1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <asm/unaligned.h>
18#include "hw.h"
19#include "ar9002_phy.h"
20
21#define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
22
23static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
24{
25	return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
26}
27
28static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
29{
30	return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
31}
32
33static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
34{
35	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
36	struct ath_common *common = ath9k_hw_common(ah);
37	u16 *eep_data;
38	int addr, eep_start_loc = AR9287_EEP_START_LOC;
39	eep_data = (u16 *)eep;
40
41	for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
42		if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
43					 eep_data)) {
44			ath_dbg(common, EEPROM,
45				"Unable to read eeprom region\n");
46			return false;
47		}
48		eep_data++;
49	}
50
51	return true;
52}
53
54static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
55{
56	u16 *eep_data = (u16 *)&ah->eeprom.map9287;
57
58	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
59				     AR9287_HTC_EEP_START_LOC,
60				     SIZE_EEPROM_AR9287);
61	return true;
62}
63
64static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
65{
66	struct ath_common *common = ath9k_hw_common(ah);
67
68	if (!ath9k_hw_use_flash(ah)) {
69		ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
70	}
71
72	if (common->bus_ops->ath_bus_type == ATH_USB)
73		return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
74	else
75		return __ath9k_hw_ar9287_fill_eeprom(ah);
76}
77
78#if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
79static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
80				    struct modal_eep_ar9287_header *modal_hdr)
81{
82	PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
83	PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
84	PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
85	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
86	PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
87	PR_EEP("Switch Settle", modal_hdr->switchSettling);
88	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
89	PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
90	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
91	PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
92	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
93	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
94	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
95	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
96	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
97	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
98	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
99	PR_EEP("xpdGain", modal_hdr->xpdGain);
100	PR_EEP("External PD", modal_hdr->xpd);
101	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
102	PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
103	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
104	PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
105	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
106	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
107	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
108	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
109	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
110	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
111	PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
112	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
113	PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
114	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
115	PR_EEP("AR92x7 Version", modal_hdr->version);
116	PR_EEP("DriverBias1", modal_hdr->db1);
117	PR_EEP("DriverBias2", modal_hdr->db1);
118	PR_EEP("CCK OutputBias", modal_hdr->ob_cck);
119	PR_EEP("PSK OutputBias", modal_hdr->ob_psk);
120	PR_EEP("QAM OutputBias", modal_hdr->ob_qam);
121	PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off);
122
123	return len;
124}
125
126static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
127				       u8 *buf, u32 len, u32 size)
128{
129	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
130	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
131
132	if (!dump_base_hdr) {
133		len += snprintf(buf + len, size - len,
134				"%20s :\n", "2GHz modal Header");
135		len += ar9287_dump_modal_eeprom(buf, len, size,
136						&eep->modalHeader);
137		goto out;
138	}
139
140	PR_EEP("Major Version", pBase->version >> 12);
141	PR_EEP("Minor Version", pBase->version & 0xFFF);
142	PR_EEP("Checksum", pBase->checksum);
143	PR_EEP("Length", pBase->length);
144	PR_EEP("RegDomain1", pBase->regDmn[0]);
145	PR_EEP("RegDomain2", pBase->regDmn[1]);
146	PR_EEP("TX Mask", pBase->txMask);
