scsi_lib.c revision 001aac257cf8adbe90cdcba6e07f8d12dfc8fa6b
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19#include <linux/hardirq.h>
20#include <linux/scatterlist.h>
21
22#include <scsi/scsi.h>
23#include <scsi/scsi_cmnd.h>
24#include <scsi/scsi_dbg.h>
25#include <scsi/scsi_device.h>
26#include <scsi/scsi_driver.h>
27#include <scsi/scsi_eh.h>
28#include <scsi/scsi_host.h>
29
30#include "scsi_priv.h"
31#include "scsi_logging.h"
32
33
34#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
35#define SG_MEMPOOL_SIZE		2
36
37/*
38 * The maximum number of SG segments that we will put inside a scatterlist
39 * (unless chaining is used). Should ideally fit inside a single page, to
40 * avoid a higher order allocation.
41 */
42#define SCSI_MAX_SG_SEGMENTS	128
43
44struct scsi_host_sg_pool {
45	size_t		size;
46	char		*name;
47	struct kmem_cache	*slab;
48	mempool_t	*pool;
49};
50
51#define SP(x) { x, "sgpool-" #x }
52static struct scsi_host_sg_pool scsi_sg_pools[] = {
53	SP(8),
54	SP(16),
55#if (SCSI_MAX_SG_SEGMENTS > 16)
56	SP(32),
57#if (SCSI_MAX_SG_SEGMENTS > 32)
58	SP(64),
59#if (SCSI_MAX_SG_SEGMENTS > 64)
60	SP(128),
61#endif
62#endif
63#endif
64};
65#undef SP
66
67static void scsi_run_queue(struct request_queue *q);
68
69/*
70 * Function:	scsi_unprep_request()
71 *
72 * Purpose:	Remove all preparation done for a request, including its
73 *		associated scsi_cmnd, so that it can be requeued.
74 *
75 * Arguments:	req	- request to unprepare
76 *
77 * Lock status:	Assumed that no locks are held upon entry.
78 *
79 * Returns:	Nothing.
80 */
81static void scsi_unprep_request(struct request *req)
82{
83	struct scsi_cmnd *cmd = req->special;
84
85	req->cmd_flags &= ~REQ_DONTPREP;
86	req->special = NULL;
87
88	scsi_put_command(cmd);
89}
90
91/*
92 * Function:    scsi_queue_insert()
93 *
94 * Purpose:     Insert a command in the midlevel queue.
95 *
96 * Arguments:   cmd    - command that we are adding to queue.
97 *              reason - why we are inserting command to queue.
98 *
99 * Lock status: Assumed that lock is not held upon entry.
100 *
101 * Returns:     Nothing.
102 *
103 * Notes:       We do this for one of two cases.  Either the host is busy
104 *              and it cannot accept any more commands for the time being,
105 *              or the device returned QUEUE_FULL and can accept no more
106 *              commands.
107 * Notes:       This could be called either from an interrupt context or a
108 *              normal process context.
109 */
110int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111{
112	struct Scsi_Host *host = cmd->device->host;
113	struct scsi_device *device = cmd->device;
114	struct request_queue *q = device->request_queue;
115	unsigned long flags;
116
117	SCSI_LOG_MLQUEUE(1,
118		 printk("Inserting command %p into mlqueue\n", cmd));
119
120	/*
121	 * Set the appropriate busy bit for the device/host.
122	 *
123	 * If the host/device isn't busy, assume that something actually
124	 * completed, and that we should be able to queue a command now.
125	 *
126	 * Note that the prior mid-layer assumption that any host could
127	 * always queue at least one command is now broken.  The mid-layer
128	 * will implement a user specifiable stall (see
129	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130	 * if a command is requeued with no other commands outstanding
131	 * either for the device or for the host.
132	 */
133	if (reason == SCSI_MLQUEUE_HOST_BUSY)
134		host->host_blocked = host->max_host_blocked;
135	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136		device->device_blocked = device->max_device_blocked;
137
138	/*
139	 * Decrement the counters, since these commands are no longer
140	 * active on the host/device.
141	 */
142	scsi_device_unbusy(device);
143
144	/*
145	 * Requeue this command.  It will go before all other commands
146	 * that are already in the queue.
147	 *
148	 * NOTE: there is magic here about the way the queue is plugged if
149	 * we have no outstanding commands.
150	 *
151	 * Although we *don't* plug the queue, we call the request
152	 * function.  The SCSI request function detects the blocked condition
153	 * and plugs the queue appropriately.
154         */
155	spin_lock_irqsave(q->queue_lock, flags);
156	blk_requeue_request(q, cmd->request);
157	spin_unlock_irqrestore(q->queue_lock, flags);
158
159	scsi_run_queue(q);
160
161	return 0;
162}
163
164/**
165 * scsi_execute - insert request and wait for the result
166 * @sdev:	scsi device
167 * @cmd:	scsi command
168 * @data_direction: data direction
169 * @buffer:	data buffer
170 * @bufflen:	len of buffer
171 * @sense:	optional sense buffer
172 * @timeout:	request timeout in seconds
173 * @retries:	number of times to retry request
174 * @flags:	or into request flags;
175 *
176 * returns the req->errors value which is the scsi_cmnd result
177 * field.
178 */
179int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180		 int data_direction, void *buffer, unsigned bufflen,
181		 unsigned char *sense, int timeout, int retries, int flags)
182{
183	struct request *req;
184	int write = (data_direction == DMA_TO_DEVICE);
185	int ret = DRIVER_ERROR << 24;
186
187	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
190					buffer, bufflen, __GFP_WAIT))
191		goto out;
192
193	req->cmd_len = COMMAND_SIZE(cmd[0]);
194	memcpy(req->cmd, cmd, req->cmd_len);
195	req->sense = sense;
196	req->sense_len = 0;
197	req->retries = retries;
198	req->timeout = timeout;
199	req->cmd_type = REQ_TYPE_BLOCK_PC;
200	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202	/*
203	 * head injection *required* here otherwise quiesce won't work
204	 */
205	blk_execute_rq(req->q, NULL, req, 1);
206
207	ret = req->errors;
208 out:
209	blk_put_request(req);
210
211	return ret;
212}
213EXPORT_SYMBOL(scsi_execute);
214
215
216int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217		     int data_direction, void *buffer, unsigned bufflen,
218		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
219{
220	char *sense = NULL;
221	int result;
222
223	if (sshdr) {
224		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225		if (!sense)
226			return DRIVER_ERROR << 24;
227	}
228	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229			      sense, timeout, retries, 0);
230	if (sshdr)
231		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233	kfree(sense);
234	return result;
235}
236EXPORT_SYMBOL(scsi_execute_req);
237
238struct scsi_io_context {
239	void *data;
240	void (*done)(void *data, char *sense, int result, int resid);
241	char sense[SCSI_SENSE_BUFFERSIZE];
242};
243
244static struct kmem_cache *scsi_io_context_cache;
245
246static void scsi_end_async(struct request *req, int uptodate)
247{
248	struct scsi_io_context *sioc = req->end_io_data;
249
250	if (sioc->done)
251		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253	kmem_cache_free(scsi_io_context_cache, sioc);
254	__blk_put_request(req->q, req);
255}
256
257static int scsi_merge_bio(struct request *rq, struct bio *bio)
258{
259	struct request_queue *q = rq->q;
260
261	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262	if (rq_data_dir(rq) == WRITE)
263		bio->bi_rw |= (1 << BIO_RW);
264	blk_queue_bounce(q, &bio);
265
266	return blk_rq_append_bio(q, rq, bio);
267}
268
269static void scsi_bi_endio(struct bio *bio, int error)
270{
271	bio_put(bio);
272}
273
274/**
275 * scsi_req_map_sg - map a scatterlist into a request
276 * @rq:		request to fill
277 * @sgl:	scatterlist
278 * @nsegs:	number of elements
279 * @bufflen:	len of buffer
280 * @gfp:	memory allocation flags
281 *
282 * scsi_req_map_sg maps a scatterlist into a request so that the
283 * request can be sent to the block layer. We do not trust the scatterlist
284 * sent to use, as some ULDs use that struct to only organize the pages.
