1/*
2 * Driver for high-speed SCC boards (those with DMA support)
3 * Copyright (C) 1997-2000 Klaus Kudielka
4 *
5 * S5SCC/DMA support by Janko Koleznik S52HI
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22
23#include <linux/module.h>
24#include <linux/bitops.h>
25#include <linux/delay.h>
26#include <linux/errno.h>
27#include <linux/if_arp.h>
28#include <linux/in.h>
29#include <linux/init.h>
30#include <linux/interrupt.h>
31#include <linux/ioport.h>
32#include <linux/kernel.h>
33#include <linux/mm.h>
34#include <linux/netdevice.h>
35#include <linux/slab.h>
36#include <linux/rtnetlink.h>
37#include <linux/sockios.h>
38#include <linux/workqueue.h>
39#include <linux/atomic.h>
40#include <asm/dma.h>
41#include <asm/io.h>
42#include <asm/irq.h>
43#include <asm/uaccess.h>
44#include <net/ax25.h>
45#include "z8530.h"
46
47
48/* Number of buffers per channel */
49
50#define NUM_TX_BUF      2	/* NUM_TX_BUF >= 1 (min. 2 recommended) */
51#define NUM_RX_BUF      6	/* NUM_RX_BUF >= 1 (min. 2 recommended) */
52#define BUF_SIZE        1576	/* BUF_SIZE >= mtu + hard_header_len */
53
54
55/* Cards supported */
56
57#define HW_PI           { "Ottawa PI", 0x300, 0x20, 0x10, 8, \
58                            0, 8, 1843200, 3686400 }
59#define HW_PI2          { "Ottawa PI2", 0x300, 0x20, 0x10, 8, \
60			    0, 8, 3686400, 7372800 }
61#define HW_TWIN         { "Gracilis PackeTwin", 0x200, 0x10, 0x10, 32, \
62			    0, 4, 6144000, 6144000 }
63#define HW_S5           { "S5SCC/DMA", 0x200, 0x10, 0x10, 32, \
64                          0, 8, 4915200, 9830400 }
65
66#define HARDWARE        { HW_PI, HW_PI2, HW_TWIN, HW_S5 }
67
68#define TMR_0_HZ        25600	/* Frequency of timer 0 */
69
70#define TYPE_PI         0
71#define TYPE_PI2        1
72#define TYPE_TWIN       2
73#define TYPE_S5         3
74#define NUM_TYPES       4
75
76#define MAX_NUM_DEVS    32
77
78
79/* SCC chips supported */
80
81#define Z8530           0
82#define Z85C30          1
83#define Z85230          2
84
85#define CHIPNAMES       { "Z8530", "Z85C30", "Z85230" }
86
87
88/* I/O registers */
89
90/* 8530 registers relative to card base */
91#define SCCB_CMD        0x00
92#define SCCB_DATA       0x01
93#define SCCA_CMD        0x02
94#define SCCA_DATA       0x03
95
96/* 8253/8254 registers relative to card base */
97#define TMR_CNT0        0x00
98#define TMR_CNT1        0x01
99#define TMR_CNT2        0x02
100#define TMR_CTRL        0x03
101
102/* Additional PI/PI2 registers relative to card base */
103#define PI_DREQ_MASK    0x04
104
105/* Additional PackeTwin registers relative to card base */
106#define TWIN_INT_REG    0x08
107#define TWIN_CLR_TMR1   0x09
108#define TWIN_CLR_TMR2   0x0a
109#define TWIN_SPARE_1    0x0b
110#define TWIN_DMA_CFG    0x08
111#define TWIN_SERIAL_CFG 0x09
112#define TWIN_DMA_CLR_FF 0x0a
113#define TWIN_SPARE_2    0x0b
114
115
116/* PackeTwin I/O register values */
117
118/* INT_REG */
119#define TWIN_SCC_MSK       0x01
120#define TWIN_TMR1_MSK      0x02
121#define TWIN_TMR2_MSK      0x04
122#define TWIN_INT_MSK       0x07
123
124/* SERIAL_CFG */
125#define TWIN_DTRA_ON       0x01
126#define TWIN_DTRB_ON       0x02
127#define TWIN_EXTCLKA       0x04
128#define TWIN_EXTCLKB       0x08
129#define TWIN_LOOPA_ON      0x10
130#define TWIN_LOOPB_ON      0x20
131#define TWIN_EI            0x80
132
133/* DMA_CFG */
134#define TWIN_DMA_HDX_T1    0x08
135#define TWIN_DMA_HDX_R1    0x0a
136#define TWIN_DMA_HDX_T3    0x14
137#define TWIN_DMA_HDX_R3    0x16
138#define TWIN_DMA_FDX_T3R1  0x1b
139#define TWIN_DMA_FDX_T1R3  0x1d
140
141
142/* Status values */
143
144#define IDLE      0
145#define TX_HEAD   1
146#define TX_DATA   2
147#define TX_PAUSE  3
148#define TX_TAIL   4
149#define RTS_OFF   5
150#define WAIT      6
151#define DCD_ON    7
152#define RX_ON     8
153#define DCD_OFF   9
154
155
156/* Ioctls */
157
158#define SIOCGSCCPARAM SIOCDEVPRIVATE
159#define SIOCSSCCPARAM (SIOCDEVPRIVATE+1)
160
161
162/* Data types */
163
164struct scc_param {
165	int pclk_hz;		/* frequency of BRG input (don't change) */
166	int brg_tc;		/* BRG terminal count; BRG disabled if < 0 */
167	int nrzi;		/* 0 (nrz), 1 (nrzi) */
168	int clocks;		/* see dmascc_cfg documentation */
169	int txdelay;		/* [1/TMR_0_HZ] */
170	int txtimeout;		/* [1/HZ] */
171	int txtail;		/* [1/TMR_0_HZ] */
172	int waittime;		/* [1/TMR_0_HZ] */
173	int slottime;		/* [1/TMR_0_HZ] */
174	int persist;		/* 1 ... 256 */
175	int dma;		/* -1 (disable), 0, 1, 3 */
176	int txpause;		/* [1/TMR_0_HZ] */
177	int rtsoff;		/* [1/TMR_0_HZ] */
178	int dcdon;		/* [1/TMR_0_HZ] */
179	int dcdoff;		/* [1/TMR_0_HZ] */
180};
181
182struct scc_hardware {
183	char *name;
184	int io_region;
185	int io_delta;
186	int io_size;
187	int num_devs;
188	int scc_offset;
189	int tmr_offset;
190	int tmr_hz;
191	int pclk_hz;
192};
193
194struct scc_priv {
195	int type;
196	int chip;
197	struct net_device *dev;
198	struct scc_info *info;
199
200	int channel;
201	int card_base, scc_cmd, scc_data;
202	int tmr_cnt, tmr_ctrl, tmr_mode;
203	struct scc_param param;
204	char rx_buf[NUM_RX_BUF][BUF_SIZE];
205	int rx_len[NUM_RX_BUF];
206	int rx_ptr;
207	struct work_struct rx_work;
208	int rx_head, rx_tail, rx_count;
209	int rx_over;
210	char tx_buf[NUM_TX_BUF][BUF_SIZE];
211	int tx_len[NUM_TX_BUF];
212	int tx_ptr;
213	int tx_head, tx_tail, tx_count;
214	int state;
215	unsigned long tx_start;
216	int rr0;
217	spinlock_t *register_lock;	/* Per scc_info */
218	spinlock_t ring_lock;
219};
