1/*
2 * Copyright (c) 2009-2010 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * The full GNU General Public License is included in this distribution in
18 * the file called "COPYING".
19 *
20 * Authors:
21 *	Jesse Barnes <jbarnes@virtuousgeek.org>
22 */
23
24/*
25 * Some Intel Ibex Peak based platforms support so-called "intelligent
26 * power sharing", which allows the CPU and GPU to cooperate to maximize
27 * performance within a given TDP (thermal design point).  This driver
28 * performs the coordination between the CPU and GPU, monitors thermal and
29 * power statistics in the platform, and initializes power monitoring
30 * hardware.  It also provides a few tunables to control behavior.  Its
31 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32 * by tracking power and thermal budget; secondarily it can boost turbo
33 * performance by allocating more power or thermal budget to the CPU or GPU
34 * based on available headroom and activity.
35 *
36 * The basic algorithm is driven by a 5s moving average of tempurature.  If
37 * thermal headroom is available, the CPU and/or GPU power clamps may be
38 * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
39 * we scale back the clamp.  Aside from trigger events (when we're critically
40 * close or over our TDP) we don't adjust the clamps more than once every
41 * five seconds.
42 *
43 * The thermal device (device 31, function 6) has a set of registers that
44 * are updated by the ME firmware.  The ME should also take the clamp values
45 * written to those registers and write them to the CPU, but we currently
46 * bypass that functionality and write the CPU MSR directly.
47 *
48 * UNSUPPORTED:
49 *   - dual MCP configs
50 *
51 * TODO:
52 *   - handle CPU hotplug
53 *   - provide turbo enable/disable api
54 *
55 * Related documents:
56 *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57 *   - CDI 401376 - Ibex Peak EDS
58 *   - ref 26037, 26641 - IPS BIOS spec
59 *   - ref 26489 - Nehalem BIOS writer's guide
60 *   - ref 26921 - Ibex Peak BIOS Specification
61 */
62
63#include <linux/debugfs.h>
64#include <linux/delay.h>
65#include <linux/interrupt.h>
66#include <linux/kernel.h>
67#include <linux/kthread.h>
68#include <linux/module.h>
69#include <linux/pci.h>
70#include <linux/sched.h>
71#include <linux/seq_file.h>
72#include <linux/string.h>
73#include <linux/tick.h>
74#include <linux/timer.h>
75#include <drm/i915_drm.h>
76#include <asm/msr.h>
77#include <asm/processor.h>
78#include "intel_ips.h"
79
80#include <asm-generic/io-64-nonatomic-lo-hi.h>
81
82#define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
83
84/*
85 * Package level MSRs for monitor/control
86 */
87#define PLATFORM_INFO	0xce
88#define   PLATFORM_TDP		(1<<29)
89#define   PLATFORM_RATIO	(1<<28)
90
91#define IA32_MISC_ENABLE	0x1a0
92#define   IA32_MISC_TURBO_EN	(1ULL<<38)
93
94#define TURBO_POWER_CURRENT_LIMIT	0x1ac
95#define   TURBO_TDC_OVR_EN	(1UL<<31)
96#define   TURBO_TDC_MASK	(0x000000007fff0000UL)
97#define   TURBO_TDC_SHIFT	(16)
98#define   TURBO_TDP_OVR_EN	(1UL<<15)
99#define   TURBO_TDP_MASK	(0x0000000000003fffUL)
100
101/*
102 * Core/thread MSRs for monitoring
103 */
104#define IA32_PERF_CTL		0x199
105#define   IA32_PERF_TURBO_DIS	(1ULL<<32)
106
107/*
108 * Thermal PCI device regs
109 */
110#define THM_CFG_TBAR	0x10
111#define THM_CFG_TBAR_HI	0x14
112
113#define THM_TSIU	0x00
114#define THM_TSE		0x01
115#define   TSE_EN	0xb8
116#define THM_TSS		0x02
117#define THM_TSTR	0x03
118#define THM_TSTTP	0x04
119#define THM_TSCO	0x08
120#define THM_TSES	0x0c
121#define THM_TSGPEN	0x0d
122#define   TSGPEN_HOT_LOHI	(1<<1)
123#define   TSGPEN_CRIT_LOHI	(1<<2)
124#define THM_TSPC	0x0e
125#define THM_PPEC	0x10
126#define THM_CTA		0x12
127#define THM_PTA		0x14
128#define   PTA_SLOPE_MASK	(0xff00)
129#define   PTA_SLOPE_SHIFT	8
130#define   PTA_OFFSET_MASK	(0x00ff)
131#define THM_MGTA	0x16
132#define   MGTA_SLOPE_MASK	(0xff00)
133#define   MGTA_SLOPE_SHIFT	8
134#define   MGTA_OFFSET_MASK	(0x00ff)
135#define THM_TRC		0x1a
136#define   TRC_CORE2_EN	(1<<15)
137#define   TRC_THM_EN	(1<<12)
138#define   TRC_C6_WAR	(1<<8)
139#define   TRC_CORE1_EN	(1<<7)
140#define   TRC_CORE_PWR	(1<<6)
141#define   TRC_PCH_EN	(1<<5)
142#define   TRC_MCH_EN	(1<<4)
143#define   TRC_DIMM4	(1<<3)
144#define   TRC_DIMM3	(1<<2)
145#define   TRC_DIMM2	(1<<1)
146#define   TRC_DIMM1	(1<<0)
147#define THM_TES		0x20
148#define THM_TEN		0x21
149#define   TEN_UPDATE_EN	1
150#define THM_PSC		0x24
151#define   PSC_NTG	(1<<0) /* No GFX turbo support */
152#define   PSC_NTPC	(1<<1) /* No CPU turbo support */
153#define   PSC_PP_DEF	(0<<2) /* Perf policy up to driver */
154#define   PSP_PP_PC	(1<<2) /* BIOS prefers CPU perf */
155#define   PSP_PP_BAL	(2<<2) /* BIOS wants balanced perf */
156#define   PSP_PP_GFX	(3<<2) /* BIOS prefers GFX perf */
157#define   PSP_PBRT	(1<<4) /* BIOS run time support */
158#define THM_CTV1	0x30
159#define   CTV_TEMP_ERROR (1<<15)
160#define   CTV_TEMP_MASK	0x3f
161#define   CTV_
162#define THM_CTV2	0x32
163#define THM_CEC		0x34 /* undocumented power accumulator in joules */
164#define THM_AE		0x3f
165#define THM_HTS		0x50 /* 32 bits */
166#define   HTS_PCPL_MASK	(0x7fe00000)
167#define   HTS_PCPL_SHIFT 21
168#define   HTS_GPL_MASK  (0x001ff000)
169#define   HTS_GPL_SHIFT 12
170#define   HTS_PP_MASK	(0x00000c00)
171#define   HTS_PP_SHIFT  10
172#define   HTS_PP_DEF	0
173#define   HTS_PP_PROC	1
174#define   HTS_PP_BAL	2
