scsi_lib.c revision 1aa4f24fe96938cabe7a1e9da8bc3bfbd1dfe3fa
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19#include <linux/hardirq.h>
20
21#include <scsi/scsi.h>
22#include <scsi/scsi_cmnd.h>
23#include <scsi/scsi_dbg.h>
24#include <scsi/scsi_device.h>
25#include <scsi/scsi_driver.h>
26#include <scsi/scsi_eh.h>
27#include <scsi/scsi_host.h>
28
29#include "scsi_priv.h"
30#include "scsi_logging.h"
31
32
33#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
34#define SG_MEMPOOL_SIZE		32
35
36struct scsi_host_sg_pool {
37	size_t		size;
38	char		*name;
39	struct kmem_cache	*slab;
40	mempool_t	*pool;
41};
42
43#if (SCSI_MAX_PHYS_SEGMENTS < 32)
44#error SCSI_MAX_PHYS_SEGMENTS is too small
45#endif
46
47#define SP(x) { x, "sgpool-" #x }
48static struct scsi_host_sg_pool scsi_sg_pools[] = {
49	SP(8),
50	SP(16),
51	SP(32),
52#if (SCSI_MAX_PHYS_SEGMENTS > 32)
53	SP(64),
54#if (SCSI_MAX_PHYS_SEGMENTS > 64)
55	SP(128),
56#if (SCSI_MAX_PHYS_SEGMENTS > 128)
57	SP(256),
58#if (SCSI_MAX_PHYS_SEGMENTS > 256)
59#error SCSI_MAX_PHYS_SEGMENTS is too large
60#endif
61#endif
62#endif
63#endif
64};
65#undef SP
66
67static void scsi_run_queue(struct request_queue *q);
68
69/*
70 * Function:	scsi_unprep_request()
71 *
72 * Purpose:	Remove all preparation done for a request, including its
73 *		associated scsi_cmnd, so that it can be requeued.
74 *
75 * Arguments:	req	- request to unprepare
76 *
77 * Lock status:	Assumed that no locks are held upon entry.
78 *
79 * Returns:	Nothing.
80 */
81static void scsi_unprep_request(struct request *req)
82{
83	struct scsi_cmnd *cmd = req->special;
84
85	req->cmd_flags &= ~REQ_DONTPREP;
86	req->special = NULL;
87
88	scsi_put_command(cmd);
89}
90
91/*
92 * Function:    scsi_queue_insert()
93 *
94 * Purpose:     Insert a command in the midlevel queue.
95 *
96 * Arguments:   cmd    - command that we are adding to queue.
97 *              reason - why we are inserting command to queue.
98 *
99 * Lock status: Assumed that lock is not held upon entry.
100 *
101 * Returns:     Nothing.
102 *
103 * Notes:       We do this for one of two cases.  Either the host is busy
104 *              and it cannot accept any more commands for the time being,
105 *              or the device returned QUEUE_FULL and can accept no more
106 *              commands.
107 * Notes:       This could be called either from an interrupt context or a
108 *              normal process context.
109 */
110int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111{
112	struct Scsi_Host *host = cmd->device->host;
113	struct scsi_device *device = cmd->device;
114	struct request_queue *q = device->request_queue;
115	unsigned long flags;
116
117	SCSI_LOG_MLQUEUE(1,
118		 printk("Inserting command %p into mlqueue\n", cmd));
119
120	/*
121	 * Set the appropriate busy bit for the device/host.
122	 *
123	 * If the host/device isn't busy, assume that something actually
124	 * completed, and that we should be able to queue a command now.
125	 *
126	 * Note that the prior mid-layer assumption that any host could
127	 * always queue at least one command is now broken.  The mid-layer
128	 * will implement a user specifiable stall (see
129	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130	 * if a command is requeued with no other commands outstanding
131	 * either for the device or for the host.
132	 */
133	if (reason == SCSI_MLQUEUE_HOST_BUSY)
134		host->host_blocked = host->max_host_blocked;
135	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136		device->device_blocked = device->max_device_blocked;
137
138	/*
139	 * Decrement the counters, since these commands are no longer
140	 * active on the host/device.
141	 */
142	scsi_device_unbusy(device);
143
144	/*
145	 * Requeue this command.  It will go before all other commands
146	 * that are already in the queue.
147	 *
148	 * NOTE: there is magic here about the way the queue is plugged if
149	 * we have no outstanding commands.
150	 *
151	 * Although we *don't* plug the queue, we call the request
152	 * function.  The SCSI request function detects the blocked condition
153	 * and plugs the queue appropriately.
154         */
155	spin_lock_irqsave(q->queue_lock, flags);
156	blk_requeue_request(q, cmd->request);
157	spin_unlock_irqrestore(q->queue_lock, flags);
158
159	scsi_run_queue(q);
160
161	return 0;
162}
163
164/**
165 * scsi_execute - insert request and wait for the result
166 * @sdev:	scsi device
167 * @cmd:	scsi command
168 * @data_direction: data direction
169 * @buffer:	data buffer
170 * @bufflen:	len of buffer
171 * @sense:	optional sense buffer
172 * @timeout:	request timeout in seconds
173 * @retries:	number of times to retry request
174 * @flags:	or into request flags;
175 *
176 * returns the req->errors value which is the the scsi_cmnd result
177 * field.
178 **/
179int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180		 int data_direction, void *buffer, unsigned bufflen,
181		 unsigned char *sense, int timeout, int retries, int flags)
182{
183	struct request *req;
184	int write = (data_direction == DMA_TO_DEVICE);
185	int ret = DRIVER_ERROR << 24;
186
187	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
190					buffer, bufflen, __GFP_WAIT))
191		goto out;
192
193	req->cmd_len = COMMAND_SIZE(cmd[0]);
194	memcpy(req->cmd, cmd, req->cmd_len);
195	req->sense = sense;
196	req->sense_len = 0;
197	req->retries = retries;
198	req->timeout = timeout;
199	req->cmd_type = REQ_TYPE_BLOCK_PC;
200	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202	/*
203	 * head injection *required* here otherwise quiesce won't work
204	 */
205	blk_execute_rq(req->q, NULL, req, 1);
206
207	ret = req->errors;
208 out:
209	blk_put_request(req);
210
211	return ret;
212}
213EXPORT_SYMBOL(scsi_execute);
214
215
216int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217		     int data_direction, void *buffer, unsigned bufflen,
218		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
219{
220	char *sense = NULL;
221	int result;
222
223	if (sshdr) {
224		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225		if (!sense)
226			return DRIVER_ERROR << 24;
227	}
228	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229			      sense, timeout, retries, 0);
230	if (sshdr)
231		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233	kfree(sense);
234	return result;
235}
236EXPORT_SYMBOL(scsi_execute_req);
237
238struct scsi_io_context {
239	void *data;
240	void (*done)(void *data, char *sense, int result, int resid);
241	char sense[SCSI_SENSE_BUFFERSIZE];
242};
243
244static struct kmem_cache *scsi_io_context_cache;
245
246static void scsi_end_async(struct request *req, int uptodate)
247{
248	struct scsi_io_context *sioc = req->end_io_data;
249
250	if (sioc->done)
251		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253	kmem_cache_free(scsi_io_context_cache, sioc);
254	__blk_put_request(req->q, req);
255}
256
257static int scsi_merge_bio(struct request *rq, struct bio *bio)
258{
259	struct request_queue *q = rq->q;
260
261	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262	if (rq_data_dir(rq) == WRITE)
263		bio->bi_rw |= (1 << BIO_RW);
264	blk_queue_bounce(q, &bio);
265
266	if (!rq->bio)
267		blk_rq_bio_prep(q, rq, bio);
268	else if (!ll_back_merge_fn(q, rq, bio))
269		return -EINVAL;
270	else {
271		rq->biotail->bi_next = bio;
272		rq->biotail = bio;
273	}
274
275	return 0;
276}
277
278static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
279{
280	if (bio->bi_size)
281		return 1;
282
283	bio_put(bio);
284	return 0;
285}
286
287/**
288 * scsi_req_map_sg - map a scatterlist into a request
289 * @rq:		request to fill
290 * @sg:		scatterlist
291 * @nsegs:	number of elements
292 * @bufflen:	len of buffer
293 * @gfp:	memory allocation flags
294 *
295 * scsi_req_map_sg maps a scatterlist into a request so that the
296 * request can be sent to the block layer. We do not trust the scatterlist
297 * sent to use, as some ULDs use that struct to only organize the pages.