220
221struct scc_info {
222	int irq_used;
223	int twin_serial_cfg;
224	struct net_device *dev[2];
225	struct scc_priv priv[2];
226	struct scc_info *next;
227	spinlock_t register_lock;	/* Per device register lock */
228};
229
230
231/* Function declarations */
232static int setup_adapter(int card_base, int type, int n) __init;
233
234static void write_scc(struct scc_priv *priv, int reg, int val);
235static void write_scc_data(struct scc_priv *priv, int val, int fast);
236static int read_scc(struct scc_priv *priv, int reg);
237static int read_scc_data(struct scc_priv *priv);
238
239static int scc_open(struct net_device *dev);
240static int scc_close(struct net_device *dev);
241static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
242static int scc_send_packet(struct sk_buff *skb, struct net_device *dev);
243static int scc_set_mac_address(struct net_device *dev, void *sa);
244
245static inline void tx_on(struct scc_priv *priv);
246static inline void rx_on(struct scc_priv *priv);
247static inline void rx_off(struct scc_priv *priv);
248static void start_timer(struct scc_priv *priv, int t, int r15);
249static inline unsigned char random(void);
250
251static inline void z8530_isr(struct scc_info *info);
252static irqreturn_t scc_isr(int irq, void *dev_id);
253static void rx_isr(struct scc_priv *priv);
254static void special_condition(struct scc_priv *priv, int rc);
255static void rx_bh(struct work_struct *);
256static void tx_isr(struct scc_priv *priv);
257static void es_isr(struct scc_priv *priv);
258static void tm_isr(struct scc_priv *priv);
259
260
261/* Initialization variables */
262
263static int io[MAX_NUM_DEVS] __initdata = { 0, };
264
265/* Beware! hw[] is also used in dmascc_exit(). */
266static struct scc_hardware hw[NUM_TYPES] = HARDWARE;
267
268
269/* Global variables */
270
271static struct scc_info *first;
272static unsigned long rand;
273
274
275MODULE_AUTHOR("Klaus Kudielka");
276MODULE_DESCRIPTION("Driver for high-speed SCC boards");
277module_param_array(io, int, NULL, 0);
278MODULE_LICENSE("GPL");
279
280static void __exit dmascc_exit(void)
281{
282	int i;
283	struct scc_info *info;
284
285	while (first) {
286		info = first;
287
288		/* Unregister devices */
289		for (i = 0; i < 2; i++)
290			unregister_netdev(info->dev[i]);
291
292		/* Reset board */
293		if (info->priv[0].type == TYPE_TWIN)
294			outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
295		write_scc(&info->priv[0], R9, FHWRES);
296		release_region(info->dev[0]->base_addr,
297			       hw[info->priv[0].type].io_size);
298
299		for (i = 0; i < 2; i++)
300			free_netdev(info->dev[i]);
301
302		/* Free memory */
303		first = info->next;
304		kfree(info);
305	}
306}
307
308static int __init dmascc_init(void)
309{
310	int h, i, j, n;
311	int base[MAX_NUM_DEVS], tcmd[MAX_NUM_DEVS], t0[MAX_NUM_DEVS],
312	    t1[MAX_NUM_DEVS];
313	unsigned t_val;
314	unsigned long time, start[MAX_NUM_DEVS], delay[MAX_NUM_DEVS],
315	    counting[MAX_NUM_DEVS];
316
317	/* Initialize random number generator */
318	rand = jiffies;
319	/* Cards found = 0 */
320	n = 0;
321	/* Warning message */
322	if (!io[0])
323		printk(KERN_INFO "dmascc: autoprobing (dangerous)\n");
324
325	/* Run autodetection for each card type */
326	for (h = 0; h < NUM_TYPES; h++) {
327
328		if (io[0]) {
329			/* User-specified I/O address regions */
330			for (i = 0; i < hw[h].num_devs; i++)
331				base[i] = 0;
332			for (i = 0; i < MAX_NUM_DEVS && io[i]; i++) {
333				j = (io[i] -
334				     hw[h].io_region) / hw[h].io_delta;
335				if (j >= 0 && j < hw[h].num_devs &&
336				    hw[h].io_region +
337				    j * hw[h].io_delta == io[i]) {
338					base[j] = io[i];
339				}
340			}
341		} else {
342			/* Default I/O address regions */
343			for (i = 0; i < hw[h].num_devs; i++) {
344				base[i] =
345				    hw[h].io_region + i * hw[h].io_delta;
346			}
347		}
348
349		/* Check valid I/O address regions */
350		for (i = 0; i < hw[h].num_devs; i++)
351			if (base[i]) {
352				if (!request_region
353				    (base[i], hw[h].io_size, "dmascc"))
354					base[i] = 0;
355				else {
356					tcmd[i] =
357					    base[i] + hw[h].tmr_offset +
358					    TMR_CTRL;
359					t0[i] =
360					    base[i] + hw[h].tmr_offset +
361					    TMR_CNT0;
362					t1[i] =
363					    base[i] + hw[h].tmr_offset +
364					    TMR_CNT1;
365				}
366			}
367
368		/* Start timers */
369		for (i = 0; i < hw[h].num_devs; i++)
370			if (base[i]) {
371				/* Timer 0: LSB+MSB, Mode 3, TMR_0_HZ */
372				outb(0x36, tcmd[i]);
373				outb((hw[h].tmr_hz / TMR_0_HZ) & 0xFF,
374				     t0[i]);
375				outb((hw[h].tmr_hz / TMR_0_HZ) >> 8,
376				     t0[i]);
377				/* Timer 1: LSB+MSB, Mode 0, HZ/10 */
378				outb(0x70, tcmd[i]);
379				outb((TMR_0_HZ / HZ * 10) & 0xFF, t1[i]);
380				outb((TMR_0_HZ / HZ * 10) >> 8, t1[i]);
381				start[i] = jiffies;
382				delay[i] = 0;
383				counting[i] = 1;
384				/* Timer 2: LSB+MSB, Mode 0 */
385				outb(0xb0, tcmd[i]);
386			}
387		time = jiffies;
388		/* Wait until counter registers are loaded */
389		udelay(2000000 / TMR_0_HZ);
390
391		/* Timing loop */
392		while (jiffies - time < 13) {
393			for (i = 0; i < hw[h].num_devs; i++)
394				if (base[i] && counting[i]) {
395					/* Read back Timer 1: latch; read LSB; read MSB */
396					outb(0x40, tcmd[i]);
397					t_val =
398					    inb(t1[i]) + (inb(t1[i]) << 8);
399					/* Also check whether counter did wrap */
400					if (t_val == 0 ||
401					    t_val > TMR_0_HZ / HZ * 10)