147	PR_EEP("RX Mask", pBase->rxMask);
148	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
149	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
150	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
151					AR5416_OPFLAGS_N_2G_HT20));
152	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
153					AR5416_OPFLAGS_N_2G_HT40));
154	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
155					AR5416_OPFLAGS_N_5G_HT20));
156	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
157					AR5416_OPFLAGS_N_5G_HT40));
158	PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
159	PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
160	PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
161	PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
162	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
163	PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
164
165	len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
166			pBase->macAddr);
167
168out:
169	if (len > size)
170		len = size;
171
172	return len;
173}
174#else
175static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
176				       u8 *buf, u32 len, u32 size)
177{
178	return 0;
179}
180#endif
181
182
183static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
184{
185	u32 sum = 0, el, integer;
186	u16 temp, word, magic, magic2, *eepdata;
187	int i, addr;
188	bool need_swap = false;
189	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
190	struct ath_common *common = ath9k_hw_common(ah);
191
192	if (!ath9k_hw_use_flash(ah)) {
193		if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
194					 &magic)) {
195			ath_err(common, "Reading Magic # failed\n");
196			return false;
197		}
198
199		ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
200
201		if (magic != AR5416_EEPROM_MAGIC) {
202			magic2 = swab16(magic);
203
204			if (magic2 == AR5416_EEPROM_MAGIC) {
205				need_swap = true;
206				eepdata = (u16 *)(&ah->eeprom);
207
208				for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
209					temp = swab16(*eepdata);
210					*eepdata = temp;
211					eepdata++;
212				}
213			} else {
214				ath_err(common,
215					"Invalid EEPROM Magic. Endianness mismatch.\n");
216				return -EINVAL;
217			}
218		}
219	}
220
221	ath_dbg(common, EEPROM, "need_swap = %s\n",
222		need_swap ? "True" : "False");
223
224	if (need_swap)
225		el = swab16(ah->eeprom.map9287.baseEepHeader.length);
226	else
227		el = ah->eeprom.map9287.baseEepHeader.length;
228
229	if (el > sizeof(struct ar9287_eeprom))
230		el = sizeof(struct ar9287_eeprom) / sizeof(u16);
231	else
232		el = el / sizeof(u16);
233
234	eepdata = (u16 *)(&ah->eeprom);
235
236	for (i = 0; i < el; i++)
237		sum ^= *eepdata++;
238
239	if (need_swap) {
240		word = swab16(eep->baseEepHeader.length);
241		eep->baseEepHeader.length = word;
242
243		word = swab16(eep->baseEepHeader.checksum);
244		eep->baseEepHeader.checksum = word;
245
246		word = swab16(eep->baseEepHeader.version);
247		eep->baseEepHeader.version = word;
248
249		word = swab16(eep->baseEepHeader.regDmn[0]);
250		eep->baseEepHeader.regDmn[0] = word;
251
252		word = swab16(eep->baseEepHeader.regDmn[1]);
253		eep->baseEepHeader.regDmn[1] = word;
254
255		word = swab16(eep->baseEepHeader.rfSilent);
256		eep->baseEepHeader.rfSilent = word;
257
258		word = swab16(eep->baseEepHeader.blueToothOptions);
259		eep->baseEepHeader.blueToothOptions = word;
260
261		word = swab16(eep->baseEepHeader.deviceCap);
262		eep->baseEepHeader.deviceCap = word;
263
264		integer = swab32(eep->modalHeader.antCtrlCommon);
265		eep->modalHeader.antCtrlCommon = integer;
266
267		for (i = 0; i < AR9287_MAX_CHAINS; i++) {
268			integer = swab32(eep->modalHeader.antCtrlChain[i]);
269			eep->modalHeader.antCtrlChain[i] = integer;
270		}
271
272		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
273			word = swab16(eep->modalHeader.spurChans[i].spurChan);
274			eep->modalHeader.spurChans[i].spurChan = word;
275		}
276	}
277
278	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
279	    || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
280		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
281			sum, ah->eep_ops->get_eeprom_ver(ah));
282		return -EINVAL;
283	}
284
285	return 0;
286}
287
288static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
289				      enum eeprom_param param)
290{
291	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
292	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
293	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
294	u16 ver_minor;
295
296	ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
297
298	switch (param) {
299	case EEP_NFTHRESH_2:
300		return pModal->noiseFloorThreshCh[0];
301	case EEP_MAC_LSW:
302		return get_unaligned_be16(pBase->macAddr);
303	case EEP_MAC_MID:
304		return get_unaligned_be16(pBase->macAddr + 2);