298 */
299static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
300			   int nsegs, unsigned bufflen, gfp_t gfp)
301{
302	struct request_queue *q = rq->q;
303	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
304	unsigned int data_len = 0, len, bytes, off;
305	struct page *page;
306	struct bio *bio = NULL;
307	int i, err, nr_vecs = 0;
308
309	for (i = 0; i < nsegs; i++) {
310		page = sgl[i].page;
311		off = sgl[i].offset;
312		len = sgl[i].length;
313		data_len += len;
314
315		while (len > 0) {
316			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
317
318			if (!bio) {
319				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
320				nr_pages -= nr_vecs;
321
322				bio = bio_alloc(gfp, nr_vecs);
323				if (!bio) {
324					err = -ENOMEM;
325					goto free_bios;
326				}
327				bio->bi_end_io = scsi_bi_endio;
328			}
329
330			if (bio_add_pc_page(q, bio, page, bytes, off) !=
331			    bytes) {
332				bio_put(bio);
333				err = -EINVAL;
334				goto free_bios;
335			}
336
337			if (bio->bi_vcnt >= nr_vecs) {
338				err = scsi_merge_bio(rq, bio);
339				if (err) {
340					bio_endio(bio, bio->bi_size, 0);
341					goto free_bios;
342				}
343				bio = NULL;
344			}
345
346			page++;
347			len -= bytes;
348			off = 0;
349		}
350	}
351
352	rq->buffer = rq->data = NULL;
353	rq->data_len = data_len;
354	return 0;
355
356free_bios:
357	while ((bio = rq->bio) != NULL) {
358		rq->bio = bio->bi_next;
359		/*
360		 * call endio instead of bio_put incase it was bounced
361		 */
362		bio_endio(bio, bio->bi_size, 0);
363	}
364
365	return err;
366}
367
368/**
369 * scsi_execute_async - insert request
370 * @sdev:	scsi device
371 * @cmd:	scsi command
372 * @cmd_len:	length of scsi cdb
373 * @data_direction: data direction
374 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
375 * @bufflen:	len of buffer
376 * @use_sg:	if buffer is a scatterlist this is the number of elements
377 * @timeout:	request timeout in seconds
378 * @retries:	number of times to retry request
379 * @flags:	or into request flags
380 **/
381int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
382		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
383		       int use_sg, int timeout, int retries, void *privdata,
384		       void (*done)(void *, char *, int, int), gfp_t gfp)
385{
386	struct request *req;
387	struct scsi_io_context *sioc;
388	int err = 0;
389	int write = (data_direction == DMA_TO_DEVICE);
390
391	sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
392	if (!sioc)
393		return DRIVER_ERROR << 24;
394	memset(sioc, 0, sizeof(*sioc));
395
396	req = blk_get_request(sdev->request_queue, write, gfp);
397	if (!req)
398		goto free_sense;
399	req->cmd_type = REQ_TYPE_BLOCK_PC;
400	req->cmd_flags |= REQ_QUIET;
401
402	if (use_sg)
403		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
404	else if (bufflen)
405		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
406
407	if (err)
408		goto free_req;
409
410	req->cmd_len = cmd_len;
411	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
412	memcpy(req->cmd, cmd, req->cmd_len);
413	req->sense = sioc->sense;
414	req->sense_len = 0;
415	req->timeout = timeout;
416	req->retries = retries;
417	req->end_io_data = sioc;
418
419	sioc->data = privdata;
420	sioc->done = done;
421
422	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
423	return 0;
424
425free_req:
426	blk_put_request(req);
427free_sense:
428	kmem_cache_free(scsi_io_context_cache, sioc);
429	return DRIVER_ERROR << 24;
430}
431EXPORT_SYMBOL_GPL(scsi_execute_async);
432
433/*
434 * Function:    scsi_init_cmd_errh()
435 *
436 * Purpose:     Initialize cmd fields related to error handling.
437 *
438 * Arguments:   cmd	- command that is ready to be queued.
439 *
440 * Notes:       This function has the job of initializing a number of
441 *              fields related to error handling.   Typically this will
442 *              be called once for each command, as required.
443 */
444static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
445{
446	cmd->serial_number = 0;
447	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
448	if (cmd->cmd_len == 0)
449		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
450}
451
452void scsi_device_unbusy(struct scsi_device *sdev)
453{
454	struct Scsi_Host *shost = sdev->host;
455	unsigned long flags;
456
457	spin_lock_irqsave(shost->host_lock, flags);
458	shost->host_busy--;
459	if (unlikely(scsi_host_in_recovery(shost) &&
460		     (shost->host_failed || shost->host_eh_scheduled)))
461		scsi_eh_wakeup(shost);
462	spin_unlock(shost->host_lock);
463	spin_lock(sdev->request_queue->queue_lock);
464	sdev->device_busy--;
465	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
466}
467
468/*
469 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
470 * and call blk_run_queue for all the scsi_devices on the target -
471 * including current_sdev first.
472 *
473 * Called with *no* scsi locks held.
474 */
475static void scsi_single_lun_run(struct scsi_device *current_sdev)
476{
477	struct Scsi_Host *shost = current_sdev->host;
478	struct scsi_device *sdev, *tmp;
479	struct scsi_target *starget = scsi_target(current_sdev);
480	unsigned long flags;
481
482	spin_lock_irqsave(shost->host_lock, flags);
483	starget->starget_sdev_user = NULL;
484	spin_unlock_irqrestore(shost->host_lock, flags);
485
486	/*
487	 * Call blk_run_queue for all LUNs on the target, starting with
488	 * current_sdev. We race with others (to set starget_sdev_user),
489	 * but in most cases, we will be first. Ideally, each LU on the
490	 * target would get some limited time or requests on the target.
491	 */
492	blk_run_queue(current_sdev->request_queue);
493
494	spin_lock_irqsave(shost->host_lock, flags);
495	if (starget->starget_sdev_user)
496		goto out;
497	list_for_each_entry_safe(sdev, tmp, &starget->devices,
498			same_target_siblings) {
499		if (sdev == current_sdev)
500			continue;
501		if (scsi_device_get(sdev))
502			continue;
503
504		spin_unlock_irqrestore(shost->host_lock, flags);
505		blk_run_queue(sdev->request_queue);
506		spin_lock_irqsave(shost->host_lock, flags);
507
508		scsi_device_put(sdev);
509	}
510 out:
511	spin_unlock_irqrestore(shost->host_lock, flags);
512}
513
514/*
515 * Function:	scsi_run_queue()
516 *
517 * Purpose:	Select a proper request queue to serve next
518 *
519 * Arguments:	q	- last request's queue
520 *
521 * Returns:     Nothing
522 *
523 * Notes:	The previous command was completely finished, start
524 *		a new one if possible.
525 */
526static void scsi_run_queue(struct request_queue *q)
527{
528	struct scsi_device *sdev = q->queuedata;
529	struct Scsi_Host *shost = sdev->host;
530	unsigned long flags;
531
532	if (sdev->single_lun)
533		scsi_single_lun_run(sdev);
534
535	spin_lock_irqsave(shost->host_lock, flags);
536	while (!list_empty(&shost->starved_list) &&
537	       !shost->host_blocked && !shost->host_self_blocked &&
538		!((shost->can_queue > 0) &&
539		  (shost->host_busy >= shost->can_queue))) {
540		/*
541		 * As long as shost is accepting commands and we have
542		 * starved queues, call blk_run_queue. scsi_request_fn
543		 * drops the queue_lock and can add us back to the
544		 * starved_list.
545		 *
546		 * host_lock protects the starved_list and starved_entry.
547		 * scsi_request_fn must get the host_lock before checking
548		 * or modifying starved_list or starved_entry.
549		 */
550		sdev = list_entry(shost->starved_list.next,
551					  struct scsi_device, starved_entry);
552		list_del_init(&sdev->starved_entry);
553		spin_unlock_irqrestore(shost->host_lock, flags);
554
555
556		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
557		    !test_and_set_bit(QUEUE_FLAG_REENTER,
558				      &sdev->request_queue->queue_flags)) {
559			blk_run_queue(sdev->request_queue);
560			clear_bit(QUEUE_FLAG_REENTER,
561				  &sdev->request_queue->queue_flags);
562		} else
563			blk_run_queue(sdev->request_queue);
564
565		spin_lock_irqsave(shost->host_lock, flags);
566		if (unlikely(!list_empty(&sdev->starved_entry)))
567			/*
568			 * sdev lost a race, and was put back on the
569			 * starved list. This is unlikely but without this
570			 * in theory we could loop forever.
571			 */
572			break;
573	}
574	spin_unlock_irqrestore(shost->host_lock, flags);
575
576	blk_run_queue(q);
577}
578
579/*
580 * Function:	scsi_requeue_command()
581 *
582 * Purpose:	Handle post-processing of completed commands.
583 *
584 * Arguments:	q	- queue to operate on
585 *		cmd	- command that may need to be requeued.
586 *
587 * Returns:	Nothing
588 *
589 * Notes:	After command completion, there may be blocks left
590 *		over which weren't finished by the previous command
591 *		this can be for a number of reasons - the main one is
592 *		I/O errors in the middle of the request, in which case
593 *		we need to request the blocks that come after the bad
594 *		sector.
