sas_expander.c revision 87c8331fcf72e501c3a3c0cdc5c9391ec72f7cf2
1/*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22 *
23 */
24
25#include <linux/scatterlist.h>
26#include <linux/blkdev.h>
27#include <linux/slab.h>
28
29#include "sas_internal.h"
30
31#include <scsi/scsi_transport.h>
32#include <scsi/scsi_transport_sas.h>
33#include "../scsi_sas_internal.h"
34
35static int sas_discover_expander(struct domain_device *dev);
36static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
37static int sas_configure_phy(struct domain_device *dev, int phy_id,
38			     u8 *sas_addr, int include);
39static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
40
41/* ---------- SMP task management ---------- */
42
43static void smp_task_timedout(unsigned long _task)
44{
45	struct sas_task *task = (void *) _task;
46	unsigned long flags;
47
48	spin_lock_irqsave(&task->task_state_lock, flags);
49	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
50		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
51	spin_unlock_irqrestore(&task->task_state_lock, flags);
52
53	complete(&task->completion);
54}
55
56static void smp_task_done(struct sas_task *task)
57{
58	if (!del_timer(&task->timer))
59		return;
60	complete(&task->completion);
61}
62
63/* Give it some long enough timeout. In seconds. */
64#define SMP_TIMEOUT 10
65
66static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
67			    void *resp, int resp_size)
68{
69	int res, retry;
70	struct sas_task *task = NULL;
71	struct sas_internal *i =
72		to_sas_internal(dev->port->ha->core.shost->transportt);
73
74	for (retry = 0; retry < 3; retry++) {
75		task = sas_alloc_task(GFP_KERNEL);
76		if (!task)
77			return -ENOMEM;
78
79		task->dev = dev;
80		task->task_proto = dev->tproto;
81		sg_init_one(&task->smp_task.smp_req, req, req_size);
82		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
83
84		task->task_done = smp_task_done;
85
86		task->timer.data = (unsigned long) task;
87		task->timer.function = smp_task_timedout;
88		task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
89		add_timer(&task->timer);
90
91		res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
92
93		if (res) {
94			del_timer(&task->timer);
95			SAS_DPRINTK("executing SMP task failed:%d\n", res);
96			goto ex_err;
97		}
98
99		wait_for_completion(&task->completion);
100		res = -ECOMM;
101		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
102			SAS_DPRINTK("smp task timed out or aborted\n");
103			i->dft->lldd_abort_task(task);
104			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
105				SAS_DPRINTK("SMP task aborted and not done\n");
106				goto ex_err;
107			}
108		}
109		if (task->task_status.resp == SAS_TASK_COMPLETE &&
110		    task->task_status.stat == SAM_STAT_GOOD) {
111			res = 0;
112			break;
113		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
114		      task->task_status.stat == SAS_DATA_UNDERRUN) {
115			/* no error, but return the number of bytes of
116			 * underrun */
117			res = task->task_status.residual;
118			break;
119		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
120		      task->task_status.stat == SAS_DATA_OVERRUN) {
121			res = -EMSGSIZE;
122			break;
123		} else {
124			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125				    "status 0x%x\n", __func__,
126				    SAS_ADDR(dev->sas_addr),
127				    task->task_status.resp,
128				    task->task_status.stat);
129			sas_free_task(task);
130			task = NULL;
131		}
132	}
133ex_err:
134	BUG_ON(retry == 3 && task != NULL);
135	if (task != NULL) {
136		sas_free_task(task);
137	}
138	return res;
139}
140
141/* ---------- Allocations ---------- */
142
143static inline void *alloc_smp_req(int size)
144{
145	u8 *p = kzalloc(size, GFP_KERNEL);
146	if (p)
147		p[0] = SMP_REQUEST;
148	return p;
149}
150
151static inline void *alloc_smp_resp(int size)
152{
153	return kzalloc(size, GFP_KERNEL);
154}
155
156/* ---------- Expander configuration ---------- */
157
158static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
159			   void *disc_resp)
160{
161	struct expander_device *ex = &dev->ex_dev;
162	struct ex_phy *phy = &ex->ex_phy[phy_id];
163	struct smp_resp *resp = disc_resp;
164	struct discover_resp *dr = &resp->disc;
165	struct sas_rphy *rphy = dev->rphy;
166	int rediscover = (phy->phy != NULL);
167
168	if (!rediscover) {
169		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
170
171		/* FIXME: error_handling */
172		BUG_ON(!phy->phy);
173	}
174
175	switch (resp->result) {
176	case SMP_RESP_PHY_VACANT:
177		phy->phy_state = PHY_VACANT;
178		break;
179	default:
180		phy->phy_state = PHY_NOT_PRESENT;
181		break;
182	case SMP_RESP_FUNC_ACC:
183		phy->phy_state = PHY_EMPTY; /* do not know yet */
184		break;
185	}
186
187	phy->phy_id = phy_id;
188	phy->attached_dev_type = dr->attached_dev_type;
189	phy->linkrate = dr->linkrate;
190	phy->attached_sata_host = dr->attached_sata_host;
191	phy->attached_sata_dev  = dr->attached_sata_dev;
192	phy->attached_sata_ps   = dr->attached_sata_ps;
193	phy->attached_iproto = dr->iproto << 1;
194	phy->attached_tproto = dr->tproto << 1;
195	memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
196	phy->attached_phy_id = dr->attached_phy_id;
197	phy->phy_change_count = dr->change_count;
198	phy->routing_attr = dr->routing_attr;
199	phy->virtual = dr->virtual;
200	phy->last_da_index = -1;
201
202	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
203	phy->phy->identify.device_type = phy->attached_dev_type;
204	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
205	phy->phy->identify.target_port_protocols = phy->attached_tproto;
206	phy->phy->identify.phy_identifier = phy_id;
207	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
208	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
209	phy->phy->minimum_linkrate = dr->pmin_linkrate;
210	phy->phy->maximum_linkrate = dr->pmax_linkrate;
211	phy->phy->negotiated_linkrate = phy->linkrate;
212
213	if (!rediscover)
214		if (sas_phy_add(phy->phy)) {
215			sas_phy_free(phy->phy);
216			return;
217		}
218
219	SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
220		    SAS_ADDR(dev->sas_addr), phy->phy_id,
221		    phy->routing_attr == TABLE_ROUTING ? 'T' :
222		    phy->routing_attr == DIRECT_ROUTING ? 'D' :
223		    phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
224		    SAS_ADDR(phy->attached_sas_addr));
225
226	return;
227}
228
229#define DISCOVER_REQ_SIZE  16
230#define DISCOVER_RESP_SIZE 56
231
232static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
233				      u8 *disc_resp, int single)
234{
235	int i, res;
236
237	disc_req[9] = single;
238	for (i = 1 ; i < 3; i++) {
239		struct discover_resp *dr;
240
241		res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
242				       disc_resp, DISCOVER_RESP_SIZE);
243		if (res)
244			return res;
245		/* This is detecting a failure to transmit initial
246		 * dev to host FIS as described in section G.5 of
247		 * sas-2 r 04b */
248		dr = &((struct smp_resp *)disc_resp)->disc;
249		if (memcmp(dev->sas_addr, dr->attached_sas_addr,
250			  SAS_ADDR_SIZE) == 0) {
251			sas_printk("Found loopback topology, just ignore it!\n");
252			return 0;
253		}
254		if (!(dr->attached_dev_type == 0 &&
255		      dr->attached_sata_dev))
256			break;
257		/* In order to generate the dev to host FIS, we
258		 * send a link reset to the expander port */
259		sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
260		/* Wait for the reset to trigger the negotiation */
261		msleep(500);
262	}
263	sas_set_ex_phy(dev, single, disc_resp);
264	return 0;
265}
266
267static int sas_ex_phy_discover(struct domain_device *dev, int single)
268{
269	struct expander_device *ex = &dev->ex_dev;
270	int  res = 0;
271	u8   *disc_req;
272	u8   *disc_resp;
273
274	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
275	if (!disc_req)
276		return -ENOMEM;
277
278	disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
