sas_expander.c revision 81c757bc696284f39f07766f0c2ca67af64ce9bd
1/*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22 *
23 */
24
25#include <linux/scatterlist.h>
26#include <linux/blkdev.h>
27#include <linux/slab.h>
28
29#include "sas_internal.h"
30
31#include <scsi/sas_ata.h>
32#include <scsi/scsi_transport.h>
33#include <scsi/scsi_transport_sas.h>
34#include "../scsi_sas_internal.h"
35
36static int sas_discover_expander(struct domain_device *dev);
37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38static int sas_configure_phy(struct domain_device *dev, int phy_id,
39			     u8 *sas_addr, int include);
40static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41
42/* ---------- SMP task management ---------- */
43
44static void smp_task_timedout(unsigned long _task)
45{
46	struct sas_task *task = (void *) _task;
47	unsigned long flags;
48
49	spin_lock_irqsave(&task->task_state_lock, flags);
50	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52	spin_unlock_irqrestore(&task->task_state_lock, flags);
53
54	complete(&task->completion);
55}
56
57static void smp_task_done(struct sas_task *task)
58{
59	if (!del_timer(&task->timer))
60		return;
61	complete(&task->completion);
62}
63
64/* Give it some long enough timeout. In seconds. */
65#define SMP_TIMEOUT 10
66
67static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
68			    void *resp, int resp_size)
69{
70	int res, retry;
71	struct sas_task *task = NULL;
72	struct sas_internal *i =
73		to_sas_internal(dev->port->ha->core.shost->transportt);
74
75	for (retry = 0; retry < 3; retry++) {
76		task = sas_alloc_task(GFP_KERNEL);
77		if (!task)
78			return -ENOMEM;
79
80		task->dev = dev;
81		task->task_proto = dev->tproto;
82		sg_init_one(&task->smp_task.smp_req, req, req_size);
83		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
84
85		task->task_done = smp_task_done;
86
87		task->timer.data = (unsigned long) task;
88		task->timer.function = smp_task_timedout;
89		task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
90		add_timer(&task->timer);
91
92		res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
93
94		if (res) {
95			del_timer(&task->timer);
96			SAS_DPRINTK("executing SMP task failed:%d\n", res);
97			goto ex_err;
98		}
99
100		wait_for_completion(&task->completion);
101		res = -ECOMM;
102		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
103			SAS_DPRINTK("smp task timed out or aborted\n");
104			i->dft->lldd_abort_task(task);
105			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
106				SAS_DPRINTK("SMP task aborted and not done\n");
107				goto ex_err;
108			}
109		}
110		if (task->task_status.resp == SAS_TASK_COMPLETE &&
111		    task->task_status.stat == SAM_STAT_GOOD) {
112			res = 0;
113			break;
114		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
115		      task->task_status.stat == SAS_DATA_UNDERRUN) {
116			/* no error, but return the number of bytes of
117			 * underrun */
118			res = task->task_status.residual;
119			break;
120		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
121		      task->task_status.stat == SAS_DATA_OVERRUN) {
122			res = -EMSGSIZE;
123			break;
124		} else {
125			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
126				    "status 0x%x\n", __func__,
127				    SAS_ADDR(dev->sas_addr),
128				    task->task_status.resp,
129				    task->task_status.stat);
130			sas_free_task(task);
131			task = NULL;
132		}
133	}
134ex_err:
135	BUG_ON(retry == 3 && task != NULL);
136	if (task != NULL) {
137		sas_free_task(task);
138	}
139	return res;
140}
141
142/* ---------- Allocations ---------- */
143
144static inline void *alloc_smp_req(int size)
145{
146	u8 *p = kzalloc(size, GFP_KERNEL);
147	if (p)
148		p[0] = SMP_REQUEST;
149	return p;
150}
151
152static inline void *alloc_smp_resp(int size)
153{
154	return kzalloc(size, GFP_KERNEL);
155}
156
157/* ---------- Expander configuration ---------- */
158
159static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
160			   void *disc_resp)
161{
162	struct expander_device *ex = &dev->ex_dev;
163	struct ex_phy *phy = &ex->ex_phy[phy_id];
164	struct smp_resp *resp = disc_resp;
165	struct discover_resp *dr = &resp->disc;
166	struct sas_rphy *rphy = dev->rphy;
167	int rediscover = (phy->phy != NULL);
168
169	if (!rediscover) {
170		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
171
172		/* FIXME: error_handling */
173		BUG_ON(!phy->phy);
174	}
175
176	switch (resp->result) {
177	case SMP_RESP_PHY_VACANT:
178		phy->phy_state = PHY_VACANT;
179		break;
180	default:
181		phy->phy_state = PHY_NOT_PRESENT;
182		break;
183	case SMP_RESP_FUNC_ACC:
184		phy->phy_state = PHY_EMPTY; /* do not know yet */
185		break;
186	}
187
188	phy->phy_id = phy_id;
189	phy->attached_dev_type = dr->attached_dev_type;
190	phy->linkrate = dr->linkrate;
191	phy->attached_sata_host = dr->attached_sata_host;
192	phy->attached_sata_dev  = dr->attached_sata_dev;
193	phy->attached_sata_ps   = dr->attached_sata_ps;
194	phy->attached_iproto = dr->iproto << 1;
195	phy->attached_tproto = dr->tproto << 1;
196	memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
197	phy->attached_phy_id = dr->attached_phy_id;
198	phy->phy_change_count = dr->change_count;
199	phy->routing_attr = dr->routing_attr;
200	phy->virtual = dr->virtual;
201	phy->last_da_index = -1;
202
203	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
204	phy->phy->identify.device_type = phy->attached_dev_type;
205	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
206	phy->phy->identify.target_port_protocols = phy->attached_tproto;
207	phy->phy->identify.phy_identifier = phy_id;
208	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
209	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
210	phy->phy->minimum_linkrate = dr->pmin_linkrate;
211	phy->phy->maximum_linkrate = dr->pmax_linkrate;
212	phy->phy->negotiated_linkrate = phy->linkrate;
213
214	if (!rediscover)
215		if (sas_phy_add(phy->phy)) {
216			sas_phy_free(phy->phy);
217			return;
218		}
219
220	SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
221		    SAS_ADDR(dev->sas_addr), phy->phy_id,
222		    phy->routing_attr == TABLE_ROUTING ? 'T' :
223		    phy->routing_attr == DIRECT_ROUTING ? 'D' :
224		    phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
225		    SAS_ADDR(phy->attached_sas_addr));
226
227	return;
228}
229
230/* check if we have an existing attached ata device on this expander phy */
231struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
232{
233	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
234	struct domain_device *dev;
235	struct sas_rphy *rphy;
236
237	if (!ex_phy->port)
238		return NULL;
239
240	rphy = ex_phy->port->rphy;
241	if (!rphy)
242		return NULL;
243
244	dev = sas_find_dev_by_rphy(rphy);
245
246	if (dev && dev_is_sata(dev))
247		return dev;
248
249	return NULL;
250}
251
252#define DISCOVER_REQ_SIZE  16
253#define DISCOVER_RESP_SIZE 56
254
255static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
256				      u8 *disc_resp, int single)
257{
258	struct domain_device *ata_dev = sas_ex_to_ata(dev, single);
259	int i, res;
260
261	disc_req[9] = single;
262	for (i = 1 ; i < 3; i++) {
263		struct discover_resp *dr;
264
265		res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
266				       disc_resp, DISCOVER_RESP_SIZE);
267		if (res)
268			return res;
269		dr = &((struct smp_resp *)disc_resp)->disc;
270		if (memcmp(dev->sas_addr, dr->attached_sas_addr,
271			  SAS_ADDR_SIZE) == 0) {
272			sas_printk("Found loopback topology, just ignore it!\n");
273			return 0;
274		}
275
276		/* This is detecting a failure to transmit initial
277		 * dev to host FIS as described in section J.5 of
278		 * sas-2 r16
279		 */
280		if (!(dr->attached_dev_type == 0 &&
281		      dr->attached_sata_dev))
282			break;
283
284		/* In order to generate the dev to host FIS, we send a
285		 * link reset to the expander port.  If a device was
286		 * previously detected on this port we ask libata to
287		 * manage the reset and link recovery.
