1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/bitops.h>
12#include <linux/blkdev.h>
13#include <linux/completion.h>
14#include <linux/kernel.h>
15#include <linux/export.h>
16#include <linux/mempool.h>
17#include <linux/slab.h>
18#include <linux/init.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hardirq.h>
22#include <linux/scatterlist.h>
23
24#include <scsi/scsi.h>
25#include <scsi/scsi_cmnd.h>
26#include <scsi/scsi_dbg.h>
27#include <scsi/scsi_device.h>
28#include <scsi/scsi_driver.h>
29#include <scsi/scsi_eh.h>
30#include <scsi/scsi_host.h>
31
32#include "scsi_priv.h"
33#include "scsi_logging.h"
34
35
36#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
37#define SG_MEMPOOL_SIZE		2
38
39struct scsi_host_sg_pool {
40	size_t		size;
41	char		*name;
42	struct kmem_cache	*slab;
43	mempool_t	*pool;
44};
45
46#define SP(x) { x, "sgpool-" __stringify(x) }
47#if (SCSI_MAX_SG_SEGMENTS < 32)
48#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49#endif
50static struct scsi_host_sg_pool scsi_sg_pools[] = {
51	SP(8),
52	SP(16),
53#if (SCSI_MAX_SG_SEGMENTS > 32)
54	SP(32),
55#if (SCSI_MAX_SG_SEGMENTS > 64)
56	SP(64),
57#if (SCSI_MAX_SG_SEGMENTS > 128)
58	SP(128),
59#if (SCSI_MAX_SG_SEGMENTS > 256)
60#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61#endif
62#endif
63#endif
64#endif
65	SP(SCSI_MAX_SG_SEGMENTS)
66};
67#undef SP
68
69struct kmem_cache *scsi_sdb_cache;
70
71/*
72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73 * not change behaviour from the previous unplug mechanism, experimentation
74 * may prove this needs changing.
75 */
76#define SCSI_QUEUE_DELAY	3
77
78/*
79 * Function:	scsi_unprep_request()
80 *
81 * Purpose:	Remove all preparation done for a request, including its
82 *		associated scsi_cmnd, so that it can be requeued.
83 *
84 * Arguments:	req	- request to unprepare
85 *
86 * Lock status:	Assumed that no locks are held upon entry.
87 *
88 * Returns:	Nothing.
89 */
90static void scsi_unprep_request(struct request *req)
91{
92	struct scsi_cmnd *cmd = req->special;
93
94	blk_unprep_request(req);
95	req->special = NULL;
96
97	scsi_put_command(cmd);
98}
99
100/**
101 * __scsi_queue_insert - private queue insertion
102 * @cmd: The SCSI command being requeued
103 * @reason:  The reason for the requeue
104 * @unbusy: Whether the queue should be unbusied
105 *
106 * This is a private queue insertion.  The public interface
107 * scsi_queue_insert() always assumes the queue should be unbusied
108 * because it's always called before the completion.  This function is
109 * for a requeue after completion, which should only occur in this
110 * file.
111 */
112static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
113{
114	struct Scsi_Host *host = cmd->device->host;
115	struct scsi_device *device = cmd->device;
116	struct scsi_target *starget = scsi_target(device);
117	struct request_queue *q = device->request_queue;
118	unsigned long flags;
119
120	SCSI_LOG_MLQUEUE(1,
121		 printk("Inserting command %p into mlqueue\n", cmd));
122
123	/*
124	 * Set the appropriate busy bit for the device/host.
125	 *
126	 * If the host/device isn't busy, assume that something actually
127	 * completed, and that we should be able to queue a command now.
128	 *
129	 * Note that the prior mid-layer assumption that any host could
130	 * always queue at least one command is now broken.  The mid-layer
131	 * will implement a user specifiable stall (see
132	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133	 * if a command is requeued with no other commands outstanding
134	 * either for the device or for the host.
135	 */
136	switch (reason) {
137	case SCSI_MLQUEUE_HOST_BUSY:
138		host->host_blocked = host->max_host_blocked;
139		break;
140	case SCSI_MLQUEUE_DEVICE_BUSY:
141	case SCSI_MLQUEUE_EH_RETRY:
142		device->device_blocked = device->max_device_blocked;
143		break;
144	case SCSI_MLQUEUE_TARGET_BUSY:
145		starget->target_blocked = starget->max_target_blocked;
146		break;
147	}
148
149	/*
150	 * Decrement the counters, since these commands are no longer
151	 * active on the host/device.
152	 */
153	if (unbusy)
154		scsi_device_unbusy(device);
155
156	/*
157	 * Requeue this command.  It will go before all other commands
158	 * that are already in the queue.
159	 */
160	spin_lock_irqsave(q->queue_lock, flags);
161	blk_requeue_request(q, cmd->request);
162	spin_unlock_irqrestore(q->queue_lock, flags);
163
164	kblockd_schedule_work(q, &device->requeue_work);
165
166	return 0;
167}
168
169/*
170 * Function:    scsi_queue_insert()
171 *
172 * Purpose:     Insert a command in the midlevel queue.
173 *
174 * Arguments:   cmd    - command that we are adding to queue.
175 *              reason - why we are inserting command to queue.
176 *
177 * Lock status: Assumed that lock is not held upon entry.
178 *
179 * Returns:     Nothing.
180 *
181 * Notes:       We do this for one of two cases.  Either the host is busy
182 *              and it cannot accept any more commands for the time being,
183 *              or the device returned QUEUE_FULL and can accept no more
184 *              commands.
185 * Notes:       This could be called either from an interrupt context or a
186 *              normal process context.
187 */
188int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189{
190	return __scsi_queue_insert(cmd, reason, 1);
191}
192/**
193 * scsi_execute - insert request and wait for the result
194 * @sdev:	scsi device
195 * @cmd:	scsi command
196 * @data_direction: data direction
197 * @buffer:	data buffer
198 * @bufflen:	len of buffer
199 * @sense:	optional sense buffer
200 * @timeout:	request timeout in seconds
201 * @retries:	number of times to retry request
202 * @flags:	or into request flags;
203 * @resid:	optional residual length
204 *
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
207 */
208int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209		 int data_direction, void *buffer, unsigned bufflen,
210		 unsigned char *sense, int timeout, int retries, int flags,
211		 int *resid)
212{
213	struct request *req;
214	int write = (data_direction == DMA_TO_DEVICE);
215	int ret = DRIVER_ERROR << 24;
216
217	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218	if (!req)
219		return ret;
220
221	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
222					buffer, bufflen, __GFP_WAIT))
223		goto out;
224
225	req->cmd_len = COMMAND_SIZE(cmd[0]);
226	memcpy(req->cmd, cmd, req->cmd_len);
227	req->sense = sense;
228	req->sense_len = 0;
229	req->retries = retries;
230	req->timeout = timeout;
231	req->cmd_type = REQ_TYPE_BLOCK_PC;
232	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
233
234	/*
235	 * head injection *required* here otherwise quiesce won't work
236	 */
237	blk_execute_rq(req->q, NULL, req, 1);
238
239	/*
240	 * Some devices (USB mass-storage in particular) may transfer
241	 * garbage data together with a residue indicating that the data
242	 * is invalid.  Prevent the garbage from being misinterpreted
243	 * and prevent security leaks by zeroing out the excess data.
244	 */
245	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
246		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
247
248	if (resid)
249		*resid = req->resid_len;
250	ret = req->errors;
251 out:
252	blk_put_request(req);
253
254	return ret;
255}
256EXPORT_SYMBOL(scsi_execute);
257
258
259int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
260		     int data_direction, void *buffer, unsigned bufflen,
261		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
262		     int *resid)
263{
264	char *sense = NULL;
265	int result;
266
267	if (sshdr) {
268		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
269		if (!sense)
270			return DRIVER_ERROR << 24;
271	}
272	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
273			      sense, timeout, retries, 0, resid);
274	if (sshdr)
275		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
276
277	kfree(sense);
278	return result;
279}
280EXPORT_SYMBOL(scsi_execute_req);
281
282/*
283 * Function:    scsi_init_cmd_errh()
284 *
285 * Purpose:     Initialize cmd fields related to error handling.
286 *
287 * Arguments:   cmd	- command that is ready to be queued.
288 *
289 * Notes:       This function has the job of initializing a number of
290 *              fields related to error handling.   Typically this will
291 *              be called once for each command, as required.
292 */
293static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
294{
295	cmd->serial_number = 0;
296	scsi_set_resid(cmd, 0);
297	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
298	if (cmd->cmd_len == 0)
299		cmd->cmd_len = scsi_command_size(cmd->cmnd);
300}
301
302void scsi_device_unbusy(struct scsi_device *sdev)
303{
304	struct Scsi_Host *shost = sdev->host;
305	struct scsi_target *starget = scsi_target(sdev);
306	unsigned long flags;
307
308	spin_lock_irqsave(shost->host_lock, flags);
309	shost->host_busy--;
310	starget->target_busy--;
311	if (unlikely(scsi_host_in_recovery(shost) &&
312		     (shost->host_failed || shost->host_eh_scheduled)))
313		scsi_eh_wakeup(shost);
314	spin_unlock(shost->host_lock);
315	spin_lock(sdev->request_queue->queue_lock);
316	sdev->device_busy--;
317	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
318}
319
320/*
321 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
322 * and call blk_run_queue for all the scsi_devices on the target -
323 * including current_sdev first.
324 *
325 * Called with *no* scsi locks held.
