1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras	August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 *    {engebret|bergner}@us.ibm.com
9 *
10 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 *  Grant Likely.
14 *
15 *      This program is free software; you can redistribute it and/or
16 *      modify it under the terms of the GNU General Public License
17 *      as published by the Free Software Foundation; either version
18 *      2 of the License, or (at your option) any later version.
19 */
20#include <linux/ctype.h>
21#include <linux/module.h>
22#include <linux/of.h>
23#include <linux/spinlock.h>
24#include <linux/slab.h>
25#include <linux/proc_fs.h>
26
27/**
28 * struct alias_prop - Alias property in 'aliases' node
29 * @link:	List node to link the structure in aliases_lookup list
30 * @alias:	Alias property name
31 * @np:		Pointer to device_node that the alias stands for
32 * @id:		Index value from end of alias name
33 * @stem:	Alias string without the index
34 *
35 * The structure represents one alias property of 'aliases' node as
36 * an entry in aliases_lookup list.
37 */
38struct alias_prop {
39	struct list_head link;
40	const char *alias;
41	struct device_node *np;
42	int id;
43	char stem[0];
44};
45
46static LIST_HEAD(aliases_lookup);
47
48struct device_node *allnodes;
49struct device_node *of_chosen;
50struct device_node *of_aliases;
51
52static DEFINE_MUTEX(of_aliases_mutex);
53
54/* use when traversing tree through the allnext, child, sibling,
55 * or parent members of struct device_node.
56 */
57DEFINE_RWLOCK(devtree_lock);
58
59int of_n_addr_cells(struct device_node *np)
60{
61	const __be32 *ip;
62
63	do {
64		if (np->parent)
65			np = np->parent;
66		ip = of_get_property(np, "#address-cells", NULL);
67		if (ip)
68			return be32_to_cpup(ip);
69	} while (np->parent);
70	/* No #address-cells property for the root node */
71	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
72}
73EXPORT_SYMBOL(of_n_addr_cells);
74
75int of_n_size_cells(struct device_node *np)
76{
77	const __be32 *ip;
78
79	do {
80		if (np->parent)
81			np = np->parent;
82		ip = of_get_property(np, "#size-cells", NULL);
83		if (ip)
84			return be32_to_cpup(ip);
85	} while (np->parent);
86	/* No #size-cells property for the root node */
87	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
88}
89EXPORT_SYMBOL(of_n_size_cells);
90
91#if defined(CONFIG_OF_DYNAMIC)
92/**
93 *	of_node_get - Increment refcount of a node
94 *	@node:	Node to inc refcount, NULL is supported to
95 *		simplify writing of callers
96 *
97 *	Returns node.
98 */
99struct device_node *of_node_get(struct device_node *node)
100{
101	if (node)
102		kref_get(&node->kref);
103	return node;
104}
105EXPORT_SYMBOL(of_node_get);
106
107static inline struct device_node *kref_to_device_node(struct kref *kref)
108{
109	return container_of(kref, struct device_node, kref);
110}
111
112/**
113 *	of_node_release - release a dynamically allocated node
114 *	@kref:  kref element of the node to be released
115 *
116 *	In of_node_put() this function is passed to kref_put()
117 *	as the destructor.
118 */
119static void of_node_release(struct kref *kref)
120{
121	struct device_node *node = kref_to_device_node(kref);
122	struct property *prop = node->properties;
123
124	/* We should never be releasing nodes that haven't been detached. */
125	if (!of_node_check_flag(node, OF_DETACHED)) {
126		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
127		dump_stack();
128		kref_init(&node->kref);
129		return;
130	}
131
132	if (!of_node_check_flag(node, OF_DYNAMIC))
133		return;
134
135	while (prop) {
136		struct property *next = prop->next;
137		kfree(prop->name);
138		kfree(prop->value);
139		kfree(prop);
140		prop = next;
141
142		if (!prop) {
143			prop = node->deadprops;
144			node->deadprops = NULL;
145		}
146	}
147	kfree(node->full_name);
148	kfree(node->data);
149	kfree(node);
150}
151
152/**
153 *	of_node_put - Decrement refcount of a node
154 *	@node:	Node to dec refcount, NULL is supported to
155 *		simplify writing of callers
156 *
157 */
158void of_node_put(struct device_node *node)
159{
160	if (node)
161		kref_put(&node->kref, of_node_release);
162}
163EXPORT_SYMBOL(of_node_put);
164#endif /* CONFIG_OF_DYNAMIC */
165
166struct property *of_find_property(const struct device_node *np,
167				  const char *name,
168				  int *lenp)
169{
170	struct property *pp;
171
172	if (!np)
173		return NULL;
174
175	read_lock(&devtree_lock);
176	for (pp = np->properties; pp != 0; pp = pp->next) {
177		if (of_prop_cmp(pp->name, name) == 0) {
178			if (lenp != 0)
179				*lenp = pp->length;
180			break;
181		}
182	}
183	read_unlock(&devtree_lock);
184
185	return pp;
186}
187EXPORT_SYMBOL(of_find_property);
188
189/**
190 * of_find_all_nodes - Get next node in global list
191 * @prev:	Previous node or NULL to start iteration
192 *		of_node_put() will be called on it
193 *
194 * Returns a node pointer with refcount incremented, use
195 * of_node_put() on it when done.