595 * Notes:	Upon return, cmd is a stale pointer.
596 */
597static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
598{
599	struct request *req = cmd->request;
600	unsigned long flags;
601
602	scsi_unprep_request(req);
603	spin_lock_irqsave(q->queue_lock, flags);
604	blk_requeue_request(q, req);
605	spin_unlock_irqrestore(q->queue_lock, flags);
606
607	scsi_run_queue(q);
608}
609
610void scsi_next_command(struct scsi_cmnd *cmd)
611{
612	struct scsi_device *sdev = cmd->device;
613	struct request_queue *q = sdev->request_queue;
614
615	/* need to hold a reference on the device before we let go of the cmd */
616	get_device(&sdev->sdev_gendev);
617
618	scsi_put_command(cmd);
619	scsi_run_queue(q);
620
621	/* ok to remove device now */
622	put_device(&sdev->sdev_gendev);
623}
624
625void scsi_run_host_queues(struct Scsi_Host *shost)
626{
627	struct scsi_device *sdev;
628
629	shost_for_each_device(sdev, shost)
630		scsi_run_queue(sdev->request_queue);
631}
632
633/*
634 * Function:    scsi_end_request()
635 *
636 * Purpose:     Post-processing of completed commands (usually invoked at end
637 *		of upper level post-processing and scsi_io_completion).
638 *
639 * Arguments:   cmd	 - command that is complete.
640 *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
641 *              bytes    - number of bytes of completed I/O
642 *		requeue  - indicates whether we should requeue leftovers.
643 *
644 * Lock status: Assumed that lock is not held upon entry.
645 *
646 * Returns:     cmd if requeue required, NULL otherwise.
647 *
648 * Notes:       This is called for block device requests in order to
649 *              mark some number of sectors as complete.
650 *
651 *		We are guaranteeing that the request queue will be goosed
652 *		at some point during this call.
653 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
654 */
655static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
656					  int bytes, int requeue)
657{
658	request_queue_t *q = cmd->device->request_queue;
659	struct request *req = cmd->request;
660	unsigned long flags;
661
662	/*
663	 * If there are blocks left over at the end, set up the command
664	 * to queue the remainder of them.
665	 */
666	if (end_that_request_chunk(req, uptodate, bytes)) {
667		int leftover = (req->hard_nr_sectors << 9);
668
669		if (blk_pc_request(req))
670			leftover = req->data_len;
671
672		/* kill remainder if no retrys */
673		if (!uptodate && blk_noretry_request(req))
674			end_that_request_chunk(req, 0, leftover);
675		else {
676			if (requeue) {
677				/*
678				 * Bleah.  Leftovers again.  Stick the
679				 * leftovers in the front of the
680				 * queue, and goose the queue again.
681				 */
682				scsi_requeue_command(q, cmd);
683				cmd = NULL;
684			}
685			return cmd;
686		}
687	}
688
689	add_disk_randomness(req->rq_disk);
690
691	spin_lock_irqsave(q->queue_lock, flags);
692	if (blk_rq_tagged(req))
693		blk_queue_end_tag(q, req);
694	end_that_request_last(req, uptodate);
695	spin_unlock_irqrestore(q->queue_lock, flags);
696
697	/*
698	 * This will goose the queue request function at the end, so we don't
699	 * need to worry about launching another command.
700	 */
701	scsi_next_command(cmd);
702	return NULL;
703}
704
705struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
706{
707	struct scsi_host_sg_pool *sgp;
708	struct scatterlist *sgl;
709
710	BUG_ON(!cmd->use_sg);
711
712	switch (cmd->use_sg) {
713	case 1 ... 8:
714		cmd->sglist_len = 0;
715		break;
716	case 9 ... 16:
717		cmd->sglist_len = 1;
718		break;
719	case 17 ... 32:
720		cmd->sglist_len = 2;
721		break;
722#if (SCSI_MAX_PHYS_SEGMENTS > 32)
723	case 33 ... 64:
724		cmd->sglist_len = 3;
725		break;
726#if (SCSI_MAX_PHYS_SEGMENTS > 64)
727	case 65 ... 128:
728		cmd->sglist_len = 4;
729		break;
730#if (SCSI_MAX_PHYS_SEGMENTS  > 128)
731	case 129 ... 256:
732		cmd->sglist_len = 5;
733		break;
734#endif
735#endif
736#endif
737	default:
738		return NULL;
739	}
740
741	sgp = scsi_sg_pools + cmd->sglist_len;
742	sgl = mempool_alloc(sgp->pool, gfp_mask);
743	return sgl;
744}
745
746EXPORT_SYMBOL(scsi_alloc_sgtable);
747
748void scsi_free_sgtable(struct scatterlist *sgl, int index)
749{
750	struct scsi_host_sg_pool *sgp;
751
752	BUG_ON(index >= SG_MEMPOOL_NR);
753
754	sgp = scsi_sg_pools + index;
755	mempool_free(sgl, sgp->pool);
756}
757
758EXPORT_SYMBOL(scsi_free_sgtable);
759
760/*
761 * Function:    scsi_release_buffers()
762 *
763 * Purpose:     Completion processing for block device I/O requests.
764 *
765 * Arguments:   cmd	- command that we are bailing.
766 *
767 * Lock status: Assumed that no lock is held upon entry.
768 *
769 * Returns:     Nothing
770 *
771 * Notes:       In the event that an upper level driver rejects a
772 *		command, we must release resources allocated during
773 *		the __init_io() function.  Primarily this would involve
774 *		the scatter-gather table, and potentially any bounce
775 *		buffers.
776 */
777static void scsi_release_buffers(struct scsi_cmnd *cmd)
778{
779	if (cmd->use_sg)
780		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
781
782	/*
783	 * Zero these out.  They now point to freed memory, and it is
784	 * dangerous to hang onto the pointers.
785	 */
786	cmd->request_buffer = NULL;
787	cmd->request_bufflen = 0;
788}
789
790/*
791 * Function:    scsi_io_completion()
792 *
793 * Purpose:     Completion processing for block device I/O requests.
794 *
795 * Arguments:   cmd   - command that is finished.
796 *
797 * Lock status: Assumed that no lock is held upon entry.
798 *
799 * Returns:     Nothing
800 *
801 * Notes:       This function is matched in terms of capabilities to
802 *              the function that created the scatter-gather list.
803 *              In other words, if there are no bounce buffers
804 *              (the normal case for most drivers), we don't need
805 *              the logic to deal with cleaning up afterwards.
806 *
807 *		We must do one of several things here:
808 *
809 *		a) Call scsi_end_request.  This will finish off the
810 *		   specified number of sectors.  If we are done, the
811 *		   command block will be released, and the queue
812 *		   function will be goosed.  If we are not done, then
813 *		   scsi_end_request will directly goose the queue.
814 *
815 *		b) We can just use scsi_requeue_command() here.  This would
816 *		   be used if we just wanted to retry, for example.
817 */
818void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
819{
820	int result = cmd->result;
821	int this_count = cmd->request_bufflen;
822	request_queue_t *q = cmd->device->request_queue;
823	struct request *req = cmd->request;
824	int clear_errors = 1;
825	struct scsi_sense_hdr sshdr;
826	int sense_valid = 0;
827	int sense_deferred = 0;
828
829	scsi_release_buffers(cmd);
830
831	if (result) {
832		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
833		if (sense_valid)
834			sense_deferred = scsi_sense_is_deferred(&sshdr);
835	}
836
837	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
838		req->errors = result;
839		if (result) {
840			clear_errors = 0;
841			if (sense_valid && req->sense) {
842				/*
843				 * SG_IO wants current and deferred errors
844				 */
845				int len = 8 + cmd->sense_buffer[7];
846
847				if (len > SCSI_SENSE_BUFFERSIZE)
848					len = SCSI_SENSE_BUFFERSIZE;
849				memcpy(req->sense, cmd->sense_buffer,  len);
850				req->sense_len = len;
851			}
852		} else
853			req->data_len = cmd->resid;
854	}
855
856	/*
857	 * Next deal with any sectors which we were able to correctly
858	 * handle.
859	 */
860	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
861				      "%d bytes done.\n",
862				      req->nr_sectors, good_bytes));
863	SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
864
865	if (clear_errors)
866		req->errors = 0;
867
868	/* A number of bytes were successfully read.  If there
869	 * are leftovers and there is some kind of error
870	 * (result != 0), retry the rest.
871	 */
872	if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
873		return;
874
875	/* good_bytes = 0, or (inclusive) there were leftovers and
876	 * result = 0, so scsi_end_request couldn't retry.
877	 */
878	if (sense_valid && !sense_deferred) {
879		switch (sshdr.sense_key) {
880		case UNIT_ATTENTION:
881			if (cmd->device->removable) {
882				/* Detected disc change.  Set a bit
883				 * and quietly refuse further access.