326 */
327static void scsi_single_lun_run(struct scsi_device *current_sdev)
328{
329	struct Scsi_Host *shost = current_sdev->host;
330	struct scsi_device *sdev, *tmp;
331	struct scsi_target *starget = scsi_target(current_sdev);
332	unsigned long flags;
333
334	spin_lock_irqsave(shost->host_lock, flags);
335	starget->starget_sdev_user = NULL;
336	spin_unlock_irqrestore(shost->host_lock, flags);
337
338	/*
339	 * Call blk_run_queue for all LUNs on the target, starting with
340	 * current_sdev. We race with others (to set starget_sdev_user),
341	 * but in most cases, we will be first. Ideally, each LU on the
342	 * target would get some limited time or requests on the target.
343	 */
344	blk_run_queue(current_sdev->request_queue);
345
346	spin_lock_irqsave(shost->host_lock, flags);
347	if (starget->starget_sdev_user)
348		goto out;
349	list_for_each_entry_safe(sdev, tmp, &starget->devices,
350			same_target_siblings) {
351		if (sdev == current_sdev)
352			continue;
353		if (scsi_device_get(sdev))
354			continue;
355
356		spin_unlock_irqrestore(shost->host_lock, flags);
357		blk_run_queue(sdev->request_queue);
358		spin_lock_irqsave(shost->host_lock, flags);
359
360		scsi_device_put(sdev);
361	}
362 out:
363	spin_unlock_irqrestore(shost->host_lock, flags);
364}
365
366static inline int scsi_device_is_busy(struct scsi_device *sdev)
367{
368	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
369		return 1;
370
371	return 0;
372}
373
374static inline int scsi_target_is_busy(struct scsi_target *starget)
375{
376	return ((starget->can_queue > 0 &&
377		 starget->target_busy >= starget->can_queue) ||
378		 starget->target_blocked);
379}
380
381static inline int scsi_host_is_busy(struct Scsi_Host *shost)
382{
383	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
384	    shost->host_blocked || shost->host_self_blocked)
385		return 1;
386
387	return 0;
388}
389
390/*
391 * Function:	scsi_run_queue()
392 *
393 * Purpose:	Select a proper request queue to serve next
394 *
395 * Arguments:	q	- last request's queue
396 *
397 * Returns:     Nothing
398 *
399 * Notes:	The previous command was completely finished, start
400 *		a new one if possible.
401 */
402static void scsi_run_queue(struct request_queue *q)
403{
404	struct scsi_device *sdev = q->queuedata;
405	struct Scsi_Host *shost;
406	LIST_HEAD(starved_list);
407	unsigned long flags;
408
409	/* if the device is dead, sdev will be NULL, so no queue to run */
410	if (!sdev)
411		return;
412
413	shost = sdev->host;
414	if (scsi_target(sdev)->single_lun)
415		scsi_single_lun_run(sdev);
416
417	spin_lock_irqsave(shost->host_lock, flags);
418	list_splice_init(&shost->starved_list, &starved_list);
419
420	while (!list_empty(&starved_list)) {
421		/*
422		 * As long as shost is accepting commands and we have
423		 * starved queues, call blk_run_queue. scsi_request_fn
424		 * drops the queue_lock and can add us back to the
425		 * starved_list.
426		 *
427		 * host_lock protects the starved_list and starved_entry.
428		 * scsi_request_fn must get the host_lock before checking
429		 * or modifying starved_list or starved_entry.
430		 */
431		if (scsi_host_is_busy(shost))
432			break;
433
434		sdev = list_entry(starved_list.next,
435				  struct scsi_device, starved_entry);
436		list_del_init(&sdev->starved_entry);
437		if (scsi_target_is_busy(scsi_target(sdev))) {
438			list_move_tail(&sdev->starved_entry,
439				       &shost->starved_list);
440			continue;
441		}
442
443		spin_unlock(shost->host_lock);
444		spin_lock(sdev->request_queue->queue_lock);
445		__blk_run_queue(sdev->request_queue);
446		spin_unlock(sdev->request_queue->queue_lock);
447		spin_lock(shost->host_lock);
448	}
449	/* put any unprocessed entries back */
450	list_splice(&starved_list, &shost->starved_list);
451	spin_unlock_irqrestore(shost->host_lock, flags);
452
453	blk_run_queue(q);
454}
455
456void scsi_requeue_run_queue(struct work_struct *work)
457{
458	struct scsi_device *sdev;
459	struct request_queue *q;
460
461	sdev = container_of(work, struct scsi_device, requeue_work);
462	q = sdev->request_queue;
463	scsi_run_queue(q);
464}
465
466/*
467 * Function:	scsi_requeue_command()
468 *
469 * Purpose:	Handle post-processing of completed commands.
470 *
471 * Arguments:	q	- queue to operate on
472 *		cmd	- command that may need to be requeued.
473 *
474 * Returns:	Nothing
475 *
476 * Notes:	After command completion, there may be blocks left
477 *		over which weren't finished by the previous command
478 *		this can be for a number of reasons - the main one is
479 *		I/O errors in the middle of the request, in which case
480 *		we need to request the blocks that come after the bad
481 *		sector.
482 * Notes:	Upon return, cmd is a stale pointer.
483 */
484static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
485{
486	struct request *req = cmd->request;
487	unsigned long flags;
488
489	spin_lock_irqsave(q->queue_lock, flags);
490	scsi_unprep_request(req);
491	blk_requeue_request(q, req);
492	spin_unlock_irqrestore(q->queue_lock, flags);
493
494	scsi_run_queue(q);
495}
496
497void scsi_next_command(struct scsi_cmnd *cmd)
498{
499	struct scsi_device *sdev = cmd->device;
500	struct request_queue *q = sdev->request_queue;
501
502	/* need to hold a reference on the device before we let go of the cmd */
503	get_device(&sdev->sdev_gendev);
504
505	scsi_put_command(cmd);
506	scsi_run_queue(q);
507
508	/* ok to remove device now */
509	put_device(&sdev->sdev_gendev);
510}
511
512void scsi_run_host_queues(struct Scsi_Host *shost)
513{
514	struct scsi_device *sdev;
515
516	shost_for_each_device(sdev, shost)
517		scsi_run_queue(sdev->request_queue);
518}
519
520static void __scsi_release_buffers(struct scsi_cmnd *, int);
521
522/*
523 * Function:    scsi_end_request()
524 *
525 * Purpose:     Post-processing of completed commands (usually invoked at end
526 *		of upper level post-processing and scsi_io_completion).
527 *
528 * Arguments:   cmd	 - command that is complete.
529 *              error    - 0 if I/O indicates success, < 0 for I/O error.
530 *              bytes    - number of bytes of completed I/O
531 *		requeue  - indicates whether we should requeue leftovers.
532 *
533 * Lock status: Assumed that lock is not held upon entry.
534 *
535 * Returns:     cmd if requeue required, NULL otherwise.
536 *
537 * Notes:       This is called for block device requests in order to
538 *              mark some number of sectors as complete.
539 *
540 *		We are guaranteeing that the request queue will be goosed
541 *		at some point during this call.
542 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
543 */
544static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
545					  int bytes, int requeue)
546{
547	struct request_queue *q = cmd->device->request_queue;
548	struct request *req = cmd->request;
549
550	/*
551	 * If there are blocks left over at the end, set up the command
552	 * to queue the remainder of them.
553	 */
554	if (blk_end_request(req, error, bytes)) {
555		/* kill remainder if no retrys */
556		if (error && scsi_noretry_cmd(cmd))
557			blk_end_request_all(req, error);
558		else {
559			if (requeue) {
560				/*
561				 * Bleah.  Leftovers again.  Stick the
562				 * leftovers in the front of the
563				 * queue, and goose the queue again.
564				 */
565				scsi_release_buffers(cmd);
566				scsi_requeue_command(q, cmd);
567				cmd = NULL;
568			}
569			return cmd;
570		}
571	}
572
573	/*
574	 * This will goose the queue request function at the end, so we don't
575	 * need to worry about launching another command.
576	 */
577	__scsi_release_buffers(cmd, 0);
578	scsi_next_command(cmd);
579	return NULL;
580}
581
582static inline unsigned int scsi_sgtable_index(unsigned short nents)
583{
584	unsigned int index;
585
586	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
587
588	if (nents <= 8)
589		index = 0;
590	else
591		index = get_count_order(nents) - 3;
592
593	return index;
594}
595
596static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
597{
598	struct scsi_host_sg_pool *sgp;
599
600	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
601	mempool_free(sgl, sgp->pool);
602}
603
604static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
605{
606	struct scsi_host_sg_pool *sgp;
607
608	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
609	return mempool_alloc(sgp->pool, gfp_mask);
610}
611
612static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
613			      gfp_t gfp_mask)
614{
615	int ret;
616
617	BUG_ON(!nents);
618
619	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
620			       gfp_mask, scsi_sg_alloc);
621	if (unlikely(ret))
622		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
623				scsi_sg_free);
624
625	return ret;
626}
627
628static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
629{
630	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
631}
632
633static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
634{
635
636	if (cmd->sdb.table.nents)
637		scsi_free_sgtable(&cmd->sdb);
638
639	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
640
641	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
642		struct scsi_data_buffer *bidi_sdb =
643			cmd->request->next_rq->special;
644		scsi_free_sgtable(bidi_sdb);
645		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
646		cmd->request->next_rq->special = NULL;
647	}
648
649	if (scsi_prot_sg_count(cmd))
650		scsi_free_sgtable(cmd->prot_sdb);
651}
652
653/*
654 * Function:    scsi_release_buffers()
655 *
656 * Purpose:     Completion processing for block device I/O requests.
657 *
658 * Arguments:   cmd	- command that we are bailing.
659 *
660 * Lock status: Assumed that no lock is held upon entry.
661 *
662 * Returns:     Nothing
663 *
664 * Notes:       In the event that an upper level driver rejects a
665 *		command, we must release resources allocated during
666 *		the __init_io() function.  Primarily this would involve
667 *		the scatter-gather table, and potentially any bounce
668 *		buffers.