288		 */
289		if (ata_dev) {
290			sas_ata_schedule_reset(ata_dev);
291			break;
292		}
293		sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
294		/* Wait for the reset to trigger the negotiation */
295		msleep(500);
296	}
297	sas_set_ex_phy(dev, single, disc_resp);
298	return 0;
299}
300
301static int sas_ex_phy_discover(struct domain_device *dev, int single)
302{
303	struct expander_device *ex = &dev->ex_dev;
304	int  res = 0;
305	u8   *disc_req;
306	u8   *disc_resp;
307
308	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
309	if (!disc_req)
310		return -ENOMEM;
311
312	disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
313	if (!disc_resp) {
314		kfree(disc_req);
315		return -ENOMEM;
316	}
317
318	disc_req[1] = SMP_DISCOVER;
319
320	if (0 <= single && single < ex->num_phys) {
321		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
322	} else {
323		int i;
324
325		for (i = 0; i < ex->num_phys; i++) {
326			res = sas_ex_phy_discover_helper(dev, disc_req,
327							 disc_resp, i);
328			if (res)
329				goto out_err;
330		}
331	}
332out_err:
333	kfree(disc_resp);
334	kfree(disc_req);
335	return res;
336}
337
338static int sas_expander_discover(struct domain_device *dev)
339{
340	struct expander_device *ex = &dev->ex_dev;
341	int res = -ENOMEM;
342
343	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
344	if (!ex->ex_phy)
345		return -ENOMEM;
346
347	res = sas_ex_phy_discover(dev, -1);
348	if (res)
349		goto out_err;
350
351	return 0;
352 out_err:
353	kfree(ex->ex_phy);
354	ex->ex_phy = NULL;
355	return res;
356}
357
358#define MAX_EXPANDER_PHYS 128
359
360static void ex_assign_report_general(struct domain_device *dev,
361					    struct smp_resp *resp)
362{
363	struct report_general_resp *rg = &resp->rg;
364
365	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
366	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
367	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
368	dev->ex_dev.t2t_supp = rg->t2t_supp;
369	dev->ex_dev.conf_route_table = rg->conf_route_table;
370	dev->ex_dev.configuring = rg->configuring;
371	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
372}
373
374#define RG_REQ_SIZE   8
375#define RG_RESP_SIZE 32
376
377static int sas_ex_general(struct domain_device *dev)
378{
379	u8 *rg_req;
380	struct smp_resp *rg_resp;
381	int res;
382	int i;
383
384	rg_req = alloc_smp_req(RG_REQ_SIZE);
385	if (!rg_req)
386		return -ENOMEM;
387
388	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
389	if (!rg_resp) {
390		kfree(rg_req);
391		return -ENOMEM;
392	}
393
394	rg_req[1] = SMP_REPORT_GENERAL;
395
396	for (i = 0; i < 5; i++) {
397		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
398				       RG_RESP_SIZE);
399
400		if (res) {
401			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
402				    SAS_ADDR(dev->sas_addr), res);
403			goto out;
404		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
405			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
406				    SAS_ADDR(dev->sas_addr), rg_resp->result);
407			res = rg_resp->result;
408			goto out;
409		}
410
411		ex_assign_report_general(dev, rg_resp);
412
413		if (dev->ex_dev.configuring) {
414			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
415				    SAS_ADDR(dev->sas_addr));
416			schedule_timeout_interruptible(5*HZ);
417		} else
418			break;
419	}
420out:
421	kfree(rg_req);
422	kfree(rg_resp);
423	return res;
424}
425
426static void ex_assign_manuf_info(struct domain_device *dev, void
427					*_mi_resp)
428{
429	u8 *mi_resp = _mi_resp;
430	struct sas_rphy *rphy = dev->rphy;
431	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
432
433	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
434	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
435	memcpy(edev->product_rev, mi_resp + 36,
436	       SAS_EXPANDER_PRODUCT_REV_LEN);
437
438	if (mi_resp[8] & 1) {
439		memcpy(edev->component_vendor_id, mi_resp + 40,
440		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
441		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
442		edev->component_revision_id = mi_resp[50];
443	}
444}
445
446#define MI_REQ_SIZE   8
447#define MI_RESP_SIZE 64
448
449static int sas_ex_manuf_info(struct domain_device *dev)
450{
451	u8 *mi_req;
452	u8 *mi_resp;
453	int res;
454
455	mi_req = alloc_smp_req(MI_REQ_SIZE);
456	if (!mi_req)
457		return -ENOMEM;
458
459	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
460	if (!mi_resp) {
461		kfree(mi_req);
462		return -ENOMEM;
463	}
464
465	mi_req[1] = SMP_REPORT_MANUF_INFO;
466
467	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
468	if (res) {
469		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
470			    SAS_ADDR(dev->sas_addr), res);
471		goto out;
472	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
473		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
474			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
475		goto out;
476	}
477
478	ex_assign_manuf_info(dev, mi_resp);
479out:
480	kfree(mi_req);
481	kfree(mi_resp);
482	return res;
483}
484
485#define PC_REQ_SIZE  44
486#define PC_RESP_SIZE 8
487
488int sas_smp_phy_control(struct domain_device *dev, int phy_id,
489			enum phy_func phy_func,
490			struct sas_phy_linkrates *rates)
491{
492	u8 *pc_req;
493	u8 *pc_resp;
494	int res;
495
496	pc_req = alloc_smp_req(PC_REQ_SIZE);
497	if (!pc_req)
498		return -ENOMEM;
499
500	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
501	if (!pc_resp) {
502		kfree(pc_req);
503		return -ENOMEM;
504	}
505
506	pc_req[1] = SMP_PHY_CONTROL;
507	pc_req[9] = phy_id;
508	pc_req[10]= phy_func;
509	if (rates) {
510		pc_req[32] = rates->minimum_linkrate << 4;
511		pc_req[33] = rates->maximum_linkrate << 4;
512	}
513
514	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
515
516	kfree(pc_resp);
517	kfree(pc_req);
518	return res;
519}
520
521static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
522{
523	struct expander_device *ex = &dev->ex_dev;
524	struct ex_phy *phy = &ex->ex_phy[phy_id];
525
526	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
527	phy->linkrate = SAS_PHY_DISABLED;
528}
529
530static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
531{
532	struct expander_device *ex = &dev->ex_dev;
533	int i;
534
535	for (i = 0; i < ex->num_phys; i++) {
536		struct ex_phy *phy = &ex->ex_phy[i];
537
538		if (phy->phy_state == PHY_VACANT ||
539		    phy->phy_state == PHY_NOT_PRESENT)
540			continue;
541
542		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
543			sas_ex_disable_phy(dev, i);
544	}
545}
546
547static int sas_dev_present_in_domain(struct asd_sas_port *port,
548					    u8 *sas_addr)
549{
550	struct domain_device *dev;
551
552	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
553		return 1;
554	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
555		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
556			return 1;
557	}
558	return 0;
559}
560
561#define RPEL_REQ_SIZE	16
562#define RPEL_RESP_SIZE	32
563int sas_smp_get_phy_events(struct sas_phy *phy)
564{
565	int res;
566	u8 *req;
567	u8 *resp;
568	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
569	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
570
571	req = alloc_smp_req(RPEL_REQ_SIZE);
572	if (!req)
573		return -ENOMEM;
574
575	resp = alloc_smp_resp(RPEL_RESP_SIZE);
576	if (!resp) {
577		kfree(req);
578		return -ENOMEM;
579	}
580
581	req[1] = SMP_REPORT_PHY_ERR_LOG;
582	req[9] = phy->number;
583
584	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
585			            resp, RPEL_RESP_SIZE);
586
587	if (!res)
588		goto out;
589
590	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
591	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
592	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
593	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
594
595 out:
596	kfree(resp);
597	return res;
598
599}
600
601#ifdef CONFIG_SCSI_SAS_ATA
602
603#define RPS_REQ_SIZE  16
604#define RPS_RESP_SIZE 60
605
606static int sas_get_report_phy_sata(struct domain_device *dev,
607					  int phy_id,
608					  struct smp_resp *rps_resp)
609{
610	int res;
611	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
612	u8 *resp = (u8 *)rps_resp;
613
614	if (!rps_req)
615		return -ENOMEM;
616
617	rps_req[1] = SMP_REPORT_PHY_SATA;
618	rps_req[9] = phy_id;
619
620	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
621			            rps_resp, RPS_RESP_SIZE);
622
623	/* 0x34 is the FIS type for the D2H fis.  There's a potential
624	 * standards cockup here.  sas-2 explicitly specifies the FIS
625	 * should be encoded so that FIS type is in resp[24].