175#define   HTS_PP_GFX	3
176#define   HTS_PCTD_DIS	(1<<9)
177#define   HTS_GTD_DIS	(1<<8)
178#define   HTS_PTL_MASK  (0x000000fe)
179#define   HTS_PTL_SHIFT 1
180#define   HTS_NVV	(1<<0)
181#define THM_HTSHI	0x54 /* 16 bits */
182#define   HTS2_PPL_MASK		(0x03ff)
183#define   HTS2_PRST_MASK	(0x3c00)
184#define   HTS2_PRST_SHIFT	10
185#define   HTS2_PRST_UNLOADED	0
186#define   HTS2_PRST_RUNNING	1
187#define   HTS2_PRST_TDISOP	2 /* turbo disabled due to power */
188#define   HTS2_PRST_TDISHT	3 /* turbo disabled due to high temp */
189#define   HTS2_PRST_TDISUSR	4 /* user disabled turbo */
190#define   HTS2_PRST_TDISPLAT	5 /* platform disabled turbo */
191#define   HTS2_PRST_TDISPM	6 /* power management disabled turbo */
192#define   HTS2_PRST_TDISERR	7 /* some kind of error disabled turbo */
193#define THM_PTL		0x56
194#define THM_MGTV	0x58
195#define   TV_MASK	0x000000000000ff00
196#define   TV_SHIFT	8
197#define THM_PTV		0x60
198#define   PTV_MASK	0x00ff
199#define THM_MMGPC	0x64
200#define THM_MPPC	0x66
201#define THM_MPCPC	0x68
202#define THM_TSPIEN	0x82
203#define   TSPIEN_AUX_LOHI	(1<<0)
204#define   TSPIEN_HOT_LOHI	(1<<1)
205#define   TSPIEN_CRIT_LOHI	(1<<2)
206#define   TSPIEN_AUX2_LOHI	(1<<3)
207#define THM_TSLOCK	0x83
208#define THM_ATR		0x84
209#define THM_TOF		0x87
210#define THM_STS		0x98
211#define   STS_PCPL_MASK		(0x7fe00000)
212#define   STS_PCPL_SHIFT	21
213#define   STS_GPL_MASK		(0x001ff000)
214#define   STS_GPL_SHIFT		12
215#define   STS_PP_MASK		(0x00000c00)
216#define   STS_PP_SHIFT		10
217#define   STS_PP_DEF		0
218#define   STS_PP_PROC		1
219#define   STS_PP_BAL		2
220#define   STS_PP_GFX		3
221#define   STS_PCTD_DIS		(1<<9)
222#define   STS_GTD_DIS		(1<<8)
223#define   STS_PTL_MASK		(0x000000fe)
224#define   STS_PTL_SHIFT		1
225#define   STS_NVV		(1<<0)
226#define THM_SEC		0x9c
227#define   SEC_ACK	(1<<0)
228#define THM_TC3		0xa4
229#define THM_TC1		0xa8
230#define   STS_PPL_MASK		(0x0003ff00)
231#define   STS_PPL_SHIFT		16
232#define THM_TC2		0xac
233#define THM_DTV		0xb0
234#define THM_ITV		0xd8
235#define   ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
236#define   ITV_ME_SEQNO_SHIFT (16)
237#define   ITV_MCH_TEMP_MASK 0x0000ff00
238#define   ITV_MCH_TEMP_SHIFT (8)
239#define   ITV_PCH_TEMP_MASK 0x000000ff
240
241#define thm_readb(off) readb(ips->regmap + (off))
242#define thm_readw(off) readw(ips->regmap + (off))
243#define thm_readl(off) readl(ips->regmap + (off))
244#define thm_readq(off) readq(ips->regmap + (off))
245
246#define thm_writeb(off, val) writeb((val), ips->regmap + (off))
247#define thm_writew(off, val) writew((val), ips->regmap + (off))
248#define thm_writel(off, val) writel((val), ips->regmap + (off))
249
250static const int IPS_ADJUST_PERIOD = 5000; /* ms */
251static bool late_i915_load = false;
252
253/* For initial average collection */
254static const int IPS_SAMPLE_PERIOD = 200; /* ms */
255static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
256#define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
257
258/* Per-SKU limits */
259struct ips_mcp_limits {
260	int cpu_family;
261	int cpu_model; /* includes extended model... */
262	int mcp_power_limit; /* mW units */
263	int core_power_limit;
264	int mch_power_limit;
265	int core_temp_limit; /* degrees C */
266	int mch_temp_limit;
267};
268
269/* Max temps are -10 degrees C to avoid PROCHOT# */
270
271struct ips_mcp_limits ips_sv_limits = {
272	.mcp_power_limit = 35000,
273	.core_power_limit = 29000,
274	.mch_power_limit = 20000,
275	.core_temp_limit = 95,
276	.mch_temp_limit = 90
277};
278
279struct ips_mcp_limits ips_lv_limits = {
280	.mcp_power_limit = 25000,
281	.core_power_limit = 21000,
282	.mch_power_limit = 13000,
283	.core_temp_limit = 95,
284	.mch_temp_limit = 90
285};
286
287struct ips_mcp_limits ips_ulv_limits = {
288	.mcp_power_limit = 18000,
289	.core_power_limit = 14000,
290	.mch_power_limit = 11000,
291	.core_temp_limit = 95,
292	.mch_temp_limit = 90
293};
294
295struct ips_driver {
296	struct pci_dev *dev;
297	void *regmap;
298	struct task_struct *monitor;
299	struct task_struct *adjust;
300	struct dentry *debug_root;
301
302	/* Average CPU core temps (all averages in .01 degrees C for precision) */
303	u16 ctv1_avg_temp;
304	u16 ctv2_avg_temp;
305	/* GMCH average */
306	u16 mch_avg_temp;
307	/* Average for the CPU (both cores?) */
308	u16 mcp_avg_temp;
309	/* Average power consumption (in mW) */
310	u32 cpu_avg_power;
311	u32 mch_avg_power;
312
313	/* Offset values */
314	u16 cta_val;
315	u16 pta_val;
316	u16 mgta_val;
317
318	/* Maximums & prefs, protected by turbo status lock */
319	spinlock_t turbo_status_lock;
320	u16 mcp_temp_limit;
321	u16 mcp_power_limit;
322	u16 core_power_limit;
323	u16 mch_power_limit;
324	bool cpu_turbo_enabled;
325	bool __cpu_turbo_on;
326	bool gpu_turbo_enabled;
327	bool __gpu_turbo_on;
328	bool gpu_preferred;
329	bool poll_turbo_status;
330	bool second_cpu;
331	bool turbo_toggle_allowed;
332	struct ips_mcp_limits *limits;
333
334	/* Optional MCH interfaces for if i915 is in use */
335	unsigned long (*read_mch_val)(void);
336	bool (*gpu_raise)(void);
337	bool (*gpu_lower)(void);
338	bool (*gpu_busy)(void);
339	bool (*gpu_turbo_disable)(void);
340
341	/* For restoration at unload */
342	u64 orig_turbo_limit;
343	u64 orig_turbo_ratios;
344};
345
346static bool
347ips_gpu_turbo_enabled(struct ips_driver *ips);
348
349/**
350 * ips_cpu_busy - is CPU busy?