669 */
670void scsi_release_buffers(struct scsi_cmnd *cmd)
671{
672	__scsi_release_buffers(cmd, 1);
673}
674EXPORT_SYMBOL(scsi_release_buffers);
675
676static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
677{
678	int error = 0;
679
680	switch(host_byte(result)) {
681	case DID_TRANSPORT_FAILFAST:
682		error = -ENOLINK;
683		break;
684	case DID_TARGET_FAILURE:
685		set_host_byte(cmd, DID_OK);
686		error = -EREMOTEIO;
687		break;
688	case DID_NEXUS_FAILURE:
689		set_host_byte(cmd, DID_OK);
690		error = -EBADE;
691		break;
692	default:
693		error = -EIO;
694		break;
695	}
696
697	return error;
698}
699
700/*
701 * Function:    scsi_io_completion()
702 *
703 * Purpose:     Completion processing for block device I/O requests.
704 *
705 * Arguments:   cmd   - command that is finished.
706 *
707 * Lock status: Assumed that no lock is held upon entry.
708 *
709 * Returns:     Nothing
710 *
711 * Notes:       This function is matched in terms of capabilities to
712 *              the function that created the scatter-gather list.
713 *              In other words, if there are no bounce buffers
714 *              (the normal case for most drivers), we don't need
715 *              the logic to deal with cleaning up afterwards.
716 *
717 *		We must call scsi_end_request().  This will finish off
718 *		the specified number of sectors.  If we are done, the
719 *		command block will be released and the queue function
720 *		will be goosed.  If we are not done then we have to
721 *		figure out what to do next:
722 *
723 *		a) We can call scsi_requeue_command().  The request
724 *		   will be unprepared and put back on the queue.  Then
725 *		   a new command will be created for it.  This should
726 *		   be used if we made forward progress, or if we want
727 *		   to switch from READ(10) to READ(6) for example.
728 *
729 *		b) We can call scsi_queue_insert().  The request will
730 *		   be put back on the queue and retried using the same
731 *		   command as before, possibly after a delay.
732 *
733 *		c) We can call blk_end_request() with -EIO to fail
734 *		   the remainder of the request.
735 */
736void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
737{
738	int result = cmd->result;
739	struct request_queue *q = cmd->device->request_queue;
740	struct request *req = cmd->request;
741	int error = 0;
742	struct scsi_sense_hdr sshdr;
743	int sense_valid = 0;
744	int sense_deferred = 0;
745	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
746	      ACTION_DELAYED_RETRY} action;
747	char *description = NULL;
748
749	if (result) {
750		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
751		if (sense_valid)
752			sense_deferred = scsi_sense_is_deferred(&sshdr);
753	}
754
755	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
756		req->errors = result;
757		if (result) {
758			if (sense_valid && req->sense) {
759				/*
760				 * SG_IO wants current and deferred errors
761				 */
762				int len = 8 + cmd->sense_buffer[7];
763
764				if (len > SCSI_SENSE_BUFFERSIZE)
765					len = SCSI_SENSE_BUFFERSIZE;
766				memcpy(req->sense, cmd->sense_buffer,  len);
767				req->sense_len = len;
768			}
769			if (!sense_deferred)
770				error = __scsi_error_from_host_byte(cmd, result);
771		}
772
773		req->resid_len = scsi_get_resid(cmd);
774
775		if (scsi_bidi_cmnd(cmd)) {
776			/*
777			 * Bidi commands Must be complete as a whole,
778			 * both sides at once.
779			 */
780			req->next_rq->resid_len = scsi_in(cmd)->resid;
781
782			scsi_release_buffers(cmd);
783			blk_end_request_all(req, 0);
784
785			scsi_next_command(cmd);
786			return;
787		}
788	}
789
790	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
791	BUG_ON(blk_bidi_rq(req));
792
793	/*
794	 * Next deal with any sectors which we were able to correctly
795	 * handle.
796	 */
797	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
798				      "%d bytes done.\n",
799				      blk_rq_sectors(req), good_bytes));
800
801	/*
802	 * Recovered errors need reporting, but they're always treated
803	 * as success, so fiddle the result code here.  For BLOCK_PC
804	 * we already took a copy of the original into rq->errors which
805	 * is what gets returned to the user
806	 */
807	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
808		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
809		 * print since caller wants ATA registers. Only occurs on
810		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
811		 */
812		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
813			;
814		else if (!(req->cmd_flags & REQ_QUIET))
815			scsi_print_sense("", cmd);
816		result = 0;
817		/* BLOCK_PC may have set error */
818		error = 0;
819	}
820
821	/*
822	 * A number of bytes were successfully read.  If there
823	 * are leftovers and there is some kind of error
824	 * (result != 0), retry the rest.
825	 */
826	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
827		return;
828
829	error = __scsi_error_from_host_byte(cmd, result);
830
831	if (host_byte(result) == DID_RESET) {
832		/* Third party bus reset or reset for error recovery
833		 * reasons.  Just retry the command and see what
834		 * happens.
835		 */
836		action = ACTION_RETRY;
837	} else if (sense_valid && !sense_deferred) {
838		switch (sshdr.sense_key) {
839		case UNIT_ATTENTION:
840			if (cmd->device->removable) {
841				/* Detected disc change.  Set a bit
842				 * and quietly refuse further access.
843				 */
844				cmd->device->changed = 1;
845				description = "Media Changed";
846				action = ACTION_FAIL;
847			} else {
848				/* Must have been a power glitch, or a
849				 * bus reset.  Could not have been a
850				 * media change, so we just retry the
851				 * command and see what happens.
852				 */
853				action = ACTION_RETRY;
854			}
855			break;
856		case ILLEGAL_REQUEST:
857			/* If we had an ILLEGAL REQUEST returned, then
858			 * we may have performed an unsupported
859			 * command.  The only thing this should be
860			 * would be a ten byte read where only a six
861			 * byte read was supported.  Also, on a system
862			 * where READ CAPACITY failed, we may have
863			 * read past the end of the disk.
864			 */
865			if ((cmd->device->use_10_for_rw &&
866			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
867			    (cmd->cmnd[0] == READ_10 ||
868			     cmd->cmnd[0] == WRITE_10)) {
869				/* This will issue a new 6-byte command. */
870				cmd->device->use_10_for_rw = 0;
871				action = ACTION_REPREP;
872			} else if (sshdr.asc == 0x10) /* DIX */ {
873				description = "Host Data Integrity Failure";
874				action = ACTION_FAIL;
875				error = -EILSEQ;
876			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
877			} else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
878				   (cmd->cmnd[0] == UNMAP ||
879				    cmd->cmnd[0] == WRITE_SAME_16 ||
880				    cmd->cmnd[0] == WRITE_SAME)) {
881				description = "Discard failure";
882				action = ACTION_FAIL;
883				error = -EREMOTEIO;
884			} else
885				action = ACTION_FAIL;
886			break;
887		case ABORTED_COMMAND:
888			action = ACTION_FAIL;
889			if (sshdr.asc == 0x10) { /* DIF */
890				description = "Target Data Integrity Failure";
891				error = -EILSEQ;
892			}
893			break;
894		case NOT_READY:
895			/* If the device is in the process of becoming
896			 * ready, or has a temporary blockage, retry.
897			 */
898			if (sshdr.asc == 0x04) {
899				switch (sshdr.ascq) {
900				case 0x01: /* becoming ready */
901				case 0x04: /* format in progress */
902				case 0x05: /* rebuild in progress */
903				case 0x06: /* recalculation in progress */
904				case 0x07: /* operation in progress */
905				case 0x08: /* Long write in progress */
906				case 0x09: /* self test in progress */
907				case 0x14: /* space allocation in progress */
908					action = ACTION_DELAYED_RETRY;
909					break;
910				default:
911					description = "Device not ready";
912					action = ACTION_FAIL;
913					break;
914				}
915			} else {
916				description = "Device not ready";
917				action = ACTION_FAIL;
918			}
919			break;
920		case VOLUME_OVERFLOW:
921			/* See SSC3rXX or current. */
922			action = ACTION_FAIL;
923			break;
924		default:
925			description = "Unhandled sense code";
926			action = ACTION_FAIL;
927			break;
928		}
929	} else {
930		description = "Unhandled error code";
931		action = ACTION_FAIL;
932	}
933
934	switch (action) {
935	case ACTION_FAIL:
936		/* Give up and fail the remainder of the request */
937		scsi_release_buffers(cmd);
938		if (!(req->cmd_flags & REQ_QUIET)) {
939			if (description)
940				scmd_printk(KERN_INFO, cmd, "%s\n",
941					    description);
942			scsi_print_result(cmd);
943			if (driver_byte(result) & DRIVER_SENSE)
944				scsi_print_sense("", cmd);
945			scsi_print_command(cmd);
946		}
947		if (blk_end_request_err(req, error))
948			scsi_requeue_command(q, cmd);
949		else
950			scsi_next_command(cmd);
951		break;
952	case ACTION_REPREP:
953		/* Unprep the request and put it back at the head of the queue.
954		 * A new command will be prepared and issued.
955		 */
956		scsi_release_buffers(cmd);
957		scsi_requeue_command(q, cmd);
958		break;
959	case ACTION_RETRY:
960		/* Retry the same command immediately */
961		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
962		break;
963	case ACTION_DELAYED_RETRY:
964		/* Retry the same command after a delay */
965		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
966		break;
967	}
968}
969
970static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
971			     gfp_t gfp_mask)
972{
973	int count;
974
975	/*
976	 * If sg table allocation fails, requeue request later.