626	 * However, some expanders endian reverse this.  Undo the
627	 * reversal here */
628	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
629		int i;
630
631		for (i = 0; i < 5; i++) {
632			int j = 24 + (i*4);
633			u8 a, b;
634			a = resp[j + 0];
635			b = resp[j + 1];
636			resp[j + 0] = resp[j + 3];
637			resp[j + 1] = resp[j + 2];
638			resp[j + 2] = b;
639			resp[j + 3] = a;
640		}
641	}
642
643	kfree(rps_req);
644	return res;
645}
646#endif
647
648static void sas_ex_get_linkrate(struct domain_device *parent,
649				       struct domain_device *child,
650				       struct ex_phy *parent_phy)
651{
652	struct expander_device *parent_ex = &parent->ex_dev;
653	struct sas_port *port;
654	int i;
655
656	child->pathways = 0;
657
658	port = parent_phy->port;
659
660	for (i = 0; i < parent_ex->num_phys; i++) {
661		struct ex_phy *phy = &parent_ex->ex_phy[i];
662
663		if (phy->phy_state == PHY_VACANT ||
664		    phy->phy_state == PHY_NOT_PRESENT)
665			continue;
666
667		if (SAS_ADDR(phy->attached_sas_addr) ==
668		    SAS_ADDR(child->sas_addr)) {
669
670			child->min_linkrate = min(parent->min_linkrate,
671						  phy->linkrate);
672			child->max_linkrate = max(parent->max_linkrate,
673						  phy->linkrate);
674			child->pathways++;
675			sas_port_add_phy(port, phy->phy);
676		}
677	}
678	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
679	child->pathways = min(child->pathways, parent->pathways);
680}
681
682static struct domain_device *sas_ex_discover_end_dev(
683	struct domain_device *parent, int phy_id)
684{
685	struct expander_device *parent_ex = &parent->ex_dev;
686	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
687	struct domain_device *child = NULL;
688	struct sas_rphy *rphy;
689	int res;
690
691	if (phy->attached_sata_host || phy->attached_sata_ps)
692		return NULL;
693
694	child = sas_alloc_device();
695	if (!child)
696		return NULL;
697
698	kref_get(&parent->kref);
699	child->parent = parent;
700	child->port   = parent->port;
701	child->iproto = phy->attached_iproto;
702	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
703	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
704	if (!phy->port) {
705		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
706		if (unlikely(!phy->port))
707			goto out_err;
708		if (unlikely(sas_port_add(phy->port) != 0)) {
709			sas_port_free(phy->port);
710			goto out_err;
711		}
712	}
713	sas_ex_get_linkrate(parent, child, phy);
714
715#ifdef CONFIG_SCSI_SAS_ATA
716	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
717		child->dev_type = SATA_DEV;
718		if (phy->attached_tproto & SAS_PROTOCOL_STP)
719			child->tproto = phy->attached_tproto;
720		if (phy->attached_sata_dev)
721			child->tproto |= SATA_DEV;
722		res = sas_get_report_phy_sata(parent, phy_id,
723					      &child->sata_dev.rps_resp);
724		if (res) {
725			SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
726				    "0x%x\n", SAS_ADDR(parent->sas_addr),
727				    phy_id, res);
728			goto out_free;
729		}
730		memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
731		       sizeof(struct dev_to_host_fis));
732
733		rphy = sas_end_device_alloc(phy->port);
734		if (unlikely(!rphy))
735			goto out_free;
736
737		sas_init_dev(child);
738
739		child->rphy = rphy;
740
741		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
742
743		res = sas_discover_sata(child);
744		if (res) {
745			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
746				    "%016llx:0x%x returned 0x%x\n",
747				    SAS_ADDR(child->sas_addr),
748				    SAS_ADDR(parent->sas_addr), phy_id, res);
749			goto out_list_del;
750		}
751	} else
752#endif
753	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
754		child->dev_type = SAS_END_DEV;
755		rphy = sas_end_device_alloc(phy->port);
756		/* FIXME: error handling */
757		if (unlikely(!rphy))
758			goto out_free;
759		child->tproto = phy->attached_tproto;
760		sas_init_dev(child);
761
762		child->rphy = rphy;
763		sas_fill_in_rphy(child, rphy);
764
765		spin_lock_irq(&parent->port->dev_list_lock);
766		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
767		spin_unlock_irq(&parent->port->dev_list_lock);
768
769		res = sas_discover_end_dev(child);
770		if (res) {
771			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
772				    "at %016llx:0x%x returned 0x%x\n",
773				    SAS_ADDR(child->sas_addr),
774				    SAS_ADDR(parent->sas_addr), phy_id, res);
775			goto out_list_del;
776		}
777	} else {
778		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
779			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
780			    phy_id);
781		goto out_free;
782	}
783
784	list_add_tail(&child->siblings, &parent_ex->children);
785	return child;
786
787 out_list_del:
788	sas_rphy_free(child->rphy);
789	child->rphy = NULL;
790
791	list_del(&child->disco_list_node);
792	spin_lock_irq(&parent->port->dev_list_lock);
793	list_del(&child->dev_list_node);
794	spin_unlock_irq(&parent->port->dev_list_lock);
795 out_free:
796	sas_port_delete(phy->port);
797 out_err:
798	phy->port = NULL;
799	sas_put_device(child);
800	return NULL;
801}
802
803/* See if this phy is part of a wide port */
804static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
805{
806	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
807	int i;
808
809	for (i = 0; i < parent->ex_dev.num_phys; i++) {
810		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
811
812		if (ephy == phy)
813			continue;
814
815		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
816			    SAS_ADDR_SIZE) && ephy->port) {
817			sas_port_add_phy(ephy->port, phy->phy);
818			phy->port = ephy->port;
819			phy->phy_state = PHY_DEVICE_DISCOVERED;
820			return 0;
821		}
822	}
823
824	return -ENODEV;
825}
826
827static struct domain_device *sas_ex_discover_expander(
828	struct domain_device *parent, int phy_id)
829{
830	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
831	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
832	struct domain_device *child = NULL;
833	struct sas_rphy *rphy;
834	struct sas_expander_device *edev;
835	struct asd_sas_port *port;
836	int res;
837
838	if (phy->routing_attr == DIRECT_ROUTING) {
839		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
840			    "allowed\n",
841			    SAS_ADDR(parent->sas_addr), phy_id,
842			    SAS_ADDR(phy->attached_sas_addr),
843			    phy->attached_phy_id);
844		return NULL;
845	}
846	child = sas_alloc_device();
847	if (!child)
848		return NULL;
849
850	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
851	/* FIXME: better error handling */
852	BUG_ON(sas_port_add(phy->port) != 0);
853
854
855	switch (phy->attached_dev_type) {
856	case EDGE_DEV:
857		rphy = sas_expander_alloc(phy->port,
858					  SAS_EDGE_EXPANDER_DEVICE);
859		break;
860	case FANOUT_DEV:
861		rphy = sas_expander_alloc(phy->port,
862					  SAS_FANOUT_EXPANDER_DEVICE);
863		break;
864	default:
865		rphy = NULL;	/* shut gcc up */
866		BUG();
867	}
868	port = parent->port;
869	child->rphy = rphy;
870	edev = rphy_to_expander_device(rphy);
871	child->dev_type = phy->attached_dev_type;
872	kref_get(&parent->kref);
873	child->parent = parent;
874	child->port = port;
875	child->iproto = phy->attached_iproto;
876	child->tproto = phy->attached_tproto;
877	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
878	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
879	sas_ex_get_linkrate(parent, child, phy);
880	edev->level = parent_ex->level + 1;
881	parent->port->disc.max_level = max(parent->port->disc.max_level,
882					   edev->level);
883	sas_init_dev(child);
884	sas_fill_in_rphy(child, rphy);
885	sas_rphy_add(rphy);
886
887	spin_lock_irq(&parent->port->dev_list_lock);
888	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
889	spin_unlock_irq(&parent->port->dev_list_lock);
890
891	res = sas_discover_expander(child);
892	if (res) {
893		spin_lock_irq(&parent->port->dev_list_lock);
894		list_del(&child->dev_list_node);
895		spin_unlock_irq(&parent->port->dev_list_lock);
896		sas_put_device(child);
897		return NULL;
898	}
899	list_add_tail(&child->siblings, &parent->ex_dev.children);
900	return child;
901}
902
903static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
904{
905	struct expander_device *ex = &dev->ex_dev;
906	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
907	struct domain_device *child = NULL;
908	int res = 0;
909
910	/* Phy state */
911	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
912		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
913			res = sas_ex_phy_discover(dev, phy_id);
914		if (res)
915			return res;
916	}
917
918	/* Parent and domain coherency */
919	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
920			     SAS_ADDR(dev->port->sas_addr))) {
921		sas_add_parent_port(dev, phy_id);
922		return 0;
923	}
924	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
925			    SAS_ADDR(dev->parent->sas_addr))) {
926		sas_add_parent_port(dev, phy_id);
927		if (ex_phy->routing_attr == TABLE_ROUTING)
928			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
929		return 0;
930	}
931
932	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
933		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
934
935	if (ex_phy->attached_dev_type == NO_DEVICE) {
936		if (ex_phy->routing_attr == DIRECT_ROUTING) {
937			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
938			sas_configure_routing(dev, ex_phy->attached_sas_addr);
939		}
940		return 0;
941	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
942		return 0;
943
944	if (ex_phy->attached_dev_type != SAS_END_DEV &&
945	    ex_phy->attached_dev_type != FANOUT_DEV &&
946	    ex_phy->attached_dev_type != EDGE_DEV) {
947		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
948			    "phy 0x%x\n", ex_phy->attached_dev_type,
949			    SAS_ADDR(dev->sas_addr),
950			    phy_id);
951		return 0;
952	}
953
954	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
955	if (res) {
956		SAS_DPRINTK("configure routing for dev %016llx "
957			    "reported 0x%x. Forgotten\n",
958			    SAS_ADDR(ex_phy->attached_sas_addr), res);
959		sas_disable_routing(dev, ex_phy->attached_sas_addr);
960		return res;
961	}
962
963	res = sas_ex_join_wide_port(dev, phy_id);
964	if (!res) {
965		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
966			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
967		return res;
968	}
969
970	switch (ex_phy->attached_dev_type) {
971	case SAS_END_DEV:
972		child = sas_ex_discover_end_dev(dev, phy_id);
973		break;
974	case FANOUT_DEV:
975		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
976			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
977				    "attached to ex %016llx phy 0x%x\n",
978				    SAS_ADDR(ex_phy->attached_sas_addr),
979				    ex_phy->attached_phy_id,
980				    SAS_ADDR(dev->sas_addr),
981				    phy_id);
982			sas_ex_disable_phy(dev, phy_id);
983			break;
984		} else
985			memcpy(dev->port->disc.fanout_sas_addr,
986			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
987		/* fallthrough */
988	case EDGE_DEV:
989		child = sas_ex_discover_expander(dev, phy_id);
990		break;
991	default:
992		break;
993	}
994
995	if (child) {
996		int i;
997
998		for (i = 0; i < ex->num_phys; i++) {
999			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1000			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1001				continue;
1002			/*
1003			 * Due to races, the phy might not get added to the
1004			 * wide port, so we add the phy to the wide port here.
1005			 */
1006			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1007			    SAS_ADDR(child->sas_addr)) {
1008				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1009				res = sas_ex_join_wide_port(dev, i);
1010				if (!res)
1011					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1012						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1013
1014			}
1015		}
1016	}
1017
1018	return res;
1019}
1020
1021static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1022{
1023	struct expander_device *ex = &dev->ex_dev;
1024	int i;
1025
1026	for (i = 0; i < ex->num_phys; i++) {
1027		struct ex_phy *phy = &ex->ex_phy[i];
1028
1029		if (phy->phy_state == PHY_VACANT ||
1030		    phy->phy_state == PHY_NOT_PRESENT)
1031			continue;
1032
1033		if ((phy->attached_dev_type == EDGE_DEV ||
1034		     phy->attached_dev_type == FANOUT_DEV) &&
1035		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1036
1037			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1038
1039			return 1;
1040		}
1041	}
1042	return 0;
1043}
1044
1045static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1046{
1047	struct expander_device *ex = &dev->ex_dev;
1048	struct domain_device *child;
1049	u8 sub_addr[8] = {0, };
1050
1051	list_for_each_entry(child, &ex->children, siblings) {
1052		if (child->dev_type != EDGE_DEV &&
1053		    child->dev_type != FANOUT_DEV)
1054			continue;
1055		if (sub_addr[0] == 0) {
1056			sas_find_sub_addr(child, sub_addr);
1057			continue;
1058		} else {
1059			u8 s2[8];
1060
1061			if (sas_find_sub_addr(child, s2) &&
1062			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1063
1064				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1065					    "diverges from subtractive "
1066					    "boundary %016llx\n",
1067					    SAS_ADDR(dev->sas_addr),
1068					    SAS_ADDR(child->sas_addr),
1069					    SAS_ADDR(s2),
1070					    SAS_ADDR(sub_addr));
1071
1072				sas_ex_disable_port(child, s2);
1073			}
1074		}
1075	}
1076	return 0;
1077}
1078/**
1079 * sas_ex_discover_devices -- discover devices attached to this expander
1080 * dev: pointer to the expander domain device
1081 * single: if you want to do a single phy, else set to -1;
1082 *
1083 * Configure this expander for use with its devices and register the
1084 * devices of this expander.