279	if (!disc_resp) {
280		kfree(disc_req);
281		return -ENOMEM;
282	}
283
284	disc_req[1] = SMP_DISCOVER;
285
286	if (0 <= single && single < ex->num_phys) {
287		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
288	} else {
289		int i;
290
291		for (i = 0; i < ex->num_phys; i++) {
292			res = sas_ex_phy_discover_helper(dev, disc_req,
293							 disc_resp, i);
294			if (res)
295				goto out_err;
296		}
297	}
298out_err:
299	kfree(disc_resp);
300	kfree(disc_req);
301	return res;
302}
303
304static int sas_expander_discover(struct domain_device *dev)
305{
306	struct expander_device *ex = &dev->ex_dev;
307	int res = -ENOMEM;
308
309	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
310	if (!ex->ex_phy)
311		return -ENOMEM;
312
313	res = sas_ex_phy_discover(dev, -1);
314	if (res)
315		goto out_err;
316
317	return 0;
318 out_err:
319	kfree(ex->ex_phy);
320	ex->ex_phy = NULL;
321	return res;
322}
323
324#define MAX_EXPANDER_PHYS 128
325
326static void ex_assign_report_general(struct domain_device *dev,
327					    struct smp_resp *resp)
328{
329	struct report_general_resp *rg = &resp->rg;
330
331	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
332	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
333	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
334	dev->ex_dev.t2t_supp = rg->t2t_supp;
335	dev->ex_dev.conf_route_table = rg->conf_route_table;
336	dev->ex_dev.configuring = rg->configuring;
337	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
338}
339
340#define RG_REQ_SIZE   8
341#define RG_RESP_SIZE 32
342
343static int sas_ex_general(struct domain_device *dev)
344{
345	u8 *rg_req;
346	struct smp_resp *rg_resp;
347	int res;
348	int i;
349
350	rg_req = alloc_smp_req(RG_REQ_SIZE);
351	if (!rg_req)
352		return -ENOMEM;
353
354	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
355	if (!rg_resp) {
356		kfree(rg_req);
357		return -ENOMEM;
358	}
359
360	rg_req[1] = SMP_REPORT_GENERAL;
361
362	for (i = 0; i < 5; i++) {
363		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
364				       RG_RESP_SIZE);
365
366		if (res) {
367			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
368				    SAS_ADDR(dev->sas_addr), res);
369			goto out;
370		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
371			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
372				    SAS_ADDR(dev->sas_addr), rg_resp->result);
373			res = rg_resp->result;
374			goto out;
375		}
376
377		ex_assign_report_general(dev, rg_resp);
378
379		if (dev->ex_dev.configuring) {
380			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
381				    SAS_ADDR(dev->sas_addr));
382			schedule_timeout_interruptible(5*HZ);
383		} else
384			break;
385	}
386out:
387	kfree(rg_req);
388	kfree(rg_resp);
389	return res;
390}
391
392static void ex_assign_manuf_info(struct domain_device *dev, void
393					*_mi_resp)
394{
395	u8 *mi_resp = _mi_resp;
396	struct sas_rphy *rphy = dev->rphy;
397	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
398
399	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
400	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
401	memcpy(edev->product_rev, mi_resp + 36,
402	       SAS_EXPANDER_PRODUCT_REV_LEN);
403
404	if (mi_resp[8] & 1) {
405		memcpy(edev->component_vendor_id, mi_resp + 40,
406		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
407		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
408		edev->component_revision_id = mi_resp[50];
409	}
410}
411
412#define MI_REQ_SIZE   8
413#define MI_RESP_SIZE 64
414
415static int sas_ex_manuf_info(struct domain_device *dev)
416{
417	u8 *mi_req;
418	u8 *mi_resp;
419	int res;
420
421	mi_req = alloc_smp_req(MI_REQ_SIZE);
422	if (!mi_req)
423		return -ENOMEM;
424
425	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
426	if (!mi_resp) {
427		kfree(mi_req);
428		return -ENOMEM;
429	}
430
431	mi_req[1] = SMP_REPORT_MANUF_INFO;
432
433	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
434	if (res) {
435		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
436			    SAS_ADDR(dev->sas_addr), res);
437		goto out;
438	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
439		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
440			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
441		goto out;
442	}
443
444	ex_assign_manuf_info(dev, mi_resp);
445out:
446	kfree(mi_req);
447	kfree(mi_resp);
448	return res;
449}
450
451#define PC_REQ_SIZE  44
452#define PC_RESP_SIZE 8
453
454int sas_smp_phy_control(struct domain_device *dev, int phy_id,
455			enum phy_func phy_func,
456			struct sas_phy_linkrates *rates)
457{
458	u8 *pc_req;
459	u8 *pc_resp;
460	int res;
461
462	pc_req = alloc_smp_req(PC_REQ_SIZE);
463	if (!pc_req)
464		return -ENOMEM;
465
466	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
467	if (!pc_resp) {
468		kfree(pc_req);
469		return -ENOMEM;
470	}
471
472	pc_req[1] = SMP_PHY_CONTROL;
473	pc_req[9] = phy_id;
474	pc_req[10]= phy_func;
475	if (rates) {
476		pc_req[32] = rates->minimum_linkrate << 4;
477		pc_req[33] = rates->maximum_linkrate << 4;
478	}
479
480	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
481
482	kfree(pc_resp);
483	kfree(pc_req);
484	return res;
485}
486
487static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
488{
489	struct expander_device *ex = &dev->ex_dev;
490	struct ex_phy *phy = &ex->ex_phy[phy_id];
491
492	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
493	phy->linkrate = SAS_PHY_DISABLED;
494}
495
496static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
497{
498	struct expander_device *ex = &dev->ex_dev;
499	int i;
500
501	for (i = 0; i < ex->num_phys; i++) {
502		struct ex_phy *phy = &ex->ex_phy[i];
503
504		if (phy->phy_state == PHY_VACANT ||
505		    phy->phy_state == PHY_NOT_PRESENT)
506			continue;
507
508		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
509			sas_ex_disable_phy(dev, i);
510	}
511}
512
513static int sas_dev_present_in_domain(struct asd_sas_port *port,
514					    u8 *sas_addr)
515{
516	struct domain_device *dev;
517
518	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
519		return 1;
520	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
521		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
522			return 1;
523	}
524	return 0;
525}
526
527#define RPEL_REQ_SIZE	16
528#define RPEL_RESP_SIZE	32
529int sas_smp_get_phy_events(struct sas_phy *phy)
530{
531	int res;
532	u8 *req;
533	u8 *resp;
534	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
535	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
536
537	req = alloc_smp_req(RPEL_REQ_SIZE);
538	if (!req)
539		return -ENOMEM;
540
541	resp = alloc_smp_resp(RPEL_RESP_SIZE);
542	if (!resp) {
543		kfree(req);
544		return -ENOMEM;
545	}
546
547	req[1] = SMP_REPORT_PHY_ERR_LOG;
548	req[9] = phy->number;
549
550	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
551			            resp, RPEL_RESP_SIZE);
552
553	if (!res)
554		goto out;
555
556	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
557	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
558	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
559	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
560
561 out:
562	kfree(resp);
563	return res;
564
565}
566
567#ifdef CONFIG_SCSI_SAS_ATA
568
569#define RPS_REQ_SIZE  16
570#define RPS_RESP_SIZE 60
571
572static int sas_get_report_phy_sata(struct domain_device *dev,
573					  int phy_id,
574					  struct smp_resp *rps_resp)
575{
576	int res;
577	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
578	u8 *resp = (u8 *)rps_resp;
579
580	if (!rps_req)
581		return -ENOMEM;
582
583	rps_req[1] = SMP_REPORT_PHY_SATA;
584	rps_req[9] = phy_id;
585
586	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
587			            rps_resp, RPS_RESP_SIZE);
588
589	/* 0x34 is the FIS type for the D2H fis.  There's a potential
590	 * standards cockup here.  sas-2 explicitly specifies the FIS
591	 * should be encoded so that FIS type is in resp[24].