884				 */
885				cmd->device->changed = 1;
886				scsi_end_request(cmd, 0, this_count, 1);
887				return;
888			} else {
889				/* Must have been a power glitch, or a
890				 * bus reset.  Could not have been a
891				 * media change, so we just retry the
892				 * request and see what happens.
893				 */
894				scsi_requeue_command(q, cmd);
895				return;
896			}
897			break;
898		case ILLEGAL_REQUEST:
899			/* If we had an ILLEGAL REQUEST returned, then
900			 * we may have performed an unsupported
901			 * command.  The only thing this should be
902			 * would be a ten byte read where only a six
903			 * byte read was supported.  Also, on a system
904			 * where READ CAPACITY failed, we may have
905			 * read past the end of the disk.
906			 */
907			if ((cmd->device->use_10_for_rw &&
908			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
909			    (cmd->cmnd[0] == READ_10 ||
910			     cmd->cmnd[0] == WRITE_10)) {
911				cmd->device->use_10_for_rw = 0;
912				/* This will cause a retry with a
913				 * 6-byte command.
914				 */
915				scsi_requeue_command(q, cmd);
916				return;
917			} else {
918				scsi_end_request(cmd, 0, this_count, 1);
919				return;
920			}
921			break;
922		case NOT_READY:
923			/* If the device is in the process of becoming
924			 * ready, or has a temporary blockage, retry.
925			 */
926			if (sshdr.asc == 0x04) {
927				switch (sshdr.ascq) {
928				case 0x01: /* becoming ready */
929				case 0x04: /* format in progress */
930				case 0x05: /* rebuild in progress */
931				case 0x06: /* recalculation in progress */
932				case 0x07: /* operation in progress */
933				case 0x08: /* Long write in progress */
934				case 0x09: /* self test in progress */
935					scsi_requeue_command(q, cmd);
936					return;
937				default:
938					break;
939				}
940			}
941			if (!(req->cmd_flags & REQ_QUIET)) {
942				scmd_printk(KERN_INFO, cmd,
943					    "Device not ready: ");
944				scsi_print_sense_hdr("", &sshdr);
945			}
946			scsi_end_request(cmd, 0, this_count, 1);
947			return;
948		case VOLUME_OVERFLOW:
949			if (!(req->cmd_flags & REQ_QUIET)) {
950				scmd_printk(KERN_INFO, cmd,
951					    "Volume overflow, CDB: ");
952				__scsi_print_command(cmd->cmnd);
953				scsi_print_sense("", cmd);
954			}
955			/* See SSC3rXX or current. */
956			scsi_end_request(cmd, 0, this_count, 1);
957			return;
958		default:
959			break;
960		}
961	}
962	if (host_byte(result) == DID_RESET) {
963		/* Third party bus reset or reset for error recovery
964		 * reasons.  Just retry the request and see what
965		 * happens.
966		 */
967		scsi_requeue_command(q, cmd);
968		return;
969	}
970	if (result) {
971		if (!(req->cmd_flags & REQ_QUIET)) {
972			scmd_printk(KERN_INFO, cmd,
973				    "SCSI error: return code = 0x%08x\n",
974				    result);
975			if (driver_byte(result) & DRIVER_SENSE)
976				scsi_print_sense("", cmd);
977		}
978	}
979	scsi_end_request(cmd, 0, this_count, !result);
980}
981EXPORT_SYMBOL(scsi_io_completion);
982
983/*
984 * Function:    scsi_init_io()
985 *
986 * Purpose:     SCSI I/O initialize function.
987 *
988 * Arguments:   cmd   - Command descriptor we wish to initialize
989 *
990 * Returns:     0 on success
991 *		BLKPREP_DEFER if the failure is retryable
992 *		BLKPREP_KILL if the failure is fatal
993 */
994static int scsi_init_io(struct scsi_cmnd *cmd)
995{
996	struct request     *req = cmd->request;
997	struct scatterlist *sgpnt;
998	int		   count;
999
1000	/*
1001	 * We used to not use scatter-gather for single segment request,
1002	 * but now we do (it makes highmem I/O easier to support without
1003	 * kmapping pages)
1004	 */
1005	cmd->use_sg = req->nr_phys_segments;
1006
1007	/*
1008	 * If sg table allocation fails, requeue request later.
1009	 */
1010	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1011	if (unlikely(!sgpnt)) {
1012		scsi_unprep_request(req);
1013		return BLKPREP_DEFER;
1014	}
1015
1016	req->buffer = NULL;
1017	cmd->request_buffer = (char *) sgpnt;
1018	if (blk_pc_request(req))
1019		cmd->request_bufflen = req->data_len;
1020	else
1021		cmd->request_bufflen = req->nr_sectors << 9;
1022
1023	/*
1024	 * Next, walk the list, and fill in the addresses and sizes of
1025	 * each segment.
1026	 */
1027	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1028	if (likely(count <= cmd->use_sg)) {
1029		cmd->use_sg = count;
1030		return BLKPREP_OK;
1031	}
1032
1033	printk(KERN_ERR "Incorrect number of segments after building list\n");
1034	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1035	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1036			req->current_nr_sectors);
1037
1038	/* release the command and kill it */
1039	scsi_release_buffers(cmd);
1040	scsi_put_command(cmd);
1041	return BLKPREP_KILL;
1042}
1043
1044static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1045			       sector_t *error_sector)
1046{
1047	struct scsi_device *sdev = q->queuedata;
1048	struct scsi_driver *drv;
1049
1050	if (sdev->sdev_state != SDEV_RUNNING)
1051		return -ENXIO;
1052
1053	drv = *(struct scsi_driver **) disk->private_data;
1054	if (drv->issue_flush)
1055		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1056
1057	return -EOPNOTSUPP;
1058}
1059
1060static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1061		struct request *req)
1062{
1063	struct scsi_cmnd *cmd;
1064
1065	if (!req->special) {
1066		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1067		if (unlikely(!cmd))
1068			return NULL;
1069		req->special = cmd;
1070	} else {
1071		cmd = req->special;
1072	}
1073
1074	/* pull a tag out of the request if we have one */
1075	cmd->tag = req->tag;
1076	cmd->request = req;
1077
1078	return cmd;
1079}
1080
1081static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1082{
1083	BUG_ON(!blk_pc_request(cmd->request));
1084	/*
1085	 * This will complete the whole command with uptodate=1 so
1086	 * as far as the block layer is concerned the command completed
1087	 * successfully. Since this is a REQ_BLOCK_PC command the
1088	 * caller should check the request's errors value
1089	 */
1090	scsi_io_completion(cmd, cmd->request_bufflen);
1091}
1092
1093static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1094{
1095	struct scsi_cmnd *cmd;
1096
1097	cmd = scsi_get_cmd_from_req(sdev, req);
1098	if (unlikely(!cmd))
1099		return BLKPREP_DEFER;
1100
1101	/*
1102	 * BLOCK_PC requests may transfer data, in which case they must
1103	 * a bio attached to them.  Or they might contain a SCSI command
1104	 * that does not transfer data, in which case they may optionally
1105	 * submit a request without an attached bio.
1106	 */
1107	if (req->bio) {
1108		int ret;
1109
1110		BUG_ON(!req->nr_phys_segments);
1111
1112		ret = scsi_init_io(cmd);
1113		if (unlikely(ret))
1114			return ret;
1115	} else {
1116		BUG_ON(req->data_len);
1117		BUG_ON(req->data);
1118
1119		cmd->request_bufflen = 0;
1120		cmd->request_buffer = NULL;
1121		cmd->use_sg = 0;
1122		req->buffer = NULL;
1123	}
1124
1125	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1126	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1127	cmd->cmd_len = req->cmd_len;
1128	if (!req->data_len)
1129		cmd->sc_data_direction = DMA_NONE;
1130	else if (rq_data_dir(req) == WRITE)
1131		cmd->sc_data_direction = DMA_TO_DEVICE;
1132	else
1133		cmd->sc_data_direction = DMA_FROM_DEVICE;
1134
1135	cmd->transfersize = req->data_len;
1136	cmd->allowed = req->retries;
1137	cmd->timeout_per_command = req->timeout;
1138	cmd->done = scsi_blk_pc_done;
1139	return BLKPREP_OK;
1140}
1141
1142/*
1143 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1144 * from filesystems that still need to be translated to SCSI CDBs from
1145 * the ULD.
1146 */
1147static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1148{
1149	struct scsi_cmnd *cmd;
1150	struct scsi_driver *drv;
1151	int ret;
1152
1153	/*
1154	 * Filesystem requests must transfer data.