1085 */
1086static int sas_ex_discover_devices(struct domain_device *dev, int single)
1087{
1088	struct expander_device *ex = &dev->ex_dev;
1089	int i = 0, end = ex->num_phys;
1090	int res = 0;
1091
1092	if (0 <= single && single < end) {
1093		i = single;
1094		end = i+1;
1095	}
1096
1097	for ( ; i < end; i++) {
1098		struct ex_phy *ex_phy = &ex->ex_phy[i];
1099
1100		if (ex_phy->phy_state == PHY_VACANT ||
1101		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1102		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1103			continue;
1104
1105		switch (ex_phy->linkrate) {
1106		case SAS_PHY_DISABLED:
1107		case SAS_PHY_RESET_PROBLEM:
1108		case SAS_SATA_PORT_SELECTOR:
1109			continue;
1110		default:
1111			res = sas_ex_discover_dev(dev, i);
1112			if (res)
1113				break;
1114			continue;
1115		}
1116	}
1117
1118	if (!res)
1119		sas_check_level_subtractive_boundary(dev);
1120
1121	return res;
1122}
1123
1124static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1125{
1126	struct expander_device *ex = &dev->ex_dev;
1127	int i;
1128	u8  *sub_sas_addr = NULL;
1129
1130	if (dev->dev_type != EDGE_DEV)
1131		return 0;
1132
1133	for (i = 0; i < ex->num_phys; i++) {
1134		struct ex_phy *phy = &ex->ex_phy[i];
1135
1136		if (phy->phy_state == PHY_VACANT ||
1137		    phy->phy_state == PHY_NOT_PRESENT)
1138			continue;
1139
1140		if ((phy->attached_dev_type == FANOUT_DEV ||
1141		     phy->attached_dev_type == EDGE_DEV) &&
1142		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1143
1144			if (!sub_sas_addr)
1145				sub_sas_addr = &phy->attached_sas_addr[0];
1146			else if (SAS_ADDR(sub_sas_addr) !=
1147				 SAS_ADDR(phy->attached_sas_addr)) {
1148
1149				SAS_DPRINTK("ex %016llx phy 0x%x "
1150					    "diverges(%016llx) on subtractive "
1151					    "boundary(%016llx). Disabled\n",
1152					    SAS_ADDR(dev->sas_addr), i,
1153					    SAS_ADDR(phy->attached_sas_addr),
1154					    SAS_ADDR(sub_sas_addr));
1155				sas_ex_disable_phy(dev, i);
1156			}
1157		}
1158	}
1159	return 0;
1160}
1161
1162static void sas_print_parent_topology_bug(struct domain_device *child,
1163						 struct ex_phy *parent_phy,
1164						 struct ex_phy *child_phy)
1165{
1166	static const char ra_char[] = {
1167		[DIRECT_ROUTING] = 'D',
1168		[SUBTRACTIVE_ROUTING] = 'S',
1169		[TABLE_ROUTING] = 'T',
1170	};
1171	static const char *ex_type[] = {
1172		[EDGE_DEV] = "edge",
1173		[FANOUT_DEV] = "fanout",
1174	};
1175	struct domain_device *parent = child->parent;
1176
1177	sas_printk("%s ex %016llx (T2T supp:%d) phy 0x%x <--> %s ex %016llx "
1178		   "(T2T supp:%d) phy 0x%x has %c:%c routing link!\n",
1179
1180		   ex_type[parent->dev_type],
1181		   SAS_ADDR(parent->sas_addr),
1182		   parent->ex_dev.t2t_supp,
1183		   parent_phy->phy_id,
1184
1185		   ex_type[child->dev_type],
1186		   SAS_ADDR(child->sas_addr),
1187		   child->ex_dev.t2t_supp,
1188		   child_phy->phy_id,
1189
1190		   ra_char[parent_phy->routing_attr],
1191		   ra_char[child_phy->routing_attr]);
1192}
1193
1194static int sas_check_eeds(struct domain_device *child,
1195				 struct ex_phy *parent_phy,
1196				 struct ex_phy *child_phy)
1197{
1198	int res = 0;
1199	struct domain_device *parent = child->parent;
1200
1201	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1202		res = -ENODEV;
1203		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1204			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1205			    SAS_ADDR(parent->sas_addr),
1206			    parent_phy->phy_id,
1207			    SAS_ADDR(child->sas_addr),
1208			    child_phy->phy_id,
1209			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1210	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1211		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1212		       SAS_ADDR_SIZE);
1213		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1214		       SAS_ADDR_SIZE);
1215	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1216		    SAS_ADDR(parent->sas_addr)) ||
1217		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1218		    SAS_ADDR(child->sas_addr)))
1219		   &&
1220		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1221		     SAS_ADDR(parent->sas_addr)) ||
1222		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1223		     SAS_ADDR(child->sas_addr))))
1224		;
1225	else {
1226		res = -ENODEV;
1227		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1228			    "phy 0x%x link forms a third EEDS!\n",
1229			    SAS_ADDR(parent->sas_addr),
1230			    parent_phy->phy_id,
1231			    SAS_ADDR(child->sas_addr),
1232			    child_phy->phy_id);
1233	}
1234
1235	return res;
1236}
1237
1238/* Here we spill over 80 columns.  It is intentional.