977	 */
978	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
979					gfp_mask))) {
980		return BLKPREP_DEFER;
981	}
982
983	req->buffer = NULL;
984
985	/*
986	 * Next, walk the list, and fill in the addresses and sizes of
987	 * each segment.
988	 */
989	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
990	BUG_ON(count > sdb->table.nents);
991	sdb->table.nents = count;
992	sdb->length = blk_rq_bytes(req);
993	return BLKPREP_OK;
994}
995
996/*
997 * Function:    scsi_init_io()
998 *
999 * Purpose:     SCSI I/O initialize function.
1000 *
1001 * Arguments:   cmd   - Command descriptor we wish to initialize
1002 *
1003 * Returns:     0 on success
1004 *		BLKPREP_DEFER if the failure is retryable
1005 *		BLKPREP_KILL if the failure is fatal
1006 */
1007int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1008{
1009	struct request *rq = cmd->request;
1010
1011	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1012	if (error)
1013		goto err_exit;
1014
1015	if (blk_bidi_rq(rq)) {
1016		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1017			scsi_sdb_cache, GFP_ATOMIC);
1018		if (!bidi_sdb) {
1019			error = BLKPREP_DEFER;
1020			goto err_exit;
1021		}
1022
1023		rq->next_rq->special = bidi_sdb;
1024		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1025		if (error)
1026			goto err_exit;
1027	}
1028
1029	if (blk_integrity_rq(rq)) {
1030		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1031		int ivecs, count;
1032
1033		BUG_ON(prot_sdb == NULL);
1034		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1035
1036		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1037			error = BLKPREP_DEFER;
1038			goto err_exit;
1039		}
1040
1041		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1042						prot_sdb->table.sgl);
1043		BUG_ON(unlikely(count > ivecs));
1044		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1045
1046		cmd->prot_sdb = prot_sdb;
1047		cmd->prot_sdb->table.nents = count;
1048	}
1049
1050	return BLKPREP_OK ;
1051
1052err_exit:
1053	scsi_release_buffers(cmd);
1054	cmd->request->special = NULL;
1055	scsi_put_command(cmd);
1056	return error;
1057}
1058EXPORT_SYMBOL(scsi_init_io);
1059
1060static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1061		struct request *req)
1062{
1063	struct scsi_cmnd *cmd;
1064
1065	if (!req->special) {
1066		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1067		if (unlikely(!cmd))
1068			return NULL;
1069		req->special = cmd;
1070	} else {
1071		cmd = req->special;
1072	}
1073
1074	/* pull a tag out of the request if we have one */
1075	cmd->tag = req->tag;
1076	cmd->request = req;
1077
1078	cmd->cmnd = req->cmd;
1079	cmd->prot_op = SCSI_PROT_NORMAL;
1080
1081	return cmd;
1082}
1083
1084int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1085{
1086	struct scsi_cmnd *cmd;
1087	int ret = scsi_prep_state_check(sdev, req);
1088
1089	if (ret != BLKPREP_OK)
1090		return ret;
1091
1092	cmd = scsi_get_cmd_from_req(sdev, req);
1093	if (unlikely(!cmd))
1094		return BLKPREP_DEFER;
1095
1096	/*
1097	 * BLOCK_PC requests may transfer data, in which case they must
1098	 * a bio attached to them.  Or they might contain a SCSI command
1099	 * that does not transfer data, in which case they may optionally
1100	 * submit a request without an attached bio.
1101	 */
1102	if (req->bio) {
1103		int ret;
1104
1105		BUG_ON(!req->nr_phys_segments);
1106
1107		ret = scsi_init_io(cmd, GFP_ATOMIC);
1108		if (unlikely(ret))
1109			return ret;
1110	} else {
1111		BUG_ON(blk_rq_bytes(req));
1112
1113		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1114		req->buffer = NULL;
1115	}
1116
1117	cmd->cmd_len = req->cmd_len;
1118	if (!blk_rq_bytes(req))
1119		cmd->sc_data_direction = DMA_NONE;
1120	else if (rq_data_dir(req) == WRITE)
1121		cmd->sc_data_direction = DMA_TO_DEVICE;
1122	else
1123		cmd->sc_data_direction = DMA_FROM_DEVICE;
1124
1125	cmd->transfersize = blk_rq_bytes(req);
1126	cmd->allowed = req->retries;
1127	return BLKPREP_OK;
1128}
1129EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1130
1131/*
1132 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1133 * from filesystems that still need to be translated to SCSI CDBs from
1134 * the ULD.
1135 */
1136int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1137{
1138	struct scsi_cmnd *cmd;
1139	int ret = scsi_prep_state_check(sdev, req);
1140
1141	if (ret != BLKPREP_OK)
1142		return ret;
1143
1144	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1145			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1146		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1147		if (ret != BLKPREP_OK)
1148			return ret;
1149	}
1150
1151	/*
1152	 * Filesystem requests must transfer data.
1153	 */
1154	BUG_ON(!req->nr_phys_segments);
1155
1156	cmd = scsi_get_cmd_from_req(sdev, req);
1157	if (unlikely(!cmd))
1158		return BLKPREP_DEFER;
1159
1160	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1161	return scsi_init_io(cmd, GFP_ATOMIC);
1162}
1163EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1164
1165int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1166{
1167	int ret = BLKPREP_OK;
1168
1169	/*
1170	 * If the device is not in running state we will reject some
1171	 * or all commands.
1172	 */
1173	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1174		switch (sdev->sdev_state) {
1175		case SDEV_OFFLINE:
1176			/*
1177			 * If the device is offline we refuse to process any
1178			 * commands.  The device must be brought online
1179			 * before trying any recovery commands.
1180			 */
1181			sdev_printk(KERN_ERR, sdev,
1182				    "rejecting I/O to offline device\n");
1183			ret = BLKPREP_KILL;
1184			break;
1185		case SDEV_DEL:
1186			/*
1187			 * If the device is fully deleted, we refuse to
1188			 * process any commands as well.
1189			 */
1190			sdev_printk(KERN_ERR, sdev,
1191				    "rejecting I/O to dead device\n");
1192			ret = BLKPREP_KILL;
1193			break;
1194		case SDEV_QUIESCE:
1195		case SDEV_BLOCK:
1196		case SDEV_CREATED_BLOCK:
1197			/*
1198			 * If the devices is blocked we defer normal commands.
1199			 */
1200			if (!(req->cmd_flags & REQ_PREEMPT))
1201				ret = BLKPREP_DEFER;
1202			break;
1203		default:
1204			/*
1205			 * For any other not fully online state we only allow
1206			 * special commands.  In particular any user initiated
1207			 * command is not allowed.
1208			 */
1209			if (!(req->cmd_flags & REQ_PREEMPT))
1210				ret = BLKPREP_KILL;
1211			break;
1212		}
1213	}
1214	return ret;
1215}
1216EXPORT_SYMBOL(scsi_prep_state_check);
1217
1218int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1219{
1220	struct scsi_device *sdev = q->queuedata;
1221
1222	switch (ret) {
1223	case BLKPREP_KILL:
1224		req->errors = DID_NO_CONNECT << 16;
1225		/* release the command and kill it */
1226		if (req->special) {
1227			struct scsi_cmnd *cmd = req->special;
1228			scsi_release_buffers(cmd);
1229			scsi_put_command(cmd);
1230			req->special = NULL;
1231		}
1232		break;
1233	case BLKPREP_DEFER:
1234		/*
1235		 * If we defer, the blk_peek_request() returns NULL, but the
1236		 * queue must be restarted, so we schedule a callback to happen
1237		 * shortly.
1238		 */
1239		if (sdev->device_busy == 0)
1240			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1241		break;
1242	default:
1243		req->cmd_flags |= REQ_DONTPREP;
1244	}
1245
1246	return ret;
1247}
1248EXPORT_SYMBOL(scsi_prep_return);
1249
1250int scsi_prep_fn(struct request_queue *q, struct request *req)
1251{
1252	struct scsi_device *sdev = q->queuedata;
1253	int ret = BLKPREP_KILL;
1254
1255	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1256		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1257	return scsi_prep_return(q, req, ret);
1258}
1259EXPORT_SYMBOL(scsi_prep_fn);
1260
1261/*
1262 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1263 * return 0.
1264 *
1265 * Called with the queue_lock held.
1266 */
1267static inline int scsi_dev_queue_ready(struct request_queue *q,
1268				  struct scsi_device *sdev)
1269{
1270	if (sdev->device_busy == 0 && sdev->device_blocked) {
1271		/*
1272		 * unblock after device_blocked iterates to zero
1273		 */
1274		if (--sdev->device_blocked == 0) {
1275			SCSI_LOG_MLQUEUE(3,
1276				   sdev_printk(KERN_INFO, sdev,
1277				   "unblocking device at zero depth\n"));
1278		} else {
1279			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1280			return 0;
1281		}
1282	}
1283	if (scsi_device_is_busy(sdev))
1284		return 0;
1285
1286	return 1;
1287}
1288
1289
1290/*
1291 * scsi_target_queue_ready: checks if there we can send commands to target
1292 * @sdev: scsi device on starget to check.
1293 *
1294 * Called with the host lock held.
1295 */
1296static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1297					   struct scsi_device *sdev)
1298{
1299	struct scsi_target *starget = scsi_target(sdev);
1300
1301	if (starget->single_lun) {
1302		if (starget->starget_sdev_user &&
1303		    starget->starget_sdev_user != sdev)
1304			return 0;
1305		starget->starget_sdev_user = sdev;
1306	}
1307
1308	if (starget->target_busy == 0 && starget->target_blocked) {
1309		/*
1310		 * unblock after target_blocked iterates to zero
1311		 */
1312		if (--starget->target_blocked == 0) {
1313			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1314					 "unblocking target at zero depth\n"));
1315		} else
1316			return 0;
1317	}
1318
1319	if (scsi_target_is_busy(starget)) {
1320		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1321		return 0;
1322	}
1323
1324	return 1;
1325}
1326
1327/*
1328 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1329 * return 0. We must end up running the queue again whenever 0 is
1330 * returned, else IO can hang.
