1/*
2 * Intel Wireless WiMAX Connection 2400m
3 * Glue with the networking stack
4 *
5 *
6 * Copyright (C) 2007 Intel Corporation <linux-wimax@intel.com>
7 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
8 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License version
12 * 2 as published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
22 * 02110-1301, USA.
23 *
24 *
25 * This implements an ethernet device for the i2400m.
26 *
27 * We fake being an ethernet device to simplify the support from user
28 * space and from the other side. The world is (sadly) configured to
29 * take in only Ethernet devices...
30 *
31 * Because of this, when using firmwares <= v1.3, there is an
32 * copy-each-rxed-packet overhead on the RX path. Each IP packet has
33 * to be reallocated to add an ethernet header (as there is no space
34 * in what we get from the device). This is a known drawback and
35 * firmwares >= 1.4 add header space that can be used to insert the
36 * ethernet header without having to reallocate and copy.
37 *
38 * TX error handling is tricky; because we have to FIFO/queue the
39 * buffers for transmission (as the hardware likes it aggregated), we
40 * just give the skb to the TX subsystem and by the time it is
41 * transmitted, we have long forgotten about it. So we just don't care
42 * too much about it.
43 *
44 * Note that when the device is in idle mode with the basestation, we
45 * need to negotiate coming back up online. That involves negotiation
46 * and possible user space interaction. Thus, we defer to a workqueue
47 * to do all that. By default, we only queue a single packet and drop
48 * the rest, as potentially the time to go back from idle to normal is
49 * long.
50 *
51 * ROADMAP
52 *
53 * i2400m_open         Called on ifconfig up
54 * i2400m_stop         Called on ifconfig down
55 *
56 * i2400m_hard_start_xmit Called by the network stack to send a packet
57 *   i2400m_net_wake_tx	  Wake up device from basestation-IDLE & TX
58 *     i2400m_wake_tx_work
59 *       i2400m_cmd_exit_idle
60 *       i2400m_tx
61 *   i2400m_net_tx        TX a data frame
62 *     i2400m_tx
63 *
64 * i2400m_change_mtu      Called on ifconfig mtu XXX
65 *
66 * i2400m_tx_timeout      Called when the device times out
67 *
68 * i2400m_net_rx          Called by the RX code when a data frame is
69 *                        available (firmware <= 1.3)
70 * i2400m_net_erx         Called by the RX code when a data frame is
71 *                        available (firmware >= 1.4).
72 * i2400m_netdev_setup    Called to setup all the netdev stuff from
73 *                        alloc_netdev.
74 */
75#include <linux/if_arp.h>
76#include <linux/slab.h>
77#include <linux/netdevice.h>
78#include <linux/ethtool.h>
79#include <linux/export.h>
80#include "i2400m.h"
81
82
83#define D_SUBMODULE netdev
84#include "debug-levels.h"
85
86enum {
87/* netdev interface */
88	/* 20 secs? yep, this is the maximum timeout that the device
89	 * might take to get out of IDLE / negotiate it with the base
90	 * station. We add 1sec for good measure. */
91	I2400M_TX_TIMEOUT = 21 * HZ,
92	/*
93	 * Experimentation has determined that, 20 to be a good value
94	 * for minimizing the jitter in the throughput.
95	 */
96	I2400M_TX_QLEN = 20,
97};
98
99
100static
101int i2400m_open(struct net_device *net_dev)
102{
103	int result;
104	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
105	struct device *dev = i2400m_dev(i2400m);
106
107	d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m);
108	/* Make sure we wait until init is complete... */
109	mutex_lock(&i2400m->init_mutex);
110	if (i2400m->updown)
111		result = 0;
112	else
113		result = -EBUSY;
114	mutex_unlock(&i2400m->init_mutex);
115	d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
116		net_dev, i2400m, result);
117	return result;
118}
119
120
121static
122int i2400m_stop(struct net_device *net_dev)
123{
124	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
125	struct device *dev = i2400m_dev(i2400m);
126
127	d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m);
128	i2400m_net_wake_stop(i2400m);
129	d_fnend(3, dev, "(net_dev %p [i2400m %p]) = 0\n", net_dev, i2400m);
130	return 0;
131}
132
133
134/*
135 * Wake up the device and transmit a held SKB, then restart the net queue
136 *
137 * When the device goes into basestation-idle mode, we need to tell it
138 * to exit that mode; it will negotiate with the base station, user
139 * space may have to intervene to rehandshake crypto and then tell us
140 * when it is ready to transmit the packet we have "queued". Still we
141 * need to give it sometime after it reports being ok.