1239 */
1240static int sas_check_parent_topology(struct domain_device *child)
1241{
1242	struct expander_device *child_ex = &child->ex_dev;
1243	struct expander_device *parent_ex;
1244	int i;
1245	int res = 0;
1246
1247	if (!child->parent)
1248		return 0;
1249
1250	if (child->parent->dev_type != EDGE_DEV &&
1251	    child->parent->dev_type != FANOUT_DEV)
1252		return 0;
1253
1254	parent_ex = &child->parent->ex_dev;
1255
1256	for (i = 0; i < parent_ex->num_phys; i++) {
1257		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1258		struct ex_phy *child_phy;
1259
1260		if (parent_phy->phy_state == PHY_VACANT ||
1261		    parent_phy->phy_state == PHY_NOT_PRESENT)
1262			continue;
1263
1264		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1265			continue;
1266
1267		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1268
1269		switch (child->parent->dev_type) {
1270		case EDGE_DEV:
1271			if (child->dev_type == FANOUT_DEV) {
1272				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1273				    child_phy->routing_attr != TABLE_ROUTING) {
1274					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1275					res = -ENODEV;
1276				}
1277			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1278				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1279					res = sas_check_eeds(child, parent_phy, child_phy);
1280				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1281					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1282					res = -ENODEV;
1283				}
1284			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1285				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1286				    (child_phy->routing_attr == TABLE_ROUTING &&
1287				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1288					/* All good */;
1289				} else {
1290					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1291					res = -ENODEV;
1292				}
1293			}
1294			break;
1295		case FANOUT_DEV:
1296			if (parent_phy->routing_attr != TABLE_ROUTING ||
1297			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1298				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1299				res = -ENODEV;
1300			}
1301			break;
1302		default:
1303			break;
1304		}
1305	}
1306
1307	return res;
1308}
1309
1310#define RRI_REQ_SIZE  16
1311#define RRI_RESP_SIZE 44
1312
1313static int sas_configure_present(struct domain_device *dev, int phy_id,
1314				 u8 *sas_addr, int *index, int *present)
1315{
1316	int i, res = 0;
1317	struct expander_device *ex = &dev->ex_dev;
1318	struct ex_phy *phy = &ex->ex_phy[phy_id];
1319	u8 *rri_req;
1320	u8 *rri_resp;
1321
1322	*present = 0;
1323	*index = 0;
1324
1325	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1326	if (!rri_req)
1327		return -ENOMEM;
1328
1329	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1330	if (!rri_resp) {
1331		kfree(rri_req);
1332		return -ENOMEM;
1333	}
1334
1335	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1336	rri_req[9] = phy_id;
1337
1338	for (i = 0; i < ex->max_route_indexes ; i++) {
1339		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1340		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1341				       RRI_RESP_SIZE);
1342		if (res)
1343			goto out;
1344		res = rri_resp[2];
1345		if (res == SMP_RESP_NO_INDEX) {
1346			SAS_DPRINTK("overflow of indexes: dev %016llx "
1347				    "phy 0x%x index 0x%x\n",
1348				    SAS_ADDR(dev->sas_addr), phy_id, i);
1349			goto out;
1350		} else if (res != SMP_RESP_FUNC_ACC) {
1351			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1352				    "result 0x%x\n", __func__,
1353				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1354			goto out;
1355		}
1356		if (SAS_ADDR(sas_addr) != 0) {
1357			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1358				*index = i;
1359				if ((rri_resp[12] & 0x80) == 0x80)
1360					*present = 0;
1361				else
1362					*present = 1;
1363				goto out;
1364			} else if (SAS_ADDR(rri_resp+16) == 0) {
1365				*index = i;
1366				*present = 0;
1367				goto out;
1368			}
1369		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1370			   phy->last_da_index < i) {
1371			phy->last_da_index = i;
1372			*index = i;
1373			*present = 0;
1374			goto out;
1375		}
1376	}
1377	res = -1;
1378out:
1379	kfree(rri_req);
1380	kfree(rri_resp);
1381	return res;
1382}
1383
1384#define CRI_REQ_SIZE  44
1385#define CRI_RESP_SIZE  8
1386
1387static int sas_configure_set(struct domain_device *dev, int phy_id,
1388			     u8 *sas_addr, int index, int include)
1389{
1390	int res;
1391	u8 *cri_req;
1392	u8 *cri_resp;
1393
1394	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1395	if (!cri_req)
1396		return -ENOMEM;
1397
1398	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1399	if (!cri_resp) {
1400		kfree(cri_req);
1401		return -ENOMEM;
1402	}
1403
1404	cri_req[1] = SMP_CONF_ROUTE_INFO;
1405	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1406	cri_req[9] = phy_id;
1407	if (SAS_ADDR(sas_addr) == 0 || !include)
1408		cri_req[12] |= 0x80;
1409	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1410
1411	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1412			       CRI_RESP_SIZE);
1413	if (res)
1414		goto out;
1415	res = cri_resp[2];
1416	if (res == SMP_RESP_NO_INDEX) {
1417		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1418			    "index 0x%x\n",
1419			    SAS_ADDR(dev->sas_addr), phy_id, index);
1420	}
1421out:
1422	kfree(cri_req);
1423	kfree(cri_resp);
1424	return res;
1425}
1426
1427static int sas_configure_phy(struct domain_device *dev, int phy_id,
1428				    u8 *sas_addr, int include)
1429{
1430	int index;
1431	int present;
1432	int res;
1433
1434	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1435	if (res)
1436		return res;
1437	if (include ^ present)
1438		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1439
1440	return res;
1441}
1442
1443/**
1444 * sas_configure_parent -- configure routing table of parent
1445 * parent: parent expander
1446 * child: child expander
1447 * sas_addr: SAS port identifier of device directly attached to child
1448 */
1449static int sas_configure_parent(struct domain_device *parent,
1450				struct domain_device *child,
1451				u8 *sas_addr, int include)
1452{
1453	struct expander_device *ex_parent = &parent->ex_dev;
1454	int res = 0;
1455	int i;
1456
1457	if (parent->parent) {
1458		res = sas_configure_parent(parent->parent, parent, sas_addr,
1459					   include);
1460		if (res)
1461			return res;
1462	}
1463
1464	if (ex_parent->conf_route_table == 0) {
1465		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1466			    SAS_ADDR(parent->sas_addr));
1467		return 0;
1468	}
1469
1470	for (i = 0; i < ex_parent->num_phys; i++) {
1471		struct ex_phy *phy = &ex_parent->ex_phy[i];
1472
1473		if ((phy->routing_attr == TABLE_ROUTING) &&
1474		    (SAS_ADDR(phy->attached_sas_addr) ==
1475		     SAS_ADDR(child->sas_addr))) {
1476			res = sas_configure_phy(parent, i, sas_addr, include);
1477			if (res)
1478				return res;
1479		}
1480	}
1481
1482	return res;
1483}
1484
1485/**
1486 * sas_configure_routing -- configure routing
1487 * dev: expander device
1488 * sas_addr: port identifier of device directly attached to the expander device
1489 */
1490static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1491{
1492	if (dev->parent)
1493		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1494	return 0;
1495}
1496
1497static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1498{
1499	if (dev->parent)
1500		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1501	return 0;
1502}
1503
1504/**
1505 * sas_discover_expander -- expander discovery
1506 * @ex: pointer to expander domain device
1507 *
1508 * See comment in sas_discover_sata().