1331 *
1332 * Called with host_lock held.
1333 */
1334static inline int scsi_host_queue_ready(struct request_queue *q,
1335				   struct Scsi_Host *shost,
1336				   struct scsi_device *sdev)
1337{
1338	if (scsi_host_in_recovery(shost))
1339		return 0;
1340	if (shost->host_busy == 0 && shost->host_blocked) {
1341		/*
1342		 * unblock after host_blocked iterates to zero
1343		 */
1344		if (--shost->host_blocked == 0) {
1345			SCSI_LOG_MLQUEUE(3,
1346				printk("scsi%d unblocking host at zero depth\n",
1347					shost->host_no));
1348		} else {
1349			return 0;
1350		}
1351	}
1352	if (scsi_host_is_busy(shost)) {
1353		if (list_empty(&sdev->starved_entry))
1354			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1355		return 0;
1356	}
1357
1358	/* We're OK to process the command, so we can't be starved */
1359	if (!list_empty(&sdev->starved_entry))
1360		list_del_init(&sdev->starved_entry);
1361
1362	return 1;
1363}
1364
1365/*
1366 * Busy state exporting function for request stacking drivers.
1367 *
1368 * For efficiency, no lock is taken to check the busy state of
1369 * shost/starget/sdev, since the returned value is not guaranteed and
1370 * may be changed after request stacking drivers call the function,
1371 * regardless of taking lock or not.
1372 *
1373 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1374 * (e.g. !sdev), scsi needs to return 'not busy'.
1375 * Otherwise, request stacking drivers may hold requests forever.
1376 */
1377static int scsi_lld_busy(struct request_queue *q)
1378{
1379	struct scsi_device *sdev = q->queuedata;
1380	struct Scsi_Host *shost;
1381
1382	if (!sdev)
1383		return 0;
1384
1385	shost = sdev->host;
1386
1387	/*
1388	 * Ignore host/starget busy state.
1389	 * Since block layer does not have a concept of fairness across
1390	 * multiple queues, congestion of host/starget needs to be handled
1391	 * in SCSI layer.
1392	 */
1393	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1394		return 1;
1395
1396	return 0;
1397}
1398
1399/*
1400 * Kill a request for a dead device
1401 */
1402static void scsi_kill_request(struct request *req, struct request_queue *q)
1403{
1404	struct scsi_cmnd *cmd = req->special;
1405	struct scsi_device *sdev;
1406	struct scsi_target *starget;
1407	struct Scsi_Host *shost;
1408
1409	blk_start_request(req);
1410
1411	scmd_printk(KERN_INFO, cmd, "killing request\n");
1412
1413	sdev = cmd->device;
1414	starget = scsi_target(sdev);
1415	shost = sdev->host;
1416	scsi_init_cmd_errh(cmd);
1417	cmd->result = DID_NO_CONNECT << 16;
1418	atomic_inc(&cmd->device->iorequest_cnt);
1419
1420	/*
1421	 * SCSI request completion path will do scsi_device_unbusy(),
1422	 * bump busy counts.  To bump the counters, we need to dance
1423	 * with the locks as normal issue path does.
1424	 */
1425	sdev->device_busy++;
1426	spin_unlock(sdev->request_queue->queue_lock);
1427	spin_lock(shost->host_lock);
1428	shost->host_busy++;
1429	starget->target_busy++;
1430	spin_unlock(shost->host_lock);
1431	spin_lock(sdev->request_queue->queue_lock);
1432
1433	blk_complete_request(req);
1434}
1435
1436static void scsi_softirq_done(struct request *rq)
1437{
1438	struct scsi_cmnd *cmd = rq->special;
1439	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1440	int disposition;
1441
1442	INIT_LIST_HEAD(&cmd->eh_entry);
1443
1444	atomic_inc(&cmd->device->iodone_cnt);
1445	if (cmd->result)
1446		atomic_inc(&cmd->device->ioerr_cnt);
1447
1448	disposition = scsi_decide_disposition(cmd);
1449	if (disposition != SUCCESS &&
1450	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1451		sdev_printk(KERN_ERR, cmd->device,
1452			    "timing out command, waited %lus\n",
1453			    wait_for/HZ);
1454		disposition = SUCCESS;
1455	}
1456
1457	scsi_log_completion(cmd, disposition);
1458
1459	switch (disposition) {
1460		case SUCCESS:
1461			scsi_finish_command(cmd);
1462			break;
1463		case NEEDS_RETRY:
1464			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1465			break;
1466		case ADD_TO_MLQUEUE:
1467			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1468			break;
1469		default:
1470			if (!scsi_eh_scmd_add(cmd, 0))
1471				scsi_finish_command(cmd);
1472	}
1473}
1474
1475/*
1476 * Function:    scsi_request_fn()
1477 *
1478 * Purpose:     Main strategy routine for SCSI.
1479 *
1480 * Arguments:   q       - Pointer to actual queue.
1481 *
1482 * Returns:     Nothing
1483 *
1484 * Lock status: IO request lock assumed to be held when called.
1485 */
1486static void scsi_request_fn(struct request_queue *q)
1487{
1488	struct scsi_device *sdev = q->queuedata;
1489	struct Scsi_Host *shost;
1490	struct scsi_cmnd *cmd;
1491	struct request *req;
1492
1493	if (!sdev) {
1494		while ((req = blk_peek_request(q)) != NULL)
1495			scsi_kill_request(req, q);
1496		return;
1497	}
1498
1499	if(!get_device(&sdev->sdev_gendev))
1500		/* We must be tearing the block queue down already */
1501		return;
1502
1503	/*
1504	 * To start with, we keep looping until the queue is empty, or until
1505	 * the host is no longer able to accept any more requests.
1506	 */
1507	shost = sdev->host;
1508	for (;;) {
1509		int rtn;
1510		/*
1511		 * get next queueable request.  We do this early to make sure
1512		 * that the request is fully prepared even if we cannot
1513		 * accept it.
1514		 */
1515		req = blk_peek_request(q);
1516		if (!req || !scsi_dev_queue_ready(q, sdev))
1517			break;
1518
1519		if (unlikely(!scsi_device_online(sdev))) {
1520			sdev_printk(KERN_ERR, sdev,
1521				    "rejecting I/O to offline device\n");
1522			scsi_kill_request(req, q);
1523			continue;
1524		}
1525
1526
1527		/*
1528		 * Remove the request from the request list.
1529		 */
1530		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1531			blk_start_request(req);
1532		sdev->device_busy++;
1533
1534		spin_unlock(q->queue_lock);
1535		cmd = req->special;
1536		if (unlikely(cmd == NULL)) {
1537			printk(KERN_CRIT "impossible request in %s.\n"
1538					 "please mail a stack trace to "
1539					 "linux-scsi@vger.kernel.org\n",
1540					 __func__);
1541			blk_dump_rq_flags(req, "foo");
1542			BUG();
1543		}
1544		spin_lock(shost->host_lock);
1545
1546		/*
1547		 * We hit this when the driver is using a host wide
1548		 * tag map. For device level tag maps the queue_depth check
1549		 * in the device ready fn would prevent us from trying
1550		 * to allocate a tag. Since the map is a shared host resource
1551		 * we add the dev to the starved list so it eventually gets
1552		 * a run when a tag is freed.
1553		 */
1554		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1555			if (list_empty(&sdev->starved_entry))
1556				list_add_tail(&sdev->starved_entry,
1557					      &shost->starved_list);
1558			goto not_ready;
1559		}
1560
1561		if (!scsi_target_queue_ready(shost, sdev))
1562			goto not_ready;
1563
1564		if (!scsi_host_queue_ready(q, shost, sdev))
1565			goto not_ready;
1566
1567		scsi_target(sdev)->target_busy++;
1568		shost->host_busy++;
1569
1570		/*
1571		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1572		 *		take the lock again.
1573		 */
1574		spin_unlock_irq(shost->host_lock);
1575
1576		/*
1577		 * Finally, initialize any error handling parameters, and set up
1578		 * the timers for timeouts.
1579		 */
1580		scsi_init_cmd_errh(cmd);
1581
1582		/*
1583		 * Dispatch the command to the low-level driver.
1584		 */
1585		rtn = scsi_dispatch_cmd(cmd);
1586		spin_lock_irq(q->queue_lock);
1587		if (rtn)
1588			goto out_delay;
1589	}
1590
1591	goto out;
1592
1593 not_ready:
1594	spin_unlock_irq(shost->host_lock);
1595
1596	/*
1597	 * lock q, handle tag, requeue req, and decrement device_busy. We
1598	 * must return with queue_lock held.
1599	 *
1600	 * Decrementing device_busy without checking it is OK, as all such
1601	 * cases (host limits or settings) should run the queue at some
1602	 * later time.
1603	 */
1604	spin_lock_irq(q->queue_lock);
1605	blk_requeue_request(q, req);
1606	sdev->device_busy--;
1607out_delay:
1608	if (sdev->device_busy == 0)
1609		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1610out:
1611	/* must be careful here...if we trigger the ->remove() function
1612	 * we cannot be holding the q lock */
1613	spin_unlock_irq(q->queue_lock);
1614	put_device(&sdev->sdev_gendev);
1615	spin_lock_irq(q->queue_lock);
1616}
1617
1618u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1619{
1620	struct device *host_dev;
1621	u64 bounce_limit = 0xffffffff;
1622
1623	if (shost->unchecked_isa_dma)
1624		return BLK_BOUNCE_ISA;
1625	/*
1626	 * Platforms with virtual-DMA translation
1627	 * hardware have no practical limit.