592	 * However, some expanders endian reverse this.  Undo the
593	 * reversal here */
594	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
595		int i;
596
597		for (i = 0; i < 5; i++) {
598			int j = 24 + (i*4);
599			u8 a, b;
600			a = resp[j + 0];
601			b = resp[j + 1];
602			resp[j + 0] = resp[j + 3];
603			resp[j + 1] = resp[j + 2];
604			resp[j + 2] = b;
605			resp[j + 3] = a;
606		}
607	}
608
609	kfree(rps_req);
610	return res;
611}
612#endif
613
614static void sas_ex_get_linkrate(struct domain_device *parent,
615				       struct domain_device *child,
616				       struct ex_phy *parent_phy)
617{
618	struct expander_device *parent_ex = &parent->ex_dev;
619	struct sas_port *port;
620	int i;
621
622	child->pathways = 0;
623
624	port = parent_phy->port;
625
626	for (i = 0; i < parent_ex->num_phys; i++) {
627		struct ex_phy *phy = &parent_ex->ex_phy[i];
628
629		if (phy->phy_state == PHY_VACANT ||
630		    phy->phy_state == PHY_NOT_PRESENT)
631			continue;
632
633		if (SAS_ADDR(phy->attached_sas_addr) ==
634		    SAS_ADDR(child->sas_addr)) {
635
636			child->min_linkrate = min(parent->min_linkrate,
637						  phy->linkrate);
638			child->max_linkrate = max(parent->max_linkrate,
639						  phy->linkrate);
640			child->pathways++;
641			sas_port_add_phy(port, phy->phy);
642		}
643	}
644	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
645	child->pathways = min(child->pathways, parent->pathways);
646}
647
648static struct domain_device *sas_ex_discover_end_dev(
649	struct domain_device *parent, int phy_id)
650{
651	struct expander_device *parent_ex = &parent->ex_dev;
652	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
653	struct domain_device *child = NULL;
654	struct sas_rphy *rphy;
655	int res;
656
657	if (phy->attached_sata_host || phy->attached_sata_ps)
658		return NULL;
659
660	child = sas_alloc_device();
661	if (!child)
662		return NULL;
663
664	kref_get(&parent->kref);
665	child->parent = parent;
666	child->port   = parent->port;
667	child->iproto = phy->attached_iproto;
668	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
669	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
670	if (!phy->port) {
671		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
672		if (unlikely(!phy->port))
673			goto out_err;
674		if (unlikely(sas_port_add(phy->port) != 0)) {
675			sas_port_free(phy->port);
676			goto out_err;
677		}
678	}
679	sas_ex_get_linkrate(parent, child, phy);
680
681#ifdef CONFIG_SCSI_SAS_ATA
682	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
683		child->dev_type = SATA_DEV;
684		if (phy->attached_tproto & SAS_PROTOCOL_STP)
685			child->tproto = phy->attached_tproto;
686		if (phy->attached_sata_dev)
687			child->tproto |= SATA_DEV;
688		res = sas_get_report_phy_sata(parent, phy_id,
689					      &child->sata_dev.rps_resp);
690		if (res) {
691			SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
692				    "0x%x\n", SAS_ADDR(parent->sas_addr),
693				    phy_id, res);
694			goto out_free;
695		}
696		memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
697		       sizeof(struct dev_to_host_fis));
698
699		rphy = sas_end_device_alloc(phy->port);
700		if (unlikely(!rphy))
701			goto out_free;
702
703		sas_init_dev(child);
704
705		child->rphy = rphy;
706
707		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
708
709		res = sas_discover_sata(child);
710		if (res) {
711			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
712				    "%016llx:0x%x returned 0x%x\n",
713				    SAS_ADDR(child->sas_addr),
714				    SAS_ADDR(parent->sas_addr), phy_id, res);
715			goto out_list_del;
716		}
717	} else
718#endif
719	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
720		child->dev_type = SAS_END_DEV;
721		rphy = sas_end_device_alloc(phy->port);
722		/* FIXME: error handling */
723		if (unlikely(!rphy))
724			goto out_free;
725		child->tproto = phy->attached_tproto;
726		sas_init_dev(child);
727
728		child->rphy = rphy;
729		sas_fill_in_rphy(child, rphy);
730
731		spin_lock_irq(&parent->port->dev_list_lock);
732		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
733		spin_unlock_irq(&parent->port->dev_list_lock);
734
735		res = sas_discover_end_dev(child);
736		if (res) {
737			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
738				    "at %016llx:0x%x returned 0x%x\n",
739				    SAS_ADDR(child->sas_addr),
740				    SAS_ADDR(parent->sas_addr), phy_id, res);
741			goto out_list_del;
742		}
743	} else {
744		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
745			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
746			    phy_id);
747		goto out_free;
748	}
749
750	list_add_tail(&child->siblings, &parent_ex->children);
751	return child;
752
753 out_list_del:
754	sas_rphy_free(child->rphy);
755	child->rphy = NULL;
756
757	list_del(&child->disco_list_node);
758	spin_lock_irq(&parent->port->dev_list_lock);
759	list_del(&child->dev_list_node);
760	spin_unlock_irq(&parent->port->dev_list_lock);
761 out_free:
762	sas_port_delete(phy->port);
763 out_err:
764	phy->port = NULL;
765	sas_put_device(child);
766	return NULL;
767}
768
769/* See if this phy is part of a wide port */
770static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
771{
772	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
773	int i;
774
775	for (i = 0; i < parent->ex_dev.num_phys; i++) {
776		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
777
778		if (ephy == phy)
779			continue;
780
781		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
782			    SAS_ADDR_SIZE) && ephy->port) {
783			sas_port_add_phy(ephy->port, phy->phy);
784			phy->port = ephy->port;
785			phy->phy_state = PHY_DEVICE_DISCOVERED;
786			return 0;
787		}
788	}
789
790	return -ENODEV;
791}
792
793static struct domain_device *sas_ex_discover_expander(
794	struct domain_device *parent, int phy_id)
795{
796	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
797	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
798	struct domain_device *child = NULL;
799	struct sas_rphy *rphy;
800	struct sas_expander_device *edev;
801	struct asd_sas_port *port;
802	int res;
803
804	if (phy->routing_attr == DIRECT_ROUTING) {
805		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
806			    "allowed\n",
807			    SAS_ADDR(parent->sas_addr), phy_id,
808			    SAS_ADDR(phy->attached_sas_addr),
809			    phy->attached_phy_id);
810		return NULL;
811	}
812	child = sas_alloc_device();
813	if (!child)
814		return NULL;
815
816	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
817	/* FIXME: better error handling */
818	BUG_ON(sas_port_add(phy->port) != 0);
819
820
821	switch (phy->attached_dev_type) {
822	case EDGE_DEV:
823		rphy = sas_expander_alloc(phy->port,
824					  SAS_EDGE_EXPANDER_DEVICE);
825		break;
826	case FANOUT_DEV:
827		rphy = sas_expander_alloc(phy->port,
828					  SAS_FANOUT_EXPANDER_DEVICE);
829		break;
830	default:
831		rphy = NULL;	/* shut gcc up */
832		BUG();
833	}
834	port = parent->port;
835	child->rphy = rphy;
836	edev = rphy_to_expander_device(rphy);
837	child->dev_type = phy->attached_dev_type;
838	kref_get(&parent->kref);
839	child->parent = parent;
840	child->port = port;
841	child->iproto = phy->attached_iproto;
842	child->tproto = phy->attached_tproto;
843	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
844	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
845	sas_ex_get_linkrate(parent, child, phy);
846	edev->level = parent_ex->level + 1;
847	parent->port->disc.max_level = max(parent->port->disc.max_level,
848					   edev->level);
849	sas_init_dev(child);
850	sas_fill_in_rphy(child, rphy);
851	sas_rphy_add(rphy);
852
853	spin_lock_irq(&parent->port->dev_list_lock);
854	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
855	spin_unlock_irq(&parent->port->dev_list_lock);
856
857	res = sas_discover_expander(child);
858	if (res) {
859		spin_lock_irq(&parent->port->dev_list_lock);
860		list_del(&child->dev_list_node);
861		spin_unlock_irq(&parent->port->dev_list_lock);
862		sas_put_device(child);
863		return NULL;
864	}
865	list_add_tail(&child->siblings, &parent->ex_dev.children);
866	return child;
867}
868
869static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
870{
871	struct expander_device *ex = &dev->ex_dev;
872	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
873	struct domain_device *child = NULL;
874	int res = 0;
875
876	/* Phy state */
877	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
878		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
879			res = sas_ex_phy_discover(dev, phy_id);
880		if (res)
881			return res;
882	}
883
884	/* Parent and domain coherency */
885	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
886			     SAS_ADDR(dev->port->sas_addr))) {
887		sas_add_parent_port(dev, phy_id);
888		return 0;
889	}
890	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
891			    SAS_ADDR(dev->parent->sas_addr))) {
892		sas_add_parent_port(dev, phy_id);
893		if (ex_phy->routing_attr == TABLE_ROUTING)
894			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
895		return 0;
896	}
897
898	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
899		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
900
901	if (ex_phy->attached_dev_type == NO_DEVICE) {
902		if (ex_phy->routing_attr == DIRECT_ROUTING) {
903			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
904			sas_configure_routing(dev, ex_phy->attached_sas_addr);
905		}
906		return 0;
907	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
908		return 0;
909
910	if (ex_phy->attached_dev_type != SAS_END_DEV &&
911	    ex_phy->attached_dev_type != FANOUT_DEV &&
912	    ex_phy->attached_dev_type != EDGE_DEV) {
913		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
914			    "phy 0x%x\n", ex_phy->attached_dev_type,
915			    SAS_ADDR(dev->sas_addr),
916			    phy_id);
917		return 0;
918	}
919
920	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
921	if (res) {
922		SAS_DPRINTK("configure routing for dev %016llx "
923			    "reported 0x%x. Forgotten\n",
924			    SAS_ADDR(ex_phy->attached_sas_addr), res);
925		sas_disable_routing(dev, ex_phy->attached_sas_addr);
926		return res;
927	}
928
929	res = sas_ex_join_wide_port(dev, phy_id);
930	if (!res) {
931		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
932			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
933		return res;
934	}
935
936	switch (ex_phy->attached_dev_type) {
937	case SAS_END_DEV:
938		child = sas_ex_discover_end_dev(dev, phy_id);
939		break;
940	case FANOUT_DEV:
941		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
942			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
943				    "attached to ex %016llx phy 0x%x\n",
944				    SAS_ADDR(ex_phy->attached_sas_addr),
945				    ex_phy->attached_phy_id,
946				    SAS_ADDR(dev->sas_addr),
947				    phy_id);
948			sas_ex_disable_phy(dev, phy_id);
949			break;
950		} else
951			memcpy(dev->port->disc.fanout_sas_addr,
952			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
953		/* fallthrough */
954	case EDGE_DEV:
955		child = sas_ex_discover_expander(dev, phy_id);
956		break;
957	default:
958		break;
959	}
960
961	if (child) {
962		int i;
963
964		for (i = 0; i < ex->num_phys; i++) {
965			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
966			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
967				continue;
968			/*
969			 * Due to races, the phy might not get added to the
970			 * wide port, so we add the phy to the wide port here.
971			 */
972			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
973			    SAS_ADDR(child->sas_addr)) {
974				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
975				res = sas_ex_join_wide_port(dev, i);
976				if (!res)
977					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
978						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
979
980			}
981		}
982	}
983
984	return res;
985}
986
987static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
988{
989	struct expander_device *ex = &dev->ex_dev;
990	int i;
991
992	for (i = 0; i < ex->num_phys; i++) {
993		struct ex_phy *phy = &ex->ex_phy[i];
994
995		if (phy->phy_state == PHY_VACANT ||
996		    phy->phy_state == PHY_NOT_PRESENT)
997			continue;
998
999		if ((phy->attached_dev_type == EDGE_DEV ||
1000		     phy->attached_dev_type == FANOUT_DEV) &&
1001		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1002
1003			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1004
1005			return 1;
1006		}
1007	}
1008	return 0;
1009}
1010
1011static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1012{
1013	struct expander_device *ex = &dev->ex_dev;
1014	struct domain_device *child;
1015	u8 sub_addr[8] = {0, };
1016
1017	list_for_each_entry(child, &ex->children, siblings) {
1018		if (child->dev_type != EDGE_DEV &&
1019		    child->dev_type != FANOUT_DEV)
1020			continue;
1021		if (sub_addr[0] == 0) {
1022			sas_find_sub_addr(child, sub_addr);
1023			continue;
1024		} else {
1025			u8 s2[8];
1026
1027			if (sas_find_sub_addr(child, s2) &&
1028			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1029
1030				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1031					    "diverges from subtractive "
1032					    "boundary %016llx\n",
1033					    SAS_ADDR(dev->sas_addr),
1034					    SAS_ADDR(child->sas_addr),
1035					    SAS_ADDR(s2),
1036					    SAS_ADDR(sub_addr));
1037
1038				sas_ex_disable_port(child, s2);
1039			}
1040		}
1041	}
1042	return 0;
1043}
1044/**
1045 * sas_ex_discover_devices -- discover devices attached to this expander
1046 * dev: pointer to the expander domain device
1047 * single: if you want to do a single phy, else set to -1;
1048 *
1049 * Configure this expander for use with its devices and register the
1050 * devices of this expander.