285 */
286static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287			   int nsegs, unsigned bufflen, gfp_t gfp)
288{
289	struct request_queue *q = rq->q;
290	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
291	unsigned int data_len = bufflen, len, bytes, off;
292	struct scatterlist *sg;
293	struct page *page;
294	struct bio *bio = NULL;
295	int i, err, nr_vecs = 0;
296
297	for_each_sg(sgl, sg, nsegs, i) {
298		page = sg_page(sg);
299		off = sg->offset;
300		len = sg->length;
301 		data_len += len;
302
303		while (len > 0 && data_len > 0) {
304			/*
305			 * sg sends a scatterlist that is larger than
306			 * the data_len it wants transferred for certain
307			 * IO sizes
308			 */
309			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
310			bytes = min(bytes, data_len);
311
312			if (!bio) {
313				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
314				nr_pages -= nr_vecs;
315
316				bio = bio_alloc(gfp, nr_vecs);
317				if (!bio) {
318					err = -ENOMEM;
319					goto free_bios;
320				}
321				bio->bi_end_io = scsi_bi_endio;
322			}
323
324			if (bio_add_pc_page(q, bio, page, bytes, off) !=
325			    bytes) {
326				bio_put(bio);
327				err = -EINVAL;
328				goto free_bios;
329			}
330
331			if (bio->bi_vcnt >= nr_vecs) {
332				err = scsi_merge_bio(rq, bio);
333				if (err) {
334					bio_endio(bio, 0);
335					goto free_bios;
336				}
337				bio = NULL;
338			}
339
340			page++;
341			len -= bytes;
342			data_len -=bytes;
343			off = 0;
344		}
345	}
346
347	rq->buffer = rq->data = NULL;
348	rq->data_len = bufflen;
349	return 0;
350
351free_bios:
352	while ((bio = rq->bio) != NULL) {
353		rq->bio = bio->bi_next;
354		/*
355		 * call endio instead of bio_put incase it was bounced
356		 */
357		bio_endio(bio, 0);
358	}
359
360	return err;
361}
362
363/**
364 * scsi_execute_async - insert request
365 * @sdev:	scsi device
366 * @cmd:	scsi command
367 * @cmd_len:	length of scsi cdb
368 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
369 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
370 * @bufflen:	len of buffer
371 * @use_sg:	if buffer is a scatterlist this is the number of elements
372 * @timeout:	request timeout in seconds
373 * @retries:	number of times to retry request
374 * @privdata:	data passed to done()
375 * @done:	callback function when done
376 * @gfp:	memory allocation flags
377 */
378int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
379		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
380		       int use_sg, int timeout, int retries, void *privdata,
381		       void (*done)(void *, char *, int, int), gfp_t gfp)
382{
383	struct request *req;
384	struct scsi_io_context *sioc;
385	int err = 0;
386	int write = (data_direction == DMA_TO_DEVICE);
387
388	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
389	if (!sioc)
390		return DRIVER_ERROR << 24;
391
392	req = blk_get_request(sdev->request_queue, write, gfp);
393	if (!req)
394		goto free_sense;
395	req->cmd_type = REQ_TYPE_BLOCK_PC;
396	req->cmd_flags |= REQ_QUIET;
397
398	if (use_sg)
399		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
400	else if (bufflen)
401		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
402
403	if (err)
404		goto free_req;
405
406	req->cmd_len = cmd_len;
407	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
408	memcpy(req->cmd, cmd, req->cmd_len);
409	req->sense = sioc->sense;
410	req->sense_len = 0;
411	req->timeout = timeout;
412	req->retries = retries;
413	req->end_io_data = sioc;
414
415	sioc->data = privdata;
416	sioc->done = done;
417
418	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
419	return 0;
420
421free_req:
422	blk_put_request(req);
423free_sense:
424	kmem_cache_free(scsi_io_context_cache, sioc);
425	return DRIVER_ERROR << 24;
426}
427EXPORT_SYMBOL_GPL(scsi_execute_async);
428
429/*
430 * Function:    scsi_init_cmd_errh()
431 *
432 * Purpose:     Initialize cmd fields related to error handling.
433 *
434 * Arguments:   cmd	- command that is ready to be queued.
435 *
436 * Notes:       This function has the job of initializing a number of
437 *              fields related to error handling.   Typically this will
438 *              be called once for each command, as required.
439 */
440static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
441{
442	cmd->serial_number = 0;
443	cmd->resid = 0;
444	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
445	if (cmd->cmd_len == 0)
446		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
447}
448
449void scsi_device_unbusy(struct scsi_device *sdev)
450{
451	struct Scsi_Host *shost = sdev->host;
452	unsigned long flags;
453
454	spin_lock_irqsave(shost->host_lock, flags);
455	shost->host_busy--;
456	if (unlikely(scsi_host_in_recovery(shost) &&
457		     (shost->host_failed || shost->host_eh_scheduled)))
458		scsi_eh_wakeup(shost);
459	spin_unlock(shost->host_lock);
460	spin_lock(sdev->request_queue->queue_lock);
461	sdev->device_busy--;
462	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
463}
464
465/*
466 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
467 * and call blk_run_queue for all the scsi_devices on the target -
468 * including current_sdev first.
469 *
470 * Called with *no* scsi locks held.
471 */
472static void scsi_single_lun_run(struct scsi_device *current_sdev)
473{
474	struct Scsi_Host *shost = current_sdev->host;
475	struct scsi_device *sdev, *tmp;
476	struct scsi_target *starget = scsi_target(current_sdev);
477	unsigned long flags;
478
479	spin_lock_irqsave(shost->host_lock, flags);
480	starget->starget_sdev_user = NULL;
481	spin_unlock_irqrestore(shost->host_lock, flags);
482
483	/*
484	 * Call blk_run_queue for all LUNs on the target, starting with
485	 * current_sdev. We race with others (to set starget_sdev_user),
486	 * but in most cases, we will be first. Ideally, each LU on the
487	 * target would get some limited time or requests on the target.
488	 */
489	blk_run_queue(current_sdev->request_queue);
490
491	spin_lock_irqsave(shost->host_lock, flags);
492	if (starget->starget_sdev_user)
493		goto out;
494	list_for_each_entry_safe(sdev, tmp, &starget->devices,
495			same_target_siblings) {
496		if (sdev == current_sdev)
497			continue;
498		if (scsi_device_get(sdev))
499			continue;
500
501		spin_unlock_irqrestore(shost->host_lock, flags);
502		blk_run_queue(sdev->request_queue);
503		spin_lock_irqsave(shost->host_lock, flags);
504
505		scsi_device_put(sdev);
506	}
507 out:
508	spin_unlock_irqrestore(shost->host_lock, flags);
509}
510
511/*
512 * Function:	scsi_run_queue()
513 *
514 * Purpose:	Select a proper request queue to serve next
515 *
516 * Arguments:	q	- last request's queue
517 *
518 * Returns:     Nothing
519 *
520 * Notes:	The previous command was completely finished, start
521 *		a new one if possible.
522 */
523static void scsi_run_queue(struct request_queue *q)
524{
525	struct scsi_device *sdev = q->queuedata;
526	struct Scsi_Host *shost = sdev->host;
527	unsigned long flags;
528
529	if (scsi_target(sdev)->single_lun)
530		scsi_single_lun_run(sdev);
531
532	spin_lock_irqsave(shost->host_lock, flags);
533	while (!list_empty(&shost->starved_list) &&
534	       !shost->host_blocked && !shost->host_self_blocked &&
535		!((shost->can_queue > 0) &&
536		  (shost->host_busy >= shost->can_queue))) {
537		/*
538		 * As long as shost is accepting commands and we have
539		 * starved queues, call blk_run_queue. scsi_request_fn
540		 * drops the queue_lock and can add us back to the
541		 * starved_list.
542		 *
543		 * host_lock protects the starved_list and starved_entry.
544		 * scsi_request_fn must get the host_lock before checking
545		 * or modifying starved_list or starved_entry.
546		 */
547		sdev = list_entry(shost->starved_list.next,
548					  struct scsi_device, starved_entry);
549		list_del_init(&sdev->starved_entry);
550		spin_unlock_irqrestore(shost->host_lock, flags);
551
552
553		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
554		    !test_and_set_bit(QUEUE_FLAG_REENTER,
555				      &sdev->request_queue->queue_flags)) {
556			blk_run_queue(sdev->request_queue);
557			clear_bit(QUEUE_FLAG_REENTER,
558				  &sdev->request_queue->queue_flags);
559		} else
560			blk_run_queue(sdev->request_queue);
561
562		spin_lock_irqsave(shost->host_lock, flags);
563		if (unlikely(!list_empty(&sdev->starved_entry)))
564			/*
565			 * sdev lost a race, and was put back on the
566			 * starved list. This is unlikely but without this
567			 * in theory we could loop forever.
568			 */
569			break;
570	}
571	spin_unlock_irqrestore(shost->host_lock, flags);
572
573	blk_run_queue(q);
574}
575
576/*
577 * Function:	scsi_requeue_command()
578 *
579 * Purpose:	Handle post-processing of completed commands.
580 *
581 * Arguments:	q	- queue to operate on
582 *		cmd	- command that may need to be requeued.
583 *
584 * Returns:	Nothing
585 *
586 * Notes:	After command completion, there may be blocks left
587 *		over which weren't finished by the previous command
588 *		this can be for a number of reasons - the main one is
589 *		I/O errors in the middle of the request, in which case
590 *		we need to request the blocks that come after the bad
591 *		sector.
592 * Notes:	Upon return, cmd is a stale pointer.
593 */
594static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
595{
596	struct request *req = cmd->request;
597	unsigned long flags;
598
599	scsi_unprep_request(req);
600	spin_lock_irqsave(q->queue_lock, flags);
601	blk_requeue_request(q, req);
602	spin_unlock_irqrestore(q->queue_lock, flags);
603
604	scsi_run_queue(q);
605}
606
607void scsi_next_command(struct scsi_cmnd *cmd)
608{
609	struct scsi_device *sdev = cmd->device;
610	struct request_queue *q = sdev->request_queue;
611
612	/* need to hold a reference on the device before we let go of the cmd */
613	get_device(&sdev->sdev_gendev);
614
615	scsi_put_command(cmd);
616	scsi_run_queue(q);
617
618	/* ok to remove device now */
619	put_device(&sdev->sdev_gendev);
620}
621
622void scsi_run_host_queues(struct Scsi_Host *shost)
623{
624	struct scsi_device *sdev;
625
626	shost_for_each_device(sdev, shost)
627		scsi_run_queue(sdev->request_queue);
628}
629
630/*
631 * Function:    scsi_end_request()
632 *
633 * Purpose:     Post-processing of completed commands (usually invoked at end
634 *		of upper level post-processing and scsi_io_completion).
635 *
636 * Arguments:   cmd	 - command that is complete.
637 *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
638 *              bytes    - number of bytes of completed I/O
639 *		requeue  - indicates whether we should requeue leftovers.
640 *
641 * Lock status: Assumed that lock is not held upon entry.
642 *
643 * Returns:     cmd if requeue required, NULL otherwise.
644 *
645 * Notes:       This is called for block device requests in order to
646 *              mark some number of sectors as complete.