1155	 */
1156	BUG_ON(!req->nr_phys_segments);
1157
1158	cmd = scsi_get_cmd_from_req(sdev, req);
1159	if (unlikely(!cmd))
1160		return BLKPREP_DEFER;
1161
1162	ret = scsi_init_io(cmd);
1163	if (unlikely(ret))
1164		return ret;
1165
1166	/*
1167	 * Initialize the actual SCSI command for this request.
1168	 */
1169	drv = *(struct scsi_driver **)req->rq_disk->private_data;
1170	if (unlikely(!drv->init_command(cmd))) {
1171		scsi_release_buffers(cmd);
1172		scsi_put_command(cmd);
1173		return BLKPREP_KILL;
1174	}
1175
1176	return BLKPREP_OK;
1177}
1178
1179static int scsi_prep_fn(struct request_queue *q, struct request *req)
1180{
1181	struct scsi_device *sdev = q->queuedata;
1182	int ret = BLKPREP_OK;
1183
1184	/*
1185	 * If the device is not in running state we will reject some
1186	 * or all commands.
1187	 */
1188	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1189		switch (sdev->sdev_state) {
1190		case SDEV_OFFLINE:
1191			/*
1192			 * If the device is offline we refuse to process any
1193			 * commands.  The device must be brought online
1194			 * before trying any recovery commands.
1195			 */
1196			sdev_printk(KERN_ERR, sdev,
1197				    "rejecting I/O to offline device\n");
1198			ret = BLKPREP_KILL;
1199			break;
1200		case SDEV_DEL:
1201			/*
1202			 * If the device is fully deleted, we refuse to
1203			 * process any commands as well.
1204			 */
1205			sdev_printk(KERN_ERR, sdev,
1206				    "rejecting I/O to dead device\n");
1207			ret = BLKPREP_KILL;
1208			break;
1209		case SDEV_QUIESCE:
1210		case SDEV_BLOCK:
1211			/*
1212			 * If the devices is blocked we defer normal commands.
1213			 */
1214			if (!(req->cmd_flags & REQ_PREEMPT))
1215				ret = BLKPREP_DEFER;
1216			break;
1217		default:
1218			/*
1219			 * For any other not fully online state we only allow
1220			 * special commands.  In particular any user initiated
1221			 * command is not allowed.
1222			 */
1223			if (!(req->cmd_flags & REQ_PREEMPT))
1224				ret = BLKPREP_KILL;
1225			break;
1226		}
1227
1228		if (ret != BLKPREP_OK)
1229			goto out;
1230	}
1231
1232	switch (req->cmd_type) {
1233	case REQ_TYPE_BLOCK_PC:
1234		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1235		break;
1236	case REQ_TYPE_FS:
1237		ret = scsi_setup_fs_cmnd(sdev, req);
1238		break;
1239	default:
1240		/*
1241		 * All other command types are not supported.
1242		 *
1243		 * Note that these days the SCSI subsystem does not use
1244		 * REQ_TYPE_SPECIAL requests anymore.  These are only used
1245		 * (directly or via blk_insert_request) by non-SCSI drivers.
1246		 */
1247		blk_dump_rq_flags(req, "SCSI bad req");
1248		ret = BLKPREP_KILL;
1249		break;
1250	}
1251
1252 out:
1253	switch (ret) {
1254	case BLKPREP_KILL:
1255		req->errors = DID_NO_CONNECT << 16;
1256		break;
1257	case BLKPREP_DEFER:
1258		/*
1259		 * If we defer, the elv_next_request() returns NULL, but the
1260		 * queue must be restarted, so we plug here if no returning
1261		 * command will automatically do that.
1262		 */
1263		if (sdev->device_busy == 0)
1264			blk_plug_device(q);
1265		break;
1266	default:
1267		req->cmd_flags |= REQ_DONTPREP;
1268	}
1269
1270	return ret;
1271}
1272
1273/*
1274 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1275 * return 0.
1276 *
1277 * Called with the queue_lock held.
1278 */
1279static inline int scsi_dev_queue_ready(struct request_queue *q,
1280				  struct scsi_device *sdev)
1281{
1282	if (sdev->device_busy >= sdev->queue_depth)
1283		return 0;
1284	if (sdev->device_busy == 0 && sdev->device_blocked) {
1285		/*
1286		 * unblock after device_blocked iterates to zero
1287		 */
1288		if (--sdev->device_blocked == 0) {
1289			SCSI_LOG_MLQUEUE(3,
1290				   sdev_printk(KERN_INFO, sdev,
1291				   "unblocking device at zero depth\n"));
1292		} else {
1293			blk_plug_device(q);
1294			return 0;
1295		}
1296	}
1297	if (sdev->device_blocked)
1298		return 0;
1299
1300	return 1;
1301}
1302
1303/*
1304 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1305 * return 0. We must end up running the queue again whenever 0 is
1306 * returned, else IO can hang.
1307 *
1308 * Called with host_lock held.
1309 */
1310static inline int scsi_host_queue_ready(struct request_queue *q,
1311				   struct Scsi_Host *shost,
1312				   struct scsi_device *sdev)
1313{
1314	if (scsi_host_in_recovery(shost))
1315		return 0;
1316	if (shost->host_busy == 0 && shost->host_blocked) {
1317		/*
1318		 * unblock after host_blocked iterates to zero
1319		 */
1320		if (--shost->host_blocked == 0) {
1321			SCSI_LOG_MLQUEUE(3,
1322				printk("scsi%d unblocking host at zero depth\n",
1323					shost->host_no));
1324		} else {
1325			blk_plug_device(q);
1326			return 0;
1327		}
1328	}
1329	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1330	    shost->host_blocked || shost->host_self_blocked) {
1331		if (list_empty(&sdev->starved_entry))
1332			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1333		return 0;
1334	}
1335
1336	/* We're OK to process the command, so we can't be starved */
1337	if (!list_empty(&sdev->starved_entry))
1338		list_del_init(&sdev->starved_entry);
1339
1340	return 1;
1341}
1342
1343/*
1344 * Kill a request for a dead device
1345 */
1346static void scsi_kill_request(struct request *req, request_queue_t *q)
1347{
1348	struct scsi_cmnd *cmd = req->special;
1349	struct scsi_device *sdev = cmd->device;
1350	struct Scsi_Host *shost = sdev->host;
1351
1352	blkdev_dequeue_request(req);
1353
1354	if (unlikely(cmd == NULL)) {
1355		printk(KERN_CRIT "impossible request in %s.\n",
1356				 __FUNCTION__);
1357		BUG();
1358	}
1359
1360	scsi_init_cmd_errh(cmd);
1361	cmd->result = DID_NO_CONNECT << 16;
1362	atomic_inc(&cmd->device->iorequest_cnt);
1363
1364	/*
1365	 * SCSI request completion path will do scsi_device_unbusy(),
1366	 * bump busy counts.  To bump the counters, we need to dance
1367	 * with the locks as normal issue path does.
1368	 */
1369	sdev->device_busy++;
1370	spin_unlock(sdev->request_queue->queue_lock);
1371	spin_lock(shost->host_lock);
1372	shost->host_busy++;
1373	spin_unlock(shost->host_lock);
1374	spin_lock(sdev->request_queue->queue_lock);
1375
1376	__scsi_done(cmd);
1377}
1378
1379static void scsi_softirq_done(struct request *rq)
1380{
1381	struct scsi_cmnd *cmd = rq->completion_data;
1382	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1383	int disposition;
1384
1385	INIT_LIST_HEAD(&cmd->eh_entry);
1386
1387	disposition = scsi_decide_disposition(cmd);
1388	if (disposition != SUCCESS &&
1389	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1390		sdev_printk(KERN_ERR, cmd->device,
1391			    "timing out command, waited %lus\n",
1392			    wait_for/HZ);
1393		disposition = SUCCESS;
1394	}
1395
1396	scsi_log_completion(cmd, disposition);
1397
1398	switch (disposition) {
1399		case SUCCESS:
1400			scsi_finish_command(cmd);
1401			break;
1402		case NEEDS_RETRY:
1403			scsi_retry_command(cmd);
1404			break;
1405		case ADD_TO_MLQUEUE:
1406			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1407			break;
1408		default:
1409			if (!scsi_eh_scmd_add(cmd, 0))
1410				scsi_finish_command(cmd);
1411	}
1412}
1413
1414/*
1415 * Function:    scsi_request_fn()
1416 *
1417 * Purpose:     Main strategy routine for SCSI.
1418 *
1419 * Arguments:   q       - Pointer to actual queue.
1420 *
1421 * Returns:     Nothing
1422 *
1423 * Lock status: IO request lock assumed to be held when called.
