scsi_lib.c revision 2476b4d0426e1d6d4a42b2f7ae08f668b2cfe510
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/bitops.h>
12#include <linux/blkdev.h>
13#include <linux/completion.h>
14#include <linux/kernel.h>
15#include <linux/mempool.h>
16#include <linux/slab.h>
17#include <linux/init.h>
18#include <linux/pci.h>
19#include <linux/delay.h>
20#include <linux/hardirq.h>
21#include <linux/scatterlist.h>
22
23#include <scsi/scsi.h>
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_dbg.h>
26#include <scsi/scsi_device.h>
27#include <scsi/scsi_driver.h>
28#include <scsi/scsi_eh.h>
29#include <scsi/scsi_host.h>
30
31#include "scsi_priv.h"
32#include "scsi_logging.h"
33
34
35#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36#define SG_MEMPOOL_SIZE		2
37
38struct scsi_host_sg_pool {
39	size_t		size;
40	char		*name;
41	struct kmem_cache	*slab;
42	mempool_t	*pool;
43};
44
45#define SP(x) { x, "sgpool-" __stringify(x) }
46#if (SCSI_MAX_SG_SEGMENTS < 32)
47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48#endif
49static struct scsi_host_sg_pool scsi_sg_pools[] = {
50	SP(8),
51	SP(16),
52#if (SCSI_MAX_SG_SEGMENTS > 32)
53	SP(32),
54#if (SCSI_MAX_SG_SEGMENTS > 64)
55	SP(64),
56#if (SCSI_MAX_SG_SEGMENTS > 128)
57	SP(128),
58#if (SCSI_MAX_SG_SEGMENTS > 256)
59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60#endif
61#endif
62#endif
63#endif
64	SP(SCSI_MAX_SG_SEGMENTS)
65};
66#undef SP
67
68static struct kmem_cache *scsi_sdb_cache;
69
70static void scsi_run_queue(struct request_queue *q);
71
72/*
73 * Function:	scsi_unprep_request()
74 *
75 * Purpose:	Remove all preparation done for a request, including its
76 *		associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments:	req	- request to unprepare
79 *
80 * Lock status:	Assumed that no locks are held upon entry.
81 *
82 * Returns:	Nothing.
83 */
84static void scsi_unprep_request(struct request *req)
85{
86	struct scsi_cmnd *cmd = req->special;
87
88	req->cmd_flags &= ~REQ_DONTPREP;
89	req->special = NULL;
90
91	scsi_put_command(cmd);
92}
93
94/*
95 * Function:    scsi_queue_insert()
96 *
97 * Purpose:     Insert a command in the midlevel queue.
98 *
99 * Arguments:   cmd    - command that we are adding to queue.
100 *              reason - why we are inserting command to queue.
101 *
102 * Lock status: Assumed that lock is not held upon entry.
103 *
104 * Returns:     Nothing.
105 *
106 * Notes:       We do this for one of two cases.  Either the host is busy
107 *              and it cannot accept any more commands for the time being,
108 *              or the device returned QUEUE_FULL and can accept no more
109 *              commands.
110 * Notes:       This could be called either from an interrupt context or a
111 *              normal process context.
112 */
113int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114{
115	struct Scsi_Host *host = cmd->device->host;
116	struct scsi_device *device = cmd->device;
117	struct request_queue *q = device->request_queue;
118	unsigned long flags;
119
120	SCSI_LOG_MLQUEUE(1,
121		 printk("Inserting command %p into mlqueue\n", cmd));
122
123	/*
124	 * Set the appropriate busy bit for the device/host.
125	 *
126	 * If the host/device isn't busy, assume that something actually
127	 * completed, and that we should be able to queue a command now.
128	 *
129	 * Note that the prior mid-layer assumption that any host could
130	 * always queue at least one command is now broken.  The mid-layer
131	 * will implement a user specifiable stall (see
132	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133	 * if a command is requeued with no other commands outstanding
134	 * either for the device or for the host.
135	 */
136	if (reason == SCSI_MLQUEUE_HOST_BUSY)
137		host->host_blocked = host->max_host_blocked;
138	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
139		device->device_blocked = device->max_device_blocked;
140
141	/*
142	 * Decrement the counters, since these commands are no longer
143	 * active on the host/device.
144	 */
145	scsi_device_unbusy(device);
146
147	/*
148	 * Requeue this command.  It will go before all other commands
149	 * that are already in the queue.
150	 *
151	 * NOTE: there is magic here about the way the queue is plugged if
152	 * we have no outstanding commands.
153	 *
154	 * Although we *don't* plug the queue, we call the request
155	 * function.  The SCSI request function detects the blocked condition
156	 * and plugs the queue appropriately.
157         */
158	spin_lock_irqsave(q->queue_lock, flags);
159	blk_requeue_request(q, cmd->request);
160	spin_unlock_irqrestore(q->queue_lock, flags);
161
162	scsi_run_queue(q);
163
164	return 0;
165}
166
167/**
168 * scsi_execute - insert request and wait for the result
169 * @sdev:	scsi device
170 * @cmd:	scsi command
171 * @data_direction: data direction
172 * @buffer:	data buffer
173 * @bufflen:	len of buffer
174 * @sense:	optional sense buffer
175 * @timeout:	request timeout in seconds
176 * @retries:	number of times to retry request
177 * @flags:	or into request flags;
178 *
179 * returns the req->errors value which is the scsi_cmnd result
180 * field.