647 *
648 *		We are guaranteeing that the request queue will be goosed
649 *		at some point during this call.
650 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
651 */
652static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
653					  int bytes, int requeue)
654{
655	struct request_queue *q = cmd->device->request_queue;
656	struct request *req = cmd->request;
657	unsigned long flags;
658
659	/*
660	 * If there are blocks left over at the end, set up the command
661	 * to queue the remainder of them.
662	 */
663	if (end_that_request_chunk(req, uptodate, bytes)) {
664		int leftover = (req->hard_nr_sectors << 9);
665
666		if (blk_pc_request(req))
667			leftover = req->data_len;
668
669		/* kill remainder if no retrys */
670		if (!uptodate && blk_noretry_request(req))
671			end_that_request_chunk(req, 0, leftover);
672		else {
673			if (requeue) {
674				/*
675				 * Bleah.  Leftovers again.  Stick the
676				 * leftovers in the front of the
677				 * queue, and goose the queue again.
678				 */
679				scsi_requeue_command(q, cmd);
680				cmd = NULL;
681			}
682			return cmd;
683		}
684	}
685
686	add_disk_randomness(req->rq_disk);
687
688	spin_lock_irqsave(q->queue_lock, flags);
689	if (blk_rq_tagged(req))
690		blk_queue_end_tag(q, req);
691	end_that_request_last(req, uptodate);
692	spin_unlock_irqrestore(q->queue_lock, flags);
693
694	/*
695	 * This will goose the queue request function at the end, so we don't
696	 * need to worry about launching another command.
697	 */
698	scsi_next_command(cmd);
699	return NULL;
700}
701
702/*
703 * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
704 * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
705 */
706#define SCSI_MAX_SG_CHAIN_SEGMENTS	2048
707
708static inline unsigned int scsi_sgtable_index(unsigned short nents)
709{
710	unsigned int index;
711
712	switch (nents) {
713	case 1 ... 8:
714		index = 0;
715		break;
716	case 9 ... 16:
717		index = 1;
718		break;
719#if (SCSI_MAX_SG_SEGMENTS > 16)
720	case 17 ... 32:
721		index = 2;
722		break;
723#if (SCSI_MAX_SG_SEGMENTS > 32)
724	case 33 ... 64:
725		index = 3;
726		break;
727#if (SCSI_MAX_SG_SEGMENTS > 64)
728	case 65 ... 128:
729		index = 4;
730		break;
731#endif
732#endif
733#endif
734	default:
735		printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
736		BUG();
737	}
738
739	return index;
740}
741
742struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
743{
744	struct scsi_host_sg_pool *sgp;
745	struct scatterlist *sgl, *prev, *ret;
746	unsigned int index;
747	int this, left;
748
749	BUG_ON(!cmd->use_sg);
750
751	left = cmd->use_sg;
752	ret = prev = NULL;
753	do {
754		this = left;
755		if (this > SCSI_MAX_SG_SEGMENTS) {
756			this = SCSI_MAX_SG_SEGMENTS - 1;
757			index = SG_MEMPOOL_NR - 1;
758		} else
759			index = scsi_sgtable_index(this);
760
761		left -= this;
762
763		sgp = scsi_sg_pools + index;
764
765		sgl = mempool_alloc(sgp->pool, gfp_mask);
766		if (unlikely(!sgl))
767			goto enomem;
768
769		sg_init_table(sgl, sgp->size);
770
771		/*
772		 * first loop through, set initial index and return value
773		 */
774		if (!ret)
775			ret = sgl;
776
777		/*
778		 * chain previous sglist, if any. we know the previous
779		 * sglist must be the biggest one, or we would not have
780		 * ended up doing another loop.
781		 */
782		if (prev)
783			sg_chain(prev, SCSI_MAX_SG_SEGMENTS, sgl);
784
785		/*
786		 * if we have nothing left, mark the last segment as
787		 * end-of-list
788		 */
789		if (!left)
790			sg_mark_end(&sgl[this - 1]);
791
792		/*
793		 * don't allow subsequent mempool allocs to sleep, it would
794		 * violate the mempool principle.
795		 */
796		gfp_mask &= ~__GFP_WAIT;
797		gfp_mask |= __GFP_HIGH;
798		prev = sgl;
799	} while (left);
800
801	/*
802	 * ->use_sg may get modified after dma mapping has potentially
803	 * shrunk the number of segments, so keep a copy of it for free.
804	 */
805	cmd->__use_sg = cmd->use_sg;
806	return ret;
807enomem:
808	if (ret) {
809		/*
810		 * Free entries chained off ret. Since we were trying to
811		 * allocate another sglist, we know that all entries are of
812		 * the max size.
813		 */
814		sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
815		prev = ret;
816		ret = &ret[SCSI_MAX_SG_SEGMENTS - 1];
817
818		while ((sgl = sg_chain_ptr(ret)) != NULL) {
819			ret = &sgl[SCSI_MAX_SG_SEGMENTS - 1];
820			mempool_free(sgl, sgp->pool);
821		}
822
823		mempool_free(prev, sgp->pool);
824	}
825	return NULL;
826}
827
828EXPORT_SYMBOL(scsi_alloc_sgtable);
829
830void scsi_free_sgtable(struct scsi_cmnd *cmd)
831{
832	struct scatterlist *sgl = cmd->request_buffer;
833	struct scsi_host_sg_pool *sgp;
834
835	/*
836	 * if this is the biggest size sglist, check if we have
837	 * chained parts we need to free
838	 */
839	if (cmd->__use_sg > SCSI_MAX_SG_SEGMENTS) {
840		unsigned short this, left;
841		struct scatterlist *next;
842		unsigned int index;
843
844		left = cmd->__use_sg - (SCSI_MAX_SG_SEGMENTS - 1);
845		next = sg_chain_ptr(&sgl[SCSI_MAX_SG_SEGMENTS - 1]);
846		while (left && next) {
847			sgl = next;
848			this = left;
849			if (this > SCSI_MAX_SG_SEGMENTS) {
850				this = SCSI_MAX_SG_SEGMENTS - 1;
851				index = SG_MEMPOOL_NR - 1;
852			} else
853				index = scsi_sgtable_index(this);
854
855			left -= this;
856
857			sgp = scsi_sg_pools + index;
858
859			if (left)
860				next = sg_chain_ptr(&sgl[sgp->size - 1]);
861
862			mempool_free(sgl, sgp->pool);
863		}
864
865		/*
866		 * Restore original, will be freed below
867		 */
868		sgl = cmd->request_buffer;
869		sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
870	} else
871		sgp = scsi_sg_pools + scsi_sgtable_index(cmd->__use_sg);
872
873	mempool_free(sgl, sgp->pool);
874}
875
876EXPORT_SYMBOL(scsi_free_sgtable);
877
878/*
879 * Function:    scsi_release_buffers()
880 *
881 * Purpose:     Completion processing for block device I/O requests.
882 *
883 * Arguments:   cmd	- command that we are bailing.
884 *
885 * Lock status: Assumed that no lock is held upon entry.
886 *
887 * Returns:     Nothing
888 *
889 * Notes:       In the event that an upper level driver rejects a
890 *		command, we must release resources allocated during
891 *		the __init_io() function.  Primarily this would involve
892 *		the scatter-gather table, and potentially any bounce
893 *		buffers.
894 */
895static void scsi_release_buffers(struct scsi_cmnd *cmd)
896{
897	if (cmd->use_sg)
898		scsi_free_sgtable(cmd);
899
900	/*
901	 * Zero these out.  They now point to freed memory, and it is
902	 * dangerous to hang onto the pointers.
903	 */
904	cmd->request_buffer = NULL;
905	cmd->request_bufflen = 0;
906}
907
908/*
909 * Function:    scsi_io_completion()
910 *
911 * Purpose:     Completion processing for block device I/O requests.
912 *
913 * Arguments:   cmd   - command that is finished.
914 *
915 * Lock status: Assumed that no lock is held upon entry.
916 *
917 * Returns:     Nothing
918 *
919 * Notes:       This function is matched in terms of capabilities to
920 *              the function that created the scatter-gather list.
921 *              In other words, if there are no bounce buffers
922 *              (the normal case for most drivers), we don't need
923 *              the logic to deal with cleaning up afterwards.
924 *
925 *		We must do one of several things here:
926 *
927 *		a) Call scsi_end_request.  This will finish off the
928 *		   specified number of sectors.  If we are done, the
929 *		   command block will be released, and the queue
930 *		   function will be goosed.  If we are not done, then
931 *		   scsi_end_request will directly goose the queue.
932 *
933 *		b) We can just use scsi_requeue_command() here.  This would
934 *		   be used if we just wanted to retry, for example.
935 */
936void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
937{
938	int result = cmd->result;
939	int this_count = cmd->request_bufflen;
940	struct request_queue *q = cmd->device->request_queue;
941	struct request *req = cmd->request;
942	int clear_errors = 1;
943	struct scsi_sense_hdr sshdr;
944	int sense_valid = 0;
945	int sense_deferred = 0;
946
947	scsi_release_buffers(cmd);
948
949	if (result) {
950		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
951		if (sense_valid)
952			sense_deferred = scsi_sense_is_deferred(&sshdr);
953	}
954
955	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
956		req->errors = result;
957		if (result) {
958			clear_errors = 0;
959			if (sense_valid && req->sense) {
960				/*
961				 * SG_IO wants current and deferred errors
962				 */
963				int len = 8 + cmd->sense_buffer[7];
964
965				if (len > SCSI_SENSE_BUFFERSIZE)
966					len = SCSI_SENSE_BUFFERSIZE;
967				memcpy(req->sense, cmd->sense_buffer,  len);
968				req->sense_len = len;
969			}
970		}
971		req->data_len = cmd->resid;
972	}
973
974	/*
975	 * Next deal with any sectors which we were able to correctly
976	 * handle.