305	case EEP_MAC_MSW:
306		return get_unaligned_be16(pBase->macAddr + 4);
307	case EEP_REG_0:
308		return pBase->regDmn[0];
309	case EEP_OP_CAP:
310		return pBase->deviceCap;
311	case EEP_OP_MODE:
312		return pBase->opCapFlags;
313	case EEP_RF_SILENT:
314		return pBase->rfSilent;
315	case EEP_MINOR_REV:
316		return ver_minor;
317	case EEP_TX_MASK:
318		return pBase->txMask;
319	case EEP_RX_MASK:
320		return pBase->rxMask;
321	case EEP_DEV_TYPE:
322		return pBase->deviceType;
323	case EEP_OL_PWRCTRL:
324		return pBase->openLoopPwrCntl;
325	case EEP_TEMPSENSE_SLOPE:
326		if (ver_minor >= AR9287_EEP_MINOR_VER_2)
327			return pBase->tempSensSlope;
328		else
329			return 0;
330	case EEP_TEMPSENSE_SLOPE_PAL_ON:
331		if (ver_minor >= AR9287_EEP_MINOR_VER_3)
332			return pBase->tempSensSlopePalOn;
333		else
334			return 0;
335	case EEP_ANTENNA_GAIN_2G:
336		return max_t(u8, pModal->antennaGainCh[0],
337				 pModal->antennaGainCh[1]);
338	default:
339		return 0;
340	}
341}
342
343static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
344			    struct ath9k_channel *chan,
345			    struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
346			    u8 *pCalChans,  u16 availPiers, int8_t *pPwr)
347{
348	u16 idxL = 0, idxR = 0, numPiers;
349	bool match;
350	struct chan_centers centers;
351
352	ath9k_hw_get_channel_centers(ah, chan, &centers);
353
354	for (numPiers = 0; numPiers < availPiers; numPiers++) {
355		if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
356			break;
357	}
358
359	match = ath9k_hw_get_lower_upper_index(
360		(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
361		pCalChans, numPiers, &idxL, &idxR);
362
363	if (match) {
364		*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
365	} else {
366		*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
367			 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
368	}
369
370}
371
372static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
373					  int32_t txPower, u16 chain)
374{
375	u32 tmpVal;
376	u32 a;
377
378	/* Enable OLPC for chain 0 */
379
380	tmpVal = REG_READ(ah, 0xa270);
381	tmpVal = tmpVal & 0xFCFFFFFF;
382	tmpVal = tmpVal | (0x3 << 24);
383	REG_WRITE(ah, 0xa270, tmpVal);
384
385	/* Enable OLPC for chain 1 */
386
387	tmpVal = REG_READ(ah, 0xb270);
388	tmpVal = tmpVal & 0xFCFFFFFF;
389	tmpVal = tmpVal | (0x3 << 24);
390	REG_WRITE(ah, 0xb270, tmpVal);
391
392	/* Write the OLPC ref power for chain 0 */
393
394	if (chain == 0) {
395		tmpVal = REG_READ(ah, 0xa398);
396		tmpVal = tmpVal & 0xff00ffff;
397		a = (txPower)&0xff;
398		tmpVal = tmpVal | (a << 16);
399		REG_WRITE(ah, 0xa398, tmpVal);
400	}
401
402	/* Write the OLPC ref power for chain 1 */
403
404	if (chain == 1) {
405		tmpVal = REG_READ(ah, 0xb398);
406		tmpVal = tmpVal & 0xff00ffff;
407		a = (txPower)&0xff;
408		tmpVal = tmpVal | (a << 16);
409		REG_WRITE(ah, 0xb398, tmpVal);
410	}
411}
412
413static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
414						struct ath9k_channel *chan)
415{
416	struct cal_data_per_freq_ar9287 *pRawDataset;
417	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
418	u8 *pCalBChans = NULL;
419	u16 pdGainOverlap_t2;
420	u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
421	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
422	u16 numPiers = 0, i, j;
423	u16 numXpdGain, xpdMask;
424	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
425	u32 reg32, regOffset, regChainOffset, regval;
426	int16_t diff = 0;
427	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
428
429	xpdMask = pEepData->modalHeader.xpdGain;
430
431	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
432	    AR9287_EEP_MINOR_VER_2)
433		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
434	else
435		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
436					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
437
438	if (IS_CHAN_2GHZ(chan)) {
439		pCalBChans = pEepData->calFreqPier2G;
440		numPiers = AR9287_NUM_2G_CAL_PIERS;
441		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
442			pRawDatasetOpenLoop =
443			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
444			ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
445		}
446	}
447
448	numXpdGain = 0;
449
450	/* Calculate the value of xpdgains from the xpdGain Mask */
451	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
452		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
453			if (numXpdGain >= AR5416_NUM_PD_GAINS)
454				break;
455			xpdGainValues[numXpdGain] =
456				(u16)(AR5416_PD_GAINS_IN_MASK-i);
457			numXpdGain++;
458		}
459	}
460
461	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
462		      (numXpdGain - 1) & 0x3);
463	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
464		      xpdGainValues[0]);
465	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
466		      xpdGainValues[1]);