402						counting[i] = 0;
403					delay[i] = jiffies - start[i];
404				}
405		}
406
407		/* Evaluate measurements */
408		for (i = 0; i < hw[h].num_devs; i++)
409			if (base[i]) {
410				if ((delay[i] >= 9 && delay[i] <= 11) &&
411				    /* Ok, we have found an adapter */
412				    (setup_adapter(base[i], h, n) == 0))
413					n++;
414				else
415					release_region(base[i],
416						       hw[h].io_size);
417			}
418
419	}			/* NUM_TYPES */
420
421	/* If any adapter was successfully initialized, return ok */
422	if (n)
423		return 0;
424
425	/* If no adapter found, return error */
426	printk(KERN_INFO "dmascc: no adapters found\n");
427	return -EIO;
428}
429
430module_init(dmascc_init);
431module_exit(dmascc_exit);
432
433static void __init dev_setup(struct net_device *dev)
434{
435	dev->type = ARPHRD_AX25;
436	dev->hard_header_len = AX25_MAX_HEADER_LEN;
437	dev->mtu = 1500;
438	dev->addr_len = AX25_ADDR_LEN;
439	dev->tx_queue_len = 64;
440	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
441	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
442}
443
444static const struct net_device_ops scc_netdev_ops = {
445	.ndo_open = scc_open,
446	.ndo_stop = scc_close,
447	.ndo_start_xmit = scc_send_packet,
448	.ndo_do_ioctl = scc_ioctl,
449	.ndo_set_mac_address = scc_set_mac_address,
450};
451
452static int __init setup_adapter(int card_base, int type, int n)
453{
454	int i, irq, chip;
455	struct scc_info *info;
456	struct net_device *dev;
457	struct scc_priv *priv;
458	unsigned long time;
459	unsigned int irqs;
460	int tmr_base = card_base + hw[type].tmr_offset;
461	int scc_base = card_base + hw[type].scc_offset;
462	char *chipnames[] = CHIPNAMES;
463
464	/* Initialize what is necessary for write_scc and write_scc_data */
465	info = kzalloc(sizeof(struct scc_info), GFP_KERNEL | GFP_DMA);
466	if (!info) {
467		printk(KERN_ERR "dmascc: "
468		       "could not allocate memory for %s at %#3x\n",
469		       hw[type].name, card_base);
470		goto out;
471	}
472
473
474	info->dev[0] = alloc_netdev(0, "", dev_setup);
475	if (!info->dev[0]) {
476		printk(KERN_ERR "dmascc: "
477		       "could not allocate memory for %s at %#3x\n",
478		       hw[type].name, card_base);
479		goto out1;
480	}
481
482	info->dev[1] = alloc_netdev(0, "", dev_setup);
483	if (!info->dev[1]) {
484		printk(KERN_ERR "dmascc: "
485		       "could not allocate memory for %s at %#3x\n",
486		       hw[type].name, card_base);
487		goto out2;
488	}
489	spin_lock_init(&info->register_lock);
490
491	priv = &info->priv[0];
492	priv->type = type;
493	priv->card_base = card_base;
494	priv->scc_cmd = scc_base + SCCA_CMD;
495	priv->scc_data = scc_base + SCCA_DATA;
496	priv->register_lock = &info->register_lock;
497
498	/* Reset SCC */
499	write_scc(priv, R9, FHWRES | MIE | NV);
500
501	/* Determine type of chip by enabling SDLC/HDLC enhancements */
502	write_scc(priv, R15, SHDLCE);
503	if (!read_scc(priv, R15)) {
504		/* WR7' not present. This is an ordinary Z8530 SCC. */
505		chip = Z8530;
506	} else {
507		/* Put one character in TX FIFO */
508		write_scc_data(priv, 0, 0);
509		if (read_scc(priv, R0) & Tx_BUF_EMP) {
510			/* TX FIFO not full. This is a Z85230 ESCC with a 4-byte FIFO. */
511			chip = Z85230;
512		} else {
513			/* TX FIFO full. This is a Z85C30 SCC with a 1-byte FIFO. */
514			chip = Z85C30;
515		}
516	}
517	write_scc(priv, R15, 0);
518
519	/* Start IRQ auto-detection */
520	irqs = probe_irq_on();
521
522	/* Enable interrupts */
523	if (type == TYPE_TWIN) {
524		outb(0, card_base + TWIN_DMA_CFG);
525		inb(card_base + TWIN_CLR_TMR1);
526		inb(card_base + TWIN_CLR_TMR2);
527		info->twin_serial_cfg = TWIN_EI;
528		outb(info->twin_serial_cfg, card_base + TWIN_SERIAL_CFG);
529	} else {
530		write_scc(priv, R15, CTSIE);
531		write_scc(priv, R0, RES_EXT_INT);
532		write_scc(priv, R1, EXT_INT_ENAB);
533	}
534
535	/* Start timer */
536	outb(1, tmr_base + TMR_CNT1);
537	outb(0, tmr_base + TMR_CNT1);
538
539	/* Wait and detect IRQ */
540	time = jiffies;
541	while (jiffies - time < 2 + HZ / TMR_0_HZ);
542	irq = probe_irq_off(irqs);
543
544	/* Clear pending interrupt, disable interrupts */
545	if (type == TYPE_TWIN) {
546		inb(card_base + TWIN_CLR_TMR1);
547	} else {
548		write_scc(priv, R1, 0);
549		write_scc(priv, R15, 0);
550		write_scc(priv, R0, RES_EXT_INT);
551	}
552
553	if (irq <= 0) {
554		printk(KERN_ERR
555		       "dmascc: could not find irq of %s at %#3x (irq=%d)\n",
556		       hw[type].name, card_base, irq);
557		goto out3;
558	}
559
560	/* Set up data structures */
561	for (i = 0; i < 2; i++) {
562		dev = info->dev[i];
563		priv = &info->priv[i];
564		priv->type = type;
565		priv->chip = chip;
566		priv->dev = dev;
567		priv->info = info;
568		priv->channel = i;
569		spin_lock_init(&priv->ring_lock);
570		priv->register_lock = &info->register_lock;
571		priv->card_base = card_base;
572		priv->scc_cmd = scc_base + (i ? SCCB_CMD : SCCA_CMD);
573		priv->scc_data = scc_base + (i ? SCCB_DATA : SCCA_DATA);
574		priv->tmr_cnt = tmr_base + (i ? TMR_CNT2 : TMR_CNT1);
575		priv->tmr_ctrl = tmr_base + TMR_CTRL;
576		priv->tmr_mode = i ? 0xb0 : 0x70;
577		priv->param.pclk_hz = hw[type].pclk_hz;
578		priv->param.brg_tc = -1;
579		priv->param.clocks = TCTRxCP | RCRTxCP;
580		priv->param.persist = 256;
581		priv->param.dma = -1;
582		INIT_WORK(&priv->rx_work, rx_bh);
583		dev->ml_priv = priv;
584		sprintf(dev->name, "dmascc%i", 2 * n + i);
585		dev->base_addr = card_base;
586		dev->irq = irq;