977	 */
978	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
979				      "%d bytes done.\n",
980				      req->nr_sectors, good_bytes));
981	SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
982
983	if (clear_errors)
984		req->errors = 0;
985
986	/* A number of bytes were successfully read.  If there
987	 * are leftovers and there is some kind of error
988	 * (result != 0), retry the rest.
989	 */
990	if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
991		return;
992
993	/* good_bytes = 0, or (inclusive) there were leftovers and
994	 * result = 0, so scsi_end_request couldn't retry.
995	 */
996	if (sense_valid && !sense_deferred) {
997		switch (sshdr.sense_key) {
998		case UNIT_ATTENTION:
999			if (cmd->device->removable) {
1000				/* Detected disc change.  Set a bit
1001				 * and quietly refuse further access.
1002				 */
1003				cmd->device->changed = 1;
1004				scsi_end_request(cmd, 0, this_count, 1);
1005				return;
1006			} else {
1007				/* Must have been a power glitch, or a
1008				 * bus reset.  Could not have been a
1009				 * media change, so we just retry the
1010				 * request and see what happens.
1011				 */
1012				scsi_requeue_command(q, cmd);
1013				return;
1014			}
1015			break;
1016		case ILLEGAL_REQUEST:
1017			/* If we had an ILLEGAL REQUEST returned, then
1018			 * we may have performed an unsupported
1019			 * command.  The only thing this should be
1020			 * would be a ten byte read where only a six
1021			 * byte read was supported.  Also, on a system
1022			 * where READ CAPACITY failed, we may have
1023			 * read past the end of the disk.
1024			 */
1025			if ((cmd->device->use_10_for_rw &&
1026			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1027			    (cmd->cmnd[0] == READ_10 ||
1028			     cmd->cmnd[0] == WRITE_10)) {
1029				cmd->device->use_10_for_rw = 0;
1030				/* This will cause a retry with a
1031				 * 6-byte command.
1032				 */
1033				scsi_requeue_command(q, cmd);
1034				return;
1035			} else {
1036				scsi_end_request(cmd, 0, this_count, 1);
1037				return;
1038			}
1039			break;
1040		case NOT_READY:
1041			/* If the device is in the process of becoming
1042			 * ready, or has a temporary blockage, retry.
1043			 */
1044			if (sshdr.asc == 0x04) {
1045				switch (sshdr.ascq) {
1046				case 0x01: /* becoming ready */
1047				case 0x04: /* format in progress */
1048				case 0x05: /* rebuild in progress */
1049				case 0x06: /* recalculation in progress */
1050				case 0x07: /* operation in progress */
1051				case 0x08: /* Long write in progress */
1052				case 0x09: /* self test in progress */
1053					scsi_requeue_command(q, cmd);
1054					return;
1055				default:
1056					break;
1057				}
1058			}
1059			if (!(req->cmd_flags & REQ_QUIET))
1060				scsi_cmd_print_sense_hdr(cmd,
1061							 "Device not ready",
1062							 &sshdr);
1063
1064			scsi_end_request(cmd, 0, this_count, 1);
1065			return;
1066		case VOLUME_OVERFLOW:
1067			if (!(req->cmd_flags & REQ_QUIET)) {
1068				scmd_printk(KERN_INFO, cmd,
1069					    "Volume overflow, CDB: ");
1070				__scsi_print_command(cmd->cmnd);
1071				scsi_print_sense("", cmd);
1072			}
1073			/* See SSC3rXX or current. */
1074			scsi_end_request(cmd, 0, this_count, 1);
1075			return;
1076		default:
1077			break;
1078		}
1079	}
1080	if (host_byte(result) == DID_RESET) {
1081		/* Third party bus reset or reset for error recovery
1082		 * reasons.  Just retry the request and see what
1083		 * happens.
1084		 */
1085		scsi_requeue_command(q, cmd);
1086		return;
1087	}
1088	if (result) {
1089		if (!(req->cmd_flags & REQ_QUIET)) {
1090			scsi_print_result(cmd);
1091			if (driver_byte(result) & DRIVER_SENSE)
1092				scsi_print_sense("", cmd);
1093		}
1094	}
1095	scsi_end_request(cmd, 0, this_count, !result);
1096}
1097
1098/*
1099 * Function:    scsi_init_io()
1100 *
1101 * Purpose:     SCSI I/O initialize function.
1102 *
1103 * Arguments:   cmd   - Command descriptor we wish to initialize
1104 *
1105 * Returns:     0 on success
1106 *		BLKPREP_DEFER if the failure is retryable
1107 */
1108static int scsi_init_io(struct scsi_cmnd *cmd)
1109{
1110	struct request     *req = cmd->request;
1111	int		   count;
1112
1113	/*
1114	 * We used to not use scatter-gather for single segment request,
1115	 * but now we do (it makes highmem I/O easier to support without
1116	 * kmapping pages)
1117	 */
1118	cmd->use_sg = req->nr_phys_segments;
1119
1120	/*
1121	 * If sg table allocation fails, requeue request later.
1122	 */
1123	cmd->request_buffer = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1124	if (unlikely(!cmd->request_buffer)) {
1125		scsi_unprep_request(req);
1126		return BLKPREP_DEFER;
1127	}
1128
1129	req->buffer = NULL;
1130	if (blk_pc_request(req))
1131		cmd->request_bufflen = req->data_len;
1132	else
1133		cmd->request_bufflen = req->nr_sectors << 9;
1134
1135	/*
1136	 * Next, walk the list, and fill in the addresses and sizes of
1137	 * each segment.
1138	 */
1139	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1140	BUG_ON(count > cmd->use_sg);
1141	cmd->use_sg = count;
1142	return BLKPREP_OK;
1143}
1144
1145static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1146		struct request *req)
1147{
1148	struct scsi_cmnd *cmd;
1149
1150	if (!req->special) {
1151		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1152		if (unlikely(!cmd))
1153			return NULL;
1154		req->special = cmd;
1155	} else {
1156		cmd = req->special;
1157	}
1158
1159	/* pull a tag out of the request if we have one */
1160	cmd->tag = req->tag;
1161	cmd->request = req;
1162
1163	return cmd;
1164}
1165
1166int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1167{
1168	struct scsi_cmnd *cmd;
1169	int ret = scsi_prep_state_check(sdev, req);
1170
1171	if (ret != BLKPREP_OK)
1172		return ret;
1173
1174	cmd = scsi_get_cmd_from_req(sdev, req);
1175	if (unlikely(!cmd))
1176		return BLKPREP_DEFER;
1177
1178	/*
1179	 * BLOCK_PC requests may transfer data, in which case they must
1180	 * a bio attached to them.  Or they might contain a SCSI command
1181	 * that does not transfer data, in which case they may optionally
1182	 * submit a request without an attached bio.
1183	 */
1184	if (req->bio) {
1185		int ret;
1186
1187		BUG_ON(!req->nr_phys_segments);
1188
1189		ret = scsi_init_io(cmd);
1190		if (unlikely(ret))
1191			return ret;
1192	} else {
1193		BUG_ON(req->data_len);
1194		BUG_ON(req->data);
1195
1196		cmd->request_bufflen = 0;
1197		cmd->request_buffer = NULL;
1198		cmd->use_sg = 0;
1199		req->buffer = NULL;
1200	}
1201
1202	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1203	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1204	cmd->cmd_len = req->cmd_len;
1205	if (!req->data_len)
1206		cmd->sc_data_direction = DMA_NONE;
1207	else if (rq_data_dir(req) == WRITE)
1208		cmd->sc_data_direction = DMA_TO_DEVICE;
1209	else
1210		cmd->sc_data_direction = DMA_FROM_DEVICE;
1211
1212	cmd->transfersize = req->data_len;
1213	cmd->allowed = req->retries;
1214	cmd->timeout_per_command = req->timeout;
1215	return BLKPREP_OK;
1216}
1217EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1218
1219/*
1220 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1221 * from filesystems that still need to be translated to SCSI CDBs from
1222 * the ULD.
1223 */
1224int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1225{
1226	struct scsi_cmnd *cmd;
1227	int ret = scsi_prep_state_check(sdev, req);
1228
1229	if (ret != BLKPREP_OK)
1230		return ret;
1231	/*
1232	 * Filesystem requests must transfer data.
1233	 */
1234	BUG_ON(!req->nr_phys_segments);
1235
1236	cmd = scsi_get_cmd_from_req(sdev, req);
1237	if (unlikely(!cmd))
1238		return BLKPREP_DEFER;
1239
1240	return scsi_init_io(cmd);
1241}
1242EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1243
1244int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1245{
1246	int ret = BLKPREP_OK;
1247
1248	/*
1249	 * If the device is not in running state we will reject some
1250	 * or all commands.
1251	 */
1252	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1253		switch (sdev->sdev_state) {
1254		case SDEV_OFFLINE:
1255			/*
1256			 * If the device is offline we refuse to process any
1257			 * commands.  The device must be brought online
1258			 * before trying any recovery commands.
1259			 */
1260			sdev_printk(KERN_ERR, sdev,
1261				    "rejecting I/O to offline device\n");
1262			ret = BLKPREP_KILL;
1263			break;
1264		case SDEV_DEL:
1265			/*
1266			 * If the device is fully deleted, we refuse to
1267			 * process any commands as well.
1268			 */
1269			sdev_printk(KERN_ERR, sdev,
1270				    "rejecting I/O to dead device\n");
1271			ret = BLKPREP_KILL;
1272			break;
1273		case SDEV_QUIESCE:
1274		case SDEV_BLOCK:
1275			/*
1276			 * If the devices is blocked we defer normal commands.
