1963		pr_debug("RS_RES15 ");
1964	if (status & RS_HARDERROR)
1965		pr_debug("RS_HARDERROR ");
1966	if (status & RS_SOFTERROR)
1967		pr_debug("RS_SOFTERROR ");
1968	if (status & RS_BEACON)
1969		pr_debug("RS_BEACON ");
1970	if (status & RS_PATHTEST)
1971		pr_debug("RS_PATHTEST ");
1972	if (status & RS_SELFTEST)
1973		pr_debug("RS_SELFTEST ");
1974	if (status & RS_RES9)
1975		pr_debug("RS_RES9 ");
1976	if (status & RS_DISCONNECT)
1977		pr_debug("RS_DISCONNECT ");
1978	if (status & RS_RES7)
1979		pr_debug("RS_RES7 ");
1980	if (status & RS_DUPADDR)
1981		pr_debug("RS_DUPADDR ");
1982	if (status & RS_NORINGOP)
1983		pr_debug("RS_NORINGOP ");
1984	if (status & RS_VERSION)
1985		pr_debug("RS_VERSION ");
1986	if (status & RS_STUCKBYPASSS)
1987		pr_debug("RS_STUCKBYPASSS ");
1988	if (status & RS_EVENT)
1989		pr_debug("RS_EVENT ");
1990	if (status & RS_RINGOPCHANGE)
1991		pr_debug("RS_RINGOPCHANGE ");
1992	if (status & RS_RES0)
1993		pr_debug("RS_RES0 ");
1994	pr_debug("]\n");
1995}				// ring_status_indication
1996
1997
1998/************************
1999 *
2000 *	smt_get_time
2001 *
2002 *	Gets the current time from the system.
2003 * Args
2004 *	None.
2005 * Out
2006 *	The current time in TICKS_PER_SECOND.
2007 *
2008 *	TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2009 *	defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2010 *	to the time returned by smt_get_time().
2011 *
2012 ************************/
2013unsigned long smt_get_time(void)
2014{
2015	return jiffies;
2016}				// smt_get_time
2017
2018
2019/************************
2020 *
2021 *	smt_stat_counter
2022 *
2023 *	Status counter update (ring_op, fifo full).
2024 * Args
2025 *	smc - A pointer to the SMT context struct.
2026 *
2027 *	stat -	= 0: A ring operational change occurred.
2028 *		= 1: The FORMAC FIFO buffer is full / FIFO overflow.
2029 * Out
2030 *	Nothing.
2031 *
2032 ************************/
2033void smt_stat_counter(struct s_smc *smc, int stat)
2034{
2035//      BOOLEAN RingIsUp ;
2036
2037	pr_debug("smt_stat_counter\n");
2038	switch (stat) {
2039	case 0:
2040		pr_debug("Ring operational change.\n");
2041		break;
2042	case 1:
2043		pr_debug("Receive fifo overflow.\n");
2044		smc->os.MacStat.gen.rx_errors++;
2045		break;
2046	default:
2047		pr_debug("Unknown status (%d).\n", stat);
2048		break;
2049	}
2050}				// smt_stat_counter
2051
2052
2053/************************
2054 *
2055 *	cfm_state_change
2056 *
2057 *	Sets CFM state in custom statistics.
2058 * Args
2059 *	smc - A pointer to the SMT context struct.
2060 *
2061 *	c_state - Possible values are:
2062 *
2063 *		EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2064 *		EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2065 * Out
2066 *	Nothing.
2067 *
2068 ************************/
2069void cfm_state_change(struct s_smc *smc, int c_state)
2070{
2071#ifdef DRIVERDEBUG
2072	char *s;
2073
2074	switch (c_state) {
2075	case SC0_ISOLATED:
2076		s = "SC0_ISOLATED";
2077		break;
2078	case SC1_WRAP_A:
2079		s = "SC1_WRAP_A";
2080		break;
2081	case SC2_WRAP_B:
2082		s = "SC2_WRAP_B";
2083		break;
2084	case SC4_THRU_A:
2085		s = "SC4_THRU_A";
2086		break;
2087	case SC5_THRU_B:
2088		s = "SC5_THRU_B";
2089		break;
2090	case SC7_WRAP_S:
2091		s = "SC7_WRAP_S";
2092		break;
2093	case SC9_C_WRAP_A:
2094		s = "SC9_C_WRAP_A";
2095		break;
2096	case SC10_C_WRAP_B:
2097		s = "SC10_C_WRAP_B";
2098		break;
2099	case SC11_C_WRAP_S:
2100		s = "SC11_C_WRAP_S";
2101		break;
2102	default:
2103		pr_debug("cfm_state_change: unknown %d\n", c_state);
2104		return;
2105	}
2106	pr_debug("cfm_state_change: %s\n", s);
2107#endif				// DRIVERDEBUG
2108}				// cfm_state_change
2109
2110
2111/************************
2112 *
2113 *	ecm_state_change
2114 *
2115 *	Sets ECM state in custom statistics.