351 * @ips: IPS driver struct
352 *
353 * Check CPU for load to see whether we should increase its thermal budget.
354 *
355 * RETURNS:
356 * True if the CPU could use more power, false otherwise.
357 */
358static bool ips_cpu_busy(struct ips_driver *ips)
359{
360	if ((avenrun[0] >> FSHIFT) > 1)
361		return true;
362
363	return false;
364}
365
366/**
367 * ips_cpu_raise - raise CPU power clamp
368 * @ips: IPS driver struct
369 *
370 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
371 * this platform.
372 *
373 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
374 * long as we haven't hit the TDP limit for the SKU).
375 */
376static void ips_cpu_raise(struct ips_driver *ips)
377{
378	u64 turbo_override;
379	u16 cur_tdp_limit, new_tdp_limit;
380
381	if (!ips->cpu_turbo_enabled)
382		return;
383
384	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
385
386	cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
387	new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
388
389	/* Clamp to SKU TDP limit */
390	if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
391		new_tdp_limit = cur_tdp_limit;
392
393	thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
394
395	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
396	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
397
398	turbo_override &= ~TURBO_TDP_MASK;
399	turbo_override |= new_tdp_limit;
400
401	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
402}
403
404/**
405 * ips_cpu_lower - lower CPU power clamp
406 * @ips: IPS driver struct
407 *
408 * Lower CPU power clamp b %IPS_CPU_STEP if possible.
409 *
410 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
411 * as low as the platform limits will allow (though we could go lower there
412 * wouldn't be much point).
413 */
414static void ips_cpu_lower(struct ips_driver *ips)
415{
416	u64 turbo_override;
417	u16 cur_limit, new_limit;
418
419	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
420
421	cur_limit = turbo_override & TURBO_TDP_MASK;
422	new_limit = cur_limit - 8; /* 1W decrease */
423
424	/* Clamp to SKU TDP limit */
425	if (new_limit  < (ips->orig_turbo_limit & TURBO_TDP_MASK))
426		new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
427
428	thm_writew(THM_MPCPC, (new_limit * 10) / 8);
429
430	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
431	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
432
433	turbo_override &= ~TURBO_TDP_MASK;
434	turbo_override |= new_limit;
435
436	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
437}
438
439/**
440 * do_enable_cpu_turbo - internal turbo enable function
441 * @data: unused
442 *
443 * Internal function for actually updating MSRs.  When we enable/disable
444 * turbo, we need to do it on each CPU; this function is the one called
445 * by on_each_cpu() when needed.
446 */
447static void do_enable_cpu_turbo(void *data)
448{
449	u64 perf_ctl;
450
451	rdmsrl(IA32_PERF_CTL, perf_ctl);
452	if (perf_ctl & IA32_PERF_TURBO_DIS) {
453		perf_ctl &= ~IA32_PERF_TURBO_DIS;
454		wrmsrl(IA32_PERF_CTL, perf_ctl);
455	}
456}
457
458/**
459 * ips_enable_cpu_turbo - enable turbo mode on all CPUs
460 * @ips: IPS driver struct
461 *
462 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
463 * all logical threads.
464 */
465static void ips_enable_cpu_turbo(struct ips_driver *ips)
466{
467	/* Already on, no need to mess with MSRs */
468	if (ips->__cpu_turbo_on)
469		return;
470
471	if (ips->turbo_toggle_allowed)
472		on_each_cpu(do_enable_cpu_turbo, ips, 1);
473
474	ips->__cpu_turbo_on = true;
475}
476
477/**
478 * do_disable_cpu_turbo - internal turbo disable function
479 * @data: unused
480 *
481 * Internal function for actually updating MSRs.  When we enable/disable
482 * turbo, we need to do it on each CPU; this function is the one called
483 * by on_each_cpu() when needed.
484 */
485static void do_disable_cpu_turbo(void *data)
486{
487	u64 perf_ctl;
488
489	rdmsrl(IA32_PERF_CTL, perf_ctl);
490	if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
491		perf_ctl |= IA32_PERF_TURBO_DIS;
492		wrmsrl(IA32_PERF_CTL, perf_ctl);
493	}
494}
495
496/**
497 * ips_disable_cpu_turbo - disable turbo mode on all CPUs
498 * @ips: IPS driver struct
499 *
500 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
501 * all logical threads.
502 */
503static void ips_disable_cpu_turbo(struct ips_driver *ips)
504{
505	/* Already off, leave it */
506	if (!ips->__cpu_turbo_on)
507		return;
508
509	if (ips->turbo_toggle_allowed)
510		on_each_cpu(do_disable_cpu_turbo, ips, 1);
511
512	ips->__cpu_turbo_on = false;
513}
514
515/**
516 * ips_gpu_busy - is GPU busy?
517 * @ips: IPS driver struct
518 *
519 * Check GPU for load to see whether we should increase its thermal budget.
520 * We need to call into the i915 driver in this case.
521 *
522 * RETURNS:
523 * True if the GPU could use more power, false otherwise.
524 */
525static bool ips_gpu_busy(struct ips_driver *ips)
526{
527	if (!ips_gpu_turbo_enabled(ips))
528		return false;
529
530	return ips->gpu_busy();
531}
532
533/**
534 * ips_gpu_raise - raise GPU power clamp
535 * @ips: IPS driver struct
536 *
537 * Raise the GPU frequency/power if possible.  We need to call into the
538 * i915 driver in this case.
539 */
540static void ips_gpu_raise(struct ips_driver *ips)
541{
542	if (!ips_gpu_turbo_enabled(ips))
543		return;
544
545	if (!ips->gpu_raise())
546		ips->gpu_turbo_enabled = false;
547
548	return;
549}
550
551/**
552 * ips_gpu_lower - lower GPU power clamp
553 * @ips: IPS driver struct
554 *
555 * Lower GPU frequency/power if possible.  Need to call i915.
556 */
557static void ips_gpu_lower(struct ips_driver *ips)
558{
559	if (!ips_gpu_turbo_enabled(ips))
560		return;
561
562	if (!ips->gpu_lower())
563		ips->gpu_turbo_enabled = false;
564
565	return;
566}
567
568/**
569 * ips_enable_gpu_turbo - notify the gfx driver turbo is available
570 * @ips: IPS driver struct
571 *
572 * Call into the graphics driver indicating that it can safely use
573 * turbo mode.
574 */
575static void ips_enable_gpu_turbo(struct ips_driver *ips)
576{
577	if (ips->__gpu_turbo_on)
578		return;
579	ips->__gpu_turbo_on = true;
580}
581
582/**
583 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
584 * @ips: IPS driver struct
585 *
586 * Request that the graphics driver disable turbo mode.