196 */
197struct device_node *of_find_all_nodes(struct device_node *prev)
198{
199	struct device_node *np;
200
201	read_lock(&devtree_lock);
202	np = prev ? prev->allnext : allnodes;
203	for (; np != NULL; np = np->allnext)
204		if (of_node_get(np))
205			break;
206	of_node_put(prev);
207	read_unlock(&devtree_lock);
208	return np;
209}
210EXPORT_SYMBOL(of_find_all_nodes);
211
212/*
213 * Find a property with a given name for a given node
214 * and return the value.
215 */
216const void *of_get_property(const struct device_node *np, const char *name,
217			 int *lenp)
218{
219	struct property *pp = of_find_property(np, name, lenp);
220
221	return pp ? pp->value : NULL;
222}
223EXPORT_SYMBOL(of_get_property);
224
225/** Checks if the given "compat" string matches one of the strings in
226 * the device's "compatible" property
227 */
228int of_device_is_compatible(const struct device_node *device,
229		const char *compat)
230{
231	const char* cp;
232	int cplen, l;
233
234	cp = of_get_property(device, "compatible", &cplen);
235	if (cp == NULL)
236		return 0;
237	while (cplen > 0) {
238		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
239			return 1;
240		l = strlen(cp) + 1;
241		cp += l;
242		cplen -= l;
243	}
244
245	return 0;
246}
247EXPORT_SYMBOL(of_device_is_compatible);
248
249/**
250 * of_machine_is_compatible - Test root of device tree for a given compatible value
251 * @compat: compatible string to look for in root node's compatible property.
252 *
253 * Returns true if the root node has the given value in its
254 * compatible property.
255 */
256int of_machine_is_compatible(const char *compat)
257{
258	struct device_node *root;
259	int rc = 0;
260
261	root = of_find_node_by_path("/");
262	if (root) {
263		rc = of_device_is_compatible(root, compat);
264		of_node_put(root);
265	}
266	return rc;
267}
268EXPORT_SYMBOL(of_machine_is_compatible);
269
270/**
271 *  of_device_is_available - check if a device is available for use
272 *
273 *  @device: Node to check for availability
274 *
275 *  Returns 1 if the status property is absent or set to "okay" or "ok",
276 *  0 otherwise
277 */
278int of_device_is_available(const struct device_node *device)
279{
280	const char *status;
281	int statlen;
282
283	status = of_get_property(device, "status", &statlen);
284	if (status == NULL)
285		return 1;
286
287	if (statlen > 0) {
288		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
289			return 1;
290	}
291
292	return 0;
293}
294EXPORT_SYMBOL(of_device_is_available);
295
296/**
297 *	of_get_parent - Get a node's parent if any
298 *	@node:	Node to get parent
299 *
300 *	Returns a node pointer with refcount incremented, use
301 *	of_node_put() on it when done.
302 */
303struct device_node *of_get_parent(const struct device_node *node)
304{
305	struct device_node *np;
306
307	if (!node)
308		return NULL;
309
310	read_lock(&devtree_lock);
311	np = of_node_get(node->parent);
312	read_unlock(&devtree_lock);
313	return np;
314}
315EXPORT_SYMBOL(of_get_parent);
316
317/**
318 *	of_get_next_parent - Iterate to a node's parent
319 *	@node:	Node to get parent of
320 *
321 * 	This is like of_get_parent() except that it drops the
322 * 	refcount on the passed node, making it suitable for iterating
323 * 	through a node's parents.
324 *
325 *	Returns a node pointer with refcount incremented, use
326 *	of_node_put() on it when done.
327 */
328struct device_node *of_get_next_parent(struct device_node *node)
329{
330	struct device_node *parent;
331
332	if (!node)
333		return NULL;
334
335	read_lock(&devtree_lock);
336	parent = of_node_get(node->parent);
337	of_node_put(node);
338	read_unlock(&devtree_lock);
339	return parent;
340}
341
342/**
343 *	of_get_next_child - Iterate a node childs
344 *	@node:	parent node
345 *	@prev:	previous child of the parent node, or NULL to get first
346 *
347 *	Returns a node pointer with refcount incremented, use
348 *	of_node_put() on it when done.