142 *
143 * On error, there is not much we can do. If the error was on TX, we
144 * still wake the queue up to see if the next packet will be luckier.
145 *
146 * If _cmd_exit_idle() fails...well, it could be many things; most
147 * commonly it is that something else took the device out of IDLE mode
148 * (for example, the base station). In that case we get an -EILSEQ and
149 * we are just going to ignore that one. If the device is back to
150 * connected, then fine -- if it is someother state, the packet will
151 * be dropped anyway.
152 */
153void i2400m_wake_tx_work(struct work_struct *ws)
154{
155	int result;
156	struct i2400m *i2400m = container_of(ws, struct i2400m, wake_tx_ws);
157	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
158	struct device *dev = i2400m_dev(i2400m);
159	struct sk_buff *skb = i2400m->wake_tx_skb;
160	unsigned long flags;
161
162	spin_lock_irqsave(&i2400m->tx_lock, flags);
163	skb = i2400m->wake_tx_skb;
164	i2400m->wake_tx_skb = NULL;
165	spin_unlock_irqrestore(&i2400m->tx_lock, flags);
166
167	d_fnstart(3, dev, "(ws %p i2400m %p skb %p)\n", ws, i2400m, skb);
168	result = -EINVAL;
169	if (skb == NULL) {
170		dev_err(dev, "WAKE&TX: skb disappeared!\n");
171		goto out_put;
172	}
173	/* If we have, somehow, lost the connection after this was
174	 * queued, don't do anything; this might be the device got
175	 * reset or just disconnected. */
176	if (unlikely(!netif_carrier_ok(net_dev)))
177		goto out_kfree;
178	result = i2400m_cmd_exit_idle(i2400m);
179	if (result == -EILSEQ)
180		result = 0;
181	if (result < 0) {
182		dev_err(dev, "WAKE&TX: device didn't get out of idle: "
183			"%d - resetting\n", result);
184		i2400m_reset(i2400m, I2400M_RT_BUS);
185		goto error;
186	}
187	result = wait_event_timeout(i2400m->state_wq,
188				    i2400m->state != I2400M_SS_IDLE,
189				    net_dev->watchdog_timeo - HZ/2);
190	if (result == 0)
191		result = -ETIMEDOUT;
192	if (result < 0) {
193		dev_err(dev, "WAKE&TX: error waiting for device to exit IDLE: "
194			"%d - resetting\n", result);
195		i2400m_reset(i2400m, I2400M_RT_BUS);
196		goto error;
197	}
198	msleep(20);	/* device still needs some time or it drops it */
199	result = i2400m_tx(i2400m, skb->data, skb->len, I2400M_PT_DATA);
200error:
201	netif_wake_queue(net_dev);
202out_kfree:
203	kfree_skb(skb);	/* refcount transferred by _hard_start_xmit() */
204out_put:
205	i2400m_put(i2400m);
206	d_fnend(3, dev, "(ws %p i2400m %p skb %p) = void [%d]\n",
207		ws, i2400m, skb, result);
208}
209
210
211/*
212 * Prepare the data payload TX header
213 *
214 * The i2400m expects a 4 byte header in front of a data packet.
215 *
216 * Because we pretend to be an ethernet device, this packet comes with
217 * an ethernet header. Pull it and push our header.
218 */
219static
220void i2400m_tx_prep_header(struct sk_buff *skb)
221{
222	struct i2400m_pl_data_hdr *pl_hdr;
223	skb_pull(skb, ETH_HLEN);
224	pl_hdr = (struct i2400m_pl_data_hdr *) skb_push(skb, sizeof(*pl_hdr));
225	pl_hdr->reserved = 0;
226}
227
228
229
230/*
231 * Cleanup resources acquired during i2400m_net_wake_tx()
232 *
233 * This is called by __i2400m_dev_stop and means we have to make sure
234 * the workqueue is flushed from any pending work.