587		dev->netdev_ops = &scc_netdev_ops;
588		dev->header_ops = &ax25_header_ops;
589	}
590	if (register_netdev(info->dev[0])) {
591		printk(KERN_ERR "dmascc: could not register %s\n",
592		       info->dev[0]->name);
593		goto out3;
594	}
595	if (register_netdev(info->dev[1])) {
596		printk(KERN_ERR "dmascc: could not register %s\n",
597		       info->dev[1]->name);
598		goto out4;
599	}
600
601
602	info->next = first;
603	first = info;
604	printk(KERN_INFO "dmascc: found %s (%s) at %#3x, irq %d\n",
605	       hw[type].name, chipnames[chip], card_base, irq);
606	return 0;
607
608      out4:
609	unregister_netdev(info->dev[0]);
610      out3:
611	if (info->priv[0].type == TYPE_TWIN)
612		outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
613	write_scc(&info->priv[0], R9, FHWRES);
614	free_netdev(info->dev[1]);
615      out2:
616	free_netdev(info->dev[0]);
617      out1:
618	kfree(info);
619      out:
620	return -1;
621}
622
623
624/* Driver functions */
625
626static void write_scc(struct scc_priv *priv, int reg, int val)
627{
628	unsigned long flags;
629	switch (priv->type) {
630	case TYPE_S5:
631		if (reg)
632			outb(reg, priv->scc_cmd);
633		outb(val, priv->scc_cmd);
634		return;
635	case TYPE_TWIN:
636		if (reg)
637			outb_p(reg, priv->scc_cmd);
638		outb_p(val, priv->scc_cmd);
639		return;
640	default:
641		spin_lock_irqsave(priv->register_lock, flags);
642		outb_p(0, priv->card_base + PI_DREQ_MASK);
643		if (reg)
644			outb_p(reg, priv->scc_cmd);
645		outb_p(val, priv->scc_cmd);
646		outb(1, priv->card_base + PI_DREQ_MASK);
647		spin_unlock_irqrestore(priv->register_lock, flags);
648		return;
649	}
650}
651
652
653static void write_scc_data(struct scc_priv *priv, int val, int fast)
654{
655	unsigned long flags;
656	switch (priv->type) {
657	case TYPE_S5:
658		outb(val, priv->scc_data);
659		return;
660	case TYPE_TWIN:
661		outb_p(val, priv->scc_data);
662		return;
663	default:
664		if (fast)
665			outb_p(val, priv->scc_data);
666		else {
667			spin_lock_irqsave(priv->register_lock, flags);
668			outb_p(0, priv->card_base + PI_DREQ_MASK);
669			outb_p(val, priv->scc_data);
670			outb(1, priv->card_base + PI_DREQ_MASK);
671			spin_unlock_irqrestore(priv->register_lock, flags);
672		}
673		return;
674	}
675}
676
677
678static int read_scc(struct scc_priv *priv, int reg)
679{
680	int rc;
681	unsigned long flags;
682	switch (priv->type) {
683	case TYPE_S5:
684		if (reg)
685			outb(reg, priv->scc_cmd);
686		return inb(priv->scc_cmd);
687	case TYPE_TWIN:
688		if (reg)
689			outb_p(reg, priv->scc_cmd);
690		return inb_p(priv->scc_cmd);
691	default:
692		spin_lock_irqsave(priv->register_lock, flags);
693		outb_p(0, priv->card_base + PI_DREQ_MASK);
694		if (reg)
695			outb_p(reg, priv->scc_cmd);
696		rc = inb_p(priv->scc_cmd);
697		outb(1, priv->card_base + PI_DREQ_MASK);
698		spin_unlock_irqrestore(priv->register_lock, flags);
699		return rc;
700	}
701}
702
703
704static int read_scc_data(struct scc_priv *priv)
705{
706	int rc;
707	unsigned long flags;
708	switch (priv->type) {
709	case TYPE_S5:
710		return inb(priv->scc_data);
711	case TYPE_TWIN:
712		return inb_p(priv->scc_data);
713	default:
714		spin_lock_irqsave(priv->register_lock, flags);
715		outb_p(0, priv->card_base + PI_DREQ_MASK);
716		rc = inb_p(priv->scc_data);
717		outb(1, priv->card_base + PI_DREQ_MASK);
718		spin_unlock_irqrestore(priv->register_lock, flags);
719		return rc;
720	}
721}
722
723
724static int scc_open(struct net_device *dev)
725{
726	struct scc_priv *priv = dev->ml_priv;
727	struct scc_info *info = priv->info;
728	int card_base = priv->card_base;
729
730	/* Request IRQ if not already used by other channel */
731	if (!info->irq_used) {
732		if (request_irq(dev->irq, scc_isr, 0, "dmascc", info)) {
733			return -EAGAIN;
734		}
735	}
736	info->irq_used++;
737
738	/* Request DMA if required */
739	if (priv->param.dma >= 0) {
740		if (request_dma(priv->param.dma, "dmascc")) {
741			if (--info->irq_used == 0)
742				free_irq(dev->irq, info);
743			return -EAGAIN;
744		} else {
745			unsigned long flags = claim_dma_lock();
746			clear_dma_ff(priv->param.dma);
747			release_dma_lock(flags);
748		}
749	}
750
751	/* Initialize local variables */
752	priv->rx_ptr = 0;
753	priv->rx_over = 0;
754	priv->rx_head = priv->rx_tail = priv->rx_count = 0;
755	priv->state = IDLE;
756	priv->tx_head = priv->tx_tail = priv->tx_count = 0;
757	priv->tx_ptr = 0;
758
759	/* Reset channel */
760	write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
761	/* X1 clock, SDLC mode */
762	write_scc(priv, R4, SDLC | X1CLK);
763	/* DMA */
764	write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
765	/* 8 bit RX char, RX disable */
766	write_scc(priv, R3, Rx8);
767	/* 8 bit TX char, TX disable */
768	write_scc(priv, R5, Tx8);
769	/* SDLC address field */
770	write_scc(priv, R6, 0);
771	/* SDLC flag */
772	write_scc(priv, R7, FLAG);
773	switch (priv->chip) {
774	case Z85C30:
775		/* Select WR7' */
776		write_scc(priv, R15, SHDLCE);
777		/* Auto EOM reset */
778		write_scc(priv, R7, AUTOEOM);
779		write_scc(priv, R15, 0);
780		break;
781	case Z85230:
782		/* Select WR7' */
783		write_scc(priv, R15, SHDLCE);
784		/* The following bits are set (see 2.5.2.1):
785		   - Automatic EOM reset
786		   - Interrupt request if RX FIFO is half full
787		   This bit should be ignored in DMA mode (according to the
788		   documentation), but actually isn't. The receiver doesn't work if
789		   it is set. Thus, we have to clear it in DMA mode.