349 */
350struct device_node *of_get_next_child(const struct device_node *node,
351	struct device_node *prev)
352{
353	struct device_node *next;
354
355	read_lock(&devtree_lock);
356	next = prev ? prev->sibling : node->child;
357	for (; next; next = next->sibling)
358		if (of_node_get(next))
359			break;
360	of_node_put(prev);
361	read_unlock(&devtree_lock);
362	return next;
363}
364EXPORT_SYMBOL(of_get_next_child);
365
366/**
367 *	of_find_node_by_path - Find a node matching a full OF path
368 *	@path:	The full path to match
369 *
370 *	Returns a node pointer with refcount incremented, use
371 *	of_node_put() on it when done.
372 */
373struct device_node *of_find_node_by_path(const char *path)
374{
375	struct device_node *np = allnodes;
376
377	read_lock(&devtree_lock);
378	for (; np; np = np->allnext) {
379		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
380		    && of_node_get(np))
381			break;
382	}
383	read_unlock(&devtree_lock);
384	return np;
385}
386EXPORT_SYMBOL(of_find_node_by_path);
387
388/**
389 *	of_find_node_by_name - Find a node by its "name" property
390 *	@from:	The node to start searching from or NULL, the node
391 *		you pass will not be searched, only the next one
392 *		will; typically, you pass what the previous call
393 *		returned. of_node_put() will be called on it
394 *	@name:	The name string to match against
395 *
396 *	Returns a node pointer with refcount incremented, use
397 *	of_node_put() on it when done.
398 */
399struct device_node *of_find_node_by_name(struct device_node *from,
400	const char *name)
401{
402	struct device_node *np;
403
404	read_lock(&devtree_lock);
405	np = from ? from->allnext : allnodes;
406	for (; np; np = np->allnext)
407		if (np->name && (of_node_cmp(np->name, name) == 0)
408		    && of_node_get(np))
409			break;
410	of_node_put(from);
411	read_unlock(&devtree_lock);
412	return np;
413}
414EXPORT_SYMBOL(of_find_node_by_name);
415
416/**
417 *	of_find_node_by_type - Find a node by its "device_type" property
418 *	@from:	The node to start searching from, or NULL to start searching
419 *		the entire device tree. The node you pass will not be
420 *		searched, only the next one will; typically, you pass
421 *		what the previous call returned. of_node_put() will be
422 *		called on from for you.
423 *	@type:	The type string to match against
424 *
425 *	Returns a node pointer with refcount incremented, use
426 *	of_node_put() on it when done.
427 */
428struct device_node *of_find_node_by_type(struct device_node *from,
429	const char *type)
430{
431	struct device_node *np;
432
433	read_lock(&devtree_lock);
434	np = from ? from->allnext : allnodes;
435	for (; np; np = np->allnext)
436		if (np->type && (of_node_cmp(np->type, type) == 0)
437		    && of_node_get(np))
438			break;
439	of_node_put(from);
440	read_unlock(&devtree_lock);
441	return np;
442}
443EXPORT_SYMBOL(of_find_node_by_type);
444
445/**
446 *	of_find_compatible_node - Find a node based on type and one of the
447 *                                tokens in its "compatible" property
448 *	@from:		The node to start searching from or NULL, the node
449 *			you pass will not be searched, only the next one
450 *			will; typically, you pass what the previous call
451 *			returned. of_node_put() will be called on it
452 *	@type:		The type string to match "device_type" or NULL to ignore
453 *	@compatible:	The string to match to one of the tokens in the device
454 *			"compatible" list.
455 *
456 *	Returns a node pointer with refcount incremented, use
457 *	of_node_put() on it when done.
458 */
459struct device_node *of_find_compatible_node(struct device_node *from,
460	const char *type, const char *compatible)
461{
462	struct device_node *np;
463
464	read_lock(&devtree_lock);
465	np = from ? from->allnext : allnodes;
466	for (; np; np = np->allnext) {
467		if (type
468		    && !(np->type && (of_node_cmp(np->type, type) == 0)))
469			continue;
470		if (of_device_is_compatible(np, compatible) && of_node_get(np))
471			break;
472	}
473	of_node_put(from);
474	read_unlock(&devtree_lock);
475	return np;
476}
477EXPORT_SYMBOL(of_find_compatible_node);
478
479/**
480 *	of_find_node_with_property - Find a node which has a property with
481 *                                   the given name.
482 *	@from:		The node to start searching from or NULL, the node
483 *			you pass will not be searched, only the next one
484 *			will; typically, you pass what the previous call
485 *			returned. of_node_put() will be called on it
486 *	@prop_name:	The name of the property to look for.
487 *
488 *	Returns a node pointer with refcount incremented, use
489 *	of_node_put() on it when done.
490 */
491struct device_node *of_find_node_with_property(struct device_node *from,
492	const char *prop_name)
493{
494	struct device_node *np;
495	struct property *pp;
496
497	read_lock(&devtree_lock);
498	np = from ? from->allnext : allnodes;
499	for (; np; np = np->allnext) {
500		for (pp = np->properties; pp != 0; pp = pp->next) {
501			if (of_prop_cmp(pp->name, prop_name) == 0) {
502				of_node_get(np);
503				goto out;
504			}
505		}
506	}
507out:
508	of_node_put(from);
509	read_unlock(&devtree_lock);
510	return np;
511}
512EXPORT_SYMBOL(of_find_node_with_property);
513
514/**
515 * of_match_node - Tell if an device_node has a matching of_match structure
516 *	@matches:	array of of device match structures to search in
517 *	@node:		the of device structure to match against
518 *
519 *	Low level utility function used by device matching.