467	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
468		      xpdGainValues[2]);
469
470	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
471		regChainOffset = i * 0x1000;
472
473		if (pEepData->baseEepHeader.txMask & (1 << i)) {
474			pRawDatasetOpenLoop =
475			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
476
477			if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
478				int8_t txPower;
479				ar9287_eeprom_get_tx_gain_index(ah, chan,
480							pRawDatasetOpenLoop,
481							pCalBChans, numPiers,
482							&txPower);
483				ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
484			} else {
485				pRawDataset =
486					(struct cal_data_per_freq_ar9287 *)
487					pEepData->calPierData2G[i];
488
489				ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
490							   pRawDataset,
491							   pCalBChans, numPiers,
492							   pdGainOverlap_t2,
493							   gainBoundaries,
494							   pdadcValues,
495							   numXpdGain);
496			}
497
498			ENABLE_REGWRITE_BUFFER(ah);
499
500			if (i == 0) {
501				if (!ath9k_hw_ar9287_get_eeprom(ah,
502							EEP_OL_PWRCTRL)) {
503
504					regval = SM(pdGainOverlap_t2,
505						    AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
506						| SM(gainBoundaries[0],
507						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
508						| SM(gainBoundaries[1],
509						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
510						| SM(gainBoundaries[2],
511						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
512						| SM(gainBoundaries[3],
513						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
514
515					REG_WRITE(ah,
516						  AR_PHY_TPCRG5 + regChainOffset,
517						  regval);
518				}
519			}
520
521			if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
522			    pEepData->baseEepHeader.pwrTableOffset) {
523				diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
524					     (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
525				diff *= 2;
526
527				for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
528					pdadcValues[j] = pdadcValues[j+diff];
529
530				for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
531				     j < AR5416_NUM_PDADC_VALUES; j++)
532					pdadcValues[j] =
533					  pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
534			}
535
536			if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
537				regOffset = AR_PHY_BASE +
538					(672 << 2) + regChainOffset;
539
540				for (j = 0; j < 32; j++) {
541					reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
542
543					REG_WRITE(ah, regOffset, reg32);
544					regOffset += 4;
545				}
546			}
547			REGWRITE_BUFFER_FLUSH(ah);
548		}
549	}
550}
551
552static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
553						     struct ath9k_channel *chan,
554						     int16_t *ratesArray,
555						     u16 cfgCtl,
556						     u16 antenna_reduction,
557						     u16 powerLimit)
558{
559#define CMP_CTL \
560	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
561	 pEepData->ctlIndex[i])
562
563#define CMP_NO_CTL \
564	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
565	 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
566
567#define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
568#define REDUCE_SCALED_POWER_BY_THREE_CHAIN   10
569
570	u16 twiceMaxEdgePower;
571	int i;
572	struct cal_ctl_data_ar9287 *rep;
573	struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
574				    targetPowerCck = {0, {0, 0, 0, 0} };
575	struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
576				    targetPowerCckExt = {0, {0, 0, 0, 0} };
577	struct cal_target_power_ht targetPowerHt20,
578				    targetPowerHt40 = {0, {0, 0, 0, 0} };
579	u16 scaledPower = 0, minCtlPower;
580	static const u16 ctlModesFor11g[] = {
581		CTL_11B, CTL_11G, CTL_2GHT20,
582		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
583	};
584	u16 numCtlModes = 0;
585	const u16 *pCtlMode = NULL;
586	u16 ctlMode, freq;
587	struct chan_centers centers;
588	int tx_chainmask;
589	u16 twiceMinEdgePower;
590	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
591	tx_chainmask = ah->txchainmask;
592
593	ath9k_hw_get_channel_centers(ah, chan, &centers);
594	scaledPower = powerLimit - antenna_reduction;
595
596	/*
597	 * Reduce scaled Power by number of chains active
598	 * to get the per chain tx power level.
599	 */
600	switch (ar5416_get_ntxchains(tx_chainmask)) {
601	case 1:
602		break;
603	case 2:
604		if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
605			scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
606		else
607			scaledPower = 0;
608		break;
609	case 3:
610		if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
611			scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
612		else
613			scaledPower = 0;
614		break;
615	}
616	scaledPower = max((u16)0, scaledPower);
617
618	/*
619	 * Get TX power from EEPROM.