1051 */
1052static int sas_ex_discover_devices(struct domain_device *dev, int single)
1053{
1054	struct expander_device *ex = &dev->ex_dev;
1055	int i = 0, end = ex->num_phys;
1056	int res = 0;
1057
1058	if (0 <= single && single < end) {
1059		i = single;
1060		end = i+1;
1061	}
1062
1063	for ( ; i < end; i++) {
1064		struct ex_phy *ex_phy = &ex->ex_phy[i];
1065
1066		if (ex_phy->phy_state == PHY_VACANT ||
1067		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1068		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1069			continue;
1070
1071		switch (ex_phy->linkrate) {
1072		case SAS_PHY_DISABLED:
1073		case SAS_PHY_RESET_PROBLEM:
1074		case SAS_SATA_PORT_SELECTOR:
1075			continue;
1076		default:
1077			res = sas_ex_discover_dev(dev, i);
1078			if (res)
1079				break;
1080			continue;
1081		}
1082	}
1083
1084	if (!res)
1085		sas_check_level_subtractive_boundary(dev);
1086
1087	return res;
1088}
1089
1090static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1091{
1092	struct expander_device *ex = &dev->ex_dev;
1093	int i;
1094	u8  *sub_sas_addr = NULL;
1095
1096	if (dev->dev_type != EDGE_DEV)
1097		return 0;
1098
1099	for (i = 0; i < ex->num_phys; i++) {
1100		struct ex_phy *phy = &ex->ex_phy[i];
1101
1102		if (phy->phy_state == PHY_VACANT ||
1103		    phy->phy_state == PHY_NOT_PRESENT)
1104			continue;
1105
1106		if ((phy->attached_dev_type == FANOUT_DEV ||
1107		     phy->attached_dev_type == EDGE_DEV) &&
1108		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1109
1110			if (!sub_sas_addr)
1111				sub_sas_addr = &phy->attached_sas_addr[0];
1112			else if (SAS_ADDR(sub_sas_addr) !=
1113				 SAS_ADDR(phy->attached_sas_addr)) {
1114
1115				SAS_DPRINTK("ex %016llx phy 0x%x "
1116					    "diverges(%016llx) on subtractive "
1117					    "boundary(%016llx). Disabled\n",
1118					    SAS_ADDR(dev->sas_addr), i,
1119					    SAS_ADDR(phy->attached_sas_addr),
1120					    SAS_ADDR(sub_sas_addr));
1121				sas_ex_disable_phy(dev, i);
1122			}
1123		}
1124	}
1125	return 0;
1126}
1127
1128static void sas_print_parent_topology_bug(struct domain_device *child,
1129						 struct ex_phy *parent_phy,
1130						 struct ex_phy *child_phy)
1131{
1132	static const char ra_char[] = {
1133		[DIRECT_ROUTING] = 'D',
1134		[SUBTRACTIVE_ROUTING] = 'S',
1135		[TABLE_ROUTING] = 'T',
1136	};
1137	static const char *ex_type[] = {
1138		[EDGE_DEV] = "edge",
1139		[FANOUT_DEV] = "fanout",
1140	};
1141	struct domain_device *parent = child->parent;
1142
1143	sas_printk("%s ex %016llx (T2T supp:%d) phy 0x%x <--> %s ex %016llx "
1144		   "(T2T supp:%d) phy 0x%x has %c:%c routing link!\n",
1145
1146		   ex_type[parent->dev_type],
1147		   SAS_ADDR(parent->sas_addr),
1148		   parent->ex_dev.t2t_supp,
1149		   parent_phy->phy_id,
1150
1151		   ex_type[child->dev_type],
1152		   SAS_ADDR(child->sas_addr),
1153		   child->ex_dev.t2t_supp,
1154		   child_phy->phy_id,
1155
1156		   ra_char[parent_phy->routing_attr],
1157		   ra_char[child_phy->routing_attr]);
1158}
1159
1160static int sas_check_eeds(struct domain_device *child,
1161				 struct ex_phy *parent_phy,
1162				 struct ex_phy *child_phy)
1163{
1164	int res = 0;
1165	struct domain_device *parent = child->parent;
1166
1167	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1168		res = -ENODEV;
1169		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1170			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1171			    SAS_ADDR(parent->sas_addr),
1172			    parent_phy->phy_id,
1173			    SAS_ADDR(child->sas_addr),
1174			    child_phy->phy_id,
1175			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1176	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1177		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1178		       SAS_ADDR_SIZE);
1179		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1180		       SAS_ADDR_SIZE);
1181	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1182		    SAS_ADDR(parent->sas_addr)) ||
1183		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1184		    SAS_ADDR(child->sas_addr)))
1185		   &&
1186		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1187		     SAS_ADDR(parent->sas_addr)) ||
1188		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1189		     SAS_ADDR(child->sas_addr))))
1190		;
1191	else {
1192		res = -ENODEV;
1193		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1194			    "phy 0x%x link forms a third EEDS!\n",
1195			    SAS_ADDR(parent->sas_addr),
1196			    parent_phy->phy_id,
1197			    SAS_ADDR(child->sas_addr),
1198			    child_phy->phy_id);
1199	}
1200
1201	return res;
1202}
1203
1204/* Here we spill over 80 columns.  It is intentional.