1424 */
1425static void scsi_request_fn(struct request_queue *q)
1426{
1427	struct scsi_device *sdev = q->queuedata;
1428	struct Scsi_Host *shost;
1429	struct scsi_cmnd *cmd;
1430	struct request *req;
1431
1432	if (!sdev) {
1433		printk("scsi: killing requests for dead queue\n");
1434		while ((req = elv_next_request(q)) != NULL)
1435			scsi_kill_request(req, q);
1436		return;
1437	}
1438
1439	if(!get_device(&sdev->sdev_gendev))
1440		/* We must be tearing the block queue down already */
1441		return;
1442
1443	/*
1444	 * To start with, we keep looping until the queue is empty, or until
1445	 * the host is no longer able to accept any more requests.
1446	 */
1447	shost = sdev->host;
1448	while (!blk_queue_plugged(q)) {
1449		int rtn;
1450		/*
1451		 * get next queueable request.  We do this early to make sure
1452		 * that the request is fully prepared even if we cannot
1453		 * accept it.
1454		 */
1455		req = elv_next_request(q);
1456		if (!req || !scsi_dev_queue_ready(q, sdev))
1457			break;
1458
1459		if (unlikely(!scsi_device_online(sdev))) {
1460			sdev_printk(KERN_ERR, sdev,
1461				    "rejecting I/O to offline device\n");
1462			scsi_kill_request(req, q);
1463			continue;
1464		}
1465
1466
1467		/*
1468		 * Remove the request from the request list.
1469		 */
1470		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1471			blkdev_dequeue_request(req);
1472		sdev->device_busy++;
1473
1474		spin_unlock(q->queue_lock);
1475		cmd = req->special;
1476		if (unlikely(cmd == NULL)) {
1477			printk(KERN_CRIT "impossible request in %s.\n"
1478					 "please mail a stack trace to "
1479					 "linux-scsi@vger.kernel.org\n",
1480					 __FUNCTION__);
1481			blk_dump_rq_flags(req, "foo");
1482			BUG();
1483		}
1484		spin_lock(shost->host_lock);
1485
1486		if (!scsi_host_queue_ready(q, shost, sdev))
1487			goto not_ready;
1488		if (sdev->single_lun) {
1489			if (scsi_target(sdev)->starget_sdev_user &&
1490			    scsi_target(sdev)->starget_sdev_user != sdev)
1491				goto not_ready;
1492			scsi_target(sdev)->starget_sdev_user = sdev;
1493		}
1494		shost->host_busy++;
1495
1496		/*
1497		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1498		 *		take the lock again.
1499		 */
1500		spin_unlock_irq(shost->host_lock);
1501
1502		/*
1503		 * Finally, initialize any error handling parameters, and set up
1504		 * the timers for timeouts.
1505		 */
1506		scsi_init_cmd_errh(cmd);
1507
1508		/*
1509		 * Dispatch the command to the low-level driver.
1510		 */
1511		rtn = scsi_dispatch_cmd(cmd);
1512		spin_lock_irq(q->queue_lock);
1513		if(rtn) {
1514			/* we're refusing the command; because of
1515			 * the way locks get dropped, we need to
1516			 * check here if plugging is required */
1517			if(sdev->device_busy == 0)
1518				blk_plug_device(q);
1519
1520			break;
1521		}
1522	}
1523
1524	goto out;
1525
1526 not_ready:
1527	spin_unlock_irq(shost->host_lock);
1528
1529	/*
1530	 * lock q, handle tag, requeue req, and decrement device_busy. We
1531	 * must return with queue_lock held.
1532	 *
1533	 * Decrementing device_busy without checking it is OK, as all such
1534	 * cases (host limits or settings) should run the queue at some
1535	 * later time.
1536	 */
1537	spin_lock_irq(q->queue_lock);
1538	blk_requeue_request(q, req);
1539	sdev->device_busy--;
1540	if(sdev->device_busy == 0)
1541		blk_plug_device(q);
1542 out:
1543	/* must be careful here...if we trigger the ->remove() function
1544	 * we cannot be holding the q lock */
1545	spin_unlock_irq(q->queue_lock);
1546	put_device(&sdev->sdev_gendev);
1547	spin_lock_irq(q->queue_lock);
1548}
1549
1550u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1551{
1552	struct device *host_dev;
1553	u64 bounce_limit = 0xffffffff;
1554
1555	if (shost->unchecked_isa_dma)
1556		return BLK_BOUNCE_ISA;
1557	/*
1558	 * Platforms with virtual-DMA translation
1559	 * hardware have no practical limit.
1560	 */
1561	if (!PCI_DMA_BUS_IS_PHYS)
1562		return BLK_BOUNCE_ANY;
1563
1564	host_dev = scsi_get_device(shost);
1565	if (host_dev && host_dev->dma_mask)
1566		bounce_limit = *host_dev->dma_mask;
1567
1568	return bounce_limit;
1569}
1570EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1571
1572struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1573					 request_fn_proc *request_fn)
1574{
1575	struct request_queue *q;
1576
1577	q = blk_init_queue(request_fn, NULL);
1578	if (!q)
1579		return NULL;
1580
1581	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1582	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1583	blk_queue_max_sectors(q, shost->max_sectors);
1584	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1585	blk_queue_segment_boundary(q, shost->dma_boundary);
1586
1587	if (!shost->use_clustering)
1588		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1589	return q;
1590}
1591EXPORT_SYMBOL(__scsi_alloc_queue);
1592
1593struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1594{
1595	struct request_queue *q;
1596
1597	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1598	if (!q)
1599		return NULL;
1600
1601	blk_queue_prep_rq(q, scsi_prep_fn);
1602	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1603	blk_queue_softirq_done(q, scsi_softirq_done);
1604	return q;
1605}
1606
1607void scsi_free_queue(struct request_queue *q)
1608{
1609	blk_cleanup_queue(q);
1610}
1611
1612/*
1613 * Function:    scsi_block_requests()
1614 *
1615 * Purpose:     Utility function used by low-level drivers to prevent further
1616 *		commands from being queued to the device.
1617 *
1618 * Arguments:   shost       - Host in question
1619 *
1620 * Returns:     Nothing
1621 *
1622 * Lock status: No locks are assumed held.
1623 *
1624 * Notes:       There is no timer nor any other means by which the requests
1625 *		get unblocked other than the low-level driver calling
1626 *		scsi_unblock_requests().
1627 */
1628void scsi_block_requests(struct Scsi_Host *shost)
1629{
1630	shost->host_self_blocked = 1;
1631}
1632EXPORT_SYMBOL(scsi_block_requests);
1633
1634/*
1635 * Function:    scsi_unblock_requests()
1636 *
1637 * Purpose:     Utility function used by low-level drivers to allow further
1638 *		commands from being queued to the device.
1639 *
1640 * Arguments:   shost       - Host in question
1641 *
1642 * Returns:     Nothing
1643 *
1644 * Lock status: No locks are assumed held.
1645 *
1646 * Notes:       There is no timer nor any other means by which the requests
1647 *		get unblocked other than the low-level driver calling
1648 *		scsi_unblock_requests().
1649 *
1650 *		This is done as an API function so that changes to the
1651 *		internals of the scsi mid-layer won't require wholesale
1652 *		changes to drivers that use this feature.
1653 */
1654void scsi_unblock_requests(struct Scsi_Host *shost)
1655{
1656	shost->host_self_blocked = 0;
1657	scsi_run_host_queues(shost);
1658}
1659EXPORT_SYMBOL(scsi_unblock_requests);
1660
1661int __init scsi_init_queue(void)
1662{
1663	int i;
1664
1665	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1666					sizeof(struct scsi_io_context),
1667					0, 0, NULL, NULL);
1668	if (!scsi_io_context_cache) {
1669		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1670		return -ENOMEM;
1671	}
1672
1673	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1674		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1675		int size = sgp->size * sizeof(struct scatterlist);
1676
1677		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1678				SLAB_HWCACHE_ALIGN, NULL, NULL);
1679		if (!sgp->slab) {
1680			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1681					sgp->name);
1682		}
1683
1684		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1685						     sgp->slab);
1686		if (!sgp->pool) {
1687			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1688					sgp->name);
1689		}
1690	}
1691
1692	return 0;
1693}
1694
1695void scsi_exit_queue(void)
1696{
1697	int i;
1698
1699	kmem_cache_destroy(scsi_io_context_cache);
1700
1701	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1702		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1703		mempool_destroy(sgp->pool);
1704		kmem_cache_destroy(sgp->slab);
1705	}
1706}
1707
1708/**
1709 *	scsi_mode_select - issue a mode select
1710 *	@sdev:	SCSI device to be queried
1711 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1712 *	@sp:	Save page bit (0 == don't save, 1 == save)
1713 *	@modepage: mode page being requested
1714 *	@buffer: request buffer (may not be smaller than eight bytes)
1715 *	@len:	length of request buffer.
1716 *	@timeout: command timeout
1717 *	@retries: number of retries before failing
1718 *	@data: returns a structure abstracting the mode header data
1719 *	@sense: place to put sense data (or NULL if no sense to be collected).