1277			 */
1278			if (!(req->cmd_flags & REQ_PREEMPT))
1279				ret = BLKPREP_DEFER;
1280			break;
1281		default:
1282			/*
1283			 * For any other not fully online state we only allow
1284			 * special commands.  In particular any user initiated
1285			 * command is not allowed.
1286			 */
1287			if (!(req->cmd_flags & REQ_PREEMPT))
1288				ret = BLKPREP_KILL;
1289			break;
1290		}
1291	}
1292	return ret;
1293}
1294EXPORT_SYMBOL(scsi_prep_state_check);
1295
1296int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1297{
1298	struct scsi_device *sdev = q->queuedata;
1299
1300	switch (ret) {
1301	case BLKPREP_KILL:
1302		req->errors = DID_NO_CONNECT << 16;
1303		/* release the command and kill it */
1304		if (req->special) {
1305			struct scsi_cmnd *cmd = req->special;
1306			scsi_release_buffers(cmd);
1307			scsi_put_command(cmd);
1308			req->special = NULL;
1309		}
1310		break;
1311	case BLKPREP_DEFER:
1312		/*
1313		 * If we defer, the elv_next_request() returns NULL, but the
1314		 * queue must be restarted, so we plug here if no returning
1315		 * command will automatically do that.
1316		 */
1317		if (sdev->device_busy == 0)
1318			blk_plug_device(q);
1319		break;
1320	default:
1321		req->cmd_flags |= REQ_DONTPREP;
1322	}
1323
1324	return ret;
1325}
1326EXPORT_SYMBOL(scsi_prep_return);
1327
1328int scsi_prep_fn(struct request_queue *q, struct request *req)
1329{
1330	struct scsi_device *sdev = q->queuedata;
1331	int ret = BLKPREP_KILL;
1332
1333	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1334		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1335	return scsi_prep_return(q, req, ret);
1336}
1337
1338/*
1339 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1340 * return 0.
1341 *
1342 * Called with the queue_lock held.
1343 */
1344static inline int scsi_dev_queue_ready(struct request_queue *q,
1345				  struct scsi_device *sdev)
1346{
1347	if (sdev->device_busy >= sdev->queue_depth)
1348		return 0;
1349	if (sdev->device_busy == 0 && sdev->device_blocked) {
1350		/*
1351		 * unblock after device_blocked iterates to zero
1352		 */
1353		if (--sdev->device_blocked == 0) {
1354			SCSI_LOG_MLQUEUE(3,
1355				   sdev_printk(KERN_INFO, sdev,
1356				   "unblocking device at zero depth\n"));
1357		} else {
1358			blk_plug_device(q);
1359			return 0;
1360		}
1361	}
1362	if (sdev->device_blocked)
1363		return 0;
1364
1365	return 1;
1366}
1367
1368/*
1369 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1370 * return 0. We must end up running the queue again whenever 0 is
1371 * returned, else IO can hang.
1372 *
1373 * Called with host_lock held.
1374 */
1375static inline int scsi_host_queue_ready(struct request_queue *q,
1376				   struct Scsi_Host *shost,
1377				   struct scsi_device *sdev)
1378{
1379	if (scsi_host_in_recovery(shost))
1380		return 0;
1381	if (shost->host_busy == 0 && shost->host_blocked) {
1382		/*
1383		 * unblock after host_blocked iterates to zero
1384		 */
1385		if (--shost->host_blocked == 0) {
1386			SCSI_LOG_MLQUEUE(3,
1387				printk("scsi%d unblocking host at zero depth\n",
1388					shost->host_no));
1389		} else {
1390			blk_plug_device(q);
1391			return 0;
1392		}
1393	}
1394	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1395	    shost->host_blocked || shost->host_self_blocked) {
1396		if (list_empty(&sdev->starved_entry))
1397			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1398		return 0;
1399	}
1400
1401	/* We're OK to process the command, so we can't be starved */
1402	if (!list_empty(&sdev->starved_entry))
1403		list_del_init(&sdev->starved_entry);
1404
1405	return 1;
1406}
1407
1408/*
1409 * Kill a request for a dead device
1410 */
1411static void scsi_kill_request(struct request *req, struct request_queue *q)
1412{
1413	struct scsi_cmnd *cmd = req->special;
1414	struct scsi_device *sdev = cmd->device;
1415	struct Scsi_Host *shost = sdev->host;
1416
1417	blkdev_dequeue_request(req);
1418
1419	if (unlikely(cmd == NULL)) {
1420		printk(KERN_CRIT "impossible request in %s.\n",
1421				 __FUNCTION__);
1422		BUG();
1423	}
1424
1425	scsi_init_cmd_errh(cmd);
1426	cmd->result = DID_NO_CONNECT << 16;
1427	atomic_inc(&cmd->device->iorequest_cnt);
1428
1429	/*
1430	 * SCSI request completion path will do scsi_device_unbusy(),
1431	 * bump busy counts.  To bump the counters, we need to dance
1432	 * with the locks as normal issue path does.
1433	 */
1434	sdev->device_busy++;
1435	spin_unlock(sdev->request_queue->queue_lock);
1436	spin_lock(shost->host_lock);
1437	shost->host_busy++;
1438	spin_unlock(shost->host_lock);
1439	spin_lock(sdev->request_queue->queue_lock);
1440
1441	__scsi_done(cmd);
1442}
1443
1444static void scsi_softirq_done(struct request *rq)
1445{
1446	struct scsi_cmnd *cmd = rq->completion_data;
1447	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1448	int disposition;
1449
1450	INIT_LIST_HEAD(&cmd->eh_entry);
1451
1452	disposition = scsi_decide_disposition(cmd);
1453	if (disposition != SUCCESS &&
1454	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1455		sdev_printk(KERN_ERR, cmd->device,
1456			    "timing out command, waited %lus\n",
1457			    wait_for/HZ);
1458		disposition = SUCCESS;
1459	}
1460
1461	scsi_log_completion(cmd, disposition);
1462
1463	switch (disposition) {
1464		case SUCCESS:
1465			scsi_finish_command(cmd);
1466			break;
1467		case NEEDS_RETRY:
1468			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1469			break;
1470		case ADD_TO_MLQUEUE:
1471			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1472			break;
1473		default:
1474			if (!scsi_eh_scmd_add(cmd, 0))
1475				scsi_finish_command(cmd);
1476	}
1477}
1478
1479/*
1480 * Function:    scsi_request_fn()
1481 *
1482 * Purpose:     Main strategy routine for SCSI.
1483 *
1484 * Arguments:   q       - Pointer to actual queue.
1485 *
1486 * Returns:     Nothing
1487 *
1488 * Lock status: IO request lock assumed to be held when called.
1489 */
1490static void scsi_request_fn(struct request_queue *q)
1491{
1492	struct scsi_device *sdev = q->queuedata;
1493	struct Scsi_Host *shost;
1494	struct scsi_cmnd *cmd;
1495	struct request *req;
1496
1497	if (!sdev) {
1498		printk("scsi: killing requests for dead queue\n");
1499		while ((req = elv_next_request(q)) != NULL)
1500			scsi_kill_request(req, q);
1501		return;
1502	}
1503
1504	if(!get_device(&sdev->sdev_gendev))
1505		/* We must be tearing the block queue down already */
1506		return;
1507
1508	/*
1509	 * To start with, we keep looping until the queue is empty, or until
1510	 * the host is no longer able to accept any more requests.
1511	 */
1512	shost = sdev->host;
1513	while (!blk_queue_plugged(q)) {
1514		int rtn;
1515		/*
1516		 * get next queueable request.  We do this early to make sure
1517		 * that the request is fully prepared even if we cannot
1518		 * accept it.
1519		 */
1520		req = elv_next_request(q);
1521		if (!req || !scsi_dev_queue_ready(q, sdev))
1522			break;
1523
1524		if (unlikely(!scsi_device_online(sdev))) {
1525			sdev_printk(KERN_ERR, sdev,
1526				    "rejecting I/O to offline device\n");
1527			scsi_kill_request(req, q);
1528			continue;
1529		}
1530
1531
1532		/*
1533		 * Remove the request from the request list.
1534		 */
1535		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1536			blkdev_dequeue_request(req);
1537		sdev->device_busy++;
1538
1539		spin_unlock(q->queue_lock);
1540		cmd = req->special;
1541		if (unlikely(cmd == NULL)) {
1542			printk(KERN_CRIT "impossible request in %s.\n"
1543					 "please mail a stack trace to "
1544					 "linux-scsi@vger.kernel.org\n",
1545					 __FUNCTION__);
1546			blk_dump_rq_flags(req, "foo");
1547			BUG();
1548		}
1549		spin_lock(shost->host_lock);
1550
1551		if (!scsi_host_queue_ready(q, shost, sdev))
1552			goto not_ready;
1553		if (scsi_target(sdev)->single_lun) {
1554			if (scsi_target(sdev)->starget_sdev_user &&
1555			    scsi_target(sdev)->starget_sdev_user != sdev)
1556				goto not_ready;
1557			scsi_target(sdev)->starget_sdev_user = sdev;
1558		}
1559		shost->host_busy++;
1560
1561		/*
1562		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1563		 *		take the lock again.
1564		 */
1565		spin_unlock_irq(shost->host_lock);
1566
1567		/*
1568		 * Finally, initialize any error handling parameters, and set up
1569		 * the timers for timeouts.
1570		 */
1571		scsi_init_cmd_errh(cmd);
1572
1573		/*
1574		 * Dispatch the command to the low-level driver.