1205 */
1206static int sas_check_parent_topology(struct domain_device *child)
1207{
1208	struct expander_device *child_ex = &child->ex_dev;
1209	struct expander_device *parent_ex;
1210	int i;
1211	int res = 0;
1212
1213	if (!child->parent)
1214		return 0;
1215
1216	if (child->parent->dev_type != EDGE_DEV &&
1217	    child->parent->dev_type != FANOUT_DEV)
1218		return 0;
1219
1220	parent_ex = &child->parent->ex_dev;
1221
1222	for (i = 0; i < parent_ex->num_phys; i++) {
1223		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1224		struct ex_phy *child_phy;
1225
1226		if (parent_phy->phy_state == PHY_VACANT ||
1227		    parent_phy->phy_state == PHY_NOT_PRESENT)
1228			continue;
1229
1230		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1231			continue;
1232
1233		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1234
1235		switch (child->parent->dev_type) {
1236		case EDGE_DEV:
1237			if (child->dev_type == FANOUT_DEV) {
1238				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1239				    child_phy->routing_attr != TABLE_ROUTING) {
1240					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1241					res = -ENODEV;
1242				}
1243			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1244				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1245					res = sas_check_eeds(child, parent_phy, child_phy);
1246				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1247					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1248					res = -ENODEV;
1249				}
1250			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1251				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1252				    (child_phy->routing_attr == TABLE_ROUTING &&
1253				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1254					/* All good */;
1255				} else {
1256					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1257					res = -ENODEV;
1258				}
1259			}
1260			break;
1261		case FANOUT_DEV:
1262			if (parent_phy->routing_attr != TABLE_ROUTING ||
1263			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1264				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1265				res = -ENODEV;
1266			}
1267			break;
1268		default:
1269			break;
1270		}
1271	}
1272
1273	return res;
1274}
1275
1276#define RRI_REQ_SIZE  16
1277#define RRI_RESP_SIZE 44
1278
1279static int sas_configure_present(struct domain_device *dev, int phy_id,
1280				 u8 *sas_addr, int *index, int *present)
1281{
1282	int i, res = 0;
1283	struct expander_device *ex = &dev->ex_dev;
1284	struct ex_phy *phy = &ex->ex_phy[phy_id];
1285	u8 *rri_req;
1286	u8 *rri_resp;
1287
1288	*present = 0;
1289	*index = 0;
1290
1291	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1292	if (!rri_req)
1293		return -ENOMEM;
1294
1295	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1296	if (!rri_resp) {
1297		kfree(rri_req);
1298		return -ENOMEM;
1299	}
1300
1301	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1302	rri_req[9] = phy_id;
1303
1304	for (i = 0; i < ex->max_route_indexes ; i++) {
1305		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1306		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1307				       RRI_RESP_SIZE);
1308		if (res)
1309			goto out;
1310		res = rri_resp[2];
1311		if (res == SMP_RESP_NO_INDEX) {
1312			SAS_DPRINTK("overflow of indexes: dev %016llx "
1313				    "phy 0x%x index 0x%x\n",
1314				    SAS_ADDR(dev->sas_addr), phy_id, i);
1315			goto out;
1316		} else if (res != SMP_RESP_FUNC_ACC) {
1317			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1318				    "result 0x%x\n", __func__,
1319				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1320			goto out;
1321		}
1322		if (SAS_ADDR(sas_addr) != 0) {
1323			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1324				*index = i;
1325				if ((rri_resp[12] & 0x80) == 0x80)
1326					*present = 0;
1327				else
1328					*present = 1;
1329				goto out;
1330			} else if (SAS_ADDR(rri_resp+16) == 0) {
1331				*index = i;
1332				*present = 0;
1333				goto out;
1334			}
1335		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1336			   phy->last_da_index < i) {
1337			phy->last_da_index = i;
1338			*index = i;
1339			*present = 0;
1340			goto out;
1341		}
1342	}
1343	res = -1;
1344out:
1345	kfree(rri_req);
1346	kfree(rri_resp);
1347	return res;
1348}
1349
1350#define CRI_REQ_SIZE  44
1351#define CRI_RESP_SIZE  8
1352
1353static int sas_configure_set(struct domain_device *dev, int phy_id,
1354			     u8 *sas_addr, int index, int include)
1355{
1356	int res;
1357	u8 *cri_req;
1358	u8 *cri_resp;
1359
1360	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1361	if (!cri_req)
1362		return -ENOMEM;
1363
1364	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1365	if (!cri_resp) {
1366		kfree(cri_req);
1367		return -ENOMEM;
1368	}
1369
1370	cri_req[1] = SMP_CONF_ROUTE_INFO;
1371	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1372	cri_req[9] = phy_id;
1373	if (SAS_ADDR(sas_addr) == 0 || !include)
1374		cri_req[12] |= 0x80;
1375	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1376
1377	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1378			       CRI_RESP_SIZE);
1379	if (res)
1380		goto out;
1381	res = cri_resp[2];
1382	if (res == SMP_RESP_NO_INDEX) {
1383		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1384			    "index 0x%x\n",
1385			    SAS_ADDR(dev->sas_addr), phy_id, index);
1386	}
1387out:
1388	kfree(cri_req);
1389	kfree(cri_resp);
1390	return res;
1391}
1392
1393static int sas_configure_phy(struct domain_device *dev, int phy_id,
1394				    u8 *sas_addr, int include)
1395{
1396	int index;
1397	int present;
1398	int res;
1399
1400	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1401	if (res)
1402		return res;
1403	if (include ^ present)
1404		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1405
1406	return res;
1407}
1408
1409/**
1410 * sas_configure_parent -- configure routing table of parent
1411 * parent: parent expander
1412 * child: child expander
1413 * sas_addr: SAS port identifier of device directly attached to child
1414 */
1415static int sas_configure_parent(struct domain_device *parent,
1416				struct domain_device *child,
1417				u8 *sas_addr, int include)
1418{
1419	struct expander_device *ex_parent = &parent->ex_dev;
1420	int res = 0;
1421	int i;
1422
1423	if (parent->parent) {
1424		res = sas_configure_parent(parent->parent, parent, sas_addr,
1425					   include);
1426		if (res)
1427			return res;
1428	}
1429
1430	if (ex_parent->conf_route_table == 0) {
1431		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1432			    SAS_ADDR(parent->sas_addr));
1433		return 0;
1434	}
1435
1436	for (i = 0; i < ex_parent->num_phys; i++) {
1437		struct ex_phy *phy = &ex_parent->ex_phy[i];
1438
1439		if ((phy->routing_attr == TABLE_ROUTING) &&
1440		    (SAS_ADDR(phy->attached_sas_addr) ==
1441		     SAS_ADDR(child->sas_addr))) {
1442			res = sas_configure_phy(parent, i, sas_addr, include);
1443			if (res)
1444				return res;
1445		}
1446	}
1447
1448	return res;
1449}
1450
1451/**
1452 * sas_configure_routing -- configure routing
1453 * dev: expander device
1454 * sas_addr: port identifier of device directly attached to the expander device
1455 */
1456static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1457{
1458	if (dev->parent)
1459		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1460	return 0;
1461}
1462
1463static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1464{
1465	if (dev->parent)
1466		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1467	return 0;
1468}
1469
1470/**
1471 * sas_discover_expander -- expander discovery
1472 * @ex: pointer to expander domain device
1473 *
1474 * See comment in sas_discover_sata().