620	 */
621	if (IS_CHAN_2GHZ(chan))	{
622		/* CTL_11B, CTL_11G, CTL_2GHT20 */
623		numCtlModes =
624			ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
625
626		pCtlMode = ctlModesFor11g;
627
628		ath9k_hw_get_legacy_target_powers(ah, chan,
629						  pEepData->calTargetPowerCck,
630						  AR9287_NUM_2G_CCK_TARGET_POWERS,
631						  &targetPowerCck, 4, false);
632		ath9k_hw_get_legacy_target_powers(ah, chan,
633						  pEepData->calTargetPower2G,
634						  AR9287_NUM_2G_20_TARGET_POWERS,
635						  &targetPowerOfdm, 4, false);
636		ath9k_hw_get_target_powers(ah, chan,
637					   pEepData->calTargetPower2GHT20,
638					   AR9287_NUM_2G_20_TARGET_POWERS,
639					   &targetPowerHt20, 8, false);
640
641		if (IS_CHAN_HT40(chan))	{
642			/* All 2G CTLs */
643			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
644			ath9k_hw_get_target_powers(ah, chan,
645						   pEepData->calTargetPower2GHT40,
646						   AR9287_NUM_2G_40_TARGET_POWERS,
647						   &targetPowerHt40, 8, true);
648			ath9k_hw_get_legacy_target_powers(ah, chan,
649						  pEepData->calTargetPowerCck,
650						  AR9287_NUM_2G_CCK_TARGET_POWERS,
651						  &targetPowerCckExt, 4, true);
652			ath9k_hw_get_legacy_target_powers(ah, chan,
653						  pEepData->calTargetPower2G,
654						  AR9287_NUM_2G_20_TARGET_POWERS,
655						  &targetPowerOfdmExt, 4, true);
656		}
657	}
658
659	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
660		bool isHt40CtlMode =
661			(pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
662
663		if (isHt40CtlMode)
664			freq = centers.synth_center;
665		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
666			freq = centers.ext_center;
667		else
668			freq = centers.ctl_center;
669
670		twiceMaxEdgePower = MAX_RATE_POWER;
671		/* Walk through the CTL indices stored in EEPROM */
672		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
673			struct cal_ctl_edges *pRdEdgesPower;
674
675			/*
676			 * Compare test group from regulatory channel list
677			 * with test mode from pCtlMode list
678			 */
679			if (CMP_CTL || CMP_NO_CTL) {
680				rep = &(pEepData->ctlData[i]);
681				pRdEdgesPower =
682				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
683
684				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
685								pRdEdgesPower,
686								IS_CHAN_2GHZ(chan),
687								AR5416_NUM_BAND_EDGES);
688
689				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
690					twiceMaxEdgePower = min(twiceMaxEdgePower,
691								twiceMinEdgePower);
692				} else {
693					twiceMaxEdgePower = twiceMinEdgePower;
694					break;
695				}
696			}
697		}
698
699		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
700
701		/* Apply ctl mode to correct target power set */
702		switch (pCtlMode[ctlMode]) {
703		case CTL_11B:
704			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
705				targetPowerCck.tPow2x[i] =
706					(u8)min((u16)targetPowerCck.tPow2x[i],
707						minCtlPower);
708			}
709			break;
710		case CTL_11A:
711		case CTL_11G:
712			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
713				targetPowerOfdm.tPow2x[i] =
714					(u8)min((u16)targetPowerOfdm.tPow2x[i],
715						minCtlPower);
716			}
717			break;
718		case CTL_5GHT20:
719		case CTL_2GHT20:
720			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
721				targetPowerHt20.tPow2x[i] =
722					(u8)min((u16)targetPowerHt20.tPow2x[i],
723						minCtlPower);
724			}
725			break;
726		case CTL_11B_EXT:
727			targetPowerCckExt.tPow2x[0] =
728				(u8)min((u16)targetPowerCckExt.tPow2x[0],
729					minCtlPower);
730			break;
731		case CTL_11A_EXT:
732		case CTL_11G_EXT:
733			targetPowerOfdmExt.tPow2x[0] =
734				(u8)min((u16)targetPowerOfdmExt.tPow2x[0],
735					minCtlPower);
736			break;
737		case CTL_5GHT40:
738		case CTL_2GHT40:
739			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
740				targetPowerHt40.tPow2x[i] =
741					(u8)min((u16)targetPowerHt40.tPow2x[i],
742						minCtlPower);
743			}
744			break;
745		default:
746			break;
747		}
748	}
749
750	/* Now set the rates array */
751
752	ratesArray[rate6mb] =
753	ratesArray[rate9mb] =
754	ratesArray[rate12mb] =
755	ratesArray[rate18mb] =
756	ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
757
758	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
759	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
760	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
761	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
762
763	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
764		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
765
766	if (IS_CHAN_2GHZ(chan))	{
767		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
768		ratesArray[rate2s] =
769		ratesArray[rate2l] = targetPowerCck.tPow2x[1];
770		ratesArray[rate5_5s] =
771		ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
772		ratesArray[rate11s] =
773		ratesArray[rate11l] = targetPowerCck.tPow2x[3];
774	}
775	if (IS_CHAN_HT40(chan))	{
776		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
777			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
778
779		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
780		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
781		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
782
783		if (IS_CHAN_2GHZ(chan))
784			ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
785	}
786
787#undef CMP_CTL
788#undef CMP_NO_CTL
789#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
790#undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
791}
792
793static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