1509 */
1510static int sas_discover_expander(struct domain_device *dev)
1511{
1512	int res;
1513
1514	res = sas_notify_lldd_dev_found(dev);
1515	if (res)
1516		return res;
1517
1518	res = sas_ex_general(dev);
1519	if (res)
1520		goto out_err;
1521	res = sas_ex_manuf_info(dev);
1522	if (res)
1523		goto out_err;
1524
1525	res = sas_expander_discover(dev);
1526	if (res) {
1527		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1528			    SAS_ADDR(dev->sas_addr), res);
1529		goto out_err;
1530	}
1531
1532	sas_check_ex_subtractive_boundary(dev);
1533	res = sas_check_parent_topology(dev);
1534	if (res)
1535		goto out_err;
1536	return 0;
1537out_err:
1538	sas_notify_lldd_dev_gone(dev);
1539	return res;
1540}
1541
1542static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1543{
1544	int res = 0;
1545	struct domain_device *dev;
1546
1547	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1548		if (dev->dev_type == EDGE_DEV ||
1549		    dev->dev_type == FANOUT_DEV) {
1550			struct sas_expander_device *ex =
1551				rphy_to_expander_device(dev->rphy);
1552
1553			if (level == ex->level)
1554				res = sas_ex_discover_devices(dev, -1);
1555			else if (level > 0)
1556				res = sas_ex_discover_devices(port->port_dev, -1);
1557
1558		}
1559	}
1560
1561	return res;
1562}
1563
1564static int sas_ex_bfs_disc(struct asd_sas_port *port)
1565{
1566	int res;
1567	int level;
1568
1569	do {
1570		level = port->disc.max_level;
1571		res = sas_ex_level_discovery(port, level);
1572		mb();
1573	} while (level < port->disc.max_level);
1574
1575	return res;
1576}
1577
1578int sas_discover_root_expander(struct domain_device *dev)
1579{
1580	int res;
1581	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1582
1583	res = sas_rphy_add(dev->rphy);
1584	if (res)
1585		goto out_err;
1586
1587	ex->level = dev->port->disc.max_level; /* 0 */
1588	res = sas_discover_expander(dev);
1589	if (res)
1590		goto out_err2;
1591
1592	sas_ex_bfs_disc(dev->port);
1593
1594	return res;
1595
1596out_err2:
1597	sas_rphy_remove(dev->rphy);
1598out_err:
1599	return res;
1600}
1601
1602/* ---------- Domain revalidation ---------- */
1603
1604static int sas_get_phy_discover(struct domain_device *dev,
1605				int phy_id, struct smp_resp *disc_resp)
1606{
1607	int res;
1608	u8 *disc_req;
1609
1610	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1611	if (!disc_req)
1612		return -ENOMEM;
1613
1614	disc_req[1] = SMP_DISCOVER;
1615	disc_req[9] = phy_id;
1616
1617	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1618			       disc_resp, DISCOVER_RESP_SIZE);
1619	if (res)
1620		goto out;
1621	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1622		res = disc_resp->result;
1623		goto out;
1624	}
1625out:
1626	kfree(disc_req);
1627	return res;
1628}
1629
1630static int sas_get_phy_change_count(struct domain_device *dev,
1631				    int phy_id, int *pcc)
1632{
1633	int res;
1634	struct smp_resp *disc_resp;
1635
1636	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1637	if (!disc_resp)
1638		return -ENOMEM;
1639
1640	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1641	if (!res)
1642		*pcc = disc_resp->disc.change_count;
1643
1644	kfree(disc_resp);
1645	return res;
1646}
1647
1648static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1649					 int phy_id, u8 *attached_sas_addr)
1650{
1651	int res;
1652	struct smp_resp *disc_resp;
1653	struct discover_resp *dr;
1654
1655	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1656	if (!disc_resp)
1657		return -ENOMEM;
1658	dr = &disc_resp->disc;
1659
1660	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1661	if (!res) {
1662		memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1663		if (dr->attached_dev_type == 0)
1664			memset(attached_sas_addr, 0, 8);
1665	}
1666	kfree(disc_resp);
1667	return res;
1668}
1669
1670static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1671			      int from_phy, bool update)
1672{
1673	struct expander_device *ex = &dev->ex_dev;
1674	int res = 0;
1675	int i;
1676
1677	for (i = from_phy; i < ex->num_phys; i++) {
1678		int phy_change_count = 0;
1679
1680		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1681		if (res)
1682			goto out;
1683		else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1684			if (update)
1685				ex->ex_phy[i].phy_change_count =
1686					phy_change_count;
1687			*phy_id = i;
1688			return 0;
1689		}
1690	}
1691out:
1692	return res;
1693}
1694
1695static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1696{
1697	int res;
1698	u8  *rg_req;
1699	struct smp_resp  *rg_resp;
1700
1701	rg_req = alloc_smp_req(RG_REQ_SIZE);
1702	if (!rg_req)
1703		return -ENOMEM;
1704
1705	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1706	if (!rg_resp) {
1707		kfree(rg_req);
1708		return -ENOMEM;
1709	}
1710
1711	rg_req[1] = SMP_REPORT_GENERAL;
1712
1713	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1714			       RG_RESP_SIZE);
1715	if (res)
1716		goto out;
1717	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1718		res = rg_resp->result;
1719		goto out;
1720	}
1721
1722	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1723out:
1724	kfree(rg_resp);
1725	kfree(rg_req);
1726	return res;
1727}
1728/**
1729 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1730 * @dev:domain device to be detect.
1731 * @src_dev: the device which originated BROADCAST(CHANGE).
1732 *
1733 * Add self-configuration expander suport. Suppose two expander cascading,
1734 * when the first level expander is self-configuring, hotplug the disks in
1735 * second level expander, BROADCAST(CHANGE) will not only be originated
1736 * in the second level expander, but also be originated in the first level
1737 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1738 * expander changed count in two level expanders will all increment at least
1739 * once, but the phy which chang count has changed is the source device which
1740 * we concerned.
1741 */
1742
1743static int sas_find_bcast_dev(struct domain_device *dev,
1744			      struct domain_device **src_dev)
1745{
1746	struct expander_device *ex = &dev->ex_dev;
1747	int ex_change_count = -1;
1748	int phy_id = -1;
1749	int res;
1750	struct domain_device *ch;
1751
1752	res = sas_get_ex_change_count(dev, &ex_change_count);
1753	if (res)
1754		goto out;
1755	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1756		/* Just detect if this expander phys phy change count changed,
1757		* in order to determine if this expander originate BROADCAST,
1758		* and do not update phy change count field in our structure.
1759		*/
1760		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1761		if (phy_id != -1) {
1762			*src_dev = dev;
1763			ex->ex_change_count = ex_change_count;
1764			SAS_DPRINTK("Expander phy change count has changed\n");
1765			return res;
1766		} else
1767			SAS_DPRINTK("Expander phys DID NOT change\n");
1768	}
1769	list_for_each_entry(ch, &ex->children, siblings) {
1770		if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1771			res = sas_find_bcast_dev(ch, src_dev);
1772			if (*src_dev)
1773				return res;
1774		}
1775	}
1776out:
1777	return res;
1778}
1779
1780static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1781{
1782	struct expander_device *ex = &dev->ex_dev;
1783	struct domain_device *child, *n;
1784
1785	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1786		set_bit(SAS_DEV_GONE, &child->state);
1787		if (child->dev_type == EDGE_DEV ||
1788		    child->dev_type == FANOUT_DEV)
1789			sas_unregister_ex_tree(port, child);
1790		else
1791			sas_unregister_dev(port, child);
1792	}
1793	sas_unregister_dev(port, dev);
1794}
1795
1796static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1797					 int phy_id, bool last)
1798{
1799	struct expander_device *ex_dev = &parent->ex_dev;
1800	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1801	struct domain_device *child, *n;
1802	if (last) {
1803		list_for_each_entry_safe(child, n,
1804			&ex_dev->children, siblings) {
1805			if (SAS_ADDR(child->sas_addr) ==
1806			    SAS_ADDR(phy->attached_sas_addr)) {
1807				set_bit(SAS_DEV_GONE, &child->state);
1808				if (child->dev_type == EDGE_DEV ||
1809				    child->dev_type == FANOUT_DEV)
