1/*
2 * Virtio-based remote processor messaging bus
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 *
10 * This software is licensed under the terms of the GNU General Public
11 * License version 2, as published by the Free Software Foundation, and
12 * may be copied, distributed, and modified under those terms.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 */
19
20#define pr_fmt(fmt) "%s: " fmt, __func__
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/virtio.h>
25#include <linux/virtio_ids.h>
26#include <linux/virtio_config.h>
27#include <linux/scatterlist.h>
28#include <linux/dma-mapping.h>
29#include <linux/slab.h>
30#include <linux/idr.h>
31#include <linux/jiffies.h>
32#include <linux/sched.h>
33#include <linux/wait.h>
34#include <linux/rpmsg.h>
35#include <linux/mutex.h>
36
37/**
38 * struct virtproc_info - virtual remote processor state
39 * @vdev:	the virtio device
40 * @rvq:	rx virtqueue
41 * @svq:	tx virtqueue
42 * @rbufs:	kernel address of rx buffers
43 * @sbufs:	kernel address of tx buffers
44 * @last_sbuf:	index of last tx buffer used
45 * @bufs_dma:	dma base addr of the buffers
46 * @tx_lock:	protects svq, sbufs and sleepers, to allow concurrent senders.
47 *		sending a message might require waking up a dozing remote
48 *		processor, which involves sleeping, hence the mutex.
49 * @endpoints:	idr of local endpoints, allows fast retrieval
50 * @endpoints_lock: lock of the endpoints set
51 * @sendq:	wait queue of sending contexts waiting for a tx buffers
52 * @sleepers:	number of senders that are waiting for a tx buffer
53 * @ns_ept:	the bus's name service endpoint
54 *
55 * This structure stores the rpmsg state of a given virtio remote processor
56 * device (there might be several virtio proc devices for each physical
57 * remote processor).
58 */
59struct virtproc_info {
60	struct virtio_device *vdev;
61	struct virtqueue *rvq, *svq;
62	void *rbufs, *sbufs;
63	int last_sbuf;
64	dma_addr_t bufs_dma;
65	struct mutex tx_lock;
66	struct idr endpoints;
67	struct mutex endpoints_lock;
68	wait_queue_head_t sendq;
69	atomic_t sleepers;
70	struct rpmsg_endpoint *ns_ept;
71};
72
73/**
74 * struct rpmsg_channel_info - internal channel info representation
75 * @name: name of service
76 * @src: local address
77 * @dst: destination address
78 */
79struct rpmsg_channel_info {
80	char name[RPMSG_NAME_SIZE];
81	u32 src;
82	u32 dst;
83};
84
85#define to_rpmsg_channel(d) container_of(d, struct rpmsg_channel, dev)
86#define to_rpmsg_driver(d) container_of(d, struct rpmsg_driver, drv)
87
88/*
89 * We're allocating 512 buffers of 512 bytes for communications, and then
90 * using the first 256 buffers for RX, and the last 256 buffers for TX.
91 *
92 * Each buffer will have 16 bytes for the msg header and 496 bytes for
93 * the payload.
94 *
95 * This will require a total space of 256KB for the buffers.
96 *
97 * We might also want to add support for user-provided buffers in time.
98 * This will allow bigger buffer size flexibility, and can also be used
99 * to achieve zero-copy messaging.
100 *
101 * Note that these numbers are purely a decision of this driver - we
102 * can change this without changing anything in the firmware of the remote
103 * processor.
104 */
105#define RPMSG_NUM_BUFS		(512)
106#define RPMSG_BUF_SIZE		(512)
107#define RPMSG_TOTAL_BUF_SPACE	(RPMSG_NUM_BUFS * RPMSG_BUF_SIZE)
108
109/*
110 * Local addresses are dynamically allocated on-demand.
111 * We do not dynamically assign addresses from the low 1024 range,
112 * in order to reserve that address range for predefined services.
113 */
114#define RPMSG_RESERVED_ADDRESSES	(1024)
115
116/* Address 53 is reserved for advertising remote services */
117#define RPMSG_NS_ADDR			(53)
118
119/* sysfs show configuration fields */
120#define rpmsg_show_attr(field, path, format_string)			\
121static ssize_t								\
122field##_show(struct device *dev,					\
123			struct device_attribute *attr, char *buf)	\
124{									\
125	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);		\
126									\
127	return sprintf(buf, format_string, rpdev->path);		\
128}
129
130/* for more info, see Documentation/ABI/testing/sysfs-bus-rpmsg */
131rpmsg_show_attr(name, id.name, "%s\n");
132rpmsg_show_attr(src, src, "0x%x\n");
133rpmsg_show_attr(dst, dst, "0x%x\n");
134rpmsg_show_attr(announce, announce ? "true" : "false", "%s\n");
135
136/*
137 * Unique (and free running) index for rpmsg devices.
138 *
139 * Yeah, we're not recycling those numbers (yet?). will be easy
140 * to change if/when we want to.