1575		 */
1576		rtn = scsi_dispatch_cmd(cmd);
1577		spin_lock_irq(q->queue_lock);
1578		if(rtn) {
1579			/* we're refusing the command; because of
1580			 * the way locks get dropped, we need to
1581			 * check here if plugging is required */
1582			if(sdev->device_busy == 0)
1583				blk_plug_device(q);
1584
1585			break;
1586		}
1587	}
1588
1589	goto out;
1590
1591 not_ready:
1592	spin_unlock_irq(shost->host_lock);
1593
1594	/*
1595	 * lock q, handle tag, requeue req, and decrement device_busy. We
1596	 * must return with queue_lock held.
1597	 *
1598	 * Decrementing device_busy without checking it is OK, as all such
1599	 * cases (host limits or settings) should run the queue at some
1600	 * later time.
1601	 */
1602	spin_lock_irq(q->queue_lock);
1603	blk_requeue_request(q, req);
1604	sdev->device_busy--;
1605	if(sdev->device_busy == 0)
1606		blk_plug_device(q);
1607 out:
1608	/* must be careful here...if we trigger the ->remove() function
1609	 * we cannot be holding the q lock */
1610	spin_unlock_irq(q->queue_lock);
1611	put_device(&sdev->sdev_gendev);
1612	spin_lock_irq(q->queue_lock);
1613}
1614
1615u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1616{
1617	struct device *host_dev;
1618	u64 bounce_limit = 0xffffffff;
1619
1620	if (shost->unchecked_isa_dma)
1621		return BLK_BOUNCE_ISA;
1622	/*
1623	 * Platforms with virtual-DMA translation
1624	 * hardware have no practical limit.
1625	 */
1626	if (!PCI_DMA_BUS_IS_PHYS)
1627		return BLK_BOUNCE_ANY;
1628
1629	host_dev = scsi_get_device(shost);
1630	if (host_dev && host_dev->dma_mask)
1631		bounce_limit = *host_dev->dma_mask;
1632
1633	return bounce_limit;
1634}
1635EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1636
1637struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1638					 request_fn_proc *request_fn)
1639{
1640	struct request_queue *q;
1641
1642	q = blk_init_queue(request_fn, NULL);
1643	if (!q)
1644		return NULL;
1645
1646	/*
1647	 * this limit is imposed by hardware restrictions
1648	 */
1649	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1650
1651	/*
1652	 * In the future, sg chaining support will be mandatory and this
1653	 * ifdef can then go away. Right now we don't have all archs
1654	 * converted, so better keep it safe.
1655	 */
1656#ifdef ARCH_HAS_SG_CHAIN
1657	if (shost->use_sg_chaining)
1658		blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1659	else
1660		blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1661#else
1662	blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1663#endif
1664
1665	blk_queue_max_sectors(q, shost->max_sectors);
1666	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1667	blk_queue_segment_boundary(q, shost->dma_boundary);
1668
1669	if (!shost->use_clustering)
1670		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1671	return q;
1672}
1673EXPORT_SYMBOL(__scsi_alloc_queue);
1674
1675struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1676{
1677	struct request_queue *q;
1678
1679	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1680	if (!q)
1681		return NULL;
1682
1683	blk_queue_prep_rq(q, scsi_prep_fn);
1684	blk_queue_softirq_done(q, scsi_softirq_done);
1685	return q;
1686}
1687
1688void scsi_free_queue(struct request_queue *q)
1689{
1690	blk_cleanup_queue(q);
1691}
1692
1693/*
1694 * Function:    scsi_block_requests()
1695 *
1696 * Purpose:     Utility function used by low-level drivers to prevent further
1697 *		commands from being queued to the device.
1698 *
1699 * Arguments:   shost       - Host in question
1700 *
1701 * Returns:     Nothing
1702 *
1703 * Lock status: No locks are assumed held.
1704 *
1705 * Notes:       There is no timer nor any other means by which the requests
1706 *		get unblocked other than the low-level driver calling
1707 *		scsi_unblock_requests().
1708 */
1709void scsi_block_requests(struct Scsi_Host *shost)
1710{
1711	shost->host_self_blocked = 1;
1712}
1713EXPORT_SYMBOL(scsi_block_requests);
1714
1715/*
1716 * Function:    scsi_unblock_requests()
1717 *
1718 * Purpose:     Utility function used by low-level drivers to allow further
1719 *		commands from being queued to the device.
1720 *
1721 * Arguments:   shost       - Host in question
1722 *
1723 * Returns:     Nothing
1724 *
1725 * Lock status: No locks are assumed held.
1726 *
1727 * Notes:       There is no timer nor any other means by which the requests
1728 *		get unblocked other than the low-level driver calling
1729 *		scsi_unblock_requests().
1730 *
1731 *		This is done as an API function so that changes to the
1732 *		internals of the scsi mid-layer won't require wholesale
1733 *		changes to drivers that use this feature.
1734 */
1735void scsi_unblock_requests(struct Scsi_Host *shost)
1736{
1737	shost->host_self_blocked = 0;
1738	scsi_run_host_queues(shost);
1739}
1740EXPORT_SYMBOL(scsi_unblock_requests);
1741
1742int __init scsi_init_queue(void)
1743{
1744	int i;
1745
1746	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1747					sizeof(struct scsi_io_context),
1748					0, 0, NULL);
1749	if (!scsi_io_context_cache) {
1750		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1751		return -ENOMEM;
1752	}
1753
1754	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1755		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1756		int size = sgp->size * sizeof(struct scatterlist);
1757
1758		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1759				SLAB_HWCACHE_ALIGN, NULL);
1760		if (!sgp->slab) {
1761			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1762					sgp->name);
1763		}
1764
1765		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1766						     sgp->slab);
1767		if (!sgp->pool) {
1768			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1769					sgp->name);
1770		}
1771	}
1772
1773	return 0;
1774}
1775
1776void scsi_exit_queue(void)
1777{
1778	int i;
1779
1780	kmem_cache_destroy(scsi_io_context_cache);
1781
1782	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1783		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1784		mempool_destroy(sgp->pool);
1785		kmem_cache_destroy(sgp->slab);
1786	}
1787}
1788
1789/**
1790 *	scsi_mode_select - issue a mode select
1791 *	@sdev:	SCSI device to be queried
1792 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1793 *	@sp:	Save page bit (0 == don't save, 1 == save)
1794 *	@modepage: mode page being requested
1795 *	@buffer: request buffer (may not be smaller than eight bytes)
1796 *	@len:	length of request buffer.
1797 *	@timeout: command timeout
1798 *	@retries: number of retries before failing
1799 *	@data: returns a structure abstracting the mode header data
1800 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1801 *		must be SCSI_SENSE_BUFFERSIZE big.
1802 *
1803 *	Returns zero if successful; negative error number or scsi
1804 *	status on error
1805 *
1806 */
1807int
1808scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1809		 unsigned char *buffer, int len, int timeout, int retries,
1810		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1811{
1812	unsigned char cmd[10];
1813	unsigned char *real_buffer;
1814	int ret;
1815
1816	memset(cmd, 0, sizeof(cmd));
1817	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1818
1819	if (sdev->use_10_for_ms) {
1820		if (len > 65535)
1821			return -EINVAL;
1822		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1823		if (!real_buffer)
1824			return -ENOMEM;
1825		memcpy(real_buffer + 8, buffer, len);
1826		len += 8;
1827		real_buffer[0] = 0;
1828		real_buffer[1] = 0;
1829		real_buffer[2] = data->medium_type;
1830		real_buffer[3] = data->device_specific;
1831		real_buffer[4] = data->longlba ? 0x01 : 0;
1832		real_buffer[5] = 0;
1833		real_buffer[6] = data->block_descriptor_length >> 8;
1834		real_buffer[7] = data->block_descriptor_length;
1835
1836		cmd[0] = MODE_SELECT_10;
1837		cmd[7] = len >> 8;
1838		cmd[8] = len;
1839	} else {
1840		if (len > 255 || data->block_descriptor_length > 255 ||
1841		    data->longlba)
1842			return -EINVAL;
1843
1844		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1845		if (!real_buffer)
1846			return -ENOMEM;
1847		memcpy(real_buffer + 4, buffer, len);
1848		len += 4;
1849		real_buffer[0] = 0;
1850		real_buffer[1] = data->medium_type;
1851		real_buffer[2] = data->device_specific;
1852		real_buffer[3] = data->block_descriptor_length;
1853
1854
1855		cmd[0] = MODE_SELECT;
1856		cmd[4] = len;
1857	}
1858
1859	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1860			       sshdr, timeout, retries);
1861	kfree(real_buffer);
1862	return ret;
1863}
1864EXPORT_SYMBOL_GPL(scsi_mode_select);
1865
1866/**
1867 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1868 *	@sdev:	SCSI device to be queried
1869 *	@dbd:	set if mode sense will allow block descriptors to be returned
1870 *	@modepage: mode page being requested
1871 *	@buffer: request buffer (may not be smaller than eight bytes)
1872 *	@len:	length of request buffer.
1873 *	@timeout: command timeout
1874 *	@retries: number of retries before failing
1875 *	@data: returns a structure abstracting the mode header data
1876 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1877 *		must be SCSI_SENSE_BUFFERSIZE big.
1878 *
1879 *	Returns zero if unsuccessful, or the header offset (either 4
1880 *	or 8 depending on whether a six or ten byte command was
1881 *	issued) if successful.