235 */
236void i2400m_net_wake_stop(struct i2400m *i2400m)
237{
238	struct device *dev = i2400m_dev(i2400m);
239
240	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
241	/* See i2400m_hard_start_xmit(), references are taken there
242	 * and here we release them if the work was still
243	 * pending. Note we can't differentiate work not pending vs
244	 * never scheduled, so the NULL check does that. */
245	if (cancel_work_sync(&i2400m->wake_tx_ws) == 0
246	    && i2400m->wake_tx_skb != NULL) {
247		unsigned long flags;
248		struct sk_buff *wake_tx_skb;
249		spin_lock_irqsave(&i2400m->tx_lock, flags);
250		wake_tx_skb = i2400m->wake_tx_skb;	/* compat help */
251		i2400m->wake_tx_skb = NULL;	/* compat help */
252		spin_unlock_irqrestore(&i2400m->tx_lock, flags);
253		i2400m_put(i2400m);
254		kfree_skb(wake_tx_skb);
255	}
256	d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
257}
258
259
260/*
261 * TX an skb to an idle device
262 *
263 * When the device is in basestation-idle mode, we need to wake it up
264 * and then TX. So we queue a work_struct for doing so.
265 *
266 * We need to get an extra ref for the skb (so it is not dropped), as
267 * well as be careful not to queue more than one request (won't help
268 * at all). If more than one request comes or there are errors, we
269 * just drop the packets (see i2400m_hard_start_xmit()).
270 */
271static
272int i2400m_net_wake_tx(struct i2400m *i2400m, struct net_device *net_dev,
273		       struct sk_buff *skb)
274{
275	int result;
276	struct device *dev = i2400m_dev(i2400m);
277	unsigned long flags;
278
279	d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
280	if (net_ratelimit()) {
281		d_printf(3, dev, "WAKE&NETTX: "
282			 "skb %p sending %d bytes to radio\n",
283			 skb, skb->len);
284		d_dump(4, dev, skb->data, skb->len);
285	}
286	/* We hold a ref count for i2400m and skb, so when
287	 * stopping() the device, we need to cancel that work
288	 * and if pending, release those resources. */
289	result = 0;
290	spin_lock_irqsave(&i2400m->tx_lock, flags);
291	if (!work_pending(&i2400m->wake_tx_ws)) {
292		netif_stop_queue(net_dev);
293		i2400m_get(i2400m);
294		i2400m->wake_tx_skb = skb_get(skb);	/* transfer ref count */
295		i2400m_tx_prep_header(skb);
296		result = schedule_work(&i2400m->wake_tx_ws);
297		WARN_ON(result == 0);
298	}
299	spin_unlock_irqrestore(&i2400m->tx_lock, flags);
300	if (result == 0) {
301		/* Yes, this happens even if we stopped the
302		 * queue -- blame the queue disciplines that
303		 * queue without looking -- I guess there is a reason
304		 * for that. */
305		if (net_ratelimit())
306			d_printf(1, dev, "NETTX: device exiting idle, "
307				 "dropping skb %p, queue running %d\n",
308				 skb, netif_queue_stopped(net_dev));
309		result = -EBUSY;
310	}
311	d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result);
312	return result;
313}
314
315
316/*
317 * Transmit a packet to the base station on behalf of the network stack.
318 *
319 * Returns: 0 if ok, < 0 errno code on error.
320 *
321 * We need to pull the ethernet header and add the hardware header,
322 * which is currently set to all zeroes and reserved.