794					struct ath9k_channel *chan, u16 cfgCtl,
795					u8 twiceAntennaReduction,
796					u8 powerLimit, bool test)
797{
798	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
799	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
800	struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
801	int16_t ratesArray[Ar5416RateSize];
802	u8 ht40PowerIncForPdadc = 2;
803	int i;
804
805	memset(ratesArray, 0, sizeof(ratesArray));
806
807	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
808	    AR9287_EEP_MINOR_VER_2)
809		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
810
811	ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
812						 &ratesArray[0], cfgCtl,
813						 twiceAntennaReduction,
814						 powerLimit);
815
816	ath9k_hw_set_ar9287_power_cal_table(ah, chan);
817
818	regulatory->max_power_level = 0;
819	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
820		if (ratesArray[i] > MAX_RATE_POWER)
821			ratesArray[i] = MAX_RATE_POWER;
822
823		if (ratesArray[i] > regulatory->max_power_level)
824			regulatory->max_power_level = ratesArray[i];
825	}
826
827	ath9k_hw_update_regulatory_maxpower(ah);
828
829	if (test)
830		return;
831
832	for (i = 0; i < Ar5416RateSize; i++)
833		ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
834
835	ENABLE_REGWRITE_BUFFER(ah);
836
837	/* OFDM power per rate */
838	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
839		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
840		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
841		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
842		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
843
844	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
845		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
846		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
847		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
848		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
849
850	/* CCK power per rate */
851	if (IS_CHAN_2GHZ(chan))	{
852		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
853			  ATH9K_POW_SM(ratesArray[rate2s], 24)
854			  | ATH9K_POW_SM(ratesArray[rate2l], 16)
855			  | ATH9K_POW_SM(ratesArray[rateXr], 8)
856			  | ATH9K_POW_SM(ratesArray[rate1l], 0));
857		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
858			  ATH9K_POW_SM(ratesArray[rate11s], 24)
859			  | ATH9K_POW_SM(ratesArray[rate11l], 16)
860			  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
861			  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
862	}
863
864	/* HT20 power per rate */
865	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
866		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
867		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
868		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
869		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
870
871	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
872		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
873		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
874		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
875		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
876
877	/* HT40 power per rate */
878	if (IS_CHAN_HT40(chan))	{
879		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
880			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
881				  ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
882				  | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
883				  | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
884				  | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
885
886			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
887				  ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
888				  | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
889				  | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
890				  | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
891		} else {
892			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
893				  ATH9K_POW_SM(ratesArray[rateHt40_3] +
894					       ht40PowerIncForPdadc, 24)
895				  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
896						 ht40PowerIncForPdadc, 16)
897				  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
898						 ht40PowerIncForPdadc, 8)
899				  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
900						 ht40PowerIncForPdadc, 0));
901
902			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
903				  ATH9K_POW_SM(ratesArray[rateHt40_7] +
904					       ht40PowerIncForPdadc, 24)
905				  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
906						 ht40PowerIncForPdadc, 16)
907				  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
908						 ht40PowerIncForPdadc, 8)
909				  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
910						 ht40PowerIncForPdadc, 0));
911		}
912
913		/* Dup/Ext power per rate */
914		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
915			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
916			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
917			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
918			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
919	}
920	REGWRITE_BUFFER_FLUSH(ah);
921}
922
923static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
924					     struct ath9k_channel *chan)
925{
926	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
927	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
928	u32 regChainOffset, regval;
929	u8 txRxAttenLocal;
930	int i;
931
932	pModal = &eep->modalHeader;
933