1628	 */
1629	if (!PCI_DMA_BUS_IS_PHYS)
1630		return BLK_BOUNCE_ANY;
1631
1632	host_dev = scsi_get_device(shost);
1633	if (host_dev && host_dev->dma_mask)
1634		bounce_limit = *host_dev->dma_mask;
1635
1636	return bounce_limit;
1637}
1638EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1639
1640struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1641					 request_fn_proc *request_fn)
1642{
1643	struct request_queue *q;
1644	struct device *dev = shost->dma_dev;
1645
1646	q = blk_init_queue(request_fn, NULL);
1647	if (!q)
1648		return NULL;
1649
1650	/*
1651	 * this limit is imposed by hardware restrictions
1652	 */
1653	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1654					SCSI_MAX_SG_CHAIN_SEGMENTS));
1655
1656	if (scsi_host_prot_dma(shost)) {
1657		shost->sg_prot_tablesize =
1658			min_not_zero(shost->sg_prot_tablesize,
1659				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1660		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1661		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1662	}
1663
1664	blk_queue_max_hw_sectors(q, shost->max_sectors);
1665	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1666	blk_queue_segment_boundary(q, shost->dma_boundary);
1667	dma_set_seg_boundary(dev, shost->dma_boundary);
1668
1669	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1670
1671	if (!shost->use_clustering)
1672		q->limits.cluster = 0;
1673
1674	/*
1675	 * set a reasonable default alignment on word boundaries: the
1676	 * host and device may alter it using
1677	 * blk_queue_update_dma_alignment() later.
1678	 */
1679	blk_queue_dma_alignment(q, 0x03);
1680
1681	return q;
1682}
1683EXPORT_SYMBOL(__scsi_alloc_queue);
1684
1685struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1686{
1687	struct request_queue *q;
1688
1689	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1690	if (!q)
1691		return NULL;
1692
1693	blk_queue_prep_rq(q, scsi_prep_fn);
1694	blk_queue_softirq_done(q, scsi_softirq_done);
1695	blk_queue_rq_timed_out(q, scsi_times_out);
1696	blk_queue_lld_busy(q, scsi_lld_busy);
1697	return q;
1698}
1699
1700void scsi_free_queue(struct request_queue *q)
1701{
1702	unsigned long flags;
1703
1704	WARN_ON(q->queuedata);
1705
1706	/* cause scsi_request_fn() to kill all non-finished requests */
1707	spin_lock_irqsave(q->queue_lock, flags);
1708	q->request_fn(q);
1709	spin_unlock_irqrestore(q->queue_lock, flags);
1710
1711	blk_cleanup_queue(q);
1712}
1713
1714/*
1715 * Function:    scsi_block_requests()
1716 *
1717 * Purpose:     Utility function used by low-level drivers to prevent further
1718 *		commands from being queued to the device.
1719 *
1720 * Arguments:   shost       - Host in question
1721 *
1722 * Returns:     Nothing
1723 *
1724 * Lock status: No locks are assumed held.
1725 *
1726 * Notes:       There is no timer nor any other means by which the requests
1727 *		get unblocked other than the low-level driver calling
1728 *		scsi_unblock_requests().
1729 */
1730void scsi_block_requests(struct Scsi_Host *shost)
1731{
1732	shost->host_self_blocked = 1;
1733}
1734EXPORT_SYMBOL(scsi_block_requests);
1735
1736/*
1737 * Function:    scsi_unblock_requests()
1738 *
1739 * Purpose:     Utility function used by low-level drivers to allow further
1740 *		commands from being queued to the device.
1741 *
1742 * Arguments:   shost       - Host in question
1743 *
1744 * Returns:     Nothing
1745 *
1746 * Lock status: No locks are assumed held.
1747 *
1748 * Notes:       There is no timer nor any other means by which the requests
1749 *		get unblocked other than the low-level driver calling
1750 *		scsi_unblock_requests().
1751 *
1752 *		This is done as an API function so that changes to the
1753 *		internals of the scsi mid-layer won't require wholesale
1754 *		changes to drivers that use this feature.
1755 */
1756void scsi_unblock_requests(struct Scsi_Host *shost)
1757{
1758	shost->host_self_blocked = 0;
1759	scsi_run_host_queues(shost);
1760}
1761EXPORT_SYMBOL(scsi_unblock_requests);
1762
1763int __init scsi_init_queue(void)
1764{
1765	int i;
1766
1767	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1768					   sizeof(struct scsi_data_buffer),
1769					   0, 0, NULL);
1770	if (!scsi_sdb_cache) {
1771		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1772		return -ENOMEM;
1773	}
1774
1775	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1776		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1777		int size = sgp->size * sizeof(struct scatterlist);
1778
1779		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1780				SLAB_HWCACHE_ALIGN, NULL);
1781		if (!sgp->slab) {
1782			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1783					sgp->name);
1784			goto cleanup_sdb;
1785		}
1786
1787		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1788						     sgp->slab);
1789		if (!sgp->pool) {
1790			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1791					sgp->name);
1792			goto cleanup_sdb;
1793		}
1794	}
1795
1796	return 0;
1797
1798cleanup_sdb:
1799	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1800		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1801		if (sgp->pool)
1802			mempool_destroy(sgp->pool);
1803		if (sgp->slab)
1804			kmem_cache_destroy(sgp->slab);
1805	}
1806	kmem_cache_destroy(scsi_sdb_cache);
1807
1808	return -ENOMEM;
1809}
1810
1811void scsi_exit_queue(void)
1812{
1813	int i;
1814
1815	kmem_cache_destroy(scsi_sdb_cache);
1816
1817	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1818		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1819		mempool_destroy(sgp->pool);
1820		kmem_cache_destroy(sgp->slab);
1821	}
1822}
1823
1824/**
1825 *	scsi_mode_select - issue a mode select
1826 *	@sdev:	SCSI device to be queried
1827 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1828 *	@sp:	Save page bit (0 == don't save, 1 == save)
1829 *	@modepage: mode page being requested
1830 *	@buffer: request buffer (may not be smaller than eight bytes)
1831 *	@len:	length of request buffer.
1832 *	@timeout: command timeout
1833 *	@retries: number of retries before failing
1834 *	@data: returns a structure abstracting the mode header data
1835 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1836 *		must be SCSI_SENSE_BUFFERSIZE big.
1837 *
1838 *	Returns zero if successful; negative error number or scsi
1839 *	status on error
1840 *
1841 */
1842int
1843scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1844		 unsigned char *buffer, int len, int timeout, int retries,
1845		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1846{
1847	unsigned char cmd[10];
1848	unsigned char *real_buffer;
1849	int ret;
1850
1851	memset(cmd, 0, sizeof(cmd));
1852	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1853
1854	if (sdev->use_10_for_ms) {
1855		if (len > 65535)
1856			return -EINVAL;
1857		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1858		if (!real_buffer)
1859			return -ENOMEM;
1860		memcpy(real_buffer + 8, buffer, len);
1861		len += 8;
1862		real_buffer[0] = 0;
1863		real_buffer[1] = 0;
1864		real_buffer[2] = data->medium_type;
1865		real_buffer[3] = data->device_specific;
1866		real_buffer[4] = data->longlba ? 0x01 : 0;
1867		real_buffer[5] = 0;
1868		real_buffer[6] = data->block_descriptor_length >> 8;
1869		real_buffer[7] = data->block_descriptor_length;
1870
1871		cmd[0] = MODE_SELECT_10;
1872		cmd[7] = len >> 8;
1873		cmd[8] = len;
1874	} else {
1875		if (len > 255 || data->block_descriptor_length > 255 ||
1876		    data->longlba)
1877			return -EINVAL;
1878
1879		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1880		if (!real_buffer)
1881			return -ENOMEM;
1882		memcpy(real_buffer + 4, buffer, len);
1883		len += 4;
1884		real_buffer[0] = 0;
1885		real_buffer[1] = data->medium_type;
1886		real_buffer[2] = data->device_specific;
1887		real_buffer[3] = data->block_descriptor_length;
1888
1889
1890		cmd[0] = MODE_SELECT;
1891		cmd[4] = len;
1892	}
1893
1894	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1895			       sshdr, timeout, retries, NULL);
1896	kfree(real_buffer);
1897	return ret;
1898}
1899EXPORT_SYMBOL_GPL(scsi_mode_select);
1900
1901/**
1902 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1903 *	@sdev:	SCSI device to be queried
1904 *	@dbd:	set if mode sense will allow block descriptors to be returned
1905 *	@modepage: mode page being requested
1906 *	@buffer: request buffer (may not be smaller than eight bytes)
1907 *	@len:	length of request buffer.
1908 *	@timeout: command timeout
1909 *	@retries: number of retries before failing
1910 *	@data: returns a structure abstracting the mode header data
1911 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1912 *		must be SCSI_SENSE_BUFFERSIZE big.
1913 *
1914 *	Returns zero if unsuccessful, or the header offset (either 4
1915 *	or 8 depending on whether a six or ten byte command was
1916 *	issued) if successful.