1882 */
1883int
1884scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1885		  unsigned char *buffer, int len, int timeout, int retries,
1886		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1887{
1888	unsigned char cmd[12];
1889	int use_10_for_ms;
1890	int header_length;
1891	int result;
1892	struct scsi_sense_hdr my_sshdr;
1893
1894	memset(data, 0, sizeof(*data));
1895	memset(&cmd[0], 0, 12);
1896	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1897	cmd[2] = modepage;
1898
1899	/* caller might not be interested in sense, but we need it */
1900	if (!sshdr)
1901		sshdr = &my_sshdr;
1902
1903 retry:
1904	use_10_for_ms = sdev->use_10_for_ms;
1905
1906	if (use_10_for_ms) {
1907		if (len < 8)
1908			len = 8;
1909
1910		cmd[0] = MODE_SENSE_10;
1911		cmd[8] = len;
1912		header_length = 8;
1913	} else {
1914		if (len < 4)
1915			len = 4;
1916
1917		cmd[0] = MODE_SENSE;
1918		cmd[4] = len;
1919		header_length = 4;
1920	}
1921
1922	memset(buffer, 0, len);
1923
1924	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1925				  sshdr, timeout, retries);
1926
1927	/* This code looks awful: what it's doing is making sure an
1928	 * ILLEGAL REQUEST sense return identifies the actual command
1929	 * byte as the problem.  MODE_SENSE commands can return
1930	 * ILLEGAL REQUEST if the code page isn't supported */
1931
1932	if (use_10_for_ms && !scsi_status_is_good(result) &&
1933	    (driver_byte(result) & DRIVER_SENSE)) {
1934		if (scsi_sense_valid(sshdr)) {
1935			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1936			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1937				/*
1938				 * Invalid command operation code
1939				 */
1940				sdev->use_10_for_ms = 0;
1941				goto retry;
1942			}
1943		}
1944	}
1945
1946	if(scsi_status_is_good(result)) {
1947		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1948			     (modepage == 6 || modepage == 8))) {
1949			/* Initio breakage? */
1950			header_length = 0;
1951			data->length = 13;
1952			data->medium_type = 0;
1953			data->device_specific = 0;
1954			data->longlba = 0;
1955			data->block_descriptor_length = 0;
1956		} else if(use_10_for_ms) {
1957			data->length = buffer[0]*256 + buffer[1] + 2;
1958			data->medium_type = buffer[2];
1959			data->device_specific = buffer[3];
1960			data->longlba = buffer[4] & 0x01;
1961			data->block_descriptor_length = buffer[6]*256
1962				+ buffer[7];
1963		} else {
1964			data->length = buffer[0] + 1;
1965			data->medium_type = buffer[1];
1966			data->device_specific = buffer[2];
1967			data->block_descriptor_length = buffer[3];
1968		}
1969		data->header_length = header_length;
1970	}
1971
1972	return result;
1973}
1974EXPORT_SYMBOL(scsi_mode_sense);
1975
1976/**
1977 *	scsi_test_unit_ready - test if unit is ready
1978 *	@sdev:	scsi device to change the state of.
1979 *	@timeout: command timeout
1980 *	@retries: number of retries before failing
1981 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1982 *		returning sense. Make sure that this is cleared before passing
1983 *		in.
1984 *
1985 *	Returns zero if unsuccessful or an error if TUR failed.  For
1986 *	removable media, a return of NOT_READY or UNIT_ATTENTION is
1987 *	translated to success, with the ->changed flag updated.
1988 **/
1989int
1990scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1991		     struct scsi_sense_hdr *sshdr_external)
1992{
1993	char cmd[] = {
1994		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1995	};
1996	struct scsi_sense_hdr *sshdr;
1997	int result;
1998
1999	if (!sshdr_external)
2000		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2001	else
2002		sshdr = sshdr_external;
2003
2004	/* try to eat the UNIT_ATTENTION if there are enough retries */
2005	do {
2006		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2007					  timeout, retries);
2008	} while ((driver_byte(result) & DRIVER_SENSE) &&
2009		 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
2010		 --retries);
2011
2012	if (!sshdr)
2013		/* could not allocate sense buffer, so can't process it */
2014		return result;
2015
2016	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
2017
2018		if ((scsi_sense_valid(sshdr)) &&
2019		    ((sshdr->sense_key == UNIT_ATTENTION) ||
2020		     (sshdr->sense_key == NOT_READY))) {
2021			sdev->changed = 1;
2022			result = 0;
2023		}
2024	}
2025	if (!sshdr_external)
2026		kfree(sshdr);
2027	return result;
2028}
2029EXPORT_SYMBOL(scsi_test_unit_ready);
2030
2031/**
2032 *	scsi_device_set_state - Take the given device through the device state model.
2033 *	@sdev:	scsi device to change the state of.
2034 *	@state:	state to change to.
2035 *
2036 *	Returns zero if unsuccessful or an error if the requested
2037 *	transition is illegal.
2038 */
2039int
2040scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2041{
2042	enum scsi_device_state oldstate = sdev->sdev_state;
2043
2044	if (state == oldstate)
2045		return 0;
2046
2047	switch (state) {
2048	case SDEV_CREATED:
2049		/* There are no legal states that come back to
2050		 * created.  This is the manually initialised start
2051		 * state */
2052		goto illegal;
2053
2054	case SDEV_RUNNING:
2055		switch (oldstate) {
2056		case SDEV_CREATED:
2057		case SDEV_OFFLINE:
2058		case SDEV_QUIESCE:
2059		case SDEV_BLOCK:
2060			break;
2061		default:
2062			goto illegal;
2063		}
2064		break;
2065
2066	case SDEV_QUIESCE:
2067		switch (oldstate) {
2068		case SDEV_RUNNING:
2069		case SDEV_OFFLINE:
2070			break;
2071		default:
2072			goto illegal;
2073		}
2074		break;
2075
2076	case SDEV_OFFLINE:
2077		switch (oldstate) {
2078		case SDEV_CREATED:
2079		case SDEV_RUNNING:
2080		case SDEV_QUIESCE:
2081		case SDEV_BLOCK:
2082			break;
2083		default:
2084			goto illegal;
2085		}
2086		break;
2087
2088	case SDEV_BLOCK:
2089		switch (oldstate) {
2090		case SDEV_CREATED:
2091		case SDEV_RUNNING:
2092			break;
2093		default:
2094			goto illegal;
2095		}
2096		break;
2097
2098	case SDEV_CANCEL:
2099		switch (oldstate) {
2100		case SDEV_CREATED:
2101		case SDEV_RUNNING:
2102		case SDEV_QUIESCE:
2103		case SDEV_OFFLINE:
2104		case SDEV_BLOCK:
2105			break;
2106		default:
2107			goto illegal;
2108		}
2109		break;
2110
2111	case SDEV_DEL:
2112		switch (oldstate) {
2113		case SDEV_CREATED:
2114		case SDEV_RUNNING:
2115		case SDEV_OFFLINE:
2116		case SDEV_CANCEL:
2117			break;
2118		default:
2119			goto illegal;
2120		}
2121		break;
2122
2123	}
2124	sdev->sdev_state = state;
2125	return 0;
2126
2127 illegal:
2128	SCSI_LOG_ERROR_RECOVERY(1,
2129				sdev_printk(KERN_ERR, sdev,
2130					    "Illegal state transition %s->%s\n",
2131					    scsi_device_state_name(oldstate),
2132					    scsi_device_state_name(state))
2133				);
2134	return -EINVAL;
2135}
2136EXPORT_SYMBOL(scsi_device_set_state);
2137
2138/**
2139 * 	sdev_evt_emit - emit a single SCSI device uevent
2140 *	@sdev: associated SCSI device
2141 *	@evt: event to emit
2142 *
2143 *	Send a single uevent (scsi_event) to the associated scsi_device.
2144 */
2145static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2146{
2147	int idx = 0;
2148	char *envp[3];
2149
2150	switch (evt->evt_type) {
2151	case SDEV_EVT_MEDIA_CHANGE:
2152		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2153		break;
2154
2155	default:
2156		/* do nothing */
2157		break;
2158	}
2159
2160	envp[idx++] = NULL;
2161
2162	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2163}
2164
2165/**
2166 * 	sdev_evt_thread - send a uevent for each scsi event
2167 *	@work: work struct for scsi_device
2168 *
2169 *	Dispatch queued events to their associated scsi_device kobjects
2170 *	as uevents.
2171 */
2172void scsi_evt_thread(struct work_struct *work)
2173{
2174	struct scsi_device *sdev;
2175	LIST_HEAD(event_list);
2176
2177	sdev = container_of(work, struct scsi_device, event_work);
2178
2179	while (1) {
2180		struct scsi_event *evt;
2181		struct list_head *this, *tmp;
2182		unsigned long flags;
2183
2184		spin_lock_irqsave(&sdev->list_lock, flags);
2185		list_splice_init(&sdev->event_list, &event_list);
2186		spin_unlock_irqrestore(&sdev->list_lock, flags);
2187
2188		if (list_empty(&event_list))
2189			break;
2190
2191		list_for_each_safe(this, tmp, &event_list) {
2192			evt = list_entry(this, struct scsi_event, node);
2193			list_del(&evt->node);
2194			scsi_evt_emit(sdev, evt);
2195			kfree(evt);
2196		}
2197	}
2198}
2199
2200/**
2201 * 	sdev_evt_send - send asserted event to uevent thread
2202 *	@sdev: scsi_device event occurred on
2203 *	@evt: event to send
2204 *
2205 *	Assert scsi device event asynchronously.