587 */
588static void ips_disable_gpu_turbo(struct ips_driver *ips)
589{
590	/* Avoid calling i915 if turbo is already disabled */
591	if (!ips->__gpu_turbo_on)
592		return;
593
594	if (!ips->gpu_turbo_disable())
595		dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
596	else
597		ips->__gpu_turbo_on = false;
598}
599
600/**
601 * mcp_exceeded - check whether we're outside our thermal & power limits
602 * @ips: IPS driver struct
603 *
604 * Check whether the MCP is over its thermal or power budget.
605 */
606static bool mcp_exceeded(struct ips_driver *ips)
607{
608	unsigned long flags;
609	bool ret = false;
610	u32 temp_limit;
611	u32 avg_power;
612
613	spin_lock_irqsave(&ips->turbo_status_lock, flags);
614
615	temp_limit = ips->mcp_temp_limit * 100;
616	if (ips->mcp_avg_temp > temp_limit)
617		ret = true;
618
619	avg_power = ips->cpu_avg_power + ips->mch_avg_power;
620	if (avg_power > ips->mcp_power_limit)
621		ret = true;
622
623	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
624
625	return ret;
626}
627
628/**
629 * cpu_exceeded - check whether a CPU core is outside its limits
630 * @ips: IPS driver struct
631 * @cpu: CPU number to check
632 *
633 * Check a given CPU's average temp or power is over its limit.
634 */
635static bool cpu_exceeded(struct ips_driver *ips, int cpu)
636{
637	unsigned long flags;
638	int avg;
639	bool ret = false;
640
641	spin_lock_irqsave(&ips->turbo_status_lock, flags);
642	avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
643	if (avg > (ips->limits->core_temp_limit * 100))
644		ret = true;
645	if (ips->cpu_avg_power > ips->core_power_limit * 100)
646		ret = true;
647	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
648
649	if (ret)
650		dev_info(&ips->dev->dev,
651			 "CPU power or thermal limit exceeded\n");
652
653	return ret;
654}
655
656/**
657 * mch_exceeded - check whether the GPU is over budget
658 * @ips: IPS driver struct
659 *
660 * Check the MCH temp & power against their maximums.
661 */
662static bool mch_exceeded(struct ips_driver *ips)
663{
664	unsigned long flags;
665	bool ret = false;
666
667	spin_lock_irqsave(&ips->turbo_status_lock, flags);
668	if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
669		ret = true;
670	if (ips->mch_avg_power > ips->mch_power_limit)
671		ret = true;
672	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
673
674	return ret;
675}
676
677/**
678 * verify_limits - verify BIOS provided limits
679 * @ips: IPS structure
680 *
681 * BIOS can optionally provide non-default limits for power and temp.  Check
682 * them here and use the defaults if the BIOS values are not provided or
683 * are otherwise unusable.
684 */
685static void verify_limits(struct ips_driver *ips)
686{
687	if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
688	    ips->mcp_power_limit > 35000)
689		ips->mcp_power_limit = ips->limits->mcp_power_limit;
690
691	if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
692	    ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
693	    ips->mcp_temp_limit > 150)
694		ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
695					  ips->limits->mch_temp_limit);
696}
697
698/**
699 * update_turbo_limits - get various limits & settings from regs
700 * @ips: IPS driver struct
701 *
702 * Update the IPS power & temp limits, along with turbo enable flags,
703 * based on latest register contents.
704 *
705 * Used at init time and for runtime BIOS support, which requires polling
706 * the regs for updates (as a result of AC->DC transition for example).
707 *
708 * LOCKING:
709 * Caller must hold turbo_status_lock (outside of init)
710 */
711static void update_turbo_limits(struct ips_driver *ips)
712{
713	u32 hts = thm_readl(THM_HTS);
714
715	ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
716	/*
717	 * Disable turbo for now, until we can figure out why the power figures
718	 * are wrong
719	 */
720	ips->cpu_turbo_enabled = false;
721
722	if (ips->gpu_busy)
723		ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
724
725	ips->core_power_limit = thm_readw(THM_MPCPC);
726	ips->mch_power_limit = thm_readw(THM_MMGPC);
727	ips->mcp_temp_limit = thm_readw(THM_PTL);
728	ips->mcp_power_limit = thm_readw(THM_MPPC);
729
730	verify_limits(ips);
731	/* Ignore BIOS CPU vs GPU pref */
732}
733
734/**
735 * ips_adjust - adjust power clamp based on thermal state
736 * @data: ips driver structure
737 *
738 * Wake up every 5s or so and check whether we should adjust the power clamp.
739 * Check CPU and GPU load to determine which needs adjustment.  There are
740 * several things to consider here:
741 *   - do we need to adjust up or down?
742 *   - is CPU busy?
743 *   - is GPU busy?
744 *   - is CPU in turbo?
745 *   - is GPU in turbo?
746 *   - is CPU or GPU preferred? (CPU is default)
747 *
748 * So, given the above, we do the following:
749 *   - up (TDP available)
750 *     - CPU not busy, GPU not busy - nothing
751 *     - CPU busy, GPU not busy - adjust CPU up
752 *     - CPU not busy, GPU busy - adjust GPU up
753 *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
754 *       non-preferred unit if necessary
755 *   - down (at TDP limit)
756 *     - adjust both CPU and GPU down if possible
757 *
758		cpu+ gpu+	cpu+gpu-	cpu-gpu+	cpu-gpu-
759cpu < gpu <	cpu+gpu+	cpu+		gpu+		nothing
760cpu < gpu >=	cpu+gpu-(mcp<)	cpu+gpu-(mcp<)	gpu-		gpu-
761cpu >= gpu <	cpu-gpu+(mcp<)	cpu-		cpu-gpu+(mcp<)	cpu-
762cpu >= gpu >=	cpu-gpu-	cpu-gpu-	cpu-gpu-	cpu-gpu-
763 *
764 */
765static int ips_adjust(void *data)
766{
767	struct ips_driver *ips = data;
768	unsigned long flags;
769
770	dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
771
772	/*
773	 * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
774	 * often isn't recommended due to ME interaction.
775	 */
776	do {
777		bool cpu_busy = ips_cpu_busy(ips);
778		bool gpu_busy = ips_gpu_busy(ips);
779
780		spin_lock_irqsave(&ips->turbo_status_lock, flags);
781		if (ips->poll_turbo_status)
782			update_turbo_limits(ips);
783		spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
784
785		/* Update turbo status if necessary */
786		if (ips->cpu_turbo_enabled)
787			ips_enable_cpu_turbo(ips);
788		else
789			ips_disable_cpu_turbo(ips);
790
791		if (ips->gpu_turbo_enabled)
792			ips_enable_gpu_turbo(ips);
793		else
794			ips_disable_gpu_turbo(ips);
795
796		/* We're outside our comfort zone, crank them down */
797		if (mcp_exceeded(ips)) {
798			ips_cpu_lower(ips);
799			ips_gpu_lower(ips);
800			goto sleep;
801		}
802
803		if (!cpu_exceeded(ips, 0) && cpu_busy)
804			ips_cpu_raise(ips);
805		else
806			ips_cpu_lower(ips);
807
808		if (!mch_exceeded(ips) && gpu_busy)
809			ips_gpu_raise(ips);
810		else
811			ips_gpu_lower(ips);
812
813sleep:
814		schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
815	} while (!kthread_should_stop());
816
817	dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
818
819	return 0;
820}
821
822/*
823 * Helpers for reading out temp/power values and calculating their
824 * averages for the decision making and monitoring functions.