323 */
324static
325int i2400m_net_tx(struct i2400m *i2400m, struct net_device *net_dev,
326		  struct sk_buff *skb)
327{
328	int result;
329	struct device *dev = i2400m_dev(i2400m);
330
331	d_fnstart(3, dev, "(i2400m %p net_dev %p skb %p)\n",
332		  i2400m, net_dev, skb);
333	/* FIXME: check eth hdr, only IPv4 is routed by the device as of now */
334	net_dev->trans_start = jiffies;
335	i2400m_tx_prep_header(skb);
336	d_printf(3, dev, "NETTX: skb %p sending %d bytes to radio\n",
337		 skb, skb->len);
338	d_dump(4, dev, skb->data, skb->len);
339	result = i2400m_tx(i2400m, skb->data, skb->len, I2400M_PT_DATA);
340	d_fnend(3, dev, "(i2400m %p net_dev %p skb %p) = %d\n",
341		i2400m, net_dev, skb, result);
342	return result;
343}
344
345
346/*
347 * Transmit a packet to the base station on behalf of the network stack
348 *
349 *
350 * Returns: NETDEV_TX_OK (always, even in case of error)
351 *
352 * In case of error, we just drop it. Reasons:
353 *
354 *  - we add a hw header to each skb, and if the network stack
355 *    retries, we have no way to know if that skb has it or not.
356 *
357 *  - network protocols have their own drop-recovery mechanisms
358 *
359 *  - there is not much else we can do
360 *
361 * If the device is idle, we need to wake it up; that is an operation
362 * that will sleep. See i2400m_net_wake_tx() for details.
363 */
364static
365netdev_tx_t i2400m_hard_start_xmit(struct sk_buff *skb,
366					 struct net_device *net_dev)
367{
368	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
369	struct device *dev = i2400m_dev(i2400m);
370	int result = -1;
371
372	d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
373
374	if (skb_header_cloned(skb) &&
375	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
376		goto drop;
377
378	if (i2400m->state == I2400M_SS_IDLE)
379		result = i2400m_net_wake_tx(i2400m, net_dev, skb);
380	else
381		result = i2400m_net_tx(i2400m, net_dev, skb);
382	if (result <  0) {
383drop:
384		net_dev->stats.tx_dropped++;
385	} else {
386		net_dev->stats.tx_packets++;
387		net_dev->stats.tx_bytes += skb->len;
388	}
389	dev_kfree_skb(skb);
390	d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result);
391	return NETDEV_TX_OK;
392}
393
394
395static
396int i2400m_change_mtu(struct net_device *net_dev, int new_mtu)
397{
398	int result;
399	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
400	struct device *dev = i2400m_dev(i2400m);
401
402	if (new_mtu >= I2400M_MAX_MTU) {
403		dev_err(dev, "Cannot change MTU to %d (max is %d)\n",
404			new_mtu, I2400M_MAX_MTU);
405		result = -EINVAL;
406	} else {
407		net_dev->mtu = new_mtu;
408		result = 0;
409	}
410	return result;
411}
412
413
414static
415void i2400m_tx_timeout(struct net_device *net_dev)
416{
417	/*
418	 * We might want to kick the device
419	 *
420	 * There is not much we can do though, as the device requires
421	 * that we send the data aggregated. By the time we receive
422	 * this, there might be data pending to be sent or not...
423	 */
424	net_dev->stats.tx_errors++;
425}
426
427
428/*
429 * Create a fake ethernet header
430 *
431 * For emulating an ethernet device, every received IP header has to
432 * be prefixed with an ethernet header. Fake it with the given
433 * protocol.
434 */
435static
436void i2400m_rx_fake_eth_header(struct net_device *net_dev,
437			       void *_eth_hdr, __be16 protocol)
438{
439	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
440	struct ethhdr *eth_hdr = _eth_hdr;
441
442	memcpy(eth_hdr->h_dest, net_dev->dev_addr, sizeof(eth_hdr->h_dest));
443	memcpy(eth_hdr->h_source, i2400m->src_mac_addr,
444	       sizeof(eth_hdr->h_source));
445	eth_hdr->h_proto = protocol;
446}
447
448
449/*
450 * i2400m_net_rx - pass a network packet to the stack
451 *
452 * @i2400m: device instance
453 * @skb_rx: the skb where the buffer pointed to by @buf is
454 * @i: 1 if payload is the only one
455 * @buf: pointer to the buffer containing the data
456 * @len: buffer's length
457 *
458 * This is only used now for the v1.3 firmware. It will be deprecated
459 * in >= 2.6.31.