1917 */
1918int
1919scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1920		  unsigned char *buffer, int len, int timeout, int retries,
1921		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1922{
1923	unsigned char cmd[12];
1924	int use_10_for_ms;
1925	int header_length;
1926	int result;
1927	struct scsi_sense_hdr my_sshdr;
1928
1929	memset(data, 0, sizeof(*data));
1930	memset(&cmd[0], 0, 12);
1931	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1932	cmd[2] = modepage;
1933
1934	/* caller might not be interested in sense, but we need it */
1935	if (!sshdr)
1936		sshdr = &my_sshdr;
1937
1938 retry:
1939	use_10_for_ms = sdev->use_10_for_ms;
1940
1941	if (use_10_for_ms) {
1942		if (len < 8)
1943			len = 8;
1944
1945		cmd[0] = MODE_SENSE_10;
1946		cmd[8] = len;
1947		header_length = 8;
1948	} else {
1949		if (len < 4)
1950			len = 4;
1951
1952		cmd[0] = MODE_SENSE;
1953		cmd[4] = len;
1954		header_length = 4;
1955	}
1956
1957	memset(buffer, 0, len);
1958
1959	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1960				  sshdr, timeout, retries, NULL);
1961
1962	/* This code looks awful: what it's doing is making sure an
1963	 * ILLEGAL REQUEST sense return identifies the actual command
1964	 * byte as the problem.  MODE_SENSE commands can return
1965	 * ILLEGAL REQUEST if the code page isn't supported */
1966
1967	if (use_10_for_ms && !scsi_status_is_good(result) &&
1968	    (driver_byte(result) & DRIVER_SENSE)) {
1969		if (scsi_sense_valid(sshdr)) {
1970			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1971			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1972				/*
1973				 * Invalid command operation code
1974				 */
1975				sdev->use_10_for_ms = 0;
1976				goto retry;
1977			}
1978		}
1979	}
1980
1981	if(scsi_status_is_good(result)) {
1982		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1983			     (modepage == 6 || modepage == 8))) {
1984			/* Initio breakage? */
1985			header_length = 0;
1986			data->length = 13;
1987			data->medium_type = 0;
1988			data->device_specific = 0;
1989			data->longlba = 0;
1990			data->block_descriptor_length = 0;
1991		} else if(use_10_for_ms) {
1992			data->length = buffer[0]*256 + buffer[1] + 2;
1993			data->medium_type = buffer[2];
1994			data->device_specific = buffer[3];
1995			data->longlba = buffer[4] & 0x01;
1996			data->block_descriptor_length = buffer[6]*256
1997				+ buffer[7];
1998		} else {
1999			data->length = buffer[0] + 1;
2000			data->medium_type = buffer[1];
2001			data->device_specific = buffer[2];
2002			data->block_descriptor_length = buffer[3];
2003		}
2004		data->header_length = header_length;
2005	}
2006
2007	return result;
2008}
2009EXPORT_SYMBOL(scsi_mode_sense);
2010
2011/**
2012 *	scsi_test_unit_ready - test if unit is ready
2013 *	@sdev:	scsi device to change the state of.
2014 *	@timeout: command timeout
2015 *	@retries: number of retries before failing
2016 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2017 *		returning sense. Make sure that this is cleared before passing
2018 *		in.
2019 *
2020 *	Returns zero if unsuccessful or an error if TUR failed.  For
2021 *	removable media, UNIT_ATTENTION sets ->changed flag.
2022 **/
2023int
2024scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2025		     struct scsi_sense_hdr *sshdr_external)
2026{
2027	char cmd[] = {
2028		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2029	};
2030	struct scsi_sense_hdr *sshdr;
2031	int result;
2032
2033	if (!sshdr_external)
2034		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2035	else
2036		sshdr = sshdr_external;
2037
2038	/* try to eat the UNIT_ATTENTION if there are enough retries */
2039	do {
2040		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2041					  timeout, retries, NULL);
2042		if (sdev->removable && scsi_sense_valid(sshdr) &&
2043		    sshdr->sense_key == UNIT_ATTENTION)
2044			sdev->changed = 1;
2045	} while (scsi_sense_valid(sshdr) &&
2046		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2047
2048	if (!sshdr_external)
2049		kfree(sshdr);
2050	return result;
2051}
2052EXPORT_SYMBOL(scsi_test_unit_ready);
2053
2054/**
2055 *	scsi_device_set_state - Take the given device through the device state model.
2056 *	@sdev:	scsi device to change the state of.
2057 *	@state:	state to change to.
2058 *
2059 *	Returns zero if unsuccessful or an error if the requested
2060 *	transition is illegal.
2061 */
2062int
2063scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2064{
2065	enum scsi_device_state oldstate = sdev->sdev_state;
2066
2067	if (state == oldstate)
2068		return 0;
2069
2070	switch (state) {
2071	case SDEV_CREATED:
2072		switch (oldstate) {
2073		case SDEV_CREATED_BLOCK:
2074			break;
2075		default:
2076			goto illegal;
2077		}
2078		break;
2079
2080	case SDEV_RUNNING:
2081		switch (oldstate) {
2082		case SDEV_CREATED:
2083		case SDEV_OFFLINE:
2084		case SDEV_QUIESCE:
2085		case SDEV_BLOCK:
2086			break;
2087		default:
2088			goto illegal;
2089		}
2090		break;
2091
2092	case SDEV_QUIESCE:
2093		switch (oldstate) {
2094		case SDEV_RUNNING:
2095		case SDEV_OFFLINE:
2096			break;
2097		default:
2098			goto illegal;
2099		}
2100		break;
2101
2102	case SDEV_OFFLINE:
2103		switch (oldstate) {
2104		case SDEV_CREATED:
2105		case SDEV_RUNNING:
2106		case SDEV_QUIESCE:
2107		case SDEV_BLOCK:
2108			break;
2109		default:
2110			goto illegal;
2111		}
2112		break;
2113
2114	case SDEV_BLOCK:
2115		switch (oldstate) {
2116		case SDEV_RUNNING:
2117		case SDEV_CREATED_BLOCK:
2118			break;
2119		default:
2120			goto illegal;
2121		}
2122		break;
2123
2124	case SDEV_CREATED_BLOCK:
2125		switch (oldstate) {
2126		case SDEV_CREATED:
2127			break;
2128		default:
2129			goto illegal;
2130		}
2131		break;
2132
2133	case SDEV_CANCEL:
2134		switch (oldstate) {
2135		case SDEV_CREATED:
2136		case SDEV_RUNNING:
2137		case SDEV_QUIESCE:
2138		case SDEV_OFFLINE:
2139		case SDEV_BLOCK:
2140			break;
2141		default:
2142			goto illegal;
2143		}
2144		break;
2145
2146	case SDEV_DEL:
2147		switch (oldstate) {
2148		case SDEV_CREATED:
2149		case SDEV_RUNNING:
2150		case SDEV_OFFLINE:
2151		case SDEV_CANCEL:
2152			break;
2153		default:
2154			goto illegal;
2155		}
2156		break;
2157
2158	}
2159	sdev->sdev_state = state;
2160	return 0;
2161
2162 illegal:
2163	SCSI_LOG_ERROR_RECOVERY(1,
2164				sdev_printk(KERN_ERR, sdev,
2165					    "Illegal state transition %s->%s\n",
2166					    scsi_device_state_name(oldstate),
2167					    scsi_device_state_name(state))
2168				);
2169	return -EINVAL;
2170}
2171EXPORT_SYMBOL(scsi_device_set_state);
2172
2173/**
2174 * 	sdev_evt_emit - emit a single SCSI device uevent
2175 *	@sdev: associated SCSI device
2176 *	@evt: event to emit
2177 *
2178 *	Send a single uevent (scsi_event) to the associated scsi_device.
2179 */
2180static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2181{
2182	int idx = 0;
2183	char *envp[3];
2184
2185	switch (evt->evt_type) {
2186	case SDEV_EVT_MEDIA_CHANGE:
2187		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2188		break;
2189
2190	default:
2191		/* do nothing */
2192		break;
2193	}
2194
2195	envp[idx++] = NULL;
2196
2197	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2198}
2199
2200/**
2201 * 	sdev_evt_thread - send a uevent for each scsi event
2202 *	@work: work struct for scsi_device
2203 *
2204 *	Dispatch queued events to their associated scsi_device kobjects
2205 *	as uevents.
2206 */
2207void scsi_evt_thread(struct work_struct *work)
2208{
2209	struct scsi_device *sdev;
2210	LIST_HEAD(event_list);
2211
2212	sdev = container_of(work, struct scsi_device, event_work);
2213
2214	while (1) {
2215		struct scsi_event *evt;
2216		struct list_head *this, *tmp;
2217		unsigned long flags;
2218
2219		spin_lock_irqsave(&sdev->list_lock, flags);
2220		list_splice_init(&sdev->event_list, &event_list);
2221		spin_unlock_irqrestore(&sdev->list_lock, flags);
2222
2223		if (list_empty(&event_list))
2224			break;
2225
2226		list_for_each_safe(this, tmp, &event_list) {
2227			evt = list_entry(this, struct scsi_event, node);
2228			list_del(&evt->node);
2229			scsi_evt_emit(sdev, evt);
2230			kfree(evt);
2231		}
2232	}
2233}
2234
2235/**
2236 * 	sdev_evt_send - send asserted event to uevent thread
2237 *	@sdev: scsi_device event occurred on
2238 *	@evt: event to send
2239 *
2240 *	Assert scsi device event asynchronously.
2241 */
2242void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2243{
2244	unsigned long flags;
2245
2246#if 0
2247	/* FIXME: currently this check eliminates all media change events
2248	 * for polled devices.  Need to update to discriminate between AN
2249	 * and polled events */
2250	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2251		kfree(evt);
2252		return;
2253	}
2254#endif
2255
2256	spin_lock_irqsave(&sdev->list_lock, flags);
2257	list_add_tail(&evt->node, &sdev->event_list);
2258	schedule_work(&sdev->event_work);
2259	spin_unlock_irqrestore(&sdev->list_lock, flags);
2260}
2261EXPORT_SYMBOL_GPL(sdev_evt_send);
2262
2263/**
2264 * 	sdev_evt_alloc - allocate a new scsi event
2265 *	@evt_type: type of event to allocate
2266 *	@gfpflags: GFP flags for allocation
2267 *
2268 *	Allocates and returns a new scsi_event.