790		   - Interrupt/DMA request if TX FIFO is completely empty
791		   a) If set, the ESCC behaves as if it had no TX FIFO (Z85C30
792		   compatibility).
793		   b) If cleared, DMA requests may follow each other very quickly,
794		   filling up the TX FIFO.
795		   Advantage: TX works even in case of high bus latency.
796		   Disadvantage: Edge-triggered DMA request circuitry may miss
797		   a request. No more data is delivered, resulting
798		   in a TX FIFO underrun.
799		   Both PI2 and S5SCC/DMA seem to work fine with TXFIFOE cleared.
800		   The PackeTwin doesn't. I don't know about the PI, but let's
801		   assume it behaves like the PI2.
802		 */
803		if (priv->param.dma >= 0) {
804			if (priv->type == TYPE_TWIN)
805				write_scc(priv, R7, AUTOEOM | TXFIFOE);
806			else
807				write_scc(priv, R7, AUTOEOM);
808		} else {
809			write_scc(priv, R7, AUTOEOM | RXFIFOH);
810		}
811		write_scc(priv, R15, 0);
812		break;
813	}
814	/* Preset CRC, NRZ(I) encoding */
815	write_scc(priv, R10, CRCPS | (priv->param.nrzi ? NRZI : NRZ));
816
817	/* Configure baud rate generator */
818	if (priv->param.brg_tc >= 0) {
819		/* Program BR generator */
820		write_scc(priv, R12, priv->param.brg_tc & 0xFF);
821		write_scc(priv, R13, (priv->param.brg_tc >> 8) & 0xFF);
822		/* BRG source = SYS CLK; enable BRG; DTR REQ function (required by
823		   PackeTwin, not connected on the PI2); set DPLL source to BRG */
824		write_scc(priv, R14, SSBR | DTRREQ | BRSRC | BRENABL);
825		/* Enable DPLL */
826		write_scc(priv, R14, SEARCH | DTRREQ | BRSRC | BRENABL);
827	} else {
828		/* Disable BR generator */
829		write_scc(priv, R14, DTRREQ | BRSRC);
830	}
831
832	/* Configure clocks */
833	if (priv->type == TYPE_TWIN) {
834		/* Disable external TX clock receiver */
835		outb((info->twin_serial_cfg &=
836		      ~(priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
837		     card_base + TWIN_SERIAL_CFG);
838	}
839	write_scc(priv, R11, priv->param.clocks);
840	if ((priv->type == TYPE_TWIN) && !(priv->param.clocks & TRxCOI)) {
841		/* Enable external TX clock receiver */
842		outb((info->twin_serial_cfg |=
843		      (priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
844		     card_base + TWIN_SERIAL_CFG);
845	}
846
847	/* Configure PackeTwin */
848	if (priv->type == TYPE_TWIN) {
849		/* Assert DTR, enable interrupts */
850		outb((info->twin_serial_cfg |= TWIN_EI |
851		      (priv->channel ? TWIN_DTRB_ON : TWIN_DTRA_ON)),
852		     card_base + TWIN_SERIAL_CFG);
853	}
854
855	/* Read current status */
856	priv->rr0 = read_scc(priv, R0);
857	/* Enable DCD interrupt */
858	write_scc(priv, R15, DCDIE);
859
860	netif_start_queue(dev);
861
862	return 0;
863}
864
865
866static int scc_close(struct net_device *dev)
867{
868	struct scc_priv *priv = dev->ml_priv;
869	struct scc_info *info = priv->info;
870	int card_base = priv->card_base;
871
872	netif_stop_queue(dev);
873
874	if (priv->type == TYPE_TWIN) {
875		/* Drop DTR */
876		outb((info->twin_serial_cfg &=
877		      (priv->channel ? ~TWIN_DTRB_ON : ~TWIN_DTRA_ON)),
878		     card_base + TWIN_SERIAL_CFG);
879	}
880
881	/* Reset channel, free DMA and IRQ */
882	write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
883	if (priv->param.dma >= 0) {
884		if (priv->type == TYPE_TWIN)
885			outb(0, card_base + TWIN_DMA_CFG);
886		free_dma(priv->param.dma);
887	}
888	if (--info->irq_used == 0)
889		free_irq(dev->irq, info);
890
891	return 0;
892}
893
894
895static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
896{
897	struct scc_priv *priv = dev->ml_priv;
898
899	switch (cmd) {
900	case SIOCGSCCPARAM:
901		if (copy_to_user
902		    (ifr->ifr_data, &priv->param,
903		     sizeof(struct scc_param)))
904			return -EFAULT;
905		return 0;
906	case SIOCSSCCPARAM:
907		if (!capable(CAP_NET_ADMIN))
908			return -EPERM;
909		if (netif_running(dev))
910			return -EAGAIN;
911		if (copy_from_user
912		    (&priv->param, ifr->ifr_data,
913		     sizeof(struct scc_param)))
914			return -EFAULT;
915		return 0;
916	default:
917		return -EINVAL;
918	}
919}
920
921
922static int scc_send_packet(struct sk_buff *skb, struct net_device *dev)
923{
924	struct scc_priv *priv = dev->ml_priv;
925	unsigned long flags;
926	int i;
927
928	/* Temporarily stop the scheduler feeding us packets */
929	netif_stop_queue(dev);
930
931	/* Transfer data to DMA buffer */
932	i = priv->tx_head;
933	skb_copy_from_linear_data_offset(skb, 1, priv->tx_buf[i], skb->len - 1);
934	priv->tx_len[i] = skb->len - 1;
935
936	/* Clear interrupts while we touch our circular buffers */
937
938	spin_lock_irqsave(&priv->ring_lock, flags);
939	/* Move the ring buffer's head */
940	priv->tx_head = (i + 1) % NUM_TX_BUF;
941	priv->tx_count++;
942
943	/* If we just filled up the last buffer, leave queue stopped.