825 */
826
827static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
828{
829	u64 total = 0;
830	int i;
831	u16 avg;
832
833	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
834		total += (u64)(array[i] * 100);
835
836	do_div(total, IPS_SAMPLE_COUNT);
837
838	avg = (u16)total;
839
840	return avg;
841}
842
843static u16 read_mgtv(struct ips_driver *ips)
844{
845	u16 ret;
846	u64 slope, offset;
847	u64 val;
848
849	val = thm_readq(THM_MGTV);
850	val = (val & TV_MASK) >> TV_SHIFT;
851
852	slope = offset = thm_readw(THM_MGTA);
853	slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
854	offset = offset & MGTA_OFFSET_MASK;
855
856	ret = ((val * slope + 0x40) >> 7) + offset;
857
858	return 0; /* MCH temp reporting buggy */
859}
860
861static u16 read_ptv(struct ips_driver *ips)
862{
863	u16 val, slope, offset;
864
865	slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
866	offset = ips->pta_val & PTA_OFFSET_MASK;
867
868	val = thm_readw(THM_PTV) & PTV_MASK;
869
870	return val;
871}
872
873static u16 read_ctv(struct ips_driver *ips, int cpu)
874{
875	int reg = cpu ? THM_CTV2 : THM_CTV1;
876	u16 val;
877
878	val = thm_readw(reg);
879	if (!(val & CTV_TEMP_ERROR))
880		val = (val) >> 6; /* discard fractional component */
881	else
882		val = 0;
883
884	return val;
885}
886
887static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
888{
889	u32 val;
890	u32 ret;
891
892	/*
893	 * CEC is in joules/65535.  Take difference over time to
894	 * get watts.
895	 */
896	val = thm_readl(THM_CEC);
897
898	/* period is in ms and we want mW */
899	ret = (((val - *last) * 1000) / period);
900	ret = (ret * 1000) / 65535;
901	*last = val;
902
903	return 0;
904}
905
906static const u16 temp_decay_factor = 2;
907static u16 update_average_temp(u16 avg, u16 val)
908{
909	u16 ret;
910
911	/* Multiply by 100 for extra precision */
912	ret = (val * 100 / temp_decay_factor) +
913		(((temp_decay_factor - 1) * avg) / temp_decay_factor);
914	return ret;
915}
916
917static const u16 power_decay_factor = 2;
918static u16 update_average_power(u32 avg, u32 val)
919{
920	u32 ret;
921
922	ret = (val / power_decay_factor) +
923		(((power_decay_factor - 1) * avg) / power_decay_factor);
924
925	return ret;
926}
927
928static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
929{
930	u64 total = 0;
931	u32 avg;
932	int i;
933
934	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
935		total += array[i];
936
937	do_div(total, IPS_SAMPLE_COUNT);
938	avg = (u32)total;
939
940	return avg;
941}
942
943static void monitor_timeout(unsigned long arg)
944{
945	wake_up_process((struct task_struct *)arg);
946}
947
948/**
949 * ips_monitor - temp/power monitoring thread
950 * @data: ips driver structure
951 *
952 * This is the main function for the IPS driver.  It monitors power and
953 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
954 *
955 * We keep a 5s moving average of power consumption and tempurature.  Using
956 * that data, along with CPU vs GPU preference, we adjust the power clamps
957 * up or down.
958 */
959static int ips_monitor(void *data)
960{
961	struct ips_driver *ips = data;
962	struct timer_list timer;
963	unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
964	int i;
965	u32 *cpu_samples, *mchp_samples, old_cpu_power;
966	u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
967	u8 cur_seqno, last_seqno;
968
969	mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
970	ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
971	ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
972	mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
973	cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
974	mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
975	if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
976			!cpu_samples || !mchp_samples) {
977		dev_err(&ips->dev->dev,
978			"failed to allocate sample array, ips disabled\n");
979		kfree(mcp_samples);
980		kfree(ctv1_samples);
981		kfree(ctv2_samples);
982		kfree(mch_samples);
983		kfree(cpu_samples);
984		kfree(mchp_samples);
985		return -ENOMEM;
986	}
987
988	last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
989		ITV_ME_SEQNO_SHIFT;
990	seqno_timestamp = get_jiffies_64();
991
992	old_cpu_power = thm_readl(THM_CEC);
993	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
994
995	/* Collect an initial average */
996	for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
997		u32 mchp, cpu_power;
998		u16 val;
999
1000		mcp_samples[i] = read_ptv(ips);
1001
1002		val = read_ctv(ips, 0);
1003		ctv1_samples[i] = val;
1004
1005		val = read_ctv(ips, 1);
1006		ctv2_samples[i] = val;
1007
1008		val = read_mgtv(ips);
1009		mch_samples[i] = val;
1010
1011		cpu_power = get_cpu_power(ips, &old_cpu_power,
1012					  IPS_SAMPLE_PERIOD);
1013		cpu_samples[i] = cpu_power;
1014
1015		if (ips->read_mch_val) {
1016			mchp = ips->read_mch_val();
1017			mchp_samples[i] = mchp;
1018		}
1019
1020		schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1021		if (kthread_should_stop())
1022			break;
1023	}
1024
1025	ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1026	ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1027	ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1028	ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1029	ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1030	ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1031	kfree(mcp_samples);
1032	kfree(ctv1_samples);
1033	kfree(ctv2_samples);
1034	kfree(mch_samples);
1035	kfree(cpu_samples);
1036	kfree(mchp_samples);
1037
1038	/* Start the adjustment thread now that we have data */
1039	wake_up_process(ips->adjust);
1040
1041	/*
1042	 * Ok, now we have an initial avg.  From here on out, we track the
1043	 * running avg using a decaying average calculation.  This allows
1044	 * us to reduce the sample frequency if the CPU and GPU are idle.