141 */
142static unsigned int rpmsg_dev_index;
143
144static ssize_t modalias_show(struct device *dev,
145			     struct device_attribute *attr, char *buf)
146{
147	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
148
149	return sprintf(buf, RPMSG_DEVICE_MODALIAS_FMT "\n", rpdev->id.name);
150}
151
152static struct device_attribute rpmsg_dev_attrs[] = {
153	__ATTR_RO(name),
154	__ATTR_RO(modalias),
155	__ATTR_RO(dst),
156	__ATTR_RO(src),
157	__ATTR_RO(announce),
158	__ATTR_NULL
159};
160
161/* rpmsg devices and drivers are matched using the service name */
162static inline int rpmsg_id_match(const struct rpmsg_channel *rpdev,
163				  const struct rpmsg_device_id *id)
164{
165	return strncmp(id->name, rpdev->id.name, RPMSG_NAME_SIZE) == 0;
166}
167
168/* match rpmsg channel and rpmsg driver */
169static int rpmsg_dev_match(struct device *dev, struct device_driver *drv)
170{
171	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
172	struct rpmsg_driver *rpdrv = to_rpmsg_driver(drv);
173	const struct rpmsg_device_id *ids = rpdrv->id_table;
174	unsigned int i;
175
176	for (i = 0; ids[i].name[0]; i++)
177		if (rpmsg_id_match(rpdev, &ids[i]))
178			return 1;
179
180	return 0;
181}
182
183static int rpmsg_uevent(struct device *dev, struct kobj_uevent_env *env)
184{
185	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
186
187	return add_uevent_var(env, "MODALIAS=" RPMSG_DEVICE_MODALIAS_FMT,
188					rpdev->id.name);
189}
190
191/**
192 * __ept_release() - deallocate an rpmsg endpoint
193 * @kref: the ept's reference count
194 *
195 * This function deallocates an ept, and is invoked when its @kref refcount
196 * drops to zero.
197 *
198 * Never invoke this function directly!
199 */
200static void __ept_release(struct kref *kref)
201{
202	struct rpmsg_endpoint *ept = container_of(kref, struct rpmsg_endpoint,
203						  refcount);
204	/*
205	 * At this point no one holds a reference to ept anymore,
206	 * so we can directly free it
207	 */
208	kfree(ept);
209}
210
211/* for more info, see below documentation of rpmsg_create_ept() */
212static struct rpmsg_endpoint *__rpmsg_create_ept(struct virtproc_info *vrp,
213		struct rpmsg_channel *rpdev, rpmsg_rx_cb_t cb,
214		void *priv, u32 addr)
215{
216	int err, tmpaddr, request;
217	struct rpmsg_endpoint *ept;
218	struct device *dev = rpdev ? &rpdev->dev : &vrp->vdev->dev;
219
220	if (!idr_pre_get(&vrp->endpoints, GFP_KERNEL))
221		return NULL;
222
223	ept = kzalloc(sizeof(*ept), GFP_KERNEL);
224	if (!ept) {
225		dev_err(dev, "failed to kzalloc a new ept\n");
226		return NULL;
227	}
228
229	kref_init(&ept->refcount);
230	mutex_init(&ept->cb_lock);
231
232	ept->rpdev = rpdev;
233	ept->cb = cb;
234	ept->priv = priv;
235
236	/* do we need to allocate a local address ? */
237	request = addr == RPMSG_ADDR_ANY ? RPMSG_RESERVED_ADDRESSES : addr;
238
239	mutex_lock(&vrp->endpoints_lock);
240
241	/* bind the endpoint to an rpmsg address (and allocate one if needed) */
242	err = idr_get_new_above(&vrp->endpoints, ept, request, &tmpaddr);
243	if (err) {
244		dev_err(dev, "idr_get_new_above failed: %d\n", err);
245		goto free_ept;
246	}
247
248	/* make sure the user's address request is fulfilled, if relevant */
249	if (addr != RPMSG_ADDR_ANY && tmpaddr != addr) {
250		dev_err(dev, "address 0x%x already in use\n", addr);
251		goto rem_idr;
252	}
253
254	ept->addr = tmpaddr;
255
256	mutex_unlock(&vrp->endpoints_lock);
257
258	return ept;
259
260rem_idr:
261	idr_remove(&vrp->endpoints, request);
262free_ept:
263	mutex_unlock(&vrp->endpoints_lock);
264	kref_put(&ept->refcount, __ept_release);
265	return NULL;
266}
267
268/**
269 * rpmsg_create_ept() - create a new rpmsg_endpoint
270 * @rpdev: rpmsg channel device
271 * @cb: rx callback handler
272 * @priv: private data for the driver's use
273 * @addr: local rpmsg address to bind with @cb
274 *
275 * Every rpmsg address in the system is bound to an rx callback (so when
276 * inbound messages arrive, they are dispatched by the rpmsg bus using the
277 * appropriate callback handler) by means of an rpmsg_endpoint struct.
278 *
279 * This function allows drivers to create such an endpoint, and by that,
280 * bind a callback, and possibly some private data too, to an rpmsg address
281 * (either one that is known in advance, or one that will be dynamically
282 * assigned for them).
283 *
284 * Simple rpmsg drivers need not call rpmsg_create_ept, because an endpoint
285 * is already created for them when they are probed by the rpmsg bus
286 * (using the rx callback provided when they registered to the rpmsg bus).