520 */
521const struct of_device_id *of_match_node(const struct of_device_id *matches,
522					 const struct device_node *node)
523{
524	if (!matches)
525		return NULL;
526
527	while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
528		int match = 1;
529		if (matches->name[0])
530			match &= node->name
531				&& !strcmp(matches->name, node->name);
532		if (matches->type[0])
533			match &= node->type
534				&& !strcmp(matches->type, node->type);
535		if (matches->compatible[0])
536			match &= of_device_is_compatible(node,
537						matches->compatible);
538		if (match)
539			return matches;
540		matches++;
541	}
542	return NULL;
543}
544EXPORT_SYMBOL(of_match_node);
545
546/**
547 *	of_find_matching_node - Find a node based on an of_device_id match
548 *				table.
549 *	@from:		The node to start searching from or NULL, the node
550 *			you pass will not be searched, only the next one
551 *			will; typically, you pass what the previous call
552 *			returned. of_node_put() will be called on it
553 *	@matches:	array of of device match structures to search in
554 *
555 *	Returns a node pointer with refcount incremented, use
556 *	of_node_put() on it when done.
557 */
558struct device_node *of_find_matching_node(struct device_node *from,
559					  const struct of_device_id *matches)
560{
561	struct device_node *np;
562
563	read_lock(&devtree_lock);
564	np = from ? from->allnext : allnodes;
565	for (; np; np = np->allnext) {
566		if (of_match_node(matches, np) && of_node_get(np))
567			break;
568	}
569	of_node_put(from);
570	read_unlock(&devtree_lock);
571	return np;
572}
573EXPORT_SYMBOL(of_find_matching_node);
574
575/**
576 * of_modalias_node - Lookup appropriate modalias for a device node
577 * @node:	pointer to a device tree node
578 * @modalias:	Pointer to buffer that modalias value will be copied into
579 * @len:	Length of modalias value
580 *
581 * Based on the value of the compatible property, this routine will attempt
582 * to choose an appropriate modalias value for a particular device tree node.
583 * It does this by stripping the manufacturer prefix (as delimited by a ',')
584 * from the first entry in the compatible list property.
585 *
586 * This routine returns 0 on success, <0 on failure.
587 */
588int of_modalias_node(struct device_node *node, char *modalias, int len)
589{
590	const char *compatible, *p;
591	int cplen;
592
593	compatible = of_get_property(node, "compatible", &cplen);
594	if (!compatible || strlen(compatible) > cplen)
595		return -ENODEV;
596	p = strchr(compatible, ',');
597	strlcpy(modalias, p ? p + 1 : compatible, len);
598	return 0;
599}
600EXPORT_SYMBOL_GPL(of_modalias_node);
601
602/**
603 * of_find_node_by_phandle - Find a node given a phandle
604 * @handle:	phandle of the node to find
605 *
606 * Returns a node pointer with refcount incremented, use
607 * of_node_put() on it when done.
608 */
609struct device_node *of_find_node_by_phandle(phandle handle)
610{
611	struct device_node *np;
612
613	read_lock(&devtree_lock);
614	for (np = allnodes; np; np = np->allnext)
615		if (np->phandle == handle)
616			break;
617	of_node_get(np);
618	read_unlock(&devtree_lock);
619	return np;
620}
621EXPORT_SYMBOL(of_find_node_by_phandle);
622
623/**
624 * of_property_read_u32_array - Find and read an array of 32 bit integers
625 * from a property.
626 *
627 * @np:		device node from which the property value is to be read.
628 * @propname:	name of the property to be searched.
629 * @out_value:	pointer to return value, modified only if return value is 0.
630 *
631 * Search for a property in a device node and read 32-bit value(s) from
632 * it. Returns 0 on success, -EINVAL if the property does not exist,
633 * -ENODATA if property does not have a value, and -EOVERFLOW if the
634 * property data isn't large enough.
635 *
636 * The out_value is modified only if a valid u32 value can be decoded.
637 */
638int of_property_read_u32_array(const struct device_node *np,
639			       const char *propname, u32 *out_values,
640			       size_t sz)
641{
642	struct property *prop = of_find_property(np, propname, NULL);
643	const __be32 *val;
644
645	if (!prop)
646		return -EINVAL;
647	if (!prop->value)
648		return -ENODATA;
649	if ((sz * sizeof(*out_values)) > prop->length)
650		return -EOVERFLOW;
651
652	val = prop->value;
653	while (sz--)
654		*out_values++ = be32_to_cpup(val++);
655	return 0;
656}
657EXPORT_SYMBOL_GPL(of_property_read_u32_array);
658
659/**
660 * of_property_read_u64 - Find and read a 64 bit integer from a property
661 * @np:		device node from which the property value is to be read.