2116 * Args
2117 *	smc - A pointer to the SMT context struct.
2118 *
2119 *	e_state - Possible values are:
2120 *
2121 *		SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2122 *		SC5_THRU_B (7), SC7_WRAP_S (8)
2123 * Out
2124 *	Nothing.
2125 *
2126 ************************/
2127void ecm_state_change(struct s_smc *smc, int e_state)
2128{
2129#ifdef DRIVERDEBUG
2130	char *s;
2131
2132	switch (e_state) {
2133	case EC0_OUT:
2134		s = "EC0_OUT";
2135		break;
2136	case EC1_IN:
2137		s = "EC1_IN";
2138		break;
2139	case EC2_TRACE:
2140		s = "EC2_TRACE";
2141		break;
2142	case EC3_LEAVE:
2143		s = "EC3_LEAVE";
2144		break;
2145	case EC4_PATH_TEST:
2146		s = "EC4_PATH_TEST";
2147		break;
2148	case EC5_INSERT:
2149		s = "EC5_INSERT";
2150		break;
2151	case EC6_CHECK:
2152		s = "EC6_CHECK";
2153		break;
2154	case EC7_DEINSERT:
2155		s = "EC7_DEINSERT";
2156		break;
2157	default:
2158		s = "unknown";
2159		break;
2160	}
2161	pr_debug("ecm_state_change: %s\n", s);
2162#endif				//DRIVERDEBUG
2163}				// ecm_state_change
2164
2165
2166/************************
2167 *
2168 *	rmt_state_change
2169 *
2170 *	Sets RMT state in custom statistics.
2171 * Args
2172 *	smc - A pointer to the SMT context struct.
2173 *
2174 *	r_state - Possible values are:
2175 *
2176 *		RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2177 *		RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2178 * Out
2179 *	Nothing.
2180 *
2181 ************************/
2182void rmt_state_change(struct s_smc *smc, int r_state)
2183{
2184#ifdef DRIVERDEBUG
2185	char *s;
2186
2187	switch (r_state) {
2188	case RM0_ISOLATED:
2189		s = "RM0_ISOLATED";
2190		break;
2191	case RM1_NON_OP:
2192		s = "RM1_NON_OP - not operational";
2193		break;
2194	case RM2_RING_OP:
2195		s = "RM2_RING_OP - ring operational";
2196		break;
2197	case RM3_DETECT:
2198		s = "RM3_DETECT - detect dupl addresses";
2199		break;
2200	case RM4_NON_OP_DUP:
2201		s = "RM4_NON_OP_DUP - dupl. addr detected";
2202		break;
2203	case RM5_RING_OP_DUP:
2204		s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2205		break;
2206	case RM6_DIRECTED:
2207		s = "RM6_DIRECTED - sending directed beacons";
2208		break;
2209	case RM7_TRACE:
2210		s = "RM7_TRACE - trace initiated";
2211		break;
2212	default:
2213		s = "unknown";
2214		break;
2215	}
2216	pr_debug("[rmt_state_change: %s]\n", s);
2217#endif				// DRIVERDEBUG
2218}				// rmt_state_change
2219
2220
2221/************************
2222 *
2223 *	drv_reset_indication
2224 *
2225 *	This function is called by the SMT when it has detected a severe
2226 *	hardware problem. The driver should perform a reset on the adapter
2227 *	as soon as possible, but not from within this function.
2228 * Args
2229 *	smc - A pointer to the SMT context struct.
2230 * Out
2231 *	Nothing.
2232 *
2233 ************************/
2234void drv_reset_indication(struct s_smc *smc)
2235{
2236	pr_debug("entering drv_reset_indication\n");
2237
2238	smc->os.ResetRequested = TRUE;	// Set flag.
2239
2240}				// drv_reset_indication
2241
2242static struct pci_driver skfddi_pci_driver = {
2243	.name		= "skfddi",
2244	.id_table	= skfddi_pci_tbl,
2245	.probe		= skfp_init_one,
2246	.remove		= __devexit_p(skfp_remove_one),
2247};
2248
2249static int __init skfd_init(void)
2250{
2251	return pci_register_driver(&skfddi_pci_driver);
2252}
2253
2254static void __exit skfd_exit(void)
2255{
2256	pci_unregister_driver(&skfddi_pci_driver);
2257}
2258
2259module_init(skfd_init);
2260module_exit(skfd_exit);
2261