1475 */
1476static int sas_discover_expander(struct domain_device *dev)
1477{
1478	int res;
1479
1480	res = sas_notify_lldd_dev_found(dev);
1481	if (res)
1482		return res;
1483
1484	res = sas_ex_general(dev);
1485	if (res)
1486		goto out_err;
1487	res = sas_ex_manuf_info(dev);
1488	if (res)
1489		goto out_err;
1490
1491	res = sas_expander_discover(dev);
1492	if (res) {
1493		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1494			    SAS_ADDR(dev->sas_addr), res);
1495		goto out_err;
1496	}
1497
1498	sas_check_ex_subtractive_boundary(dev);
1499	res = sas_check_parent_topology(dev);
1500	if (res)
1501		goto out_err;
1502	return 0;
1503out_err:
1504	sas_notify_lldd_dev_gone(dev);
1505	return res;
1506}
1507
1508static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1509{
1510	int res = 0;
1511	struct domain_device *dev;
1512
1513	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1514		if (dev->dev_type == EDGE_DEV ||
1515		    dev->dev_type == FANOUT_DEV) {
1516			struct sas_expander_device *ex =
1517				rphy_to_expander_device(dev->rphy);
1518
1519			if (level == ex->level)
1520				res = sas_ex_discover_devices(dev, -1);
1521			else if (level > 0)
1522				res = sas_ex_discover_devices(port->port_dev, -1);
1523
1524		}
1525	}
1526
1527	return res;
1528}
1529
1530static int sas_ex_bfs_disc(struct asd_sas_port *port)
1531{
1532	int res;
1533	int level;
1534
1535	do {
1536		level = port->disc.max_level;
1537		res = sas_ex_level_discovery(port, level);
1538		mb();
1539	} while (level < port->disc.max_level);
1540
1541	return res;
1542}
1543
1544int sas_discover_root_expander(struct domain_device *dev)
1545{
1546	int res;
1547	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1548
1549	res = sas_rphy_add(dev->rphy);
1550	if (res)
1551		goto out_err;
1552
1553	ex->level = dev->port->disc.max_level; /* 0 */
1554	res = sas_discover_expander(dev);
1555	if (res)
1556		goto out_err2;
1557
1558	sas_ex_bfs_disc(dev->port);
1559
1560	return res;
1561
1562out_err2:
1563	sas_rphy_remove(dev->rphy);
1564out_err:
1565	return res;
1566}
1567
1568/* ---------- Domain revalidation ---------- */
1569
1570static int sas_get_phy_discover(struct domain_device *dev,
1571				int phy_id, struct smp_resp *disc_resp)
1572{
1573	int res;
1574	u8 *disc_req;
1575
1576	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1577	if (!disc_req)
1578		return -ENOMEM;
1579
1580	disc_req[1] = SMP_DISCOVER;
1581	disc_req[9] = phy_id;
1582
1583	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1584			       disc_resp, DISCOVER_RESP_SIZE);
1585	if (res)
1586		goto out;
1587	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1588		res = disc_resp->result;
1589		goto out;
1590	}
1591out:
1592	kfree(disc_req);
1593	return res;
1594}
1595
1596static int sas_get_phy_change_count(struct domain_device *dev,
1597				    int phy_id, int *pcc)
1598{
1599	int res;
1600	struct smp_resp *disc_resp;
1601
1602	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1603	if (!disc_resp)
1604		return -ENOMEM;
1605
1606	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1607	if (!res)
1608		*pcc = disc_resp->disc.change_count;
1609
1610	kfree(disc_resp);
1611	return res;
1612}
1613
1614static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1615					 int phy_id, u8 *attached_sas_addr)
1616{
1617	int res;
1618	struct smp_resp *disc_resp;
1619	struct discover_resp *dr;
1620
1621	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1622	if (!disc_resp)
1623		return -ENOMEM;
1624	dr = &disc_resp->disc;
1625
1626	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1627	if (!res) {
1628		memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1629		if (dr->attached_dev_type == 0)
1630			memset(attached_sas_addr, 0, 8);
1631	}
1632	kfree(disc_resp);
1633	return res;
1634}
1635
1636static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1637			      int from_phy, bool update)
1638{
1639	struct expander_device *ex = &dev->ex_dev;
1640	int res = 0;
1641	int i;
1642
1643	for (i = from_phy; i < ex->num_phys; i++) {
1644		int phy_change_count = 0;
1645
1646		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1647		if (res)
1648			goto out;
1649		else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1650			if (update)
1651				ex->ex_phy[i].phy_change_count =
1652					phy_change_count;
1653			*phy_id = i;
1654			return 0;
1655		}
1656	}
1657out:
1658	return res;
1659}
1660
1661static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1662{
1663	int res;
1664	u8  *rg_req;
1665	struct smp_resp  *rg_resp;
1666
1667	rg_req = alloc_smp_req(RG_REQ_SIZE);
1668	if (!rg_req)
1669		return -ENOMEM;
1670
1671	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1672	if (!rg_resp) {
1673		kfree(rg_req);
1674		return -ENOMEM;
1675	}
1676
1677	rg_req[1] = SMP_REPORT_GENERAL;
1678
1679	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1680			       RG_RESP_SIZE);
1681	if (res)
1682		goto out;
1683	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1684		res = rg_resp->result;
1685		goto out;
1686	}
1687
1688	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1689out:
1690	kfree(rg_resp);
1691	kfree(rg_req);
1692	return res;
1693}
1694/**
1695 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1696 * @dev:domain device to be detect.
1697 * @src_dev: the device which originated BROADCAST(CHANGE).
1698 *
1699 * Add self-configuration expander suport. Suppose two expander cascading,
1700 * when the first level expander is self-configuring, hotplug the disks in
1701 * second level expander, BROADCAST(CHANGE) will not only be originated
1702 * in the second level expander, but also be originated in the first level
1703 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1704 * expander changed count in two level expanders will all increment at least
1705 * once, but the phy which chang count has changed is the source device which
1706 * we concerned.
1707 */
1708
1709static int sas_find_bcast_dev(struct domain_device *dev,
1710			      struct domain_device **src_dev)
1711{
1712	struct expander_device *ex = &dev->ex_dev;
1713	int ex_change_count = -1;
1714	int phy_id = -1;
1715	int res;
1716	struct domain_device *ch;
1717
1718	res = sas_get_ex_change_count(dev, &ex_change_count);
1719	if (res)
1720		goto out;
1721	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1722		/* Just detect if this expander phys phy change count changed,
1723		* in order to determine if this expander originate BROADCAST,
1724		* and do not update phy change count field in our structure.
1725		*/
1726		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1727		if (phy_id != -1) {
1728			*src_dev = dev;
1729			ex->ex_change_count = ex_change_count;
1730			SAS_DPRINTK("Expander phy change count has changed\n");
1731			return res;
1732		} else
1733			SAS_DPRINTK("Expander phys DID NOT change\n");
1734	}
1735	list_for_each_entry(ch, &ex->children, siblings) {
1736		if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1737			res = sas_find_bcast_dev(ch, src_dev);
1738			if (*src_dev)
1739				return res;
1740		}
1741	}
1742out:
1743	return res;
1744}
1745
1746static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1747{
1748	struct expander_device *ex = &dev->ex_dev;
1749	struct domain_device *child, *n;
1750
1751	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1752		set_bit(SAS_DEV_GONE, &child->state);
1753		if (child->dev_type == EDGE_DEV ||
1754		    child->dev_type == FANOUT_DEV)
1755			sas_unregister_ex_tree(port, child);
1756		else
1757			sas_unregister_dev(port, child);
1758	}
1759	sas_unregister_dev(port, dev);
1760}
1761
1762static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1763					 int phy_id, bool last)
1764{
1765	struct expander_device *ex_dev = &parent->ex_dev;
1766	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1767	struct domain_device *child, *n;
1768	if (last) {
1769		list_for_each_entry_safe(child, n,
1770			&ex_dev->children, siblings) {
1771			if (SAS_ADDR(child->sas_addr) ==
1772			    SAS_ADDR(phy->attached_sas_addr)) {
1773				set_bit(SAS_DEV_GONE, &child->state);
1774				if (child->dev_type == EDGE_DEV ||
1775				    child->dev_type == FANOUT_DEV)