1045	 */
1046	old_cpu_power = thm_readl(THM_CEC);
1047	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1048	last_sample_period = IPS_SAMPLE_PERIOD;
1049
1050	setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1051					(unsigned long)current);
1052	do {
1053		u32 cpu_val, mch_val;
1054		u16 val;
1055
1056		/* MCP itself */
1057		val = read_ptv(ips);
1058		ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1059
1060		/* Processor 0 */
1061		val = read_ctv(ips, 0);
1062		ips->ctv1_avg_temp =
1063			update_average_temp(ips->ctv1_avg_temp, val);
1064		/* Power */
1065		cpu_val = get_cpu_power(ips, &old_cpu_power,
1066					last_sample_period);
1067		ips->cpu_avg_power =
1068			update_average_power(ips->cpu_avg_power, cpu_val);
1069
1070		if (ips->second_cpu) {
1071			/* Processor 1 */
1072			val = read_ctv(ips, 1);
1073			ips->ctv2_avg_temp =
1074				update_average_temp(ips->ctv2_avg_temp, val);
1075		}
1076
1077		/* MCH */
1078		val = read_mgtv(ips);
1079		ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1080		/* Power */
1081		if (ips->read_mch_val) {
1082			mch_val = ips->read_mch_val();
1083			ips->mch_avg_power =
1084				update_average_power(ips->mch_avg_power,
1085						     mch_val);
1086		}
1087
1088		/*
1089		 * Make sure ME is updating thermal regs.
1090		 * Note:
1091		 * If it's been more than a second since the last update,
1092		 * the ME is probably hung.
1093		 */
1094		cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1095			ITV_ME_SEQNO_SHIFT;
1096		if (cur_seqno == last_seqno &&
1097		    time_after(jiffies, seqno_timestamp + HZ)) {
1098			dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1099		} else {
1100			seqno_timestamp = get_jiffies_64();
1101			last_seqno = cur_seqno;
1102		}
1103
1104		last_msecs = jiffies_to_msecs(jiffies);
1105		expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1106
1107		__set_current_state(TASK_INTERRUPTIBLE);
1108		mod_timer(&timer, expire);
1109		schedule();
1110
1111		/* Calculate actual sample period for power averaging */
1112		last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1113		if (!last_sample_period)
1114			last_sample_period = 1;
1115	} while (!kthread_should_stop());
1116
1117	del_timer_sync(&timer);
1118	destroy_timer_on_stack(&timer);
1119
1120	dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1121
1122	return 0;
1123}
1124
1125#if 0
1126#define THM_DUMPW(reg) \
1127	{ \
1128	u16 val = thm_readw(reg); \
1129	dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1130	}
1131#define THM_DUMPL(reg) \
1132	{ \
1133	u32 val = thm_readl(reg); \
1134	dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1135	}
1136#define THM_DUMPQ(reg) \
1137	{ \
1138	u64 val = thm_readq(reg); \
1139	dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1140	}
1141
1142static void dump_thermal_info(struct ips_driver *ips)
1143{
1144	u16 ptl;
1145
1146	ptl = thm_readw(THM_PTL);
1147	dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1148
1149	THM_DUMPW(THM_CTA);
1150	THM_DUMPW(THM_TRC);
1151	THM_DUMPW(THM_CTV1);
1152	THM_DUMPL(THM_STS);
1153	THM_DUMPW(THM_PTV);
1154	THM_DUMPQ(THM_MGTV);
1155}
1156#endif
1157
1158/**
1159 * ips_irq_handler - handle temperature triggers and other IPS events
1160 * @irq: irq number
1161 * @arg: unused
1162 *
1163 * Handle temperature limit trigger events, generally by lowering the clamps.
1164 * If we're at a critical limit, we clamp back to the lowest possible value
1165 * to prevent emergency shutdown.
1166 */
1167static irqreturn_t ips_irq_handler(int irq, void *arg)
1168{
1169	struct ips_driver *ips = arg;
1170	u8 tses = thm_readb(THM_TSES);
1171	u8 tes = thm_readb(THM_TES);
1172
1173	if (!tses && !tes)
1174		return IRQ_NONE;
1175
1176	dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1177	dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1178
1179	/* STS update from EC? */
1180	if (tes & 1) {
1181		u32 sts, tc1;
1182
1183		sts = thm_readl(THM_STS);
1184		tc1 = thm_readl(THM_TC1);
1185
1186		if (sts & STS_NVV) {
1187			spin_lock(&ips->turbo_status_lock);
1188			ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1189				STS_PCPL_SHIFT;
1190			ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1191				STS_GPL_SHIFT;
1192			/* ignore EC CPU vs GPU pref */
1193			ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1194			/*
1195			 * Disable turbo for now, until we can figure
1196			 * out why the power figures are wrong
1197			 */
1198			ips->cpu_turbo_enabled = false;
1199			if (ips->gpu_busy)
1200				ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1201			ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1202				STS_PTL_SHIFT;
1203			ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1204				STS_PPL_SHIFT;
1205			verify_limits(ips);
1206			spin_unlock(&ips->turbo_status_lock);
1207
1208			thm_writeb(THM_SEC, SEC_ACK);
1209		}
1210		thm_writeb(THM_TES, tes);
1211	}
1212
1213	/* Thermal trip */
1214	if (tses) {
1215		dev_warn(&ips->dev->dev,
1216			 "thermal trip occurred, tses: 0x%04x\n", tses);
1217		thm_writeb(THM_TSES, tses);
1218	}
1219
1220	return IRQ_HANDLED;
1221}
1222
1223#ifndef CONFIG_DEBUG_FS
1224static void ips_debugfs_init(struct ips_driver *ips) { return; }
1225static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1226#else
1227
1228/* Expose current state and limits in debugfs if possible */
1229
1230struct ips_debugfs_node {
1231	struct ips_driver *ips;
1232	char *name;
1233	int (*show)(struct seq_file *m, void *data);
1234};
1235
1236static int show_cpu_temp(struct seq_file *m, void *data)
1237{
1238	struct ips_driver *ips = m->private;
1239
1240	seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1241		   ips->ctv1_avg_temp % 100);
1242
1243	return 0;
1244}
1245
1246static int show_cpu_power(struct seq_file *m, void *data)
1247{
1248	struct ips_driver *ips = m->private;
1249
1250	seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1251
1252	return 0;
1253}
1254
1255static int show_cpu_clamp(struct seq_file *m, void *data)
1256{
1257	u64 turbo_override;
1258	int tdp, tdc;
1259
1260	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1261