2269 */
2270struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2271				  gfp_t gfpflags)
2272{
2273	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2274	if (!evt)
2275		return NULL;
2276
2277	evt->evt_type = evt_type;
2278	INIT_LIST_HEAD(&evt->node);
2279
2280	/* evt_type-specific initialization, if any */
2281	switch (evt_type) {
2282	case SDEV_EVT_MEDIA_CHANGE:
2283	default:
2284		/* do nothing */
2285		break;
2286	}
2287
2288	return evt;
2289}
2290EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2291
2292/**
2293 * 	sdev_evt_send_simple - send asserted event to uevent thread
2294 *	@sdev: scsi_device event occurred on
2295 *	@evt_type: type of event to send
2296 *	@gfpflags: GFP flags for allocation
2297 *
2298 *	Assert scsi device event asynchronously, given an event type.
2299 */
2300void sdev_evt_send_simple(struct scsi_device *sdev,
2301			  enum scsi_device_event evt_type, gfp_t gfpflags)
2302{
2303	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2304	if (!evt) {
2305		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2306			    evt_type);
2307		return;
2308	}
2309
2310	sdev_evt_send(sdev, evt);
2311}
2312EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2313
2314/**
2315 *	scsi_device_quiesce - Block user issued commands.
2316 *	@sdev:	scsi device to quiesce.
2317 *
2318 *	This works by trying to transition to the SDEV_QUIESCE state
2319 *	(which must be a legal transition).  When the device is in this
2320 *	state, only special requests will be accepted, all others will
2321 *	be deferred.  Since special requests may also be requeued requests,
2322 *	a successful return doesn't guarantee the device will be
2323 *	totally quiescent.
2324 *
2325 *	Must be called with user context, may sleep.
2326 *
2327 *	Returns zero if unsuccessful or an error if not.
2328 */
2329int
2330scsi_device_quiesce(struct scsi_device *sdev)
2331{
2332	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2333	if (err)
2334		return err;
2335
2336	scsi_run_queue(sdev->request_queue);
2337	while (sdev->device_busy) {
2338		msleep_interruptible(200);
2339		scsi_run_queue(sdev->request_queue);
2340	}
2341	return 0;
2342}
2343EXPORT_SYMBOL(scsi_device_quiesce);
2344
2345/**
2346 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2347 *	@sdev:	scsi device to resume.
2348 *
2349 *	Moves the device from quiesced back to running and restarts the
2350 *	queues.
2351 *
2352 *	Must be called with user context, may sleep.
2353 */
2354void
2355scsi_device_resume(struct scsi_device *sdev)
2356{
2357	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2358		return;
2359	scsi_run_queue(sdev->request_queue);
2360}
2361EXPORT_SYMBOL(scsi_device_resume);
2362
2363static void
2364device_quiesce_fn(struct scsi_device *sdev, void *data)
2365{
2366	scsi_device_quiesce(sdev);
2367}
2368
2369void
2370scsi_target_quiesce(struct scsi_target *starget)
2371{
2372	starget_for_each_device(starget, NULL, device_quiesce_fn);
2373}
2374EXPORT_SYMBOL(scsi_target_quiesce);
2375
2376static void
2377device_resume_fn(struct scsi_device *sdev, void *data)
2378{
2379	scsi_device_resume(sdev);
2380}
2381
2382void
2383scsi_target_resume(struct scsi_target *starget)
2384{
2385	starget_for_each_device(starget, NULL, device_resume_fn);
2386}
2387EXPORT_SYMBOL(scsi_target_resume);
2388
2389/**
2390 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2391 * @sdev:	device to block
2392 *
2393 * Block request made by scsi lld's to temporarily stop all
2394 * scsi commands on the specified device.  Called from interrupt
2395 * or normal process context.
2396 *
2397 * Returns zero if successful or error if not
2398 *
2399 * Notes:
2400 *	This routine transitions the device to the SDEV_BLOCK state
2401 *	(which must be a legal transition).  When the device is in this
2402 *	state, all commands are deferred until the scsi lld reenables
2403 *	the device with scsi_device_unblock or device_block_tmo fires.
2404 *	This routine assumes the host_lock is held on entry.
2405 */
2406int
2407scsi_internal_device_block(struct scsi_device *sdev)
2408{
2409	struct request_queue *q = sdev->request_queue;
2410	unsigned long flags;
2411	int err = 0;
2412
2413	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2414	if (err) {
2415		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2416
2417		if (err)
2418			return err;
2419	}
2420
2421	/*
2422	 * The device has transitioned to SDEV_BLOCK.  Stop the
2423	 * block layer from calling the midlayer with this device's
2424	 * request queue.
2425	 */
2426	spin_lock_irqsave(q->queue_lock, flags);
2427	blk_stop_queue(q);
2428	spin_unlock_irqrestore(q->queue_lock, flags);
2429
2430	return 0;
2431}
2432EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2433
2434/**
2435 * scsi_internal_device_unblock - resume a device after a block request
2436 * @sdev:	device to resume
2437 *
2438 * Called by scsi lld's or the midlayer to restart the device queue
2439 * for the previously suspended scsi device.  Called from interrupt or
2440 * normal process context.
2441 *
2442 * Returns zero if successful or error if not.
2443 *
2444 * Notes:
2445 *	This routine transitions the device to the SDEV_RUNNING state
2446 *	(which must be a legal transition) allowing the midlayer to
2447 *	goose the queue for this device.  This routine assumes the
2448 *	host_lock is held upon entry.
2449 */
2450int
2451scsi_internal_device_unblock(struct scsi_device *sdev)
2452{
2453	struct request_queue *q = sdev->request_queue;
2454	unsigned long flags;
2455
2456	/*
2457	 * Try to transition the scsi device to SDEV_RUNNING
2458	 * and goose the device queue if successful.
2459	 */
2460	if (sdev->sdev_state == SDEV_BLOCK)
2461		sdev->sdev_state = SDEV_RUNNING;
2462	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2463		sdev->sdev_state = SDEV_CREATED;
2464	else if (sdev->sdev_state != SDEV_CANCEL &&
2465		 sdev->sdev_state != SDEV_OFFLINE)
2466		return -EINVAL;
2467
2468	spin_lock_irqsave(q->queue_lock, flags);
2469	blk_start_queue(q);
2470	spin_unlock_irqrestore(q->queue_lock, flags);
2471
2472	return 0;
2473}
2474EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2475
2476static void
2477device_block(struct scsi_device *sdev, void *data)
2478{
2479	scsi_internal_device_block(sdev);
2480}
2481
2482static int
2483target_block(struct device *dev, void *data)
2484{
2485	if (scsi_is_target_device(dev))
2486		starget_for_each_device(to_scsi_target(dev), NULL,
2487					device_block);
2488	return 0;
2489}
2490
2491void
2492scsi_target_block(struct device *dev)
2493{
2494	if (scsi_is_target_device(dev))
2495		starget_for_each_device(to_scsi_target(dev), NULL,
2496					device_block);
2497	else
2498		device_for_each_child(dev, NULL, target_block);
2499}
2500EXPORT_SYMBOL_GPL(scsi_target_block);
2501
2502static void
2503device_unblock(struct scsi_device *sdev, void *data)
2504{
2505	scsi_internal_device_unblock(sdev);
2506}
2507
2508static int
2509target_unblock(struct device *dev, void *data)
2510{
2511	if (scsi_is_target_device(dev))
2512		starget_for_each_device(to_scsi_target(dev), NULL,
2513					device_unblock);
2514	return 0;
2515}
2516
2517void
2518scsi_target_unblock(struct device *dev)
2519{
2520	if (scsi_is_target_device(dev))
2521		starget_for_each_device(to_scsi_target(dev), NULL,
2522					device_unblock);
2523	else
2524		device_for_each_child(dev, NULL, target_unblock);
2525}
2526EXPORT_SYMBOL_GPL(scsi_target_unblock);
2527
2528/**
2529 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2530 * @sgl:	scatter-gather list
2531 * @sg_count:	number of segments in sg
2532 * @offset:	offset in bytes into sg, on return offset into the mapped area
2533 * @len:	bytes to map, on return number of bytes mapped
2534 *
2535 * Returns virtual address of the start of the mapped page
2536 */
2537void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2538			  size_t *offset, size_t *len)
2539{
2540	int i;
2541	size_t sg_len = 0, len_complete = 0;
2542	struct scatterlist *sg;
2543	struct page *page;
2544
2545	WARN_ON(!irqs_disabled());
2546
2547	for_each_sg(sgl, sg, sg_count, i) {
2548		len_complete = sg_len; /* Complete sg-entries */
2549		sg_len += sg->length;
2550		if (sg_len > *offset)
2551			break;
2552	}
2553
2554	if (unlikely(i == sg_count)) {
2555		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2556			"elements %d\n",
2557		       __func__, sg_len, *offset, sg_count);
2558		WARN_ON(1);
2559		return NULL;
2560	}
2561
2562	/* Offset starting from the beginning of first page in this sg-entry */
2563	*offset = *offset - len_complete + sg->offset;
2564
2565	/* Assumption: contiguous pages can be accessed as "page + i" */
2566	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2567	*offset &= ~PAGE_MASK;
2568
2569	/* Bytes in this sg-entry from *offset to the end of the page */
2570	sg_len = PAGE_SIZE - *offset;
2571	if (*len > sg_len)
2572		*len = sg_len;
2573
2574	return kmap_atomic(page);
2575}
2576EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2577
2578/**
2579 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2580 * @virt:	virtual address to be unmapped
2581 */
2582void scsi_kunmap_atomic_sg(void *virt)
2583{
2584	kunmap_atomic(virt);
2585}
2586EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2587