1776					sas_unregister_ex_tree(parent->port, child);
1777				else
1778					sas_unregister_dev(parent->port, child);
1779				break;
1780			}
1781		}
1782		set_bit(SAS_DEV_GONE, &parent->state);
1783		sas_disable_routing(parent, phy->attached_sas_addr);
1784	}
1785	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1786	if (phy->port) {
1787		sas_port_delete_phy(phy->port, phy->phy);
1788		if (phy->port->num_phys == 0)
1789			sas_port_delete(phy->port);
1790		phy->port = NULL;
1791	}
1792}
1793
1794static int sas_discover_bfs_by_root_level(struct domain_device *root,
1795					  const int level)
1796{
1797	struct expander_device *ex_root = &root->ex_dev;
1798	struct domain_device *child;
1799	int res = 0;
1800
1801	list_for_each_entry(child, &ex_root->children, siblings) {
1802		if (child->dev_type == EDGE_DEV ||
1803		    child->dev_type == FANOUT_DEV) {
1804			struct sas_expander_device *ex =
1805				rphy_to_expander_device(child->rphy);
1806
1807			if (level > ex->level)
1808				res = sas_discover_bfs_by_root_level(child,
1809								     level);
1810			else if (level == ex->level)
1811				res = sas_ex_discover_devices(child, -1);
1812		}
1813	}
1814	return res;
1815}
1816
1817static int sas_discover_bfs_by_root(struct domain_device *dev)
1818{
1819	int res;
1820	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1821	int level = ex->level+1;
1822
1823	res = sas_ex_discover_devices(dev, -1);
1824	if (res)
1825		goto out;
1826	do {
1827		res = sas_discover_bfs_by_root_level(dev, level);
1828		mb();
1829		level += 1;
1830	} while (level <= dev->port->disc.max_level);
1831out:
1832	return res;
1833}
1834
1835static int sas_discover_new(struct domain_device *dev, int phy_id)
1836{
1837	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1838	struct domain_device *child;
1839	bool found = false;
1840	int res, i;
1841
1842	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1843		    SAS_ADDR(dev->sas_addr), phy_id);
1844	res = sas_ex_phy_discover(dev, phy_id);
1845	if (res)
1846		goto out;
1847	/* to support the wide port inserted */
1848	for (i = 0; i < dev->ex_dev.num_phys; i++) {
1849		struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1850		if (i == phy_id)
1851			continue;
1852		if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1853		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1854			found = true;
1855			break;
1856		}
1857	}
1858	if (found) {
1859		sas_ex_join_wide_port(dev, phy_id);
1860		return 0;
1861	}
1862	res = sas_ex_discover_devices(dev, phy_id);
1863	if (!res)
1864		goto out;
1865	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1866		if (SAS_ADDR(child->sas_addr) ==
1867		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1868			if (child->dev_type == EDGE_DEV ||
1869			    child->dev_type == FANOUT_DEV)
1870				res = sas_discover_bfs_by_root(child);
1871			break;
1872		}
1873	}
1874out:
1875	return res;
1876}
1877
1878static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1879{
1880	struct expander_device *ex = &dev->ex_dev;
1881	struct ex_phy *phy = &ex->ex_phy[phy_id];
1882	u8 attached_sas_addr[8];
1883	int res;
1884
1885	res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1886	switch (res) {
1887	case SMP_RESP_NO_PHY:
1888		phy->phy_state = PHY_NOT_PRESENT;
1889		sas_unregister_devs_sas_addr(dev, phy_id, last);
1890		goto out; break;
1891	case SMP_RESP_PHY_VACANT:
1892		phy->phy_state = PHY_VACANT;
1893		sas_unregister_devs_sas_addr(dev, phy_id, last);
1894		goto out; break;
1895	case SMP_RESP_FUNC_ACC:
1896		break;
1897	}
1898
1899	if (SAS_ADDR(attached_sas_addr) == 0) {
1900		phy->phy_state = PHY_EMPTY;
1901		sas_unregister_devs_sas_addr(dev, phy_id, last);
1902	} else if (SAS_ADDR(attached_sas_addr) ==
1903		   SAS_ADDR(phy->attached_sas_addr)) {
1904		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1905			    SAS_ADDR(dev->sas_addr), phy_id);
1906		sas_ex_phy_discover(dev, phy_id);
1907	} else
1908		res = sas_discover_new(dev, phy_id);
1909out:
1910	return res;
1911}
1912
1913/**
1914 * sas_rediscover - revalidate the domain.
1915 * @dev:domain device to be detect.
1916 * @phy_id: the phy id will be detected.
1917 *
1918 * NOTE: this process _must_ quit (return) as soon as any connection
1919 * errors are encountered.  Connection recovery is done elsewhere.
1920 * Discover process only interrogates devices in order to discover the
1921 * domain.For plugging out, we un-register the device only when it is
1922 * the last phy in the port, for other phys in this port, we just delete it
1923 * from the port.For inserting, we do discovery when it is the
1924 * first phy,for other phys in this port, we add it to the port to
1925 * forming the wide-port.
1926 */
1927static int sas_rediscover(struct domain_device *dev, const int phy_id)
1928{
1929	struct expander_device *ex = &dev->ex_dev;
1930	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1931	int res = 0;
1932	int i;
1933	bool last = true;	/* is this the last phy of the port */
1934
1935	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1936		    SAS_ADDR(dev->sas_addr), phy_id);
1937
1938	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1939		for (i = 0; i < ex->num_phys; i++) {
1940			struct ex_phy *phy = &ex->ex_phy[i];
1941
1942			if (i == phy_id)
1943				continue;
1944			if (SAS_ADDR(phy->attached_sas_addr) ==
1945			    SAS_ADDR(changed_phy->attached_sas_addr)) {
1946				SAS_DPRINTK("phy%d part of wide port with "
1947					    "phy%d\n", phy_id, i);
1948				last = false;
1949				break;
1950			}
1951		}
1952		res = sas_rediscover_dev(dev, phy_id, last);
1953	} else
1954		res = sas_discover_new(dev, phy_id);
1955	return res;
1956}
1957
1958/**
1959 * sas_revalidate_domain -- revalidate the domain
1960 * @port: port to the domain of interest
1961 *
1962 * NOTE: this process _must_ quit (return) as soon as any connection
1963 * errors are encountered.  Connection recovery is done elsewhere.
1964 * Discover process only interrogates devices in order to discover the
1965 * domain.
1966 */
1967int sas_ex_revalidate_domain(struct domain_device *port_dev)
1968{
1969	int res;
1970	struct domain_device *dev = NULL;
1971
1972	res = sas_find_bcast_dev(port_dev, &dev);
1973	if (res)
1974		goto out;
1975	if (dev) {
1976		struct expander_device *ex = &dev->ex_dev;
1977		int i = 0, phy_id;
1978
1979		do {
1980			phy_id = -1;
1981			res = sas_find_bcast_phy(dev, &phy_id, i, true);
1982			if (phy_id == -1)
1983				break;
1984			res = sas_rediscover(dev, phy_id);
1985			i = phy_id + 1;
1986		} while (i < ex->num_phys);
1987	}
1988out:
1989	return res;
1990}
1991
1992int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1993		    struct request *req)
1994{
1995	struct domain_device *dev;
1996	int ret, type;
1997	struct request *rsp = req->next_rq;
1998
1999	if (!rsp) {
2000		printk("%s: space for a smp response is missing\n",
2001		       __func__);
2002		return -EINVAL;
2003	}
2004
2005	/* no rphy means no smp target support (ie aic94xx host) */
2006	if (!rphy)
2007		return sas_smp_host_handler(shost, req, rsp);
2008
2009	type = rphy->identify.device_type;
2010
2011	if (type != SAS_EDGE_EXPANDER_DEVICE &&
2012	    type != SAS_FANOUT_EXPANDER_DEVICE) {
2013		printk("%s: can we send a smp request to a device?\n",
2014		       __func__);
2015		return -EINVAL;
2016	}
2017
2018	dev = sas_find_dev_by_rphy(rphy);
2019	if (!dev) {
2020		printk("%s: fail to find a domain_device?\n", __func__);
2021		return -EINVAL;
2022	}
2023
2024	/* do we need to support multiple segments? */
2025	if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2026		printk("%s: multiple segments req %u %u, rsp %u %u\n",
2027		       __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2028		       rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2029		return -EINVAL;
2030	}
2031
2032	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2033			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2034	if (ret > 0) {
2035		/* positive number is the untransferred residual */
2036		rsp->resid_len = ret;
2037		req->resid_len = 0;
2038		ret = 0;
2039	} else if (ret == 0) {
2040		rsp->resid_len = 0;
2041		req->resid_len = 0;
2042	}
2043
2044	return ret;
2045}
2046