460 *
461 * Note that due to firmware limitations, we don't have space to add
462 * an ethernet header, so we need to copy each packet. Firmware
463 * versions >= v1.4 fix this [see i2400m_net_erx()].
464 *
465 * We just clone the skb and set it up so that it's skb->data pointer
466 * points to "buf" and it's length.
467 *
468 * Note that if the payload is the last (or the only one) in a
469 * multi-payload message, we don't clone the SKB but just reuse it.
470 *
471 * This function is normally run from a thread context. However, we
472 * still use netif_rx() instead of netif_receive_skb() as was
473 * recommended in the mailing list. Reason is in some stress tests
474 * when sending/receiving a lot of data we seem to hit a softlock in
475 * the kernel's TCP implementation [aroudn tcp_delay_timer()]. Using
476 * netif_rx() took care of the issue.
477 *
478 * This is, of course, still open to do more research on why running
479 * with netif_receive_skb() hits this softlock. FIXME.
480 *
481 * FIXME: currently we don't do any efforts at distinguishing if what
482 * we got was an IPv4 or IPv6 header, to setup the protocol field
483 * correctly.
484 */
485void i2400m_net_rx(struct i2400m *i2400m, struct sk_buff *skb_rx,
486		   unsigned i, const void *buf, int buf_len)
487{
488	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
489	struct device *dev = i2400m_dev(i2400m);
490	struct sk_buff *skb;
491
492	d_fnstart(2, dev, "(i2400m %p buf %p buf_len %d)\n",
493		  i2400m, buf, buf_len);
494	if (i) {
495		skb = skb_get(skb_rx);
496		d_printf(2, dev, "RX: reusing first payload skb %p\n", skb);
497		skb_pull(skb, buf - (void *) skb->data);
498		skb_trim(skb, (void *) skb_end_pointer(skb) - buf);
499	} else {
500		/* Yes, this is bad -- a lot of overhead -- see
501		 * comments at the top of the file */
502		skb = __netdev_alloc_skb(net_dev, buf_len, GFP_KERNEL);
503		if (skb == NULL) {
504			dev_err(dev, "NETRX: no memory to realloc skb\n");
505			net_dev->stats.rx_dropped++;
506			goto error_skb_realloc;
507		}
508		memcpy(skb_put(skb, buf_len), buf, buf_len);
509	}
510	i2400m_rx_fake_eth_header(i2400m->wimax_dev.net_dev,
511				  skb->data - ETH_HLEN,
512				  cpu_to_be16(ETH_P_IP));
513	skb_set_mac_header(skb, -ETH_HLEN);
514	skb->dev = i2400m->wimax_dev.net_dev;
515	skb->protocol = htons(ETH_P_IP);
516	net_dev->stats.rx_packets++;
517	net_dev->stats.rx_bytes += buf_len;
518	d_printf(3, dev, "NETRX: receiving %d bytes to network stack\n",
519		buf_len);
520	d_dump(4, dev, buf, buf_len);
521	netif_rx_ni(skb);	/* see notes in function header */
522error_skb_realloc:
523	d_fnend(2, dev, "(i2400m %p buf %p buf_len %d) = void\n",
524		i2400m, buf, buf_len);
525}
526
527
528/*
529 * i2400m_net_erx - pass a network packet to the stack (extended version)
530 *
531 * @i2400m: device descriptor
532 * @skb: the skb where the packet is - the skb should be set to point
533 *     at the IP packet; this function will add ethernet headers if
534 *     needed.
535 * @cs: packet type
536 *
537 * This is only used now for firmware >= v1.4. Note it is quite
538 * similar to i2400m_net_rx() (used only for v1.3 firmware).
539 *
540 * This function is normally run from a thread context. However, we
541 * still use netif_rx() instead of netif_receive_skb() as was
542 * recommended in the mailing list. Reason is in some stress tests
543 * when sending/receiving a lot of data we seem to hit a softlock in
544 * the kernel's TCP implementation [aroudn tcp_delay_timer()]. Using
545 * netif_rx() took care of the issue.