934	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
935
936	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
937		regChainOffset = i * 0x1000;
938
939		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
940			  pModal->antCtrlChain[i]);
941
942		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
943			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
944			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
945			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
946			  SM(pModal->iqCalICh[i],
947			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
948			  SM(pModal->iqCalQCh[i],
949			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
950
951		txRxAttenLocal = pModal->txRxAttenCh[i];
952
953		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
954			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
955			      pModal->bswMargin[i]);
956		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
957			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
958			      pModal->bswAtten[i]);
959		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
960			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
961			      txRxAttenLocal);
962		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
963			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
964			      pModal->rxTxMarginCh[i]);
965	}
966
967
968	if (IS_CHAN_HT40(chan))
969		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
970			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
971	else
972		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
973			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
974
975	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
976		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
977
978	REG_WRITE(ah, AR_PHY_RF_CTL4,
979		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
980		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
981		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
982		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
983
984	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
985		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
986
987	REG_RMW_FIELD(ah, AR_PHY_CCA,
988		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
989	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
990		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
991
992	regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
993	regval &= ~(AR9287_AN_RF2G3_DB1 |
994		    AR9287_AN_RF2G3_DB2 |
995		    AR9287_AN_RF2G3_OB_CCK |
996		    AR9287_AN_RF2G3_OB_PSK |
997		    AR9287_AN_RF2G3_OB_QAM |
998		    AR9287_AN_RF2G3_OB_PAL_OFF);
999	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
1000		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
1001		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
1002		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
1003		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
1004		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
1005
1006	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
1007
1008	regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
1009	regval &= ~(AR9287_AN_RF2G3_DB1 |
1010		    AR9287_AN_RF2G3_DB2 |
1011		    AR9287_AN_RF2G3_OB_CCK |
1012		    AR9287_AN_RF2G3_OB_PSK |
1013		    AR9287_AN_RF2G3_OB_QAM |
1014		    AR9287_AN_RF2G3_OB_PAL_OFF);
1015	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
1016		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
1017		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
1018		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
1019		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
1020		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
1021
1022	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
1023
1024	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1025		      AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
1026	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1027		      AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
1028
1029	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
1030				  AR9287_AN_TOP2_XPABIAS_LVL,
1031				  AR9287_AN_TOP2_XPABIAS_LVL_S,
1032				  pModal->xpaBiasLvl);
1033}
1034
1035static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
1036					    u16 i, bool is2GHz)
1037{
1038#define EEP_MAP9287_SPURCHAN \
1039	(ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
1040
1041	struct ath_common *common = ath9k_hw_common(ah);
1042	u16 spur_val = AR_NO_SPUR;
1043
1044	ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1045		i, is2GHz, ah->config.spurchans[i][is2GHz]);
1046
1047	switch (ah->config.spurmode) {
1048	case SPUR_DISABLE:
1049		break;
1050	case SPUR_ENABLE_IOCTL:
1051		spur_val = ah->config.spurchans[i][is2GHz];
1052		ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1053			spur_val);
1054		break;
1055	case SPUR_ENABLE_EEPROM:
1056		spur_val = EEP_MAP9287_SPURCHAN;
1057		break;
1058	}
1059
1060	return spur_val;
1061
1062#undef EEP_MAP9287_SPURCHAN
1063}
1064
1065const struct eeprom_ops eep_ar9287_ops = {
1066	.check_eeprom		= ath9k_hw_ar9287_check_eeprom,
1067	.get_eeprom		= ath9k_hw_ar9287_get_eeprom,
1068	.fill_eeprom		= ath9k_hw_ar9287_fill_eeprom,
1069	.dump_eeprom		= ath9k_hw_ar9287_dump_eeprom,
1070	.get_eeprom_ver		= ath9k_hw_ar9287_get_eeprom_ver,
1071	.get_eeprom_rev		= ath9k_hw_ar9287_get_eeprom_rev,
1072	.set_board_values	= ath9k_hw_ar9287_set_board_values,
1073	.set_txpower		= ath9k_hw_ar9287_set_txpower,
1074	.get_spur_channel	= ath9k_hw_ar9287_get_spur_channel
1075};
1076