944	   The higher layers must wait until we have a DMA buffer
945	   to accept the data. */
946	if (priv->tx_count < NUM_TX_BUF)
947		netif_wake_queue(dev);
948
949	/* Set new TX state */
950	if (priv->state == IDLE) {
951		/* Assert RTS, start timer */
952		priv->state = TX_HEAD;
953		priv->tx_start = jiffies;
954		write_scc(priv, R5, TxCRC_ENAB | RTS | TxENAB | Tx8);
955		write_scc(priv, R15, 0);
956		start_timer(priv, priv->param.txdelay, 0);
957	}
958
959	/* Turn interrupts back on and free buffer */
960	spin_unlock_irqrestore(&priv->ring_lock, flags);
961	dev_kfree_skb(skb);
962
963	return NETDEV_TX_OK;
964}
965
966
967static int scc_set_mac_address(struct net_device *dev, void *sa)
968{
969	memcpy(dev->dev_addr, ((struct sockaddr *) sa)->sa_data,
970	       dev->addr_len);
971	return 0;
972}
973
974
975static inline void tx_on(struct scc_priv *priv)
976{
977	int i, n;
978	unsigned long flags;
979
980	if (priv->param.dma >= 0) {
981		n = (priv->chip == Z85230) ? 3 : 1;
982		/* Program DMA controller */
983		flags = claim_dma_lock();
984		set_dma_mode(priv->param.dma, DMA_MODE_WRITE);
985		set_dma_addr(priv->param.dma,
986			     (int) priv->tx_buf[priv->tx_tail] + n);
987		set_dma_count(priv->param.dma,
988			      priv->tx_len[priv->tx_tail] - n);
989		release_dma_lock(flags);
990		/* Enable TX underrun interrupt */
991		write_scc(priv, R15, TxUIE);
992		/* Configure DREQ */
993		if (priv->type == TYPE_TWIN)
994			outb((priv->param.dma ==
995			      1) ? TWIN_DMA_HDX_T1 : TWIN_DMA_HDX_T3,
996			     priv->card_base + TWIN_DMA_CFG);
997		else
998			write_scc(priv, R1,
999				  EXT_INT_ENAB | WT_FN_RDYFN |
1000				  WT_RDY_ENAB);
1001		/* Write first byte(s) */
1002		spin_lock_irqsave(priv->register_lock, flags);
1003		for (i = 0; i < n; i++)
1004			write_scc_data(priv,
1005				       priv->tx_buf[priv->tx_tail][i], 1);
1006		enable_dma(priv->param.dma);
1007		spin_unlock_irqrestore(priv->register_lock, flags);
1008	} else {
1009		write_scc(priv, R15, TxUIE);
1010		write_scc(priv, R1,
1011			  EXT_INT_ENAB | WT_FN_RDYFN | TxINT_ENAB);
1012		tx_isr(priv);
1013	}
1014	/* Reset EOM latch if we do not have the AUTOEOM feature */
1015	if (priv->chip == Z8530)
1016		write_scc(priv, R0, RES_EOM_L);
1017}
1018
1019
1020static inline void rx_on(struct scc_priv *priv)
1021{
1022	unsigned long flags;
1023
1024	/* Clear RX FIFO */
1025	while (read_scc(priv, R0) & Rx_CH_AV)
1026		read_scc_data(priv);
1027	priv->rx_over = 0;
1028	if (priv->param.dma >= 0) {
1029		/* Program DMA controller */
1030		flags = claim_dma_lock();
1031		set_dma_mode(priv->param.dma, DMA_MODE_READ);
1032		set_dma_addr(priv->param.dma,
1033			     (int) priv->rx_buf[priv->rx_head]);
1034		set_dma_count(priv->param.dma, BUF_SIZE);
1035		release_dma_lock(flags);
1036		enable_dma(priv->param.dma);
1037		/* Configure PackeTwin DMA */
1038		if (priv->type == TYPE_TWIN) {
1039			outb((priv->param.dma ==
1040			      1) ? TWIN_DMA_HDX_R1 : TWIN_DMA_HDX_R3,
1041			     priv->card_base + TWIN_DMA_CFG);
1042		}
1043		/* Sp. cond. intr. only, ext int enable, RX DMA enable */
1044		write_scc(priv, R1, EXT_INT_ENAB | INT_ERR_Rx |
1045			  WT_RDY_RT | WT_FN_RDYFN | WT_RDY_ENAB);
1046	} else {
1047		/* Reset current frame */
1048		priv->rx_ptr = 0;
1049		/* Intr. on all Rx characters and Sp. cond., ext int enable */
1050		write_scc(priv, R1, EXT_INT_ENAB | INT_ALL_Rx | WT_RDY_RT |
1051			  WT_FN_RDYFN);
1052	}
1053	write_scc(priv, R0, ERR_RES);
1054	write_scc(priv, R3, RxENABLE | Rx8 | RxCRC_ENAB);
1055}
1056
1057
1058static inline void rx_off(struct scc_priv *priv)
1059{
1060	/* Disable receiver */
1061	write_scc(priv, R3, Rx8);
1062	/* Disable DREQ / RX interrupt */
1063	if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
1064		outb(0, priv->card_base + TWIN_DMA_CFG);
1065	else
1066		write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
1067	/* Disable DMA */
1068	if (priv->param.dma >= 0)
1069		disable_dma(priv->param.dma);
1070}
1071
1072
1073static void start_timer(struct scc_priv *priv, int t, int r15)
1074{
1075	outb(priv->tmr_mode, priv->tmr_ctrl);
1076	if (t == 0) {
1077		tm_isr(priv);
1078	} else if (t > 0) {
1079		outb(t & 0xFF, priv->tmr_cnt);
1080		outb((t >> 8) & 0xFF, priv->tmr_cnt);
1081		if (priv->type != TYPE_TWIN) {
1082			write_scc(priv, R15, r15 | CTSIE);
1083			priv->rr0 |= CTS;
1084		}
1085	}
1086}
1087
1088
1089static inline unsigned char random(void)
1090{
1091	/* See "Numerical Recipes in C", second edition, p. 284 */
1092	rand = rand * 1664525L + 1013904223L;
1093	return (unsigned char) (rand >> 24);
1094}
1095
1096static inline void z8530_isr(struct scc_info *info)
1097{
1098	int is, i = 100;
1099
1100	while ((is = read_scc(&info->priv[0], R3)) && i--) {
1101		if (is & CHARxIP) {
1102			rx_isr(&info->priv[0]);
1103		} else if (is & CHATxIP) {
1104			tx_isr(&info->priv[0]);
1105		} else if (is & CHAEXT) {
1106			es_isr(&info->priv[0]);
1107		} else if (is & CHBRxIP) {
1108			rx_isr(&info->priv[1]);
1109		} else if (is & CHBTxIP) {
1110			tx_isr(&info->priv[1]);
1111		} else {
1112			es_isr(&info->priv[1]);
1113		}
1114		write_scc(&info->priv[0], R0, RES_H_IUS);
1115		i++;
1116	}
1117	if (i < 0) {
1118		printk(KERN_ERR "dmascc: stuck in ISR with RR3=0x%02x.\n",
1119		       is);
1120	}
1121	/* Ok, no interrupts pending from this 8530. The INT line should
1122	   be inactive now. */
1123}
1124
1125
1126static irqreturn_t scc_isr(int irq, void *dev_id)
1127{
1128	struct scc_info *info = dev_id;
1129
1130	spin_lock(info->priv[0].register_lock);
1131	/* At this point interrupts are enabled, and the interrupt under service
1132	   is already acknowledged, but masked off.