662 * @propname:	name of the property to be searched.
663 * @out_value:	pointer to return value, modified only if return value is 0.
664 *
665 * Search for a property in a device node and read a 64-bit value from
666 * it. Returns 0 on success, -EINVAL if the property does not exist,
667 * -ENODATA if property does not have a value, and -EOVERFLOW if the
668 * property data isn't large enough.
669 *
670 * The out_value is modified only if a valid u64 value can be decoded.
671 */
672int of_property_read_u64(const struct device_node *np, const char *propname,
673			 u64 *out_value)
674{
675	struct property *prop = of_find_property(np, propname, NULL);
676
677	if (!prop)
678		return -EINVAL;
679	if (!prop->value)
680		return -ENODATA;
681	if (sizeof(*out_value) > prop->length)
682		return -EOVERFLOW;
683	*out_value = of_read_number(prop->value, 2);
684	return 0;
685}
686EXPORT_SYMBOL_GPL(of_property_read_u64);
687
688/**
689 * of_property_read_string - Find and read a string from a property
690 * @np:		device node from which the property value is to be read.
691 * @propname:	name of the property to be searched.
692 * @out_string:	pointer to null terminated return string, modified only if
693 *		return value is 0.
694 *
695 * Search for a property in a device tree node and retrieve a null
696 * terminated string value (pointer to data, not a copy). Returns 0 on
697 * success, -EINVAL if the property does not exist, -ENODATA if property
698 * does not have a value, and -EILSEQ if the string is not null-terminated
699 * within the length of the property data.
700 *
701 * The out_string pointer is modified only if a valid string can be decoded.
702 */
703int of_property_read_string(struct device_node *np, const char *propname,
704				const char **out_string)
705{
706	struct property *prop = of_find_property(np, propname, NULL);
707	if (!prop)
708		return -EINVAL;
709	if (!prop->value)
710		return -ENODATA;
711	if (strnlen(prop->value, prop->length) >= prop->length)
712		return -EILSEQ;
713	*out_string = prop->value;
714	return 0;
715}
716EXPORT_SYMBOL_GPL(of_property_read_string);
717
718/**
719 * of_property_read_string_index - Find and read a string from a multiple
720 * strings property.
721 * @np:		device node from which the property value is to be read.
722 * @propname:	name of the property to be searched.
723 * @index:	index of the string in the list of strings
724 * @out_string:	pointer to null terminated return string, modified only if
725 *		return value is 0.
726 *
727 * Search for a property in a device tree node and retrieve a null
728 * terminated string value (pointer to data, not a copy) in the list of strings
729 * contained in that property.
730 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
731 * property does not have a value, and -EILSEQ if the string is not
732 * null-terminated within the length of the property data.
733 *
734 * The out_string pointer is modified only if a valid string can be decoded.
735 */
736int of_property_read_string_index(struct device_node *np, const char *propname,
737				  int index, const char **output)
738{
739	struct property *prop = of_find_property(np, propname, NULL);
740	int i = 0;
741	size_t l = 0, total = 0;
742	const char *p;
743
744	if (!prop)
745		return -EINVAL;
746	if (!prop->value)
747		return -ENODATA;
748	if (strnlen(prop->value, prop->length) >= prop->length)
749		return -EILSEQ;
750
751	p = prop->value;
752
753	for (i = 0; total < prop->length; total += l, p += l) {
754		l = strlen(p) + 1;
755		if (i++ == index) {
756			*output = p;
757			return 0;
758		}
759	}
760	return -ENODATA;
761}
762EXPORT_SYMBOL_GPL(of_property_read_string_index);
763
764/**
765 * of_property_match_string() - Find string in a list and return index
766 * @np: pointer to node containing string list property
767 * @propname: string list property name
768 * @string: pointer to string to search for in string list
769 *
770 * This function searches a string list property and returns the index
771 * of a specific string value.
772 */
773int of_property_match_string(struct device_node *np, const char *propname,
774			     const char *string)
775{
776	struct property *prop = of_find_property(np, propname, NULL);
777	size_t l;
778	int i;
779	const char *p, *end;
780
781	if (!prop)
782		return -EINVAL;
783	if (!prop->value)
784		return -ENODATA;
785
786	p = prop->value;
787	end = p + prop->length;
788
789	for (i = 0; p < end; i++, p += l) {
790		l = strlen(p) + 1;
791		if (p + l > end)
792			return -EILSEQ;
793		pr_debug("comparing %s with %s\n", string, p);
794		if (strcmp(string, p) == 0)
795			return i; /* Found it; return index */
796	}
797	return -ENODATA;
798}
799EXPORT_SYMBOL_GPL(of_property_match_string);
800
801/**
802 * of_property_count_strings - Find and return the number of strings from a
803 * multiple strings property.