287 *
288 * So things should just work for simple drivers: they already have an
289 * endpoint, their rx callback is bound to their rpmsg address, and when
290 * relevant inbound messages arrive (i.e. messages which their dst address
291 * equals to the src address of their rpmsg channel), the driver's handler
292 * is invoked to process it.
293 *
294 * That said, more complicated drivers might do need to allocate
295 * additional rpmsg addresses, and bind them to different rx callbacks.
296 * To accomplish that, those drivers need to call this function.
297 *
298 * Drivers should provide their @rpdev channel (so the new endpoint would belong
299 * to the same remote processor their channel belongs to), an rx callback
300 * function, an optional private data (which is provided back when the
301 * rx callback is invoked), and an address they want to bind with the
302 * callback. If @addr is RPMSG_ADDR_ANY, then rpmsg_create_ept will
303 * dynamically assign them an available rpmsg address (drivers should have
304 * a very good reason why not to always use RPMSG_ADDR_ANY here).
305 *
306 * Returns a pointer to the endpoint on success, or NULL on error.
307 */
308struct rpmsg_endpoint *rpmsg_create_ept(struct rpmsg_channel *rpdev,
309				rpmsg_rx_cb_t cb, void *priv, u32 addr)
310{
311	return __rpmsg_create_ept(rpdev->vrp, rpdev, cb, priv, addr);
312}
313EXPORT_SYMBOL(rpmsg_create_ept);
314
315/**
316 * __rpmsg_destroy_ept() - destroy an existing rpmsg endpoint
317 * @vrp: virtproc which owns this ept
318 * @ept: endpoing to destroy
319 *
320 * An internal function which destroy an ept without assuming it is
321 * bound to an rpmsg channel. This is needed for handling the internal
322 * name service endpoint, which isn't bound to an rpmsg channel.
323 * See also __rpmsg_create_ept().
324 */
325static void
326__rpmsg_destroy_ept(struct virtproc_info *vrp, struct rpmsg_endpoint *ept)
327{
328	/* make sure new inbound messages can't find this ept anymore */
329	mutex_lock(&vrp->endpoints_lock);
330	idr_remove(&vrp->endpoints, ept->addr);
331	mutex_unlock(&vrp->endpoints_lock);
332
333	/* make sure in-flight inbound messages won't invoke cb anymore */
334	mutex_lock(&ept->cb_lock);
335	ept->cb = NULL;
336	mutex_unlock(&ept->cb_lock);
337
338	kref_put(&ept->refcount, __ept_release);
339}
340
341/**
342 * rpmsg_destroy_ept() - destroy an existing rpmsg endpoint
343 * @ept: endpoing to destroy
344 *
345 * Should be used by drivers to destroy an rpmsg endpoint previously
346 * created with rpmsg_create_ept().
347 */
348void rpmsg_destroy_ept(struct rpmsg_endpoint *ept)
349{
350	__rpmsg_destroy_ept(ept->rpdev->vrp, ept);
351}
352EXPORT_SYMBOL(rpmsg_destroy_ept);
353
354/*
355 * when an rpmsg driver is probed with a channel, we seamlessly create
356 * it an endpoint, binding its rx callback to a unique local rpmsg
357 * address.
358 *
359 * if we need to, we also announce about this channel to the remote
360 * processor (needed in case the driver is exposing an rpmsg service).
361 */
362static int rpmsg_dev_probe(struct device *dev)
363{
364	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
365	struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver);
366	struct virtproc_info *vrp = rpdev->vrp;
367	struct rpmsg_endpoint *ept;
368	int err;
369
370	ept = rpmsg_create_ept(rpdev, rpdrv->callback, NULL, rpdev->src);
371	if (!ept) {
372		dev_err(dev, "failed to create endpoint\n");
373		err = -ENOMEM;
374		goto out;
375	}
376
377	rpdev->ept = ept;
378	rpdev->src = ept->addr;
379
380	err = rpdrv->probe(rpdev);
381	if (err) {
382		dev_err(dev, "%s: failed: %d\n", __func__, err);
383		rpmsg_destroy_ept(ept);
384		goto out;
385	}
386
387	/* need to tell remote processor's name service about this channel ? */
388	if (rpdev->announce &&
389			virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) {
390		struct rpmsg_ns_msg nsm;
391
392		strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE);
393		nsm.addr = rpdev->src;
394		nsm.flags = RPMSG_NS_CREATE;
395
396		err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR);
397		if (err)
398			dev_err(dev, "failed to announce service %d\n", err);
399	}
400
401out:
402	return err;
403}
404
405static int rpmsg_dev_remove(struct device *dev)
406{
407	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
408	struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver);
409	struct virtproc_info *vrp = rpdev->vrp;
410	int err = 0;
411
412	/* tell remote processor's name service we're removing this channel */
413	if (rpdev->announce &&
414			virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) {
415		struct rpmsg_ns_msg nsm;
416
417		strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE);
418		nsm.addr = rpdev->src;
419		nsm.flags = RPMSG_NS_DESTROY;
420
421		err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR);
422		if (err)
423			dev_err(dev, "failed to announce service %d\n", err);
424	}
425
426	rpdrv->remove(rpdev);
427
428	rpmsg_destroy_ept(rpdev->ept);
429
430	return err;
431}
432
433static struct bus_type rpmsg_bus = {
434	.name		= "rpmsg",
435	.match		= rpmsg_dev_match,
436	.dev_attrs	= rpmsg_dev_attrs,
437	.uevent		= rpmsg_uevent,
438	.probe		= rpmsg_dev_probe,
439	.remove		= rpmsg_dev_remove,
440};
441
442/**
443 * register_rpmsg_driver() - register an rpmsg driver with the rpmsg bus
444 * @rpdrv: pointer to a struct rpmsg_driver
445 *
446 * Returns 0 on success, and an appropriate error value on failure.
447 */
448int register_rpmsg_driver(struct rpmsg_driver *rpdrv)
449{
450	rpdrv->drv.bus = &rpmsg_bus;
451	return driver_register(&rpdrv->drv);
452}
453EXPORT_SYMBOL(register_rpmsg_driver);
454
455/**
456 * unregister_rpmsg_driver() - unregister an rpmsg driver from the rpmsg bus
457 * @rpdrv: pointer to a struct rpmsg_driver
458 *
459 * Returns 0 on success, and an appropriate error value on failure.
460 */
461void unregister_rpmsg_driver(struct rpmsg_driver *rpdrv)
462{
463	driver_unregister(&rpdrv->drv);
464}
465EXPORT_SYMBOL(unregister_rpmsg_driver);
466
467static void rpmsg_release_device(struct device *dev)
468{
469	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
470
471	kfree(rpdev);
472}
473
474/*
475 * match an rpmsg channel with a channel info struct.
476 * this is used to make sure we're not creating rpmsg devices for channels
477 * that already exist.
478 */
479static int rpmsg_channel_match(struct device *dev, void *data)
480{
481	struct rpmsg_channel_info *chinfo = data;
482	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
483
484	if (chinfo->src != RPMSG_ADDR_ANY && chinfo->src != rpdev->src)
485		return 0;
486
487	if (chinfo->dst != RPMSG_ADDR_ANY && chinfo->dst != rpdev->dst)
488		return 0;
489
490	if (strncmp(chinfo->name, rpdev->id.name, RPMSG_NAME_SIZE))
491		return 0;
492
493	/* found a match ! */
494	return 1;
495}
496
497/*
498 * create an rpmsg channel using its name and address info.
499 * this function will be used to create both static and dynamic
500 * channels.
501 */
502static struct rpmsg_channel *rpmsg_create_channel(struct virtproc_info *vrp,
503				struct rpmsg_channel_info *chinfo)
504{
505	struct rpmsg_channel *rpdev;
506	struct device *tmp, *dev = &vrp->vdev->dev;
507	int ret;
508
509	/* make sure a similar channel doesn't already exist */
510	tmp = device_find_child(dev, chinfo, rpmsg_channel_match);
511	if (tmp) {
512		/* decrement the matched device's refcount back */
513		put_device(tmp);
514		dev_err(dev, "channel %s:%x:%x already exist\n",
515				chinfo->name, chinfo->src, chinfo->dst);
516		return NULL;
517	}
518
519	rpdev = kzalloc(sizeof(struct rpmsg_channel), GFP_KERNEL);
520	if (!rpdev) {
521		pr_err("kzalloc failed\n");
522		return NULL;
523	}
524
525	rpdev->vrp = vrp;
526	rpdev->src = chinfo->src;
527	rpdev->dst = chinfo->dst;
528
529	/*
530	 * rpmsg server channels has predefined local address (for now),
531	 * and their existence needs to be announced remotely
532	 */
533	rpdev->announce = rpdev->src != RPMSG_ADDR_ANY ? true : false;
534
535	strncpy(rpdev->id.name, chinfo->name, RPMSG_NAME_SIZE);
536
537	/* very simple device indexing plumbing which is enough for now */
538	dev_set_name(&rpdev->dev, "rpmsg%d", rpmsg_dev_index++);
539
540	rpdev->dev.parent = &vrp->vdev->dev;
541	rpdev->dev.bus = &rpmsg_bus;
542	rpdev->dev.release = rpmsg_release_device;
543
544	ret = device_register(&rpdev->dev);
545	if (ret) {
546		dev_err(dev, "device_register failed: %d\n", ret);
547		put_device(&rpdev->dev);
548		return NULL;
549	}
550
551	return rpdev;
552}
553
554/*
555 * find an existing channel using its name + address properties,
556 * and destroy it
557 */
558static int rpmsg_destroy_channel(struct virtproc_info *vrp,
559					struct rpmsg_channel_info *chinfo)
560{
561	struct virtio_device *vdev = vrp->vdev;
562	struct device *dev;
563
564	dev = device_find_child(&vdev->dev, chinfo, rpmsg_channel_match);
565	if (!dev)
566		return -EINVAL;
567
568	device_unregister(dev);
569
570	put_device(dev);
571
572	return 0;
573}
574
575/* super simple buffer "allocator" that is just enough for now */
576static void *get_a_tx_buf(struct virtproc_info *vrp)
577{
578	unsigned int len;
579	void *ret;
580
581	/* support multiple concurrent senders */
582	mutex_lock(&vrp->tx_lock);
583
584	/*
585	 * either pick the next unused tx buffer
586	 * (half of our buffers are used for sending messages)
587	 */
588	if (vrp->last_sbuf < RPMSG_NUM_BUFS / 2)
589		ret = vrp->sbufs + RPMSG_BUF_SIZE * vrp->last_sbuf++;
590	/* or recycle a used one */
591	else
592		ret = virtqueue_get_buf(vrp->svq, &len);
593
594	mutex_unlock(&vrp->tx_lock);
595
596	return ret;
597}
598
599/**
600 * rpmsg_upref_sleepers() - enable "tx-complete" interrupts, if needed
601 * @vrp: virtual remote processor state
602 *
603 * This function is called before a sender is blocked, waiting for
604 * a tx buffer to become available.
605 *
606 * If we already have blocking senders, this function merely increases
607 * the "sleepers" reference count, and exits.
608 *
609 * Otherwise, if this is the first sender to block, we also enable
610 * virtio's tx callbacks, so we'd be immediately notified when a tx
611 * buffer is consumed (we rely on virtio's tx callback in order
612 * to wake up sleeping senders as soon as a tx buffer is used by the
613 * remote processor).
614 */
615static void rpmsg_upref_sleepers(struct virtproc_info *vrp)
616{
617	/* support multiple concurrent senders */
618	mutex_lock(&vrp->tx_lock);
619
620	/* are we the first sleeping context waiting for tx buffers ? */
621	if (atomic_inc_return(&vrp->sleepers) == 1)
622		/* enable "tx-complete" interrupts before dozing off */
623		virtqueue_enable_cb(vrp->svq);
624
625	mutex_unlock(&vrp->tx_lock);
626}
627
628/**
629 * rpmsg_downref_sleepers() - disable "tx-complete" interrupts, if needed
630 * @vrp: virtual remote processor state
631 *
632 * This function is called after a sender, that waited for a tx buffer
633 * to become available, is unblocked.
634 *
635 * If we still have blocking senders, this function merely decreases
636 * the "sleepers" reference count, and exits.
637 *
638 * Otherwise, if there are no more blocking senders, we also disable
639 * virtio's tx callbacks, to avoid the overhead incurred with handling
640 * those (now redundant) interrupts.
641 */
642static void rpmsg_downref_sleepers(struct virtproc_info *vrp)
643{
644	/* support multiple concurrent senders */
645	mutex_lock(&vrp->tx_lock);
646
647	/* are we the last sleeping context waiting for tx buffers ? */
648	if (atomic_dec_and_test(&vrp->sleepers))
649		/* disable "tx-complete" interrupts */
650		virtqueue_disable_cb(vrp->svq);
651
652	mutex_unlock(&vrp->tx_lock);
653}
654
655/**
656 * rpmsg_send_offchannel_raw() - send a message across to the remote processor
657 * @rpdev: the rpmsg channel
658 * @src: source address
659 * @dst: destination address
660 * @data: payload of message
661 * @len: length of payload
662 * @wait: indicates whether caller should block in case no TX buffers available
663 *
664 * This function is the base implementation for all of the rpmsg sending API.
665 *
666 * It will send @data of length @len to @dst, and say it's from @src. The
667 * message will be sent to the remote processor which the @rpdev channel
668 * belongs to.
669 *
670 * The message is sent using one of the TX buffers that are available for
671 * communication with this remote processor.
672 *
673 * If @wait is true, the caller will be blocked until either a TX buffer is
674 * available, or 15 seconds elapses (we don't want callers to
675 * sleep indefinitely due to misbehaving remote processors), and in that
676 * case -ERESTARTSYS is returned. The number '15' itself was picked
677 * arbitrarily; there's little point in asking drivers to provide a timeout
678 * value themselves.
679 *
680 * Otherwise, if @wait is false, and there are no TX buffers available,
681 * the function will immediately fail, and -ENOMEM will be returned.
682 *
683 * Normally drivers shouldn't use this function directly; instead, drivers
684 * should use the appropriate rpmsg_{try}send{to, _offchannel} API
685 * (see include/linux/rpmsg.h).
686 *
687 * Returns 0 on success and an appropriate error value on failure.
688 */
689int rpmsg_send_offchannel_raw(struct rpmsg_channel *rpdev, u32 src, u32 dst,
690					void *data, int len, bool wait)
691{
692	struct virtproc_info *vrp = rpdev->vrp;
693	struct device *dev = &rpdev->dev;
694	struct scatterlist sg;
695	struct rpmsg_hdr *msg;
696	int err;
697
698	/* bcasting isn't allowed */
699	if (src == RPMSG_ADDR_ANY || dst == RPMSG_ADDR_ANY) {
700		dev_err(dev, "invalid addr (src 0x%x, dst 0x%x)\n", src, dst);
701		return -EINVAL;
702	}
703
704	/*
705	 * We currently use fixed-sized buffers, and therefore the payload
706	 * length is limited.
707	 *
708	 * One of the possible improvements here is either to support
709	 * user-provided buffers (and then we can also support zero-copy
710	 * messaging), or to improve the buffer allocator, to support
711	 * variable-length buffer sizes.
712	 */
713	if (len > RPMSG_BUF_SIZE - sizeof(struct rpmsg_hdr)) {
714		dev_err(dev, "message is too big (%d)\n", len);
715		return -EMSGSIZE;
716	}
717
718	/* grab a buffer */
719	msg = get_a_tx_buf(vrp);
720	if (!msg && !wait)
721		return -ENOMEM;
722
723	/* no free buffer ? wait for one (but bail after 15 seconds) */
724	while (!msg) {
725		/* enable "tx-complete" interrupts, if not already enabled */
726		rpmsg_upref_sleepers(vrp);
727
728		/*
729		 * sleep until a free buffer is available or 15 secs elapse.
730		 * the timeout period is not configurable because there's
731		 * little point in asking drivers to specify that.
732		 * if later this happens to be required, it'd be easy to add.
733		 */
734		err = wait_event_interruptible_timeout(vrp->sendq,
735					(msg = get_a_tx_buf(vrp)),
736					msecs_to_jiffies(15000));
737
738		/* disable "tx-complete" interrupts if we're the last sleeper */
739		rpmsg_downref_sleepers(vrp);
740
741		/* timeout ? */
742		if (!err) {
743			dev_err(dev, "timeout waiting for a tx buffer\n");
744			return -ERESTARTSYS;
745		}
746	}
747
748	msg->len = len;
749	msg->flags = 0;
750	msg->src = src;
751	msg->dst = dst;
752	msg->reserved = 0;
753	memcpy(msg->data, data, len);
754
755	dev_dbg(dev, "TX From 0x%x, To 0x%x, Len %d, Flags %d, Reserved %d\n",
756					msg->src, msg->dst, msg->len,
757					msg->flags, msg->reserved);
758	print_hex_dump(KERN_DEBUG, "rpmsg_virtio TX: ", DUMP_PREFIX_NONE, 16, 1,
759					msg, sizeof(*msg) + msg->len, true);
760
761	sg_init_one(&sg, msg, sizeof(*msg) + len);
762
763	mutex_lock(&vrp->tx_lock);
764
765	/* add message to the remote processor's virtqueue */
766	err = virtqueue_add_buf(vrp->svq, &sg, 1, 0, msg, GFP_KERNEL);
767	if (err < 0) {
768		/*
769		 * need to reclaim the buffer here, otherwise it's lost
770		 * (memory won't leak, but rpmsg won't use it again for TX).
771		 * this will wait for a buffer management overhaul.
772		 */
773		dev_err(dev, "virtqueue_add_buf failed: %d\n", err);
774		goto out;
775	}
776
777	/* tell the remote processor it has a pending message to read */
778	virtqueue_kick(vrp->svq);
779
780	err = 0;
781out:
782	mutex_unlock(&vrp->tx_lock);
783	return err;
784}
785EXPORT_SYMBOL(rpmsg_send_offchannel_raw);
786
787/* called when an rx buffer is used, and it's time to digest a message */
788static void rpmsg_recv_done(struct virtqueue *rvq)
789{
790	struct rpmsg_hdr *msg;
791	unsigned int len;
792	struct rpmsg_endpoint *ept;
793	struct scatterlist sg;
794	struct virtproc_info *vrp = rvq->vdev->priv;
795	struct device *dev = &rvq->vdev->dev;
796	int err;
797
798	msg = virtqueue_get_buf(rvq, &len);
799	if (!msg) {
800		dev_err(dev, "uhm, incoming signal, but no used buffer ?\n");
801		return;
802	}
803
804	dev_dbg(dev, "From: 0x%x, To: 0x%x, Len: %d, Flags: %d, Reserved: %d\n",
805					msg->src, msg->dst, msg->len,
806					msg->flags, msg->reserved);
807	print_hex_dump(KERN_DEBUG, "rpmsg_virtio RX: ", DUMP_PREFIX_NONE, 16, 1,
808					msg, sizeof(*msg) + msg->len, true);
809
810	/*
811	 * We currently use fixed-sized buffers, so trivially sanitize
812	 * the reported payload length.
813	 */
814	if (len > RPMSG_BUF_SIZE ||
815		msg->len > (len - sizeof(struct rpmsg_hdr))) {
816		dev_warn(dev, "inbound msg too big: (%d, %d)\n", len, msg->len);
817		return;
818	}
819
820	/* use the dst addr to fetch the callback of the appropriate user */
821	mutex_lock(&vrp->endpoints_lock);
822
823	ept = idr_find(&vrp->endpoints, msg->dst);
824
825	/* let's make sure no one deallocates ept while we use it */
826	if (ept)
827		kref_get(&ept->refcount);
828
829	mutex_unlock(&vrp->endpoints_lock);
830
831	if (ept) {
832		/* make sure ept->cb doesn't go away while we use it */
833		mutex_lock(&ept->cb_lock);
834
835		if (ept->cb)
836			ept->cb(ept->rpdev, msg->data, msg->len, ept->priv,
837				msg->src);
838
839		mutex_unlock(&ept->cb_lock);
840
841		/* farewell, ept, we don't need you anymore */
842		kref_put(&ept->refcount, __ept_release);
843	} else
844		dev_warn(dev, "msg received with no recepient\n");
845
846	/* publish the real size of the buffer */
847	sg_init_one(&sg, msg, RPMSG_BUF_SIZE);
848
849	/* add the buffer back to the remote processor's virtqueue */
850	err = virtqueue_add_buf(vrp->rvq, &sg, 0, 1, msg, GFP_KERNEL);
851	if (err < 0) {
852		dev_err(dev, "failed to add a virtqueue buffer: %d\n", err);
853		return;
854	}
855
856	/* tell the remote processor we added another available rx buffer */
857	virtqueue_kick(vrp->rvq);
858}
859
860/*
861 * This is invoked whenever the remote processor completed processing
862 * a TX msg we just sent it, and the buffer is put back to the used ring.
863 *
864 * Normally, though, we suppress this "tx complete" interrupt in order to
865 * avoid the incurred overhead.
866 */
867static void rpmsg_xmit_done(struct virtqueue *svq)
868{
869	struct virtproc_info *vrp = svq->vdev->priv;
870
871	dev_dbg(&svq->vdev->dev, "%s\n", __func__);
872
873	/* wake up potential senders that are waiting for a tx buffer */
874	wake_up_interruptible(&vrp->sendq);
875}
876
877/* invoked when a name service announcement arrives */
878static void rpmsg_ns_cb(struct rpmsg_channel *rpdev, void *data, int len,
879							void *priv, u32 src)
880{
881	struct rpmsg_ns_msg *msg = data;
882	struct rpmsg_channel *newch;
883	struct rpmsg_channel_info chinfo;
884	struct virtproc_info *vrp = priv;
885	struct device *dev = &vrp->vdev->dev;
886	int ret;
887
888	print_hex_dump(KERN_DEBUG, "NS announcement: ",
889			DUMP_PREFIX_NONE, 16, 1,
890			data, len, true);
891
892	if (len != sizeof(*msg)) {
893		dev_err(dev, "malformed ns msg (%d)\n", len);
894		return;
895	}
896
897	/*
898	 * the name service ept does _not_ belong to a real rpmsg channel,
899	 * and is handled by the rpmsg bus itself.
900	 * for sanity reasons, make sure a valid rpdev has _not_ sneaked
901	 * in somehow.
902	 */
903	if (rpdev) {
904		dev_err(dev, "anomaly: ns ept has an rpdev handle\n");
905		return;
906	}
907
908	/* don't trust the remote processor for null terminating the name */
909	msg->name[RPMSG_NAME_SIZE - 1] = '\0';
910
911	dev_info(dev, "%sing channel %s addr 0x%x\n",
912			msg->flags & RPMSG_NS_DESTROY ? "destroy" : "creat",
913			msg->name, msg->addr);
914
915	strncpy(chinfo.name, msg->name, sizeof(chinfo.name));
916	chinfo.src = RPMSG_ADDR_ANY;
917	chinfo.dst = msg->addr;
918
919	if (msg->flags & RPMSG_NS_DESTROY) {
920		ret = rpmsg_destroy_channel(vrp, &chinfo);
921		if (ret)
922			dev_err(dev, "rpmsg_destroy_channel failed: %d\n", ret);
923	} else {
924		newch = rpmsg_create_channel(vrp, &chinfo);
925		if (!newch)
926			dev_err(dev, "rpmsg_create_channel failed\n");
927	}
928}
929
930static int rpmsg_probe(struct virtio_device *vdev)
931{
932	vq_callback_t *vq_cbs[] = { rpmsg_recv_done, rpmsg_xmit_done };
933	const char *names[] = { "input", "output" };
934	struct virtqueue *vqs[2];
935	struct virtproc_info *vrp;
936	void *bufs_va;
937	int err = 0, i;
938
939	vrp = kzalloc(sizeof(*vrp), GFP_KERNEL);
940	if (!vrp)
941		return -ENOMEM;
942
943	vrp->vdev = vdev;
944
945	idr_init(&vrp->endpoints);
946	mutex_init(&vrp->endpoints_lock);
947	mutex_init(&vrp->tx_lock);
948	init_waitqueue_head(&vrp->sendq);
949
950	/* We expect two virtqueues, rx and tx (and in this order) */
951	err = vdev->config->find_vqs(vdev, 2, vqs, vq_cbs, names);
952	if (err)
953		goto free_vrp;
954
955	vrp->rvq = vqs[0];
956	vrp->svq = vqs[1];
957
958	/* allocate coherent memory for the buffers */
959	bufs_va = dma_alloc_coherent(vdev->dev.parent, RPMSG_TOTAL_BUF_SPACE,
960				&vrp->bufs_dma, GFP_KERNEL);
961	if (!bufs_va)
962		goto vqs_del;
963
964	dev_dbg(&vdev->dev, "buffers: va %p, dma 0x%llx\n", bufs_va,
965					(unsigned long long)vrp->bufs_dma);
966
967	/* half of the buffers is dedicated for RX */
968	vrp->rbufs = bufs_va;
969
970	/* and half is dedicated for TX */
971	vrp->sbufs = bufs_va + RPMSG_TOTAL_BUF_SPACE / 2;
972
973	/* set up the receive buffers */
974	for (i = 0; i < RPMSG_NUM_BUFS / 2; i++) {
975		struct scatterlist sg;
976		void *cpu_addr = vrp->rbufs + i * RPMSG_BUF_SIZE;
977
978		sg_init_one(&sg, cpu_addr, RPMSG_BUF_SIZE);
979
980		err = virtqueue_add_buf(vrp->rvq, &sg, 0, 1, cpu_addr,
981								GFP_KERNEL);
982		WARN_ON(err < 0); /* sanity check; this can't really happen */
983	}
984
985	/* suppress "tx-complete" interrupts */
986	virtqueue_disable_cb(vrp->svq);
987
988	vdev->priv = vrp;
989
990	/* if supported by the remote processor, enable the name service */
991	if (virtio_has_feature(vdev, VIRTIO_RPMSG_F_NS)) {
992		/* a dedicated endpoint handles the name service msgs */
993		vrp->ns_ept = __rpmsg_create_ept(vrp, NULL, rpmsg_ns_cb,
994						vrp, RPMSG_NS_ADDR);
995		if (!vrp->ns_ept) {
996			dev_err(&vdev->dev, "failed to create the ns ept\n");
997			err = -ENOMEM;
998			goto free_coherent;
999		}
1000	}
1001
1002	/* tell the remote processor it can start sending messages */
1003	virtqueue_kick(vrp->rvq);
1004
1005	dev_info(&vdev->dev, "rpmsg host is online\n");
1006
1007	return 0;
1008
1009free_coherent:
1010	dma_free_coherent(vdev->dev.parent, RPMSG_TOTAL_BUF_SPACE, bufs_va,
1011					vrp->bufs_dma);
1012vqs_del:
1013	vdev->config->del_vqs(vrp->vdev);
1014free_vrp:
1015	kfree(vrp);
1016	return err;
1017}
1018
1019static int rpmsg_remove_device(struct device *dev, void *data)
1020{
1021	device_unregister(dev);
1022
1023	return 0;
1024}
1025
1026static void __devexit rpmsg_remove(struct virtio_device *vdev)
1027{
1028	struct virtproc_info *vrp = vdev->priv;
1029	int ret;
1030
1031	vdev->config->reset(vdev);
1032
1033	ret = device_for_each_child(&vdev->dev, NULL, rpmsg_remove_device);
1034	if (ret)
1035		dev_warn(&vdev->dev, "can't remove rpmsg device: %d\n", ret);
1036
1037	if (vrp->ns_ept)
1038		__rpmsg_destroy_ept(vrp, vrp->ns_ept);
1039
1040	idr_remove_all(&vrp->endpoints);
1041	idr_destroy(&vrp->endpoints);
1042
1043	vdev->config->del_vqs(vrp->vdev);
1044
1045	dma_free_coherent(vdev->dev.parent, RPMSG_TOTAL_BUF_SPACE,
1046					vrp->rbufs, vrp->bufs_dma);
1047
1048	kfree(vrp);
1049}
1050
1051static struct virtio_device_id id_table[] = {
1052	{ VIRTIO_ID_RPMSG, VIRTIO_DEV_ANY_ID },
1053	{ 0 },
1054};
1055
1056static unsigned int features[] = {
1057	VIRTIO_RPMSG_F_NS,
1058};
1059
1060static struct virtio_driver virtio_ipc_driver = {
1061	.feature_table	= features,
1062	.feature_table_size = ARRAY_SIZE(features),
1063	.driver.name	= KBUILD_MODNAME,
1064	.driver.owner	= THIS_MODULE,
1065	.id_table	= id_table,
1066	.probe		= rpmsg_probe,
1067	.remove		= __devexit_p(rpmsg_remove),
1068};
1069
1070static int __init rpmsg_init(void)
1071{
1072	int ret;
1073
1074	ret = bus_register(&rpmsg_bus);
1075	if (ret) {
1076		pr_err("failed to register rpmsg bus: %d\n", ret);
1077		return ret;
1078	}
1079
1080	ret = register_virtio_driver(&virtio_ipc_driver);
1081	if (ret) {
1082		pr_err("failed to register virtio driver: %d\n", ret);
1083		bus_unregister(&rpmsg_bus);
1084	}
1085
1086	return ret;
1087}
1088module_init(rpmsg_init);
1089
1090static void __exit rpmsg_fini(void)
1091{
1092	unregister_virtio_driver(&virtio_ipc_driver);
1093	bus_unregister(&rpmsg_bus);
1094}
1095module_exit(rpmsg_fini);
1096
1097MODULE_DEVICE_TABLE(virtio, id_table);
1098MODULE_DESCRIPTION("Virtio-based remote processor messaging bus");
1099MODULE_LICENSE("GPL v2");
1100