1133
1134	   Interrupt processing: We loop until we know that the IRQ line is
1135	   low. If another positive edge occurs afterwards during the ISR,
1136	   another interrupt will be triggered by the interrupt controller
1137	   as soon as the IRQ level is enabled again (see asm/irq.h).
1138
1139	   Bottom-half handlers will be processed after scc_isr(). This is
1140	   important, since we only have small ringbuffers and want new data
1141	   to be fetched/delivered immediately. */
1142
1143	if (info->priv[0].type == TYPE_TWIN) {
1144		int is, card_base = info->priv[0].card_base;
1145		while ((is = ~inb(card_base + TWIN_INT_REG)) &
1146		       TWIN_INT_MSK) {
1147			if (is & TWIN_SCC_MSK) {
1148				z8530_isr(info);
1149			} else if (is & TWIN_TMR1_MSK) {
1150				inb(card_base + TWIN_CLR_TMR1);
1151				tm_isr(&info->priv[0]);
1152			} else {
1153				inb(card_base + TWIN_CLR_TMR2);
1154				tm_isr(&info->priv[1]);
1155			}
1156		}
1157	} else
1158		z8530_isr(info);
1159	spin_unlock(info->priv[0].register_lock);
1160	return IRQ_HANDLED;
1161}
1162
1163
1164static void rx_isr(struct scc_priv *priv)
1165{
1166	if (priv->param.dma >= 0) {
1167		/* Check special condition and perform error reset. See 2.4.7.5. */
1168		special_condition(priv, read_scc(priv, R1));
1169		write_scc(priv, R0, ERR_RES);
1170	} else {
1171		/* Check special condition for each character. Error reset not necessary.
1172		   Same algorithm for SCC and ESCC. See 2.4.7.1 and 2.4.7.4. */
1173		int rc;
1174		while (read_scc(priv, R0) & Rx_CH_AV) {
1175			rc = read_scc(priv, R1);
1176			if (priv->rx_ptr < BUF_SIZE)
1177				priv->rx_buf[priv->rx_head][priv->
1178							    rx_ptr++] =
1179				    read_scc_data(priv);
1180			else {
1181				priv->rx_over = 2;
1182				read_scc_data(priv);
1183			}
1184			special_condition(priv, rc);
1185		}
1186	}
1187}
1188
1189
1190static void special_condition(struct scc_priv *priv, int rc)
1191{
1192	int cb;
1193	unsigned long flags;
1194
1195	/* See Figure 2-15. Only overrun and EOF need to be checked. */
1196
1197	if (rc & Rx_OVR) {
1198		/* Receiver overrun */
1199		priv->rx_over = 1;
1200		if (priv->param.dma < 0)
1201			write_scc(priv, R0, ERR_RES);
1202	} else if (rc & END_FR) {
1203		/* End of frame. Get byte count */
1204		if (priv->param.dma >= 0) {
1205			flags = claim_dma_lock();
1206			cb = BUF_SIZE - get_dma_residue(priv->param.dma) -
1207			    2;
1208			release_dma_lock(flags);
1209		} else {
1210			cb = priv->rx_ptr - 2;
1211		}
1212		if (priv->rx_over) {
1213			/* We had an overrun */
1214			priv->dev->stats.rx_errors++;
1215			if (priv->rx_over == 2)
1216				priv->dev->stats.rx_length_errors++;
1217			else
1218				priv->dev->stats.rx_fifo_errors++;
1219			priv->rx_over = 0;
1220		} else if (rc & CRC_ERR) {
1221			/* Count invalid CRC only if packet length >= minimum */
1222			if (cb >= 15) {
1223				priv->dev->stats.rx_errors++;
1224				priv->dev->stats.rx_crc_errors++;
1225			}
1226		} else {
1227			if (cb >= 15) {
1228				if (priv->rx_count < NUM_RX_BUF - 1) {
1229					/* Put good frame in FIFO */
1230					priv->rx_len[priv->rx_head] = cb;
1231					priv->rx_head =
1232					    (priv->rx_head +
1233					     1) % NUM_RX_BUF;
1234					priv->rx_count++;
1235					schedule_work(&priv->rx_work);
1236				} else {
1237					priv->dev->stats.rx_errors++;
1238					priv->dev->stats.rx_over_errors++;
1239				}
1240			}
1241		}
1242		/* Get ready for new frame */
1243		if (priv->param.dma >= 0) {
1244			flags = claim_dma_lock();
1245			set_dma_addr(priv->param.dma,
1246				     (int) priv->rx_buf[priv->rx_head]);
1247			set_dma_count(priv->param.dma, BUF_SIZE);
1248			release_dma_lock(flags);
1249		} else {
1250			priv->rx_ptr = 0;
1251		}
1252	}
1253}
1254
1255
1256static void rx_bh(struct work_struct *ugli_api)
1257{
1258	struct scc_priv *priv = container_of(ugli_api, struct scc_priv, rx_work);
1259	int i = priv->rx_tail;
1260	int cb;
1261	unsigned long flags;
1262	struct sk_buff *skb;
1263	unsigned char *data;
1264
1265	spin_lock_irqsave(&priv->ring_lock, flags);
1266	while (priv->rx_count) {
1267		spin_unlock_irqrestore(&priv->ring_lock, flags);
1268		cb = priv->rx_len[i];
1269		/* Allocate buffer */
1270		skb = dev_alloc_skb(cb + 1);
1271		if (skb == NULL) {
1272			/* Drop packet */
1273			priv->dev->stats.rx_dropped++;
1274		} else {
1275			/* Fill buffer */
1276			data = skb_put(skb, cb + 1);
1277			data[0] = 0;
1278			memcpy(&data[1], priv->rx_buf[i], cb);
1279			skb->protocol = ax25_type_trans(skb, priv->dev);
1280			netif_rx(skb);
1281			priv->dev->stats.rx_packets++;
1282			priv->dev->stats.rx_bytes += cb;
1283		}
1284		spin_lock_irqsave(&priv->ring_lock, flags);
1285		/* Move tail */
1286		priv->rx_tail = i = (i + 1) % NUM_RX_BUF;
1287		priv->rx_count--;
1288	}
1289	spin_unlock_irqrestore(&priv->ring_lock, flags);
1290}
1291
1292
1293static void tx_isr(struct scc_priv *priv)
1294{
1295	int i = priv->tx_tail, p = priv->tx_ptr;
1296
1297	/* Suspend TX interrupts if we don't want to send anything.