1262	tdp = (int)(turbo_override & TURBO_TDP_MASK);
1263	tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1264
1265	/* Convert to .1W/A units */
1266	tdp = tdp * 10 / 8;
1267	tdc = tdc * 10 / 8;
1268
1269	/* Watts Amperes */
1270	seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1271		   tdc / 10, tdc % 10);
1272
1273	return 0;
1274}
1275
1276static int show_mch_temp(struct seq_file *m, void *data)
1277{
1278	struct ips_driver *ips = m->private;
1279
1280	seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1281		   ips->mch_avg_temp % 100);
1282
1283	return 0;
1284}
1285
1286static int show_mch_power(struct seq_file *m, void *data)
1287{
1288	struct ips_driver *ips = m->private;
1289
1290	seq_printf(m, "%dmW\n", ips->mch_avg_power);
1291
1292	return 0;
1293}
1294
1295static struct ips_debugfs_node ips_debug_files[] = {
1296	{ NULL, "cpu_temp", show_cpu_temp },
1297	{ NULL, "cpu_power", show_cpu_power },
1298	{ NULL, "cpu_clamp", show_cpu_clamp },
1299	{ NULL, "mch_temp", show_mch_temp },
1300	{ NULL, "mch_power", show_mch_power },
1301};
1302
1303static int ips_debugfs_open(struct inode *inode, struct file *file)
1304{
1305	struct ips_debugfs_node *node = inode->i_private;
1306
1307	return single_open(file, node->show, node->ips);
1308}
1309
1310static const struct file_operations ips_debugfs_ops = {
1311	.owner = THIS_MODULE,
1312	.open = ips_debugfs_open,
1313	.read = seq_read,
1314	.llseek = seq_lseek,
1315	.release = single_release,
1316};
1317
1318static void ips_debugfs_cleanup(struct ips_driver *ips)
1319{
1320	if (ips->debug_root)
1321		debugfs_remove_recursive(ips->debug_root);
1322	return;
1323}
1324
1325static void ips_debugfs_init(struct ips_driver *ips)
1326{
1327	int i;
1328
1329	ips->debug_root = debugfs_create_dir("ips", NULL);
1330	if (!ips->debug_root) {
1331		dev_err(&ips->dev->dev,
1332			"failed to create debugfs entries: %ld\n",
1333			PTR_ERR(ips->debug_root));
1334		return;
1335	}
1336
1337	for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1338		struct dentry *ent;
1339		struct ips_debugfs_node *node = &ips_debug_files[i];
1340
1341		node->ips = ips;
1342		ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1343					  ips->debug_root, node,
1344					  &ips_debugfs_ops);
1345		if (!ent) {
1346			dev_err(&ips->dev->dev,
1347				"failed to create debug file: %ld\n",
1348				PTR_ERR(ent));
1349			goto err_cleanup;
1350		}
1351	}
1352
1353	return;
1354
1355err_cleanup:
1356	ips_debugfs_cleanup(ips);
1357	return;
1358}
1359#endif /* CONFIG_DEBUG_FS */
1360
1361/**
1362 * ips_detect_cpu - detect whether CPU supports IPS
1363 *
1364 * Walk our list and see if we're on a supported CPU.  If we find one,
1365 * return the limits for it.
1366 */
1367static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1368{
1369	u64 turbo_power, misc_en;
1370	struct ips_mcp_limits *limits = NULL;
1371	u16 tdp;
1372
1373	if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1374		dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1375		goto out;
1376	}
1377
1378	rdmsrl(IA32_MISC_ENABLE, misc_en);
1379	/*
1380	 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1381	 * turbo manually or we'll get an illegal MSR access, even though
1382	 * turbo will still be available.
1383	 */
1384	if (misc_en & IA32_MISC_TURBO_EN)
1385		ips->turbo_toggle_allowed = true;
1386	else
1387		ips->turbo_toggle_allowed = false;
1388
1389	if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
1390		limits = &ips_sv_limits;
1391	else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
1392		limits = &ips_lv_limits;
1393	else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
1394		limits = &ips_ulv_limits;
1395	else {
1396		dev_info(&ips->dev->dev, "No CPUID match found.\n");
1397		goto out;
1398	}
1399
1400	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1401	tdp = turbo_power & TURBO_TDP_MASK;
1402
1403	/* Sanity check TDP against CPU */
1404	if (limits->core_power_limit != (tdp / 8) * 1000) {
1405		dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1406			 tdp / 8, limits->core_power_limit / 1000);
1407		limits->core_power_limit = (tdp / 8) * 1000;
1408	}
1409
1410out:
1411	return limits;
1412}
1413
1414/**
1415 * ips_get_i915_syms - try to get GPU control methods from i915 driver
1416 * @ips: IPS driver
1417 *
1418 * The i915 driver exports several interfaces to allow the IPS driver to
1419 * monitor and control graphics turbo mode.  If we can find them, we can
1420 * enable graphics turbo, otherwise we must disable it to avoid exceeding
1421 * thermal and power limits in the MCP.
1422 */
1423static bool ips_get_i915_syms(struct ips_driver *ips)
1424{
1425	ips->read_mch_val = symbol_get(i915_read_mch_val);
1426	if (!ips->read_mch_val)
1427		goto out_err;
1428	ips->gpu_raise = symbol_get(i915_gpu_raise);
1429	if (!ips->gpu_raise)
1430		goto out_put_mch;
1431	ips->gpu_lower = symbol_get(i915_gpu_lower);
1432	if (!ips->gpu_lower)
1433		goto out_put_raise;
1434	ips->gpu_busy = symbol_get(i915_gpu_busy);
1435	if (!ips->gpu_busy)
1436		goto out_put_lower;
1437	ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1438	if (!ips->gpu_turbo_disable)
1439		goto out_put_busy;
1440
1441	return true;
1442
1443out_put_busy:
1444	symbol_put(i915_gpu_busy);
1445out_put_lower:
1446	symbol_put(i915_gpu_lower);
1447out_put_raise:
1448	symbol_put(i915_gpu_raise);
1449out_put_mch:
1450	symbol_put(i915_read_mch_val);
1451out_err:
1452	return false;
1453}
1454
1455static bool
1456ips_gpu_turbo_enabled(struct ips_driver *ips)
1457{
1458	if (!ips->gpu_busy && late_i915_load) {
1459		if (ips_get_i915_syms(ips)) {
1460			dev_info(&ips->dev->dev,
1461				 "i915 driver attached, reenabling gpu turbo\n");
1462			ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1463		}
1464	}
1465
1466	return ips->gpu_turbo_enabled;
1467}
1468
1469void
1470ips_link_to_i915_driver(void)
1471{
1472	/* We can't cleanly get at the various ips_driver structs from
1473	 * this caller (the i915 driver), so just set a flag saying
1474	 * that it's time to try getting the symbols again.