1810					sas_unregister_ex_tree(parent->port, child);
1811				else
1812					sas_unregister_dev(parent->port, child);
1813				break;
1814			}
1815		}
1816		set_bit(SAS_DEV_GONE, &parent->state);
1817		sas_disable_routing(parent, phy->attached_sas_addr);
1818	}
1819	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1820	if (phy->port) {
1821		sas_port_delete_phy(phy->port, phy->phy);
1822		if (phy->port->num_phys == 0)
1823			sas_port_delete(phy->port);
1824		phy->port = NULL;
1825	}
1826}
1827
1828static int sas_discover_bfs_by_root_level(struct domain_device *root,
1829					  const int level)
1830{
1831	struct expander_device *ex_root = &root->ex_dev;
1832	struct domain_device *child;
1833	int res = 0;
1834
1835	list_for_each_entry(child, &ex_root->children, siblings) {
1836		if (child->dev_type == EDGE_DEV ||
1837		    child->dev_type == FANOUT_DEV) {
1838			struct sas_expander_device *ex =
1839				rphy_to_expander_device(child->rphy);
1840
1841			if (level > ex->level)
1842				res = sas_discover_bfs_by_root_level(child,
1843								     level);
1844			else if (level == ex->level)
1845				res = sas_ex_discover_devices(child, -1);
1846		}
1847	}
1848	return res;
1849}
1850
1851static int sas_discover_bfs_by_root(struct domain_device *dev)
1852{
1853	int res;
1854	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1855	int level = ex->level+1;
1856
1857	res = sas_ex_discover_devices(dev, -1);
1858	if (res)
1859		goto out;
1860	do {
1861		res = sas_discover_bfs_by_root_level(dev, level);
1862		mb();
1863		level += 1;
1864	} while (level <= dev->port->disc.max_level);
1865out:
1866	return res;
1867}
1868
1869static int sas_discover_new(struct domain_device *dev, int phy_id)
1870{
1871	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1872	struct domain_device *child;
1873	bool found = false;
1874	int res, i;
1875
1876	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1877		    SAS_ADDR(dev->sas_addr), phy_id);
1878	res = sas_ex_phy_discover(dev, phy_id);
1879	if (res)
1880		goto out;
1881	/* to support the wide port inserted */
1882	for (i = 0; i < dev->ex_dev.num_phys; i++) {
1883		struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1884		if (i == phy_id)
1885			continue;
1886		if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1887		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1888			found = true;
1889			break;
1890		}
1891	}
1892	if (found) {
1893		sas_ex_join_wide_port(dev, phy_id);
1894		return 0;
1895	}
1896	res = sas_ex_discover_devices(dev, phy_id);
1897	if (!res)
1898		goto out;
1899	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1900		if (SAS_ADDR(child->sas_addr) ==
1901		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1902			if (child->dev_type == EDGE_DEV ||
1903			    child->dev_type == FANOUT_DEV)
1904				res = sas_discover_bfs_by_root(child);
1905			break;
1906		}
1907	}
1908out:
1909	return res;
1910}
1911
1912static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1913{
1914	struct expander_device *ex = &dev->ex_dev;
1915	struct ex_phy *phy = &ex->ex_phy[phy_id];
1916	u8 attached_sas_addr[8];
1917	int res;
1918
1919	res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1920	switch (res) {
1921	case SMP_RESP_NO_PHY:
1922		phy->phy_state = PHY_NOT_PRESENT;
1923		sas_unregister_devs_sas_addr(dev, phy_id, last);
1924		goto out; break;
1925	case SMP_RESP_PHY_VACANT:
1926		phy->phy_state = PHY_VACANT;
1927		sas_unregister_devs_sas_addr(dev, phy_id, last);
1928		goto out; break;
1929	case SMP_RESP_FUNC_ACC:
1930		break;
1931	}
1932
1933	if (SAS_ADDR(attached_sas_addr) == 0) {
1934		phy->phy_state = PHY_EMPTY;
1935		sas_unregister_devs_sas_addr(dev, phy_id, last);
1936	} else if (SAS_ADDR(attached_sas_addr) ==
1937		   SAS_ADDR(phy->attached_sas_addr)) {
1938		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1939			    SAS_ADDR(dev->sas_addr), phy_id);
1940		sas_ex_phy_discover(dev, phy_id);
1941	} else
1942		res = sas_discover_new(dev, phy_id);
1943out:
1944	return res;
1945}
1946
1947/**
1948 * sas_rediscover - revalidate the domain.
1949 * @dev:domain device to be detect.
1950 * @phy_id: the phy id will be detected.
1951 *
1952 * NOTE: this process _must_ quit (return) as soon as any connection
1953 * errors are encountered.  Connection recovery is done elsewhere.
1954 * Discover process only interrogates devices in order to discover the
1955 * domain.For plugging out, we un-register the device only when it is
1956 * the last phy in the port, for other phys in this port, we just delete it
1957 * from the port.For inserting, we do discovery when it is the
1958 * first phy,for other phys in this port, we add it to the port to
1959 * forming the wide-port.
1960 */
1961static int sas_rediscover(struct domain_device *dev, const int phy_id)
1962{
1963	struct expander_device *ex = &dev->ex_dev;
1964	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1965	int res = 0;
1966	int i;
1967	bool last = true;	/* is this the last phy of the port */
1968
1969	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1970		    SAS_ADDR(dev->sas_addr), phy_id);
1971
1972	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1973		for (i = 0; i < ex->num_phys; i++) {
1974			struct ex_phy *phy = &ex->ex_phy[i];
1975
1976			if (i == phy_id)
1977				continue;
1978			if (SAS_ADDR(phy->attached_sas_addr) ==
1979			    SAS_ADDR(changed_phy->attached_sas_addr)) {
1980				SAS_DPRINTK("phy%d part of wide port with "
1981					    "phy%d\n", phy_id, i);
1982				last = false;
1983				break;
1984			}
1985		}
1986		res = sas_rediscover_dev(dev, phy_id, last);
1987	} else
1988		res = sas_discover_new(dev, phy_id);
1989	return res;
1990}
1991
1992/**
1993 * sas_revalidate_domain -- revalidate the domain
1994 * @port: port to the domain of interest
1995 *
1996 * NOTE: this process _must_ quit (return) as soon as any connection
1997 * errors are encountered.  Connection recovery is done elsewhere.
1998 * Discover process only interrogates devices in order to discover the
1999 * domain.
2000 */
2001int sas_ex_revalidate_domain(struct domain_device *port_dev)
2002{
2003	int res;
2004	struct domain_device *dev = NULL;
2005
2006	res = sas_find_bcast_dev(port_dev, &dev);
2007	if (res)
2008		goto out;
2009	if (dev) {
2010		struct expander_device *ex = &dev->ex_dev;
2011		int i = 0, phy_id;
2012
2013		do {
2014			phy_id = -1;
2015			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2016			if (phy_id == -1)
2017				break;
2018			res = sas_rediscover(dev, phy_id);
2019			i = phy_id + 1;
2020		} while (i < ex->num_phys);
2021	}
2022out:
2023	return res;
2024}
2025
2026int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2027		    struct request *req)
2028{
2029	struct domain_device *dev;
2030	int ret, type;
2031	struct request *rsp = req->next_rq;
2032
2033	if (!rsp) {
2034		printk("%s: space for a smp response is missing\n",
2035		       __func__);
2036		return -EINVAL;
2037	}
2038
2039	/* no rphy means no smp target support (ie aic94xx host) */
2040	if (!rphy)
2041		return sas_smp_host_handler(shost, req, rsp);
2042
2043	type = rphy->identify.device_type;
2044
2045	if (type != SAS_EDGE_EXPANDER_DEVICE &&
2046	    type != SAS_FANOUT_EXPANDER_DEVICE) {
2047		printk("%s: can we send a smp request to a device?\n",
2048		       __func__);
2049		return -EINVAL;
2050	}
2051
2052	dev = sas_find_dev_by_rphy(rphy);
2053	if (!dev) {
2054		printk("%s: fail to find a domain_device?\n", __func__);
2055		return -EINVAL;
2056	}
2057
2058	/* do we need to support multiple segments? */
2059	if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2060		printk("%s: multiple segments req %u %u, rsp %u %u\n",
2061		       __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2062		       rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2063		return -EINVAL;
2064	}
2065
2066	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2067			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2068	if (ret > 0) {
2069		/* positive number is the untransferred residual */
2070		rsp->resid_len = ret;
2071		req->resid_len = 0;
2072		ret = 0;
2073	} else if (ret == 0) {
2074		rsp->resid_len = 0;
2075		req->resid_len = 0;
2076	}
2077
2078	return ret;
2079}
2080