1298	   See Figure 2-22. */
1299	if (p == priv->tx_len[i]) {
1300		write_scc(priv, R0, RES_Tx_P);
1301		return;
1302	}
1303
1304	/* Write characters */
1305	while ((read_scc(priv, R0) & Tx_BUF_EMP) && p < priv->tx_len[i]) {
1306		write_scc_data(priv, priv->tx_buf[i][p++], 0);
1307	}
1308
1309	/* Reset EOM latch of Z8530 */
1310	if (!priv->tx_ptr && p && priv->chip == Z8530)
1311		write_scc(priv, R0, RES_EOM_L);
1312
1313	priv->tx_ptr = p;
1314}
1315
1316
1317static void es_isr(struct scc_priv *priv)
1318{
1319	int i, rr0, drr0, res;
1320	unsigned long flags;
1321
1322	/* Read status, reset interrupt bit (open latches) */
1323	rr0 = read_scc(priv, R0);
1324	write_scc(priv, R0, RES_EXT_INT);
1325	drr0 = priv->rr0 ^ rr0;
1326	priv->rr0 = rr0;
1327
1328	/* Transmit underrun (2.4.9.6). We can't check the TxEOM flag, since
1329	   it might have already been cleared again by AUTOEOM. */
1330	if (priv->state == TX_DATA) {
1331		/* Get remaining bytes */
1332		i = priv->tx_tail;
1333		if (priv->param.dma >= 0) {
1334			disable_dma(priv->param.dma);
1335			flags = claim_dma_lock();
1336			res = get_dma_residue(priv->param.dma);
1337			release_dma_lock(flags);
1338		} else {
1339			res = priv->tx_len[i] - priv->tx_ptr;
1340			priv->tx_ptr = 0;
1341		}
1342		/* Disable DREQ / TX interrupt */
1343		if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
1344			outb(0, priv->card_base + TWIN_DMA_CFG);
1345		else
1346			write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
1347		if (res) {
1348			/* Update packet statistics */
1349			priv->dev->stats.tx_errors++;
1350			priv->dev->stats.tx_fifo_errors++;
1351			/* Other underrun interrupts may already be waiting */
1352			write_scc(priv, R0, RES_EXT_INT);
1353			write_scc(priv, R0, RES_EXT_INT);
1354		} else {
1355			/* Update packet statistics */
1356			priv->dev->stats.tx_packets++;
1357			priv->dev->stats.tx_bytes += priv->tx_len[i];
1358			/* Remove frame from FIFO */
1359			priv->tx_tail = (i + 1) % NUM_TX_BUF;
1360			priv->tx_count--;
1361			/* Inform upper layers */
1362			netif_wake_queue(priv->dev);
1363		}
1364		/* Switch state */
1365		write_scc(priv, R15, 0);
1366		if (priv->tx_count &&
1367		    (jiffies - priv->tx_start) < priv->param.txtimeout) {
1368			priv->state = TX_PAUSE;
1369			start_timer(priv, priv->param.txpause, 0);
1370		} else {
1371			priv->state = TX_TAIL;
1372			start_timer(priv, priv->param.txtail, 0);
1373		}
1374	}
1375
1376	/* DCD transition */
1377	if (drr0 & DCD) {
1378		if (rr0 & DCD) {
1379			switch (priv->state) {
1380			case IDLE:
1381			case WAIT:
1382				priv->state = DCD_ON;
1383				write_scc(priv, R15, 0);
1384				start_timer(priv, priv->param.dcdon, 0);
1385			}
1386		} else {
1387			switch (priv->state) {
1388			case RX_ON:
1389				rx_off(priv);
1390				priv->state = DCD_OFF;
1391				write_scc(priv, R15, 0);
1392				start_timer(priv, priv->param.dcdoff, 0);
1393			}
1394		}
1395	}
1396
1397	/* CTS transition */
1398	if ((drr0 & CTS) && (~rr0 & CTS) && priv->type != TYPE_TWIN)
1399		tm_isr(priv);
1400
1401}
1402
1403
1404static void tm_isr(struct scc_priv *priv)
1405{
1406	switch (priv->state) {
1407	case TX_HEAD:
1408	case TX_PAUSE:
1409		tx_on(priv);
1410		priv->state = TX_DATA;
1411		break;
1412	case TX_TAIL:
1413		write_scc(priv, R5, TxCRC_ENAB | Tx8);
1414		priv->state = RTS_OFF;
1415		if (priv->type != TYPE_TWIN)
1416			write_scc(priv, R15, 0);
1417		start_timer(priv, priv->param.rtsoff, 0);
1418		break;
1419	case RTS_OFF:
1420		write_scc(priv, R15, DCDIE);
1421		priv->rr0 = read_scc(priv, R0);
1422		if (priv->rr0 & DCD) {
1423			priv->dev->stats.collisions++;
1424			rx_on(priv);
1425			priv->state = RX_ON;
1426		} else {
1427			priv->state = WAIT;
1428			start_timer(priv, priv->param.waittime, DCDIE);
1429		}
1430		break;
1431	case WAIT:
1432		if (priv->tx_count) {
1433			priv->state = TX_HEAD;
1434			priv->tx_start = jiffies;
1435			write_scc(priv, R5,
1436				  TxCRC_ENAB | RTS | TxENAB | Tx8);
1437			write_scc(priv, R15, 0);
1438			start_timer(priv, priv->param.txdelay, 0);
1439		} else {
1440			priv->state = IDLE;
1441			if (priv->type != TYPE_TWIN)
1442				write_scc(priv, R15, DCDIE);
1443		}
1444		break;
1445	case DCD_ON:
1446	case DCD_OFF:
1447		write_scc(priv, R15, DCDIE);
1448		priv->rr0 = read_scc(priv, R0);
1449		if (priv->rr0 & DCD) {
1450			rx_on(priv);
1451			priv->state = RX_ON;
1452		} else {
1453			priv->state = WAIT;
1454			start_timer(priv,
1455				    random() / priv->param.persist *
1456				    priv->param.slottime, DCDIE);
1457		}
1458		break;
1459	}
1460}
1461