1720 *		must be SCSI_SENSE_BUFFERSIZE big.
1721 *
1722 *	Returns zero if successful; negative error number or scsi
1723 *	status on error
1724 *
1725 */
1726int
1727scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1728		 unsigned char *buffer, int len, int timeout, int retries,
1729		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1730{
1731	unsigned char cmd[10];
1732	unsigned char *real_buffer;
1733	int ret;
1734
1735	memset(cmd, 0, sizeof(cmd));
1736	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1737
1738	if (sdev->use_10_for_ms) {
1739		if (len > 65535)
1740			return -EINVAL;
1741		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1742		if (!real_buffer)
1743			return -ENOMEM;
1744		memcpy(real_buffer + 8, buffer, len);
1745		len += 8;
1746		real_buffer[0] = 0;
1747		real_buffer[1] = 0;
1748		real_buffer[2] = data->medium_type;
1749		real_buffer[3] = data->device_specific;
1750		real_buffer[4] = data->longlba ? 0x01 : 0;
1751		real_buffer[5] = 0;
1752		real_buffer[6] = data->block_descriptor_length >> 8;
1753		real_buffer[7] = data->block_descriptor_length;
1754
1755		cmd[0] = MODE_SELECT_10;
1756		cmd[7] = len >> 8;
1757		cmd[8] = len;
1758	} else {
1759		if (len > 255 || data->block_descriptor_length > 255 ||
1760		    data->longlba)
1761			return -EINVAL;
1762
1763		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1764		if (!real_buffer)
1765			return -ENOMEM;
1766		memcpy(real_buffer + 4, buffer, len);
1767		len += 4;
1768		real_buffer[0] = 0;
1769		real_buffer[1] = data->medium_type;
1770		real_buffer[2] = data->device_specific;
1771		real_buffer[3] = data->block_descriptor_length;
1772
1773
1774		cmd[0] = MODE_SELECT;
1775		cmd[4] = len;
1776	}
1777
1778	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1779			       sshdr, timeout, retries);
1780	kfree(real_buffer);
1781	return ret;
1782}
1783EXPORT_SYMBOL_GPL(scsi_mode_select);
1784
1785/**
1786 *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1787 *		six bytes if necessary.
1788 *	@sdev:	SCSI device to be queried
1789 *	@dbd:	set if mode sense will allow block descriptors to be returned
1790 *	@modepage: mode page being requested
1791 *	@buffer: request buffer (may not be smaller than eight bytes)
1792 *	@len:	length of request buffer.
1793 *	@timeout: command timeout
1794 *	@retries: number of retries before failing
1795 *	@data: returns a structure abstracting the mode header data
1796 *	@sense: place to put sense data (or NULL if no sense to be collected).
1797 *		must be SCSI_SENSE_BUFFERSIZE big.
1798 *
1799 *	Returns zero if unsuccessful, or the header offset (either 4
1800 *	or 8 depending on whether a six or ten byte command was
1801 *	issued) if successful.
1802 **/
1803int
1804scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1805		  unsigned char *buffer, int len, int timeout, int retries,
1806		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1807{
1808	unsigned char cmd[12];
1809	int use_10_for_ms;
1810	int header_length;
1811	int result;
1812	struct scsi_sense_hdr my_sshdr;
1813
1814	memset(data, 0, sizeof(*data));
1815	memset(&cmd[0], 0, 12);
1816	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1817	cmd[2] = modepage;
1818
1819	/* caller might not be interested in sense, but we need it */
1820	if (!sshdr)
1821		sshdr = &my_sshdr;
1822
1823 retry:
1824	use_10_for_ms = sdev->use_10_for_ms;
1825
1826	if (use_10_for_ms) {
1827		if (len < 8)
1828			len = 8;
1829
1830		cmd[0] = MODE_SENSE_10;
1831		cmd[8] = len;
1832		header_length = 8;
1833	} else {
1834		if (len < 4)
1835			len = 4;
1836
1837		cmd[0] = MODE_SENSE;
1838		cmd[4] = len;
1839		header_length = 4;
1840	}
1841
1842	memset(buffer, 0, len);
1843
1844	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1845				  sshdr, timeout, retries);
1846
1847	/* This code looks awful: what it's doing is making sure an
1848	 * ILLEGAL REQUEST sense return identifies the actual command
1849	 * byte as the problem.  MODE_SENSE commands can return
1850	 * ILLEGAL REQUEST if the code page isn't supported */
1851
1852	if (use_10_for_ms && !scsi_status_is_good(result) &&
1853	    (driver_byte(result) & DRIVER_SENSE)) {
1854		if (scsi_sense_valid(sshdr)) {
1855			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1856			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1857				/*
1858				 * Invalid command operation code
1859				 */
1860				sdev->use_10_for_ms = 0;
1861				goto retry;
1862			}
1863		}
1864	}
1865
1866	if(scsi_status_is_good(result)) {
1867		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1868			     (modepage == 6 || modepage == 8))) {
1869			/* Initio breakage? */
1870			header_length = 0;
1871			data->length = 13;
1872			data->medium_type = 0;
1873			data->device_specific = 0;
1874			data->longlba = 0;
1875			data->block_descriptor_length = 0;
1876		} else if(use_10_for_ms) {
1877			data->length = buffer[0]*256 + buffer[1] + 2;
1878			data->medium_type = buffer[2];
1879			data->device_specific = buffer[3];
1880			data->longlba = buffer[4] & 0x01;
1881			data->block_descriptor_length = buffer[6]*256
1882				+ buffer[7];
1883		} else {
1884			data->length = buffer[0] + 1;
1885			data->medium_type = buffer[1];
1886			data->device_specific = buffer[2];
1887			data->block_descriptor_length = buffer[3];
1888		}
1889		data->header_length = header_length;
1890	}
1891
1892	return result;
1893}
1894EXPORT_SYMBOL(scsi_mode_sense);
1895
1896int
1897scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1898{
1899	char cmd[] = {
1900		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1901	};
1902	struct scsi_sense_hdr sshdr;
1903	int result;
1904
1905	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1906				  timeout, retries);
1907
1908	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1909
1910		if ((scsi_sense_valid(&sshdr)) &&
1911		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1912		     (sshdr.sense_key == NOT_READY))) {
1913			sdev->changed = 1;
1914			result = 0;
1915		}
1916	}
1917	return result;
1918}
1919EXPORT_SYMBOL(scsi_test_unit_ready);
1920
1921/**
1922 *	scsi_device_set_state - Take the given device through the device
1923 *		state model.
1924 *	@sdev:	scsi device to change the state of.
1925 *	@state:	state to change to.
1926 *
1927 *	Returns zero if unsuccessful or an error if the requested
1928 *	transition is illegal.
1929 **/
1930int
1931scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1932{
1933	enum scsi_device_state oldstate = sdev->sdev_state;
1934
1935	if (state == oldstate)
1936		return 0;
1937
1938	switch (state) {
1939	case SDEV_CREATED:
1940		/* There are no legal states that come back to
1941		 * created.  This is the manually initialised start
1942		 * state */
1943		goto illegal;
1944
1945	case SDEV_RUNNING:
1946		switch (oldstate) {
1947		case SDEV_CREATED:
1948		case SDEV_OFFLINE:
1949		case SDEV_QUIESCE:
1950		case SDEV_BLOCK:
1951			break;
1952		default:
1953			goto illegal;
1954		}
1955		break;
1956
1957	case SDEV_QUIESCE:
1958		switch (oldstate) {
1959		case SDEV_RUNNING:
1960		case SDEV_OFFLINE:
1961			break;
1962		default:
1963			goto illegal;
1964		}
1965		break;
1966
1967	case SDEV_OFFLINE:
1968		switch (oldstate) {
1969		case SDEV_CREATED:
1970		case SDEV_RUNNING:
1971		case SDEV_QUIESCE:
1972		case SDEV_BLOCK:
1973			break;
1974		default:
1975			goto illegal;
1976		}
1977		break;
1978
1979	case SDEV_BLOCK:
1980		switch (oldstate) {
1981		case SDEV_CREATED:
1982		case SDEV_RUNNING:
1983			break;
1984		default:
1985			goto illegal;
1986		}
1987		break;
1988
1989	case SDEV_CANCEL:
1990		switch (oldstate) {
1991		case SDEV_CREATED:
1992		case SDEV_RUNNING:
1993		case SDEV_QUIESCE:
1994		case SDEV_OFFLINE:
1995		case SDEV_BLOCK:
1996			break;
1997		default:
1998			goto illegal;
1999		}
2000		break;
2001
2002	case SDEV_DEL:
2003		switch (oldstate) {
2004		case SDEV_CREATED:
2005		case SDEV_RUNNING:
2006		case SDEV_OFFLINE:
2007		case SDEV_CANCEL:
2008			break;
2009		default:
2010			goto illegal;
2011		}
2012		break;
2013
2014	}
2015	sdev->sdev_state = state;
2016	return 0;
2017
2018 illegal:
2019	SCSI_LOG_ERROR_RECOVERY(1,
2020				sdev_printk(KERN_ERR, sdev,
2021					    "Illegal state transition %s->%s\n",
2022					    scsi_device_state_name(oldstate),
2023					    scsi_device_state_name(state))
2024				);
2025	return -EINVAL;
2026}
2027EXPORT_SYMBOL(scsi_device_set_state);
2028
2029/**
2030 *	scsi_device_quiesce - Block user issued commands.