804 * @np:		device node from which the property value is to be read.
805 * @propname:	name of the property to be searched.
806 *
807 * Search for a property in a device tree node and retrieve the number of null
808 * terminated string contain in it. Returns the number of strings on
809 * success, -EINVAL if the property does not exist, -ENODATA if property
810 * does not have a value, and -EILSEQ if the string is not null-terminated
811 * within the length of the property data.
812 */
813int of_property_count_strings(struct device_node *np, const char *propname)
814{
815	struct property *prop = of_find_property(np, propname, NULL);
816	int i = 0;
817	size_t l = 0, total = 0;
818	const char *p;
819
820	if (!prop)
821		return -EINVAL;
822	if (!prop->value)
823		return -ENODATA;
824	if (strnlen(prop->value, prop->length) >= prop->length)
825		return -EILSEQ;
826
827	p = prop->value;
828
829	for (i = 0; total < prop->length; total += l, p += l, i++)
830		l = strlen(p) + 1;
831
832	return i;
833}
834EXPORT_SYMBOL_GPL(of_property_count_strings);
835
836/**
837 * of_parse_phandle - Resolve a phandle property to a device_node pointer
838 * @np: Pointer to device node holding phandle property
839 * @phandle_name: Name of property holding a phandle value
840 * @index: For properties holding a table of phandles, this is the index into
841 *         the table
842 *
843 * Returns the device_node pointer with refcount incremented.  Use
844 * of_node_put() on it when done.
845 */
846struct device_node *
847of_parse_phandle(struct device_node *np, const char *phandle_name, int index)
848{
849	const __be32 *phandle;
850	int size;
851
852	phandle = of_get_property(np, phandle_name, &size);
853	if ((!phandle) || (size < sizeof(*phandle) * (index + 1)))
854		return NULL;
855
856	return of_find_node_by_phandle(be32_to_cpup(phandle + index));
857}
858EXPORT_SYMBOL(of_parse_phandle);
859
860/**
861 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
862 * @np:		pointer to a device tree node containing a list
863 * @list_name:	property name that contains a list
864 * @cells_name:	property name that specifies phandles' arguments count
865 * @index:	index of a phandle to parse out
866 * @out_args:	optional pointer to output arguments structure (will be filled)
867 *
868 * This function is useful to parse lists of phandles and their arguments.
869 * Returns 0 on success and fills out_args, on error returns appropriate
870 * errno value.
871 *
872 * Caller is responsible to call of_node_put() on the returned out_args->node
873 * pointer.
874 *
875 * Example:
876 *
877 * phandle1: node1 {
878 * 	#list-cells = <2>;
879 * }
880 *
881 * phandle2: node2 {
882 * 	#list-cells = <1>;
883 * }
884 *
885 * node3 {
886 * 	list = <&phandle1 1 2 &phandle2 3>;
887 * }
888 *
889 * To get a device_node of the `node2' node you may call this:
890 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
891 */
892int of_parse_phandle_with_args(struct device_node *np, const char *list_name,
893				const char *cells_name, int index,
894				struct of_phandle_args *out_args)
895{
896	const __be32 *list, *list_end;
897	int size, cur_index = 0;
898	uint32_t count = 0;
899	struct device_node *node = NULL;
900	phandle phandle;
901
902	/* Retrieve the phandle list property */
903	list = of_get_property(np, list_name, &size);
904	if (!list)
905		return -EINVAL;
906	list_end = list + size / sizeof(*list);
907
908	/* Loop over the phandles until all the requested entry is found */
909	while (list < list_end) {
910		count = 0;
911
912		/*
913		 * If phandle is 0, then it is an empty entry with no
914		 * arguments.  Skip forward to the next entry.
915		 */
916		phandle = be32_to_cpup(list++);
917		if (phandle) {
918			/*
919			 * Find the provider node and parse the #*-cells
920			 * property to determine the argument length
921			 */
922			node = of_find_node_by_phandle(phandle);
923			if (!node) {
924				pr_err("%s: could not find phandle\n",
925					 np->full_name);
926				break;
927			}
928			if (of_property_read_u32(node, cells_name, &count)) {
929				pr_err("%s: could not get %s for %s\n",
930					 np->full_name, cells_name,
931					 node->full_name);
932				break;
933			}
934
935			/*
936			 * Make sure that the arguments actually fit in the
937			 * remaining property data length
938			 */
939			if (list + count > list_end) {
940				pr_err("%s: arguments longer than property\n",
941					 np->full_name);
942				break;
943			}
944		}
945
946		/*
947		 * All of the error cases above bail out of the loop, so at
948		 * this point, the parsing is successful. If the requested
949		 * index matches, then fill the out_args structure and return,
950		 * or return -ENOENT for an empty entry.