546 *
547 * This is, of course, still open to do more research on why running
548 * with netif_receive_skb() hits this softlock. FIXME.
549 */
550void i2400m_net_erx(struct i2400m *i2400m, struct sk_buff *skb,
551		    enum i2400m_cs cs)
552{
553	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
554	struct device *dev = i2400m_dev(i2400m);
555	int protocol;
556
557	d_fnstart(2, dev, "(i2400m %p skb %p [%u] cs %d)\n",
558		  i2400m, skb, skb->len, cs);
559	switch(cs) {
560	case I2400M_CS_IPV4_0:
561	case I2400M_CS_IPV4:
562		protocol = ETH_P_IP;
563		i2400m_rx_fake_eth_header(i2400m->wimax_dev.net_dev,
564					  skb->data - ETH_HLEN,
565					  cpu_to_be16(ETH_P_IP));
566		skb_set_mac_header(skb, -ETH_HLEN);
567		skb->dev = i2400m->wimax_dev.net_dev;
568		skb->protocol = htons(ETH_P_IP);
569		net_dev->stats.rx_packets++;
570		net_dev->stats.rx_bytes += skb->len;
571		break;
572	default:
573		dev_err(dev, "ERX: BUG? CS type %u unsupported\n", cs);
574		goto error;
575
576	}
577	d_printf(3, dev, "ERX: receiving %d bytes to the network stack\n",
578		 skb->len);
579	d_dump(4, dev, skb->data, skb->len);
580	netif_rx_ni(skb);	/* see notes in function header */
581error:
582	d_fnend(2, dev, "(i2400m %p skb %p [%u] cs %d) = void\n",
583		i2400m, skb, skb->len, cs);
584}
585
586static const struct net_device_ops i2400m_netdev_ops = {
587	.ndo_open = i2400m_open,
588	.ndo_stop = i2400m_stop,
589	.ndo_start_xmit = i2400m_hard_start_xmit,
590	.ndo_tx_timeout = i2400m_tx_timeout,
591	.ndo_change_mtu = i2400m_change_mtu,
592};
593
594static void i2400m_get_drvinfo(struct net_device *net_dev,
595			       struct ethtool_drvinfo *info)
596{
597	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
598
599	strncpy(info->driver, KBUILD_MODNAME, sizeof(info->driver) - 1);
600	strncpy(info->fw_version,
601	        i2400m->fw_name ? : "", sizeof(info->fw_version) - 1);
602	if (net_dev->dev.parent)
603		strncpy(info->bus_info, dev_name(net_dev->dev.parent),
604			sizeof(info->bus_info) - 1);
605}
606
607static const struct ethtool_ops i2400m_ethtool_ops = {
608	.get_drvinfo = i2400m_get_drvinfo,
609	.get_link = ethtool_op_get_link,
610};
611
612/**
613 * i2400m_netdev_setup - Setup setup @net_dev's i2400m private data
614 *
615 * Called by alloc_netdev()
616 */
617void i2400m_netdev_setup(struct net_device *net_dev)
618{
619	d_fnstart(3, NULL, "(net_dev %p)\n", net_dev);
620	ether_setup(net_dev);
621	net_dev->mtu = I2400M_MAX_MTU;
622	net_dev->tx_queue_len = I2400M_TX_QLEN;
623	net_dev->features =
624		  NETIF_F_VLAN_CHALLENGED
625		| NETIF_F_HIGHDMA;
626	net_dev->flags =
627		IFF_NOARP		/* i2400m is apure IP device */
628		& (~IFF_BROADCAST	/* i2400m is P2P */
629		   & ~IFF_MULTICAST);
630	net_dev->watchdog_timeo = I2400M_TX_TIMEOUT;
631	net_dev->netdev_ops = &i2400m_netdev_ops;
632	net_dev->ethtool_ops = &i2400m_ethtool_ops;
633	d_fnend(3, NULL, "(net_dev %p) = void\n", net_dev);
634}
635EXPORT_SYMBOL_GPL(i2400m_netdev_setup);
636
637