2031 *	@sdev:	scsi device to quiesce.
2032 *
2033 *	This works by trying to transition to the SDEV_QUIESCE state
2034 *	(which must be a legal transition).  When the device is in this
2035 *	state, only special requests will be accepted, all others will
2036 *	be deferred.  Since special requests may also be requeued requests,
2037 *	a successful return doesn't guarantee the device will be
2038 *	totally quiescent.
2039 *
2040 *	Must be called with user context, may sleep.
2041 *
2042 *	Returns zero if unsuccessful or an error if not.
2043 **/
2044int
2045scsi_device_quiesce(struct scsi_device *sdev)
2046{
2047	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2048	if (err)
2049		return err;
2050
2051	scsi_run_queue(sdev->request_queue);
2052	while (sdev->device_busy) {
2053		msleep_interruptible(200);
2054		scsi_run_queue(sdev->request_queue);
2055	}
2056	return 0;
2057}
2058EXPORT_SYMBOL(scsi_device_quiesce);
2059
2060/**
2061 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2062 *	@sdev:	scsi device to resume.
2063 *
2064 *	Moves the device from quiesced back to running and restarts the
2065 *	queues.
2066 *
2067 *	Must be called with user context, may sleep.
2068 **/
2069void
2070scsi_device_resume(struct scsi_device *sdev)
2071{
2072	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2073		return;
2074	scsi_run_queue(sdev->request_queue);
2075}
2076EXPORT_SYMBOL(scsi_device_resume);
2077
2078static void
2079device_quiesce_fn(struct scsi_device *sdev, void *data)
2080{
2081	scsi_device_quiesce(sdev);
2082}
2083
2084void
2085scsi_target_quiesce(struct scsi_target *starget)
2086{
2087	starget_for_each_device(starget, NULL, device_quiesce_fn);
2088}
2089EXPORT_SYMBOL(scsi_target_quiesce);
2090
2091static void
2092device_resume_fn(struct scsi_device *sdev, void *data)
2093{
2094	scsi_device_resume(sdev);
2095}
2096
2097void
2098scsi_target_resume(struct scsi_target *starget)
2099{
2100	starget_for_each_device(starget, NULL, device_resume_fn);
2101}
2102EXPORT_SYMBOL(scsi_target_resume);
2103
2104/**
2105 * scsi_internal_device_block - internal function to put a device
2106 *				temporarily into the SDEV_BLOCK state
2107 * @sdev:	device to block
2108 *
2109 * Block request made by scsi lld's to temporarily stop all
2110 * scsi commands on the specified device.  Called from interrupt
2111 * or normal process context.
2112 *
2113 * Returns zero if successful or error if not
2114 *
2115 * Notes:
2116 *	This routine transitions the device to the SDEV_BLOCK state
2117 *	(which must be a legal transition).  When the device is in this
2118 *	state, all commands are deferred until the scsi lld reenables
2119 *	the device with scsi_device_unblock or device_block_tmo fires.
2120 *	This routine assumes the host_lock is held on entry.
2121 **/
2122int
2123scsi_internal_device_block(struct scsi_device *sdev)
2124{
2125	request_queue_t *q = sdev->request_queue;
2126	unsigned long flags;
2127	int err = 0;
2128
2129	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2130	if (err)
2131		return err;
2132
2133	/*
2134	 * The device has transitioned to SDEV_BLOCK.  Stop the
2135	 * block layer from calling the midlayer with this device's
2136	 * request queue.
2137	 */
2138	spin_lock_irqsave(q->queue_lock, flags);
2139	blk_stop_queue(q);
2140	spin_unlock_irqrestore(q->queue_lock, flags);
2141
2142	return 0;
2143}
2144EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2145
2146/**
2147 * scsi_internal_device_unblock - resume a device after a block request
2148 * @sdev:	device to resume
2149 *
2150 * Called by scsi lld's or the midlayer to restart the device queue
2151 * for the previously suspended scsi device.  Called from interrupt or
2152 * normal process context.
2153 *
2154 * Returns zero if successful or error if not.
2155 *
2156 * Notes:
2157 *	This routine transitions the device to the SDEV_RUNNING state
2158 *	(which must be a legal transition) allowing the midlayer to
2159 *	goose the queue for this device.  This routine assumes the
2160 *	host_lock is held upon entry.
2161 **/
2162int
2163scsi_internal_device_unblock(struct scsi_device *sdev)
2164{
2165	request_queue_t *q = sdev->request_queue;
2166	int err;
2167	unsigned long flags;
2168
2169	/*
2170	 * Try to transition the scsi device to SDEV_RUNNING
2171	 * and goose the device queue if successful.
2172	 */
2173	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2174	if (err)
2175		return err;
2176
2177	spin_lock_irqsave(q->queue_lock, flags);
2178	blk_start_queue(q);
2179	spin_unlock_irqrestore(q->queue_lock, flags);
2180
2181	return 0;
2182}
2183EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2184
2185static void
2186device_block(struct scsi_device *sdev, void *data)
2187{
2188	scsi_internal_device_block(sdev);
2189}
2190
2191static int
2192target_block(struct device *dev, void *data)
2193{
2194	if (scsi_is_target_device(dev))
2195		starget_for_each_device(to_scsi_target(dev), NULL,
2196					device_block);
2197	return 0;
2198}
2199
2200void
2201scsi_target_block(struct device *dev)
2202{
2203	if (scsi_is_target_device(dev))
2204		starget_for_each_device(to_scsi_target(dev), NULL,
2205					device_block);
2206	else
2207		device_for_each_child(dev, NULL, target_block);
2208}
2209EXPORT_SYMBOL_GPL(scsi_target_block);
2210
2211static void
2212device_unblock(struct scsi_device *sdev, void *data)
2213{
2214	scsi_internal_device_unblock(sdev);
2215}
2216
2217static int
2218target_unblock(struct device *dev, void *data)
2219{
2220	if (scsi_is_target_device(dev))
2221		starget_for_each_device(to_scsi_target(dev), NULL,
2222					device_unblock);
2223	return 0;
2224}
2225
2226void
2227scsi_target_unblock(struct device *dev)
2228{
2229	if (scsi_is_target_device(dev))
2230		starget_for_each_device(to_scsi_target(dev), NULL,
2231					device_unblock);
2232	else
2233		device_for_each_child(dev, NULL, target_unblock);
2234}
2235EXPORT_SYMBOL_GPL(scsi_target_unblock);
2236
2237/**
2238 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2239 * @sg:		scatter-gather list
2240 * @sg_count:	number of segments in sg
2241 * @offset:	offset in bytes into sg, on return offset into the mapped area
2242 * @len:	bytes to map, on return number of bytes mapped
2243 *
2244 * Returns virtual address of the start of the mapped page
2245 */
2246void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2247			  size_t *offset, size_t *len)
2248{
2249	int i;
2250	size_t sg_len = 0, len_complete = 0;
2251	struct page *page;
2252
2253	for (i = 0; i < sg_count; i++) {
2254		len_complete = sg_len; /* Complete sg-entries */
2255		sg_len += sg[i].length;
2256		if (sg_len > *offset)
2257			break;
2258	}
2259
2260	if (unlikely(i == sg_count)) {
2261		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2262			"elements %d\n",
2263		       __FUNCTION__, sg_len, *offset, sg_count);
2264		WARN_ON(1);
2265		return NULL;
2266	}
2267
2268	/* Offset starting from the beginning of first page in this sg-entry */
2269	*offset = *offset - len_complete + sg[i].offset;
2270
2271	/* Assumption: contiguous pages can be accessed as "page + i" */
2272	page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2273	*offset &= ~PAGE_MASK;
2274
2275	/* Bytes in this sg-entry from *offset to the end of the page */
2276	sg_len = PAGE_SIZE - *offset;
2277	if (*len > sg_len)
2278		*len = sg_len;
2279
2280	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2281}
2282EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2283
2284/**
2285 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2286 *			   mapped with scsi_kmap_atomic_sg
2287 * @virt:	virtual address to be unmapped
2288 */
2289void scsi_kunmap_atomic_sg(void *virt)
2290{
2291	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2292}
2293EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2294