951		 */
952		if (cur_index == index) {
953			if (!phandle)
954				return -ENOENT;
955
956			if (out_args) {
957				int i;
958				if (WARN_ON(count > MAX_PHANDLE_ARGS))
959					count = MAX_PHANDLE_ARGS;
960				out_args->np = node;
961				out_args->args_count = count;
962				for (i = 0; i < count; i++)
963					out_args->args[i] = be32_to_cpup(list++);
964			}
965			return 0;
966		}
967
968		of_node_put(node);
969		node = NULL;
970		list += count;
971		cur_index++;
972	}
973
974	/* Loop exited without finding a valid entry; return an error */
975	if (node)
976		of_node_put(node);
977	return -EINVAL;
978}
979EXPORT_SYMBOL(of_parse_phandle_with_args);
980
981/**
982 * prom_add_property - Add a property to a node
983 */
984int prom_add_property(struct device_node *np, struct property *prop)
985{
986	struct property **next;
987	unsigned long flags;
988
989	prop->next = NULL;
990	write_lock_irqsave(&devtree_lock, flags);
991	next = &np->properties;
992	while (*next) {
993		if (strcmp(prop->name, (*next)->name) == 0) {
994			/* duplicate ! don't insert it */
995			write_unlock_irqrestore(&devtree_lock, flags);
996			return -1;
997		}
998		next = &(*next)->next;
999	}
1000	*next = prop;
1001	write_unlock_irqrestore(&devtree_lock, flags);
1002
1003#ifdef CONFIG_PROC_DEVICETREE
1004	/* try to add to proc as well if it was initialized */
1005	if (np->pde)
1006		proc_device_tree_add_prop(np->pde, prop);
1007#endif /* CONFIG_PROC_DEVICETREE */
1008
1009	return 0;
1010}
1011
1012/**
1013 * prom_remove_property - Remove a property from a node.
1014 *
1015 * Note that we don't actually remove it, since we have given out
1016 * who-knows-how-many pointers to the data using get-property.
1017 * Instead we just move the property to the "dead properties"
1018 * list, so it won't be found any more.
1019 */
1020int prom_remove_property(struct device_node *np, struct property *prop)
1021{
1022	struct property **next;
1023	unsigned long flags;
1024	int found = 0;
1025
1026	write_lock_irqsave(&devtree_lock, flags);
1027	next = &np->properties;
1028	while (*next) {
1029		if (*next == prop) {
1030			/* found the node */
1031			*next = prop->next;
1032			prop->next = np->deadprops;
1033			np->deadprops = prop;
1034			found = 1;
1035			break;
1036		}
1037		next = &(*next)->next;
1038	}
1039	write_unlock_irqrestore(&devtree_lock, flags);
1040
1041	if (!found)
1042		return -ENODEV;
1043
1044#ifdef CONFIG_PROC_DEVICETREE
1045	/* try to remove the proc node as well */
1046	if (np->pde)
1047		proc_device_tree_remove_prop(np->pde, prop);
1048#endif /* CONFIG_PROC_DEVICETREE */
1049
1050	return 0;
1051}
1052
1053/*
1054 * prom_update_property - Update a property in a node.
1055 *
1056 * Note that we don't actually remove it, since we have given out
1057 * who-knows-how-many pointers to the data using get-property.
1058 * Instead we just move the property to the "dead properties" list,
1059 * and add the new property to the property list
1060 */
1061int prom_update_property(struct device_node *np,
1062			 struct property *newprop,
1063			 struct property *oldprop)
1064{
1065	struct property **next;
1066	unsigned long flags;
1067	int found = 0;
1068
1069	write_lock_irqsave(&devtree_lock, flags);
1070	next = &np->properties;
1071	while (*next) {
1072		if (*next == oldprop) {
1073			/* found the node */
1074			newprop->next = oldprop->next;
1075			*next = newprop;
1076			oldprop->next = np->deadprops;
1077			np->deadprops = oldprop;
1078			found = 1;
1079			break;
1080		}
1081		next = &(*next)->next;
1082	}
1083	write_unlock_irqrestore(&devtree_lock, flags);
1084
1085	if (!found)
1086		return -ENODEV;
1087
1088#ifdef CONFIG_PROC_DEVICETREE
1089	/* try to add to proc as well if it was initialized */
1090	if (np->pde)
1091		proc_device_tree_update_prop(np->pde, newprop, oldprop);
1092#endif /* CONFIG_PROC_DEVICETREE */
1093
1094	return 0;
1095}
1096
1097#if defined(CONFIG_OF_DYNAMIC)
1098/*
1099 * Support for dynamic device trees.
1100 *
1101 * On some platforms, the device tree can be manipulated at runtime.
1102 * The routines in this section support adding, removing and changing
1103 * device tree nodes.
1104 */
1105
1106/**
1107 * of_attach_node - Plug a device node into the tree and global list.