2206 */
2207void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2208{
2209	unsigned long flags;
2210
2211	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2212		kfree(evt);
2213		return;
2214	}
2215
2216	spin_lock_irqsave(&sdev->list_lock, flags);
2217	list_add_tail(&evt->node, &sdev->event_list);
2218	schedule_work(&sdev->event_work);
2219	spin_unlock_irqrestore(&sdev->list_lock, flags);
2220}
2221EXPORT_SYMBOL_GPL(sdev_evt_send);
2222
2223/**
2224 * 	sdev_evt_alloc - allocate a new scsi event
2225 *	@evt_type: type of event to allocate
2226 *	@gfpflags: GFP flags for allocation
2227 *
2228 *	Allocates and returns a new scsi_event.
2229 */
2230struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2231				  gfp_t gfpflags)
2232{
2233	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2234	if (!evt)
2235		return NULL;
2236
2237	evt->evt_type = evt_type;
2238	INIT_LIST_HEAD(&evt->node);
2239
2240	/* evt_type-specific initialization, if any */
2241	switch (evt_type) {
2242	case SDEV_EVT_MEDIA_CHANGE:
2243	default:
2244		/* do nothing */
2245		break;
2246	}
2247
2248	return evt;
2249}
2250EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2251
2252/**
2253 * 	sdev_evt_send_simple - send asserted event to uevent thread
2254 *	@sdev: scsi_device event occurred on
2255 *	@evt_type: type of event to send
2256 *	@gfpflags: GFP flags for allocation
2257 *
2258 *	Assert scsi device event asynchronously, given an event type.
2259 */
2260void sdev_evt_send_simple(struct scsi_device *sdev,
2261			  enum scsi_device_event evt_type, gfp_t gfpflags)
2262{
2263	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2264	if (!evt) {
2265		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2266			    evt_type);
2267		return;
2268	}
2269
2270	sdev_evt_send(sdev, evt);
2271}
2272EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2273
2274/**
2275 *	scsi_device_quiesce - Block user issued commands.
2276 *	@sdev:	scsi device to quiesce.
2277 *
2278 *	This works by trying to transition to the SDEV_QUIESCE state
2279 *	(which must be a legal transition).  When the device is in this
2280 *	state, only special requests will be accepted, all others will
2281 *	be deferred.  Since special requests may also be requeued requests,
2282 *	a successful return doesn't guarantee the device will be
2283 *	totally quiescent.
2284 *
2285 *	Must be called with user context, may sleep.
2286 *
2287 *	Returns zero if unsuccessful or an error if not.
2288 */
2289int
2290scsi_device_quiesce(struct scsi_device *sdev)
2291{
2292	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2293	if (err)
2294		return err;
2295
2296	scsi_run_queue(sdev->request_queue);
2297	while (sdev->device_busy) {
2298		msleep_interruptible(200);
2299		scsi_run_queue(sdev->request_queue);
2300	}
2301	return 0;
2302}
2303EXPORT_SYMBOL(scsi_device_quiesce);
2304
2305/**
2306 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2307 *	@sdev:	scsi device to resume.
2308 *
2309 *	Moves the device from quiesced back to running and restarts the
2310 *	queues.
2311 *
2312 *	Must be called with user context, may sleep.
2313 */
2314void
2315scsi_device_resume(struct scsi_device *sdev)
2316{
2317	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2318		return;
2319	scsi_run_queue(sdev->request_queue);
2320}
2321EXPORT_SYMBOL(scsi_device_resume);
2322
2323static void
2324device_quiesce_fn(struct scsi_device *sdev, void *data)
2325{
2326	scsi_device_quiesce(sdev);
2327}
2328
2329void
2330scsi_target_quiesce(struct scsi_target *starget)
2331{
2332	starget_for_each_device(starget, NULL, device_quiesce_fn);
2333}
2334EXPORT_SYMBOL(scsi_target_quiesce);
2335
2336static void
2337device_resume_fn(struct scsi_device *sdev, void *data)
2338{
2339	scsi_device_resume(sdev);
2340}
2341
2342void
2343scsi_target_resume(struct scsi_target *starget)
2344{
2345	starget_for_each_device(starget, NULL, device_resume_fn);
2346}
2347EXPORT_SYMBOL(scsi_target_resume);
2348
2349/**
2350 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2351 * @sdev:	device to block
2352 *
2353 * Block request made by scsi lld's to temporarily stop all
2354 * scsi commands on the specified device.  Called from interrupt
2355 * or normal process context.
2356 *
2357 * Returns zero if successful or error if not
2358 *
2359 * Notes:
2360 *	This routine transitions the device to the SDEV_BLOCK state
2361 *	(which must be a legal transition).  When the device is in this
2362 *	state, all commands are deferred until the scsi lld reenables
2363 *	the device with scsi_device_unblock or device_block_tmo fires.
2364 *	This routine assumes the host_lock is held on entry.
2365 */
2366int
2367scsi_internal_device_block(struct scsi_device *sdev)
2368{
2369	struct request_queue *q = sdev->request_queue;
2370	unsigned long flags;
2371	int err = 0;
2372
2373	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2374	if (err)
2375		return err;
2376
2377	/*
2378	 * The device has transitioned to SDEV_BLOCK.  Stop the
2379	 * block layer from calling the midlayer with this device's
2380	 * request queue.
2381	 */
2382	spin_lock_irqsave(q->queue_lock, flags);
2383	blk_stop_queue(q);
2384	spin_unlock_irqrestore(q->queue_lock, flags);
2385
2386	return 0;
2387}
2388EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2389
2390/**
2391 * scsi_internal_device_unblock - resume a device after a block request
2392 * @sdev:	device to resume
2393 *
2394 * Called by scsi lld's or the midlayer to restart the device queue
2395 * for the previously suspended scsi device.  Called from interrupt or
2396 * normal process context.
2397 *
2398 * Returns zero if successful or error if not.
2399 *
2400 * Notes:
2401 *	This routine transitions the device to the SDEV_RUNNING state
2402 *	(which must be a legal transition) allowing the midlayer to
2403 *	goose the queue for this device.  This routine assumes the
2404 *	host_lock is held upon entry.
2405 */
2406int
2407scsi_internal_device_unblock(struct scsi_device *sdev)
2408{
2409	struct request_queue *q = sdev->request_queue;
2410	int err;
2411	unsigned long flags;
2412
2413	/*
2414	 * Try to transition the scsi device to SDEV_RUNNING
2415	 * and goose the device queue if successful.
2416	 */
2417	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2418	if (err)
2419		return err;
2420
2421	spin_lock_irqsave(q->queue_lock, flags);
2422	blk_start_queue(q);
2423	spin_unlock_irqrestore(q->queue_lock, flags);
2424
2425	return 0;
2426}
2427EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2428
2429static void
2430device_block(struct scsi_device *sdev, void *data)
2431{
2432	scsi_internal_device_block(sdev);
2433}
2434
2435static int
2436target_block(struct device *dev, void *data)
2437{
2438	if (scsi_is_target_device(dev))
2439		starget_for_each_device(to_scsi_target(dev), NULL,
2440					device_block);
2441	return 0;
2442}
2443
2444void
2445scsi_target_block(struct device *dev)
2446{
2447	if (scsi_is_target_device(dev))
2448		starget_for_each_device(to_scsi_target(dev), NULL,
2449					device_block);
2450	else
2451		device_for_each_child(dev, NULL, target_block);
2452}
2453EXPORT_SYMBOL_GPL(scsi_target_block);
2454
2455static void
2456device_unblock(struct scsi_device *sdev, void *data)
2457{
2458	scsi_internal_device_unblock(sdev);
2459}
2460
2461static int
2462target_unblock(struct device *dev, void *data)
2463{
2464	if (scsi_is_target_device(dev))
2465		starget_for_each_device(to_scsi_target(dev), NULL,
2466					device_unblock);
2467	return 0;
2468}
2469
2470void
2471scsi_target_unblock(struct device *dev)
2472{
2473	if (scsi_is_target_device(dev))
2474		starget_for_each_device(to_scsi_target(dev), NULL,
2475					device_unblock);
2476	else
2477		device_for_each_child(dev, NULL, target_unblock);
2478}
2479EXPORT_SYMBOL_GPL(scsi_target_unblock);
2480
2481/**
2482 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2483 * @sgl:	scatter-gather list
2484 * @sg_count:	number of segments in sg
2485 * @offset:	offset in bytes into sg, on return offset into the mapped area
2486 * @len:	bytes to map, on return number of bytes mapped
2487 *
2488 * Returns virtual address of the start of the mapped page
2489 */
2490void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2491			  size_t *offset, size_t *len)
2492{
2493	int i;
2494	size_t sg_len = 0, len_complete = 0;
2495	struct scatterlist *sg;
2496	struct page *page;
2497
2498	WARN_ON(!irqs_disabled());
2499
2500	for_each_sg(sgl, sg, sg_count, i) {
2501		len_complete = sg_len; /* Complete sg-entries */
2502		sg_len += sg->length;
2503		if (sg_len > *offset)
2504			break;
2505	}
2506
2507	if (unlikely(i == sg_count)) {
2508		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2509			"elements %d\n",
2510		       __FUNCTION__, sg_len, *offset, sg_count);
2511		WARN_ON(1);
2512		return NULL;
2513	}
2514
2515	/* Offset starting from the beginning of first page in this sg-entry */
2516	*offset = *offset - len_complete + sg->offset;
2517
2518	/* Assumption: contiguous pages can be accessed as "page + i" */
2519	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2520	*offset &= ~PAGE_MASK;
2521
2522	/* Bytes in this sg-entry from *offset to the end of the page */
2523	sg_len = PAGE_SIZE - *offset;
2524	if (*len > sg_len)
2525		*len = sg_len;
2526
2527	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2528}
2529EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2530
2531/**
2532 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2533 * @virt:	virtual address to be unmapped
2534 */
2535void scsi_kunmap_atomic_sg(void *virt)
2536{
2537	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2538}
2539EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2540