1475	 */
1476	late_i915_load = true;
1477}
1478EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1479
1480static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = {
1481	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1482		     PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1483	{ 0, }
1484};
1485
1486MODULE_DEVICE_TABLE(pci, ips_id_table);
1487
1488static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1489{
1490	u64 platform_info;
1491	struct ips_driver *ips;
1492	u32 hts;
1493	int ret = 0;
1494	u16 htshi, trc, trc_required_mask;
1495	u8 tse;
1496
1497	ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1498	if (!ips)
1499		return -ENOMEM;
1500
1501	pci_set_drvdata(dev, ips);
1502	ips->dev = dev;
1503
1504	ips->limits = ips_detect_cpu(ips);
1505	if (!ips->limits) {
1506		dev_info(&dev->dev, "IPS not supported on this CPU\n");
1507		ret = -ENXIO;
1508		goto error_free;
1509	}
1510
1511	spin_lock_init(&ips->turbo_status_lock);
1512
1513	ret = pci_enable_device(dev);
1514	if (ret) {
1515		dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1516		goto error_free;
1517	}
1518
1519	if (!pci_resource_start(dev, 0)) {
1520		dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1521		ret = -ENXIO;
1522		goto error_free;
1523	}
1524
1525	ret = pci_request_regions(dev, "ips thermal sensor");
1526	if (ret) {
1527		dev_err(&dev->dev, "thermal resource busy, aborting\n");
1528		goto error_free;
1529	}
1530
1531
1532	ips->regmap = ioremap(pci_resource_start(dev, 0),
1533			      pci_resource_len(dev, 0));
1534	if (!ips->regmap) {
1535		dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1536		ret = -EBUSY;
1537		goto error_release;
1538	}
1539
1540	tse = thm_readb(THM_TSE);
1541	if (tse != TSE_EN) {
1542		dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1543		ret = -ENXIO;
1544		goto error_unmap;
1545	}
1546
1547	trc = thm_readw(THM_TRC);
1548	trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1549	if ((trc & trc_required_mask) != trc_required_mask) {
1550		dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1551		ret = -ENXIO;
1552		goto error_unmap;
1553	}
1554
1555	if (trc & TRC_CORE2_EN)
1556		ips->second_cpu = true;
1557
1558	update_turbo_limits(ips);
1559	dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1560		ips->mcp_power_limit / 10);
1561	dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1562		ips->core_power_limit / 10);
1563	/* BIOS may update limits at runtime */
1564	if (thm_readl(THM_PSC) & PSP_PBRT)
1565		ips->poll_turbo_status = true;
1566
1567	if (!ips_get_i915_syms(ips)) {
1568		dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n");
1569		ips->gpu_turbo_enabled = false;
1570	} else {
1571		dev_dbg(&dev->dev, "graphics turbo enabled\n");
1572		ips->gpu_turbo_enabled = true;
1573	}
1574
1575	/*
1576	 * Check PLATFORM_INFO MSR to make sure this chip is
1577	 * turbo capable.
1578	 */
1579	rdmsrl(PLATFORM_INFO, platform_info);
1580	if (!(platform_info & PLATFORM_TDP)) {
1581		dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1582		ret = -ENODEV;
1583		goto error_unmap;
1584	}
1585
1586	/*
1587	 * IRQ handler for ME interaction
1588	 * Note: don't use MSI here as the PCH has bugs.
1589	 */
1590	pci_disable_msi(dev);
1591	ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1592			  ips);
1593	if (ret) {
1594		dev_err(&dev->dev, "request irq failed, aborting\n");
1595		goto error_unmap;
1596	}
1597
1598	/* Enable aux, hot & critical interrupts */
1599	thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1600		   TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1601	thm_writeb(THM_TEN, TEN_UPDATE_EN);
1602
1603	/* Collect adjustment values */
1604	ips->cta_val = thm_readw(THM_CTA);
1605	ips->pta_val = thm_readw(THM_PTA);
1606	ips->mgta_val = thm_readw(THM_MGTA);
1607
1608	/* Save turbo limits & ratios */
1609	rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1610
1611	ips_disable_cpu_turbo(ips);
1612	ips->cpu_turbo_enabled = false;
1613
1614	/* Create thermal adjust thread */
1615	ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1616	if (IS_ERR(ips->adjust)) {
1617		dev_err(&dev->dev,
1618			"failed to create thermal adjust thread, aborting\n");
1619		ret = -ENOMEM;
1620		goto error_free_irq;
1621
1622	}
1623
1624	/*
1625	 * Set up the work queue and monitor thread. The monitor thread
1626	 * will wake up ips_adjust thread.
1627	 */
1628	ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1629	if (IS_ERR(ips->monitor)) {
1630		dev_err(&dev->dev,
1631			"failed to create thermal monitor thread, aborting\n");
1632		ret = -ENOMEM;
1633		goto error_thread_cleanup;
1634	}
1635
1636	hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1637		(ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1638	htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1639
1640	thm_writew(THM_HTSHI, htshi);
1641	thm_writel(THM_HTS, hts);
1642
1643	ips_debugfs_init(ips);
1644
1645	dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1646		 ips->mcp_temp_limit);
1647	return ret;
1648
1649error_thread_cleanup:
1650	kthread_stop(ips->adjust);
1651error_free_irq:
1652	free_irq(ips->dev->irq, ips);
1653error_unmap:
1654	iounmap(ips->regmap);
1655error_release:
1656	pci_release_regions(dev);
1657error_free:
1658	kfree(ips);
1659	return ret;
1660}
1661
1662static void ips_remove(struct pci_dev *dev)
1663{
1664	struct ips_driver *ips = pci_get_drvdata(dev);
1665	u64 turbo_override;
1666
1667	if (!ips)
1668		return;
1669
1670	ips_debugfs_cleanup(ips);
1671
1672	/* Release i915 driver */
1673	if (ips->read_mch_val)
1674		symbol_put(i915_read_mch_val);
1675	if (ips->gpu_raise)
1676		symbol_put(i915_gpu_raise);
1677	if (ips->gpu_lower)
1678		symbol_put(i915_gpu_lower);
1679	if (ips->gpu_busy)
1680		symbol_put(i915_gpu_busy);
1681	if (ips->gpu_turbo_disable)
1682		symbol_put(i915_gpu_turbo_disable);
1683
1684	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1685	turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1686	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1687	wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1688
1689	free_irq(ips->dev->irq, ips);
1690	if (ips->adjust)
1691		kthread_stop(ips->adjust);
1692	if (ips->monitor)
1693		kthread_stop(ips->monitor);
1694	iounmap(ips->regmap);
1695	pci_release_regions(dev);
1696	kfree(ips);
1697	dev_dbg(&dev->dev, "IPS driver removed\n");
1698}
1699
1700#ifdef CONFIG_PM
1701static int ips_suspend(struct pci_dev *dev, pm_message_t state)
1702{
1703	return 0;
1704}
1705
1706static int ips_resume(struct pci_dev *dev)
1707{
1708	return 0;
1709}
1710#else
1711#define ips_suspend NULL
1712#define ips_resume NULL
1713#endif /* CONFIG_PM */
1714
1715static void ips_shutdown(struct pci_dev *dev)
1716{
1717}
1718
1719static struct pci_driver ips_pci_driver = {
1720	.name = "intel ips",
1721	.id_table = ips_id_table,
1722	.probe = ips_probe,
1723	.remove = ips_remove,
1724	.suspend = ips_suspend,
1725	.resume = ips_resume,
1726	.shutdown = ips_shutdown,
1727};
1728
1729static int __init ips_init(void)
1730{
1731	return pci_register_driver(&ips_pci_driver);
1732}
1733module_init(ips_init);
1734
1735static void ips_exit(void)
1736{
1737	pci_unregister_driver(&ips_pci_driver);
1738	return;
1739}
1740module_exit(ips_exit);
1741
1742MODULE_LICENSE("GPL");
1743MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1744MODULE_DESCRIPTION("Intelligent Power Sharing Driver");
1745