1108 */
1109void of_attach_node(struct device_node *np)
1110{
1111	unsigned long flags;
1112
1113	write_lock_irqsave(&devtree_lock, flags);
1114	np->sibling = np->parent->child;
1115	np->allnext = allnodes;
1116	np->parent->child = np;
1117	allnodes = np;
1118	write_unlock_irqrestore(&devtree_lock, flags);
1119}
1120
1121/**
1122 * of_detach_node - "Unplug" a node from the device tree.
1123 *
1124 * The caller must hold a reference to the node.  The memory associated with
1125 * the node is not freed until its refcount goes to zero.
1126 */
1127void of_detach_node(struct device_node *np)
1128{
1129	struct device_node *parent;
1130	unsigned long flags;
1131
1132	write_lock_irqsave(&devtree_lock, flags);
1133
1134	parent = np->parent;
1135	if (!parent)
1136		goto out_unlock;
1137
1138	if (allnodes == np)
1139		allnodes = np->allnext;
1140	else {
1141		struct device_node *prev;
1142		for (prev = allnodes;
1143		     prev->allnext != np;
1144		     prev = prev->allnext)
1145			;
1146		prev->allnext = np->allnext;
1147	}
1148
1149	if (parent->child == np)
1150		parent->child = np->sibling;
1151	else {
1152		struct device_node *prevsib;
1153		for (prevsib = np->parent->child;
1154		     prevsib->sibling != np;
1155		     prevsib = prevsib->sibling)
1156			;
1157		prevsib->sibling = np->sibling;
1158	}
1159
1160	of_node_set_flag(np, OF_DETACHED);
1161
1162out_unlock:
1163	write_unlock_irqrestore(&devtree_lock, flags);
1164}
1165#endif /* defined(CONFIG_OF_DYNAMIC) */
1166
1167static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1168			 int id, const char *stem, int stem_len)
1169{
1170	ap->np = np;
1171	ap->id = id;
1172	strncpy(ap->stem, stem, stem_len);
1173	ap->stem[stem_len] = 0;
1174	list_add_tail(&ap->link, &aliases_lookup);
1175	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1176		 ap->alias, ap->stem, ap->id, np ? np->full_name : NULL);
1177}
1178
1179/**
1180 * of_alias_scan - Scan all properties of 'aliases' node
1181 *
1182 * The function scans all the properties of 'aliases' node and populate
1183 * the the global lookup table with the properties.  It returns the
1184 * number of alias_prop found, or error code in error case.
1185 *
1186 * @dt_alloc:	An allocator that provides a virtual address to memory
1187 *		for the resulting tree
1188 */
1189void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1190{
1191	struct property *pp;
1192
1193	of_chosen = of_find_node_by_path("/chosen");
1194	if (of_chosen == NULL)
1195		of_chosen = of_find_node_by_path("/chosen@0");
1196	of_aliases = of_find_node_by_path("/aliases");
1197	if (!of_aliases)
1198		return;
1199
1200	for_each_property_of_node(of_aliases, pp) {
1201		const char *start = pp->name;
1202		const char *end = start + strlen(start);
1203		struct device_node *np;
1204		struct alias_prop *ap;
1205		int id, len;
1206
1207		/* Skip those we do not want to proceed */
1208		if (!strcmp(pp->name, "name") ||
1209		    !strcmp(pp->name, "phandle") ||
1210		    !strcmp(pp->name, "linux,phandle"))
1211			continue;
1212
1213		np = of_find_node_by_path(pp->value);
1214		if (!np)
1215			continue;
1216
1217		/* walk the alias backwards to extract the id and work out
1218		 * the 'stem' string */
1219		while (isdigit(*(end-1)) && end > start)
1220			end--;
1221		len = end - start;
1222
1223		if (kstrtoint(end, 10, &id) < 0)
1224			continue;
1225
1226		/* Allocate an alias_prop with enough space for the stem */
1227		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1228		if (!ap)
1229			continue;
1230		ap->alias = start;
1231		of_alias_add(ap, np, id, start, len);
1232	}
1233}
1234
1235/**
1236 * of_alias_get_id - Get alias id for the given device_node
1237 * @np:		Pointer to the given device_node
1238 * @stem:	Alias stem of the given device_node
1239 *
1240 * The function travels the lookup table to get alias id for the given
1241 * device_node and alias stem.  It returns the alias id if find it.
1242 */
1243int of_alias_get_id(struct device_node *np, const char *stem)
1244{
1245	struct alias_prop *app;
1246	int id = -ENODEV;
1247
1248	mutex_lock(&of_aliases_mutex);
1249	list_for_each_entry(app, &aliases_lookup, link) {
1250		if (strcmp(app->stem, stem) != 0)
1251			continue;
1252
1253		if (np == app->np) {
1254			id = app->id;
1255			break;
1256		}
1257	}
1258	mutex_unlock(&of_aliases_mutex);
1259
1260	return id;
1261}
1262EXPORT_SYMBOL_GPL(of_alias_get_id);
1263