181 */
182int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183		 int data_direction, void *buffer, unsigned bufflen,
184		 unsigned char *sense, int timeout, int retries, int flags)
185{
186	struct request *req;
187	int write = (data_direction == DMA_TO_DEVICE);
188	int ret = DRIVER_ERROR << 24;
189
190	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
191
192	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
193					buffer, bufflen, __GFP_WAIT))
194		goto out;
195
196	req->cmd_len = COMMAND_SIZE(cmd[0]);
197	memcpy(req->cmd, cmd, req->cmd_len);
198	req->sense = sense;
199	req->sense_len = 0;
200	req->retries = retries;
201	req->timeout = timeout;
202	req->cmd_type = REQ_TYPE_BLOCK_PC;
203	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
204
205	/*
206	 * head injection *required* here otherwise quiesce won't work
207	 */
208	blk_execute_rq(req->q, NULL, req, 1);
209
210	ret = req->errors;
211 out:
212	blk_put_request(req);
213
214	return ret;
215}
216EXPORT_SYMBOL(scsi_execute);
217
218
219int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
220		     int data_direction, void *buffer, unsigned bufflen,
221		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
222{
223	char *sense = NULL;
224	int result;
225
226	if (sshdr) {
227		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
228		if (!sense)
229			return DRIVER_ERROR << 24;
230	}
231	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
232			      sense, timeout, retries, 0);
233	if (sshdr)
234		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
235
236	kfree(sense);
237	return result;
238}
239EXPORT_SYMBOL(scsi_execute_req);
240
241struct scsi_io_context {
242	void *data;
243	void (*done)(void *data, char *sense, int result, int resid);
244	char sense[SCSI_SENSE_BUFFERSIZE];
245};
246
247static struct kmem_cache *scsi_io_context_cache;
248
249static void scsi_end_async(struct request *req, int uptodate)
250{
251	struct scsi_io_context *sioc = req->end_io_data;
252
253	if (sioc->done)
254		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
255
256	kmem_cache_free(scsi_io_context_cache, sioc);
257	__blk_put_request(req->q, req);
258}
259
260static int scsi_merge_bio(struct request *rq, struct bio *bio)
261{
262	struct request_queue *q = rq->q;
263
264	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
265	if (rq_data_dir(rq) == WRITE)
266		bio->bi_rw |= (1 << BIO_RW);
267	blk_queue_bounce(q, &bio);
268
269	return blk_rq_append_bio(q, rq, bio);
270}
271
272static void scsi_bi_endio(struct bio *bio, int error)
273{
274	bio_put(bio);
275}
276
277/**
278 * scsi_req_map_sg - map a scatterlist into a request
279 * @rq:		request to fill
280 * @sgl:	scatterlist
281 * @nsegs:	number of elements
282 * @bufflen:	len of buffer
283 * @gfp:	memory allocation flags
284 *
285 * scsi_req_map_sg maps a scatterlist into a request so that the
286 * request can be sent to the block layer. We do not trust the scatterlist
287 * sent to use, as some ULDs use that struct to only organize the pages.
288 */
289static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
290			   int nsegs, unsigned bufflen, gfp_t gfp)
291{
292	struct request_queue *q = rq->q;
293	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
294	unsigned int data_len = bufflen, len, bytes, off;
295	struct scatterlist *sg;
296	struct page *page;
297	struct bio *bio = NULL;
298	int i, err, nr_vecs = 0;
299
300	for_each_sg(sgl, sg, nsegs, i) {
301		page = sg_page(sg);
302		off = sg->offset;
303		len = sg->length;
304
305		while (len > 0 && data_len > 0) {
306			/*
307			 * sg sends a scatterlist that is larger than
308			 * the data_len it wants transferred for certain
309			 * IO sizes
310			 */
311			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
312			bytes = min(bytes, data_len);
313
314			if (!bio) {
315				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
316				nr_pages -= nr_vecs;
317
318				bio = bio_alloc(gfp, nr_vecs);
319				if (!bio) {
320					err = -ENOMEM;
321					goto free_bios;
322				}
323				bio->bi_end_io = scsi_bi_endio;
324			}
325
326			if (bio_add_pc_page(q, bio, page, bytes, off) !=
327			    bytes) {
328				bio_put(bio);
329				err = -EINVAL;
330				goto free_bios;
331			}
332
333			if (bio->bi_vcnt >= nr_vecs) {
334				err = scsi_merge_bio(rq, bio);
335				if (err) {
336					bio_endio(bio, 0);
337					goto free_bios;
338				}
339				bio = NULL;
340			}
341
342			page++;
343			len -= bytes;
344			data_len -=bytes;
345			off = 0;
346		}
347	}
348
349	rq->buffer = rq->data = NULL;
350	rq->data_len = bufflen;
351	return 0;
352
353free_bios:
354	while ((bio = rq->bio) != NULL) {
355		rq->bio = bio->bi_next;
356		/*
357		 * call endio instead of bio_put incase it was bounced
358		 */
359		bio_endio(bio, 0);
360	}
361
362	return err;
363}
364
365/**
366 * scsi_execute_async - insert request
367 * @sdev:	scsi device
368 * @cmd:	scsi command
369 * @cmd_len:	length of scsi cdb
370 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
371 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
372 * @bufflen:	len of buffer
373 * @use_sg:	if buffer is a scatterlist this is the number of elements
374 * @timeout:	request timeout in seconds
375 * @retries:	number of times to retry request
376 * @privdata:	data passed to done()
377 * @done:	callback function when done
378 * @gfