1/*
2 * Aic94xx SAS/SATA driver hardware interface.
3 *
4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This file is part of the aic94xx driver.
10 *
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
15 *
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
24 *
25 */
26
27#include <linux/pci.h>
28#include <linux/slab.h>
29#include <linux/delay.h>
30#include <linux/module.h>
31#include <linux/firmware.h>
32
33#include "aic94xx.h"
34#include "aic94xx_reg.h"
35#include "aic94xx_hwi.h"
36#include "aic94xx_seq.h"
37#include "aic94xx_dump.h"
38
39u32 MBAR0_SWB_SIZE;
40
41/* ---------- Initialization ---------- */
42
43static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
44{
45	/* adapter came with a sas address */
46	if (asd_ha->hw_prof.sas_addr[0])
47		return 0;
48
49	return sas_request_addr(asd_ha->sas_ha.core.shost,
50				asd_ha->hw_prof.sas_addr);
51}
52
53static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
54{
55	int i;
56
57	for (i = 0; i < ASD_MAX_PHYS; i++) {
58		if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
59			continue;
60		/* Set a phy's address only if it has none.
61		 */
62		ASD_DPRINTK("setting phy%d addr to %llx\n", i,
63			    SAS_ADDR(asd_ha->hw_prof.sas_addr));
64		memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
65		       asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
66	}
67}
68
69/* ---------- PHY initialization ---------- */
70
71static void asd_init_phy_identify(struct asd_phy *phy)
72{
73	phy->identify_frame = phy->id_frm_tok->vaddr;
74
75	memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
76
77	phy->identify_frame->dev_type = SAS_END_DEV;
78	if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
79		phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
80	if (phy->sas_phy.role & PHY_ROLE_TARGET)
81		phy->identify_frame->target_bits = phy->sas_phy.tproto;
82	memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
83	       SAS_ADDR_SIZE);
84	phy->identify_frame->phy_id = phy->sas_phy.id;
85}
86
87static int asd_init_phy(struct asd_phy *phy)
88{
89	struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
90	struct asd_sas_phy *sas_phy = &phy->sas_phy;
91
92	sas_phy->enabled = 1;
93	sas_phy->class = SAS;
94	sas_phy->iproto = SAS_PROTOCOL_ALL;
95	sas_phy->tproto = 0;
96	sas_phy->type = PHY_TYPE_PHYSICAL;
97	sas_phy->role = PHY_ROLE_INITIATOR;
98	sas_phy->oob_mode = OOB_NOT_CONNECTED;
99	sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
100
101	phy->id_frm_tok = asd_alloc_coherent(asd_ha,
102					     sizeof(*phy->identify_frame),
103					     GFP_KERNEL);
104	if (!phy->id_frm_tok) {
105		asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
106		return -ENOMEM;
107	} else
108		asd_init_phy_identify(phy);
109
110	memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
111
112	return 0;
113}
114
115static void asd_init_ports(struct asd_ha_struct *asd_ha)
116{
117	int i;
118
119	spin_lock_init(&asd_ha->asd_ports_lock);
120	for (i = 0; i < ASD_MAX_PHYS; i++) {
121		struct asd_port *asd_port = &asd_ha->asd_ports[i];
122
123		memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
124		memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
125		asd_port->phy_mask = 0;
126		asd_port->num_phys = 0;
127	}
128}
129
130static int asd_init_phys(struct asd_ha_struct *asd_ha)
131{
132	u8 i;
133	u8 phy_mask = asd_ha->hw_prof.enabled_phys;
134
135	for (i = 0; i < ASD_MAX_PHYS; i++) {
136		struct asd_phy *phy = &asd_ha->phys[i];
137
138		phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
139		phy->asd_port = NULL;
140
141		phy->sas_phy.enabled = 0;
142		phy->sas_phy.id = i;
143		phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
144		phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
145		phy->sas_phy.ha = &asd_ha->sas_ha;
146		phy->sas_phy.lldd_phy = phy;
147	}
148
149	/* Now enable and initialize only the enabled phys. */
150	for_each_phy(phy_mask, phy_mask, i) {
151		int err = asd_init_phy(&asd_ha->phys[i]);
152		if (err)
153			return err;
154	}
155
156	return 0;
157}
158
159/* ---------- Sliding windows ---------- */
160
161static int asd_init_sw(struct asd_ha_struct *asd_ha)
162{
163	struct pci_dev *pcidev = asd_ha->pcidev;
164	int err;
165	u32 v;
166
167	/* Unlock MBARs */
168	err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
169	if (err) {
170		asd_printk("couldn't access conf. space of %s\n",
171			   pci_name(pcidev));
172		goto Err;
173	}
174	if (v)
175		err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
176	if (err) {
177		asd_printk("couldn't write to MBAR_KEY of %s\n",
178			   pci_name(pcidev));
179		goto Err;
180	}
181
182	/* Set sliding windows A, B and C to point to proper internal
183	 * memory regions.
184	 */
185	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
186	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
187			       REG_BASE_ADDR_CSEQCIO);
188	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
189	asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
190	asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
191	asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
192	MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
193	if (!asd_ha->iospace) {
194		/* MBAR1 will point to OCM (On Chip Memory) */
195		pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
196		asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
197	}
198	spin_lock_init(&asd_ha->iolock);
199Err:
200	return err;
201}
202
203/* ---------- SCB initialization ---------- */
204
205/**
206 * asd_init_scbs - manually allocate the first SCB.
207 * @asd_ha: pointer to host adapter structure
208 *
209 * This allocates the very first SCB which would be sent to the
210 * sequencer for execution.  Its bus address is written to
211 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8.  Since the bus address of
212 * the _next_ scb to be DMA-ed to the host adapter is read from the last
213 * SCB DMA-ed to the host adapter, we have to always stay one step
214 * ahead of the sequencer and keep one SCB already allocated.
215 */
216static int asd_init_scbs(struct asd_ha_struct *asd_ha)
217{
218	struct asd_seq_data *seq = &asd_ha->seq;
219	int bitmap_bytes;
220
221	/* allocate the index array and bitmap */
222	asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
223	asd_ha->seq.tc_index_array = kzalloc(asd_ha->seq.tc_index_bitmap_bits*
224					     sizeof(void *), GFP_KERNEL);
225	if (!asd_ha->seq.tc_index_array)
226		return -ENOMEM;
227
228	bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
229	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
230	asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
231	if (!asd_ha->seq.tc_index_bitmap)
232		return -ENOMEM;
233
234	spin_lock_init(&seq->tc_index_lock);
235
236	seq->next_scb.size = sizeof(struct scb);
237	seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
238					     &seq->next_scb.dma_handle);
239	if (!seq->next_scb.vaddr) {
240		kfree(asd_ha->seq.tc_index_bitmap);
241		kfree(asd_ha->seq.tc_index_array);
242		asd_ha->seq.tc_index_bitmap = NULL;
243		asd_ha->seq.tc_index_array = NULL;
244		return -ENOMEM;
245	}
246
247	seq->pending = 0;
248	spin_lock_init(&seq->pend_q_lock);
249	INIT_LIST_HEAD(&seq->pend_q);
250
251	return 0;
252}
253
254static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
255{
256	asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
257	asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
258	ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
259		    asd_ha->hw_prof.max_scbs,
260		    asd_ha->hw_prof.max_ddbs);
261}
262
263/* ---------- Done List initialization ---------- */
264
265static void asd_dl_tasklet_handler(unsigned long);
266
267static int asd_init_dl(struct asd_ha_struct *asd_ha)
268{
269	asd_ha->seq.actual_dl
270		= asd_alloc_coherent(asd_ha,
271			     ASD_DL_SIZE * sizeof(struct done_list_struct),
272				     GFP_KERNEL);
273	if (!asd_ha->seq.actual_dl)
274		return -ENOMEM;
275	asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
276	asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
277	asd_ha->seq.dl_next = 0;
278	tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
279		     (unsigned long) asd_ha);
280
281	return 0;
282}
283
284/* ---------- EDB and ESCB init ---------- */
285
286static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
287{
288	struct asd_seq_data *seq = &asd_ha->seq;
289	int i;
290
291	seq->edb_arr = kmalloc(seq->num_edbs*sizeof(*seq->edb_arr), gfp_flags);
292	if (!seq->edb_arr)
293		return -ENOMEM;
294
295	for (i = 0; i < seq->num_edbs; i++) {
296		seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
297						     gfp_flags);
298		if (!seq->edb_arr[i])
299			goto Err_unroll;
300		memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
301	}
302
303	ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
304
305	return 0;
306
307Err_unroll:
308	for (i-- ; i >= 0; i--)
309		asd_free_coherent(asd_ha, seq->edb_arr[i]);
310	kfree(seq->edb_arr);
311	seq->edb_arr = NULL;
312
313	return -ENOMEM;
314}
315
316static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
317			   gfp_t gfp_flags)
318{
319	struct asd_seq_data *seq = &asd_ha->seq;
320	struct asd_ascb *escb;
321	int i, escbs;
322
323	seq->escb_arr = kmalloc(seq->num_escbs*sizeof(*seq->escb_arr),
324				gfp_flags);
325	if (!seq->escb_arr)
326		return -ENOMEM;
327
328	escbs = seq->num_escbs;
329	escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
330	if (!escb) {
331		asd_printk("couldn't allocate list of escbs\n");
332		goto Err;
333	}
334	seq->num_escbs -= escbs;  /* subtract what was not allocated */
335	ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
336
337	for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
338							       struct asd_ascb,
339							       list)) {
340		seq->escb_arr[i] = escb;
341		escb->scb->header.opcode = EMPTY_SCB;
342	}
343
344	return 0;
345Err:
346	kfree(seq->escb_arr);
347	seq->escb_arr = NULL;
348	return -ENOMEM;
349
350}
351
352static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
353{
354	struct asd_seq_data *seq = &asd_ha->seq;
355	int i, k, z = 0;
356
357	for (i = 0; i < seq->num_escbs; i++) {
358		struct asd_ascb *ascb = seq->escb_arr[i];
359		struct empty_scb *escb = &ascb->scb->escb;
360
361		ascb->edb_index = z;
362
363		escb->num_valid = ASD_EDBS_PER_SCB;
364
365		for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
366			struct sg_el *eb = &escb->eb[k];
367			struct asd_dma_tok *edb = seq->edb_arr[z++];
368
369			memset(eb, 0, sizeof(*eb));
370			eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
371			eb->size = cpu_to_le32(((u32) edb->size));
372		}
373	}
374}
375
376/**
377 * asd_init_escbs -- allocate and initialize empty scbs
378 * @asd_ha: pointer to host adapter structure
379 *
380 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
381 * They transport sense data, etc.
382 */
383static int asd_init_escbs(struct asd_ha_struct *asd_ha)
384{
385	struct asd_seq_data *seq = &asd_ha->seq;
386	int err = 0;
387
388	/* Allocate two empty data buffers (edb) per sequencer. */
389	int edbs = 2*(1+asd_ha->hw_prof.num_phys);
390
391	seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
392	seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
393
394	err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
395	if (err) {
396		asd_printk("couldn't allocate edbs\n");
397		return err;
398	}
399
400	err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
401	if (err) {
402		asd_printk("couldn't allocate escbs\n");
403		return err;
404	}
405
406	asd_assign_edbs2escbs(asd_ha);
407	/* In order to insure that normal SCBs do not overfill sequencer
408	 * memory and leave no space for escbs (halting condition),
409	 * we increment pending here by the number of escbs.  However,
410	 * escbs are never pending.
411	 */
412	seq->pending   = seq->num_escbs;
413	seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
414
415	return 0;
416}
417
418/* ---------- HW initialization ---------- */
419
420/**
421 * asd_chip_hardrst -- hard reset the chip
422 * @asd_ha: pointer to host adapter structure
423 *
424 * This takes 16 cycles and is synchronous to CFCLK, which runs
425 * at 200 MHz, so this should take at most 80 nanoseconds.
426 */
427int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
428{
429	int i;
430	int count = 100;
431	u32 reg;
432
433	for (i = 0 ; i < 4 ; i++) {
434		asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
435	}
436
437	do {
438		udelay(1);
439		reg = asd_read_reg_dword(asd_ha, CHIMINT);
440		if (reg & HARDRSTDET) {
441			asd_write_reg_dword(asd_ha, CHIMINT,
442					    HARDRSTDET|PORRSTDET);
443			return 0;
444		}
445	} while (--count > 0);
446
447	return -ENODEV;
448}
449
450/**
451 * asd_init_chip -- initialize the chip
452 * @asd_ha: pointer to host adapter structure
453 *
454 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
455 * microcode and starts the sequencers.  The caller has to explicitly
456 * enable HA interrupts with asd_enable_ints(asd_ha).
457 */
458static int asd_init_chip(struct asd_ha_struct *asd_ha)
459{
460	int err;
461
462	err = asd_chip_hardrst(asd_ha);
463	if (err) {
464		asd_printk("couldn't hard reset %s\n",
465			    pci_name(asd_ha->pcidev));
466		goto out;
467	}
468
469	asd_disable_ints(asd_ha);
470
471	err = asd_init_seqs(asd_ha);
472	if (err) {
473		asd_printk("couldn't init seqs for %s\n",
474			   pci_name(asd_ha->pcidev));
475		goto out;
476	}
477
478	err = asd_start_seqs(asd_ha);
479	if (err) {
480		asd_printk("coudln't start seqs for %s\n",
481			   pci_name(asd_ha->pcidev));
482		goto out;
483	}
484out:
485	return err;
486}
487
488#define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
489
490static int max_devs = 0;
491module_param_named(max_devs, max_devs, int, S_IRUGO);
492MODULE_PARM_DESC(max_devs, "\n"
493	"\tMaximum number of SAS devices to support (not LUs).\n"
494	"\tDefault: 2176, Maximum: 65663.\n");
495
496static int max_cmnds = 0;
497module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
498MODULE_PARM_DESC(max_cmnds, "\n"
499	"\tMaximum number of commands queuable.\n"
500	"\tDefault: 512, Maximum: 66047.\n");
501
502static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
503{
504	unsigned long dma_addr = OCM_BASE_ADDR;
505	u32 d;
506
507	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
508	asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
509	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
510	d |= 4;
511	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
512	asd_ha->hw_prof.max_ddbs += MAX_DEVS;
513}
514
515static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
516{
517	dma_addr_t dma_handle;
518	unsigned long dma_addr;
519	u32 d;
520	int size;
521
522	asd_extend_devctx_ocm(asd_ha);
523
524	asd_ha->hw_prof.ddb_ext = NULL;
525	if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
526		max_devs = asd_ha->hw_prof.max_ddbs;
527		return 0;
528	}
529
530	size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
531
532	asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
533	if (!asd_ha->hw_prof.ddb_ext) {
534		asd_printk("couldn't allocate memory for %d devices\n",
535			   max_devs);
536		max_devs = asd_ha->hw_prof.max_ddbs;
537		return -ENOMEM;
538	}
539	dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
540	dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
541	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
542	dma_handle = (dma_addr_t) dma_addr;
543	asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
544	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
545	d &= ~4;
546	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
547
548	asd_ha->hw_prof.max_ddbs = max_devs;
549
550	return 0;
551}
552
553static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
554{
555	dma_addr_t dma_handle;
556	unsigned long dma_addr;
557	u32 d;
558	int size;
559
560	asd_ha->hw_prof.scb_ext = NULL;
561	if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
562		max_cmnds = asd_ha->hw_prof.max_scbs;
563		return 0;
564	}
565
566	size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
567
568	asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
569	if (!asd_ha->hw_prof.scb_ext) {
570		asd_printk("couldn't allocate memory for %d commands\n",
571			   max_cmnds);
572		max_cmnds = asd_ha->hw_prof.max_scbs;
573		return -ENOMEM;
574	}
575	dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
576	dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
577	dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
578	dma_handle = (dma_addr_t) dma_addr;
579	asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
580	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
581	d &= ~1;
582	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
583
584	asd_ha->hw_prof.max_scbs = max_cmnds;
585
586	return 0;
587}
588
589/**
590 * asd_init_ctxmem -- initialize context memory
591 * asd_ha: pointer to host adapter structure
592 *
593 * This function sets the maximum number of SCBs and
594 * DDBs which can be used by the sequencer.  This is normally
595 * 512 and 128 respectively.  If support for more SCBs or more DDBs
596 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
597 * initialized here to extend context memory to point to host memory,
598 * thus allowing unlimited support for SCBs and DDBs -- only limited
599 * by host memory.
600 */
601static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
602{
603	int bitmap_bytes;
604
605	asd_get_max_scb_ddb(asd_ha);
606	asd_extend_devctx(asd_ha);
607	asd_extend_cmdctx(asd_ha);
608
609	/* The kernel wants bitmaps to be unsigned long sized. */
610	bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
611	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
612	asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
613	if (!asd_ha->hw_prof.ddb_bitmap)
614		return -ENOMEM;
615	spin_lock_init(&asd_ha->hw_prof.ddb_lock);
616
617	return 0;
618}
619
620int asd_init_hw(struct asd_ha_struct *asd_ha)
621{
622	int err;
623	u32 v;
624
625	err = asd_init_sw(asd_ha);
626	if (err)
627		return err;
628
629	err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
630	if (err) {
631		asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
632			   pci_name(asd_ha->pcidev));
633		return err;
634	}
635	pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
636					v | SC_TMR_DIS);
637	if (err) {
638		asd_printk("couldn't disable split completion timer of %s\n",
639			   pci_name(asd_ha->pcidev));
640		return err;
641	}
642
643	err = asd_read_ocm(asd_ha);
644	if (err) {
645		asd_printk("couldn't read ocm(%d)\n", err);
646		/* While suspicios, it is not an error that we
647		 * couldn't read the OCM. */
648	}
649
650	err = asd_read_flash(asd_ha);
651	if (err) {
652		asd_printk("couldn't read flash(%d)\n", err);
653		/* While suspicios, it is not an error that we
654		 * couldn't read FLASH memory.
655		 */
656	}
657
658	asd_init_ctxmem(asd_ha);
659
660	if (asd_get_user_sas_addr(asd_ha)) {
661		asd_printk("No SAS Address provided for %s\n",
662			   pci_name(asd_ha->pcidev));
663		err = -ENODEV;
664		goto Out;
665	}
666
667	asd_propagate_sas_addr(asd_ha);
668
669	err = asd_init_phys(asd_ha);
670	if (err) {
671		asd_printk("couldn't initialize phys for %s\n",
672			    pci_name(asd_ha->pcidev));
673		goto Out;
674	}
675
676	asd_init_ports(asd_ha);
677
678	err = asd_init_scbs(asd_ha);
679	if (err) {
680		asd_printk("couldn't initialize scbs for %s\n",
681			    pci_name(asd_ha->pcidev));
682		goto Out;
683	}
684
685	err = asd_init_dl(asd_ha);
686	if (err) {
687		asd_printk("couldn't initialize the done list:%d\n",
688			    err);
689		goto Out;
690	}
691
692	err = asd_init_escbs(asd_ha);
693	if (err) {
694		asd_printk("couldn't initialize escbs\n");
695		goto Out;
696	}
697
698	err = asd_init_chip(asd_ha);
699	if (err) {
700		asd_printk("couldn't init the chip\n");
701		goto Out;
702	}
703Out:
704	return err;
705}
706
707/* ---------- Chip reset ---------- */
708
709/**
710 * asd_chip_reset -- reset the host adapter, etc
711 * @asd_ha: pointer to host adapter structure of interest
712 *
713 * Called from the ISR.  Hard reset the chip.  Let everything
714 * timeout.  This should be no different than hot-unplugging the
715 * host adapter.  Once everything times out we'll init the chip with
716 * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
717 * XXX finish.
718 */
719static void asd_chip_reset(struct asd_ha_struct *asd_ha)
720{
721	struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
722
723	ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
724	asd_chip_hardrst(asd_ha);
725	sas_ha->notify_ha_event(sas_ha, HAE_RESET);
726}
727
728/* ---------- Done List Routines ---------- */
729
730static void asd_dl_tasklet_handler(unsigned long data)
731{
732	struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
733	struct asd_seq_data *seq = &asd_ha->seq;
734	unsigned long flags;
735
736	while (1) {
737		struct done_list_struct *dl = &seq->dl[seq->dl_next];
738		struct asd_ascb *ascb;
739
740		if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
741			break;
742
743		/* find the aSCB */
744		spin_lock_irqsave(&seq->tc_index_lock, flags);
745		ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
746		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
747		if (unlikely(!ascb)) {
748			ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
749			goto next_1;
750		} else if (ascb->scb->header.opcode == EMPTY_SCB) {
751			goto out;
752		} else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
753			goto next_1;
754		}
755		spin_lock_irqsave(&seq->pend_q_lock, flags);
756		list_del_init(&ascb->list);
757		seq->pending--;
758		spin_unlock_irqrestore(&seq->pend_q_lock, flags);
759	out:
760		ascb->tasklet_complete(ascb, dl);
761
762	next_1:
763		seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
764		if (!seq->dl_next)
765			seq->dl_toggle ^= DL_TOGGLE_MASK;
766	}
767}
768
769/* ---------- Interrupt Service Routines ---------- */
770
771/**
772 * asd_process_donelist_isr -- schedule processing of done list entries
773 * @asd_ha: pointer to host adapter structure
774 */
775static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
776{
777	tasklet_schedule(&asd_ha->seq.dl_tasklet);
778}
779
780/**
781 * asd_com_sas_isr -- process device communication interrupt (COMINT)
782 * @asd_ha: pointer to host adapter structure
783 */
784static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
785{
786	u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
787
788	/* clear COMSTAT int */
789	asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
790
791	if (comstat & CSBUFPERR) {
792		asd_printk("%s: command/status buffer dma parity error\n",
793			   pci_name(asd_ha->pcidev));
794	} else if (comstat & CSERR) {
795		int i;
796		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
797		dmaerr &= 0xFF;
798		asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
799			   "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
800			   pci_name(asd_ha->pcidev),
801			   dmaerr,
802			   asd_read_reg_dword(asd_ha, CSDMAADR),
803			   asd_read_reg_dword(asd_ha, CSDMAADR+4));
804		asd_printk("CSBUFFER:\n");
805		for (i = 0; i < 8; i++) {
806			asd_printk("%08x %08x %08x %08x\n",
807				   asd_read_reg_dword(asd_ha, CSBUFFER),
808				   asd_read_reg_dword(asd_ha, CSBUFFER+4),
809				   asd_read_reg_dword(asd_ha, CSBUFFER+8),
810				   asd_read_reg_dword(asd_ha, CSBUFFER+12));
811		}
812		asd_dump_seq_state(asd_ha, 0);
813	} else if (comstat & OVLYERR) {
814		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
815		dmaerr = (dmaerr >> 8) & 0xFF;
816		asd_printk("%s: overlay dma error:0x%x\n",
817			   pci_name(asd_ha->pcidev),
818			   dmaerr);
819	}
820	asd_chip_reset(asd_ha);
821}
822
823static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
824{
825	static const char *halt_code[256] = {
826		"UNEXPECTED_INTERRUPT0",
827		"UNEXPECTED_INTERRUPT1",
828		"UNEXPECTED_INTERRUPT2",
829		"UNEXPECTED_INTERRUPT3",
830		"UNEXPECTED_INTERRUPT4",
831		"UNEXPECTED_INTERRUPT5",
832		"UNEXPECTED_INTERRUPT6",
833		"UNEXPECTED_INTERRUPT7",
834		"UNEXPECTED_INTERRUPT8",
835		"UNEXPECTED_INTERRUPT9",
836		"UNEXPECTED_INTERRUPT10",
837		[11 ... 19] = "unknown[11,19]",
838		"NO_FREE_SCB_AVAILABLE",
839		"INVALID_SCB_OPCODE",
840		"INVALID_MBX_OPCODE",
841		"INVALID_ATA_STATE",
842		"ATA_QUEUE_FULL",
843		"ATA_TAG_TABLE_FAULT",
844		"ATA_TAG_MASK_FAULT",
845		"BAD_LINK_QUEUE_STATE",
846		"DMA2CHIM_QUEUE_ERROR",
847		"EMPTY_SCB_LIST_FULL",
848		"unknown[30]",
849		"IN_USE_SCB_ON_FREE_LIST",
850		"BAD_OPEN_WAIT_STATE",
851		"INVALID_STP_AFFILIATION",
852		"unknown[34]",
853		"EXEC_QUEUE_ERROR",
854		"TOO_MANY_EMPTIES_NEEDED",
855		"EMPTY_REQ_QUEUE_ERROR",
856		"Q_MONIRTT_MGMT_ERROR",
857		"TARGET_MODE_FLOW_ERROR",
858		"DEVICE_QUEUE_NOT_FOUND",
859		"START_IRTT_TIMER_ERROR",
860		"ABORT_TASK_ILLEGAL_REQ",
861		[43 ... 255] = "unknown[43,255]"
862	};
863
864	if (dchstatus & CSEQINT) {
865		u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
866
867		if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
868			asd_printk("%s: CSEQ arp2int:0x%x\n",
869				   pci_name(asd_ha->pcidev),
870				   arp2int);
871		} else if (arp2int & ARP2HALTC)
872			asd_printk("%s: CSEQ halted: %s\n",
873				   pci_name(asd_ha->pcidev),
874				   halt_code[(arp2int>>16)&0xFF]);
875		else
876			asd_printk("%s: CARP2INT:0x%x\n",
877				   pci_name(asd_ha->pcidev),
878				   arp2int);
879	}
880	if (dchstatus & LSEQINT_MASK) {
881		int lseq;
882		u8  lseq_mask = dchstatus & LSEQINT_MASK;
883
884		for_each_sequencer(lseq_mask, lseq_mask, lseq) {
885			u32 arp2int = asd_read_reg_dword(asd_ha,
886							 LmARP2INT(lseq));
887			if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
888				       | ARP2CIOPERR)) {
889				asd_printk("%s: LSEQ%d arp2int:0x%x\n",
890					   pci_name(asd_ha->pcidev),
891					   lseq, arp2int);
892				/* XXX we should only do lseq reset */
893			} else if (arp2int & ARP2HALTC)
894				asd_printk("%s: LSEQ%d halted: %s\n",
895					   pci_name(asd_ha->pcidev),
896					   lseq,halt_code[(arp2int>>16)&0xFF]);
897			else
898				asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
899					   pci_name(asd_ha->pcidev), lseq,
900					   arp2int);
901		}
902	}
903	asd_chip_reset(asd_ha);
904}
905
906/**
907 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
908 * @asd_ha: pointer to host adapter structure
909 */
910static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
911{
912	u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
913
914	if (dchstatus & CFIFTOERR) {
915		asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
916		asd_chip_reset(asd_ha);
917	} else
918		asd_arp2_err(asd_ha, dchstatus);
919}
920
921/**
922 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
923 * @asd_ha: pointer to host adapter structure
924 */
925static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
926{
927	u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
928
929	if (!(stat0r & ASIERR)) {
930		asd_printk("hmm, EXSI interrupted but no error?\n");
931		return;
932	}
933
934	if (stat0r & ASIFMTERR) {
935		asd_printk("ASI SEEPROM format error for %s\n",
936			   pci_name(asd_ha->pcidev));
937	} else if (stat0r & ASISEECHKERR) {
938		u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
939		asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
940			   stat1r & CHECKSUM_MASK,
941			   pci_name(asd_ha->pcidev));
942	} else {
943		u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
944
945		if (!(statr & CPI2ASIMSTERR_MASK)) {
946			ASD_DPRINTK("hmm, ASIERR?\n");
947			return;
948		} else {
949			u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
950			u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
951
952			asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
953				   "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
954				   "master id: 0x%x, master err: 0x%x\n",
955				   pci_name(asd_ha->pcidev),
956				   addr, data,
957				   (statr & CPI2ASIBYTECNT_MASK) >> 16,
958				   (statr & CPI2ASIBYTEEN_MASK) >> 12,
959				   (statr & CPI2ASITARGERR_MASK) >> 8,
960				   (statr & CPI2ASITARGMID_MASK) >> 4,
961				   (statr & CPI2ASIMSTERR_MASK));
962		}
963	}
964	asd_chip_reset(asd_ha);
965}
966
967/**
968 * asd_hst_pcix_isr -- process host interface interrupts
969 * @asd_ha: pointer to host adapter structure
970 *
971 * Asserted on PCIX errors: target abort, etc.
972 */
973static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
974{
975	u16 status;
976	u32 pcix_status;
977	u32 ecc_status;
978
979	pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
980	pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
981	pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
982
983	if (status & PCI_STATUS_DETECTED_PARITY)
984		asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
985	else if (status & PCI_STATUS_REC_MASTER_ABORT)
986		asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
987	else if (status & PCI_STATUS_REC_TARGET_ABORT)
988		asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
989	else if (status & PCI_STATUS_PARITY)
990		asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
991	else if (pcix_status & RCV_SCE) {
992		asd_printk("received split completion error for %s\n",
993			   pci_name(asd_ha->pcidev));
994		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
995		/* XXX: Abort task? */
996		return;
997	} else if (pcix_status & UNEXP_SC) {
998		asd_printk("unexpected split completion for %s\n",
999			   pci_name(asd_ha->pcidev));
1000		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
1001		/* ignore */
1002		return;
1003	} else if (pcix_status & SC_DISCARD)
1004		asd_printk("split completion discarded for %s\n",
1005			   pci_name(asd_ha->pcidev));
1006	else if (ecc_status & UNCOR_ECCERR)
1007		asd_printk("uncorrectable ECC error for %s\n",
1008			   pci_name(asd_ha->pcidev));
1009	asd_chip_reset(asd_ha);
1010}
1011
1012/**
1013 * asd_hw_isr -- host adapter interrupt service routine
1014 * @irq: ignored
1015 * @dev_id: pointer to host adapter structure
1016 *
1017 * The ISR processes done list entries and level 3 error handling.
1018 */
1019irqreturn_t asd_hw_isr(int irq, void *dev_id)
1020{
1021	struct asd_ha_struct *asd_ha = dev_id;
1022	u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
1023
1024	if (!chimint)
1025		return IRQ_NONE;
1026
1027	asd_write_reg_dword(asd_ha, CHIMINT, chimint);
1028	(void) asd_read_reg_dword(asd_ha, CHIMINT);
1029
1030	if (chimint & DLAVAIL)
1031		asd_process_donelist_isr(asd_ha);
1032	if (chimint & COMINT)
1033		asd_com_sas_isr(asd_ha);
1034	if (chimint & DEVINT)
1035		asd_dch_sas_isr(asd_ha);
1036	if (chimint & INITERR)
1037		asd_rbi_exsi_isr(asd_ha);
1038	if (chimint & HOSTERR)
1039		asd_hst_pcix_isr(asd_ha);
1040
1041	return IRQ_HANDLED;
1042}
1043
1044/* ---------- SCB handling ---------- */
1045
1046static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
1047				       gfp_t gfp_flags)
1048{
1049	extern struct kmem_cache *asd_ascb_cache;
1050	struct asd_seq_data *seq = &asd_ha->seq;
1051	struct asd_ascb *ascb;
1052	unsigned long flags;
1053
1054	ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
1055
1056	if (ascb) {
1057		ascb->dma_scb.size = sizeof(struct scb);
1058		ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool,
1059						     gfp_flags,
1060						    &ascb->dma_scb.dma_handle);
1061		if (!ascb->dma_scb.vaddr) {
1062			kmem_cache_free(asd_ascb_cache, ascb);
1063			return NULL;
1064		}
1065		memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb));
1066		asd_init_ascb(asd_ha, ascb);
1067
1068		spin_lock_irqsave(&seq->tc_index_lock, flags);
1069		ascb->tc_index = asd_tc_index_get(seq, ascb);
1070		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
1071		if (ascb->tc_index == -1)
1072			goto undo;
1073
1074		ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
1075	}
1076
1077	return ascb;
1078undo:
1079	dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
1080		      ascb->dma_scb.dma_handle);
1081	kmem_cache_free(asd_ascb_cache, ascb);
1082	ASD_DPRINTK("no index for ascb\n");
1083	return NULL;
1084}
1085
1086/**
1087 * asd_ascb_alloc_list -- allocate a list of aSCBs
1088 * @asd_ha: pointer to host adapter structure
1089 * @num: pointer to integer number of aSCBs
1090 * @gfp_flags: GFP_ flags.
1091 *
1092 * This is the only function which is used to allocate aSCBs.
1093 * It can allocate one or many. If more than one, then they form
1094 * a linked list in two ways: by their list field of the ascb struct
1095 * and by the next_scb field of the scb_header.
1096 *
1097 * Returns NULL if no memory was available, else pointer to a list
1098 * of ascbs.  When this function returns, @num would be the number
1099 * of SCBs which were not able to be allocated, 0 if all requested
1100 * were able to be allocated.
1101 */
1102struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
1103				     *asd_ha, int *num,
1104				     gfp_t gfp_flags)
1105{
1106	struct asd_ascb *first = NULL;
1107
1108	for ( ; *num > 0; --*num) {
1109		struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
1110
1111		if (!ascb)
1112			break;
1113		else if (!first)
1114			first = ascb;
1115		else {
1116			struct asd_ascb *last = list_entry(first->list.prev,
1117							   struct asd_ascb,
1118							   list);
1119			list_add_tail(&ascb->list, &first->list);
1120			last->scb->header.next_scb =
1121				cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
1122		}
1123	}
1124
1125	return first;
1126}
1127
1128/**
1129 * asd_swap_head_scb -- swap the head scb
1130 * @asd_ha: pointer to host adapter structure
1131 * @ascb: pointer to the head of an ascb list
1132 *
1133 * The sequencer knows the DMA address of the next SCB to be DMAed to
1134 * the host adapter, from initialization or from the last list DMAed.
1135 * seq->next_scb keeps the address of this SCB.  The sequencer will
1136 * DMA to the host adapter this list of SCBs.  But the head (first
1137 * element) of this list is not known to the sequencer.  Here we swap
1138 * the head of the list with the known SCB (memcpy()).
1139 * Only one memcpy() is required per list so it is in our interest
1140 * to keep the list of SCB as long as possible so that the ratio
1141 * of number of memcpy calls to the number of SCB DMA-ed is as small
1142 * as possible.
1143 *
1144 * LOCKING: called with the pending list lock held.
1145 */
1146static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
1147			      struct asd_ascb *ascb)
1148{
1149	struct asd_seq_data *seq = &asd_ha->seq;
1150	struct asd_ascb *last = list_entry(ascb->list.prev,
1151					   struct asd_ascb,
1152					   list);
1153	struct asd_dma_tok t = ascb->dma_scb;
1154
1155	memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
1156	ascb->dma_scb = seq->next_scb;
1157	ascb->scb = ascb->dma_scb.vaddr;
1158	seq->next_scb = t;
1159	last->scb->header.next_scb =
1160		cpu_to_le64(((u64)seq->next_scb.dma_handle));
1161}
1162
1163/**
1164 * asd_start_timers -- (add and) start timers of SCBs
1165 * @list: pointer to struct list_head of the scbs
1166 * @to: timeout in jiffies
1167 *
1168 * If an SCB in the @list has no timer function, assign the default
1169 * one,  then start the timer of the SCB.  This function is
1170 * intended to be called from asd_post_ascb_list(), just prior to
1171 * posting the SCBs to the sequencer.
1172 */
1173static void asd_start_scb_timers(struct list_head *list)
1174{
1175	struct asd_ascb *ascb;
1176	list_for_each_entry(ascb, list, list) {
1177		if (!ascb->uldd_timer) {
1178			ascb->timer.data = (unsigned long) ascb;
1179			ascb->timer.function = asd_ascb_timedout;
1180			ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
1181			add_timer(&ascb->timer);
1182		}
1183	}
1184}
1185
1186/**
1187 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1188 * @asd_ha: pointer to a host adapter structure
1189 * @ascb: pointer to the first aSCB in the list
1190 * @num: number of aSCBs in the list (to be posted)
1191 *
1192 * See queueing comment in asd_post_escb_list().
1193 *
1194 * Additional note on queuing: In order to minimize the ratio of memcpy()
1195 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1196 * in one go.
1197 * Two cases are possible:
1198 *    A) can_queue >= num,
1199 *    B) can_queue < num.
1200 * Case A: we can send the whole batch at once.  Increment "pending"
1201 * in the beginning of this function, when it is checked, in order to
1202 * eliminate races when this function is called by multiple processes.
1203 * Case B: should never happen if the managing layer considers
1204 * lldd_queue_size.
1205 */
1206int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1207		       int num)
1208{
1209	unsigned long flags;
1210	LIST_HEAD(list);
1211	int can_queue;
1212
1213	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1214	can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
1215	if (can_queue >= num)
1216		asd_ha->seq.pending += num;
1217	else
1218		can_queue = 0;
1219
1220	if (!can_queue) {
1221		spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1222		asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
1223		return -SAS_QUEUE_FULL;
1224	}
1225
1226	asd_swap_head_scb(asd_ha, ascb);
1227
1228	__list_add(&list, ascb->list.prev, &ascb->list);
1229
1230	asd_start_scb_timers(&list);
1231
1232	asd_ha->seq.scbpro += num;
1233	list_splice_init(&list, asd_ha->seq.pend_q.prev);
1234	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1235	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1236
1237	return 0;
1238}
1239
1240/**
1241 * asd_post_escb_list -- post a list of 1 or more empty scb
1242 * @asd_ha: pointer to a host adapter structure
1243 * @ascb: pointer to the first empty SCB in the list
1244 * @num: number of aSCBs in the list (to be posted)
1245 *
1246 * This is essentially the same as asd_post_ascb_list, but we do not
1247 * increment pending, add those to the pending list or get indexes.
1248 * See asd_init_escbs() and asd_init_post_escbs().
1249 *
1250 * Since sending a list of ascbs is a superset of sending a single
1251 * ascb, this function exists to generalize this.  More specifically,
1252 * when sending a list of those, we want to do only a _single_
1253 * memcpy() at swap head, as opposed to for each ascb sent (in the
1254 * case of sending them one by one).  That is, we want to minimize the
1255 * ratio of memcpy() operations to the number of ascbs sent.  The same
1256 * logic applies to asd_post_ascb_list().
1257 */
1258int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1259		       int num)
1260{
1261	unsigned long flags;
1262
1263	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1264	asd_swap_head_scb(asd_ha, ascb);
1265	asd_ha->seq.scbpro += num;
1266	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1267	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1268
1269	return 0;
1270}
1271
1272/* ---------- LED ---------- */
1273
1274/**
1275 * asd_turn_led -- turn on/off an LED
1276 * @asd_ha: pointer to host adapter structure
1277 * @phy_id: the PHY id whose LED we want to manupulate
1278 * @op: 1 to turn on, 0 to turn off
1279 */
1280void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1281{
1282	if (phy_id < ASD_MAX_PHYS) {
1283		u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
1284		if (op)
1285			v |= LEDPOL;
1286		else
1287			v &= ~LEDPOL;
1288		asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
1289	}
1290}
1291
1292/**
1293 * asd_control_led -- enable/disable an LED on the board
1294 * @asd_ha: pointer to host adapter structure
1295 * @phy_id: integer, the phy id
1296 * @op: integer, 1 to enable, 0 to disable the LED
1297 *
1298 * First we output enable the LED, then we set the source
1299 * to be an external module.
1300 */
1301void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1302{
1303	if (phy_id < ASD_MAX_PHYS) {
1304		u32 v;
1305
1306		v = asd_read_reg_dword(asd_ha, GPIOOER);
1307		if (op)
1308			v |= (1 << phy_id);
1309		else
1310			v &= ~(1 << phy_id);
1311		asd_write_reg_dword(asd_ha, GPIOOER, v);
1312
1313		v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
1314		if (op)
1315			v |= (1 << phy_id);
1316		else
1317			v &= ~(1 << phy_id);
1318		asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
1319	}
1320}
1321
1322/* ---------- PHY enable ---------- */
1323
1324static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
1325{
1326	struct asd_phy *phy = &asd_ha->phys[phy_id];
1327
1328	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
1329	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
1330			   HOTPLUG_DELAY_TIMEOUT);
1331
1332	/* Get defaults from manuf. sector */
1333	/* XXX we need defaults for those in case MS is broken. */
1334	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
1335			   phy->phy_desc->phy_control_0);
1336	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
1337			   phy->phy_desc->phy_control_1);
1338	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
1339			   phy->phy_desc->phy_control_2);
1340	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
1341			   phy->phy_desc->phy_control_3);
1342
1343	asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
1344			    ASD_COMINIT_TIMEOUT);
1345
1346	asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
1347			   phy->id_frm_tok->dma_handle);
1348
1349	asd_control_led(asd_ha, phy_id, 1);
1350
1351	return 0;
1352}
1353
1354int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
1355{
1356	u8  phy_m;
1357	u8  i;
1358	int num = 0, k;
1359	struct asd_ascb *ascb;
1360	struct asd_ascb *ascb_list;
1361
1362	if (!phy_mask) {
1363		asd_printk("%s called with phy_mask of 0!?\n", __func__);
1364		return 0;
1365	}
1366
1367	for_each_phy(phy_mask, phy_m, i) {
1368		num++;
1369		asd_enable_phy(asd_ha, i);
1370	}
1371
1372	k = num;
1373	ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
1374	if (!ascb_list) {
1375		asd_printk("no memory for control phy ascb list\n");
1376		return -ENOMEM;
1377	}
1378	num -= k;
1379
1380	ascb = ascb_list;
1381	for_each_phy(phy_mask, phy_m, i) {
1382		asd_build_control_phy(ascb, i, ENABLE_PHY);
1383		ascb = list_entry(ascb->list.next, struct asd_ascb, list);
1384	}
1385	ASD_DPRINTK("posting %d control phy scbs\n", num);
1386	k = asd_post_ascb_list(asd_ha, ascb_list, num);
1387	if (k)
1388		asd_ascb_free_list(ascb_list);
1389
1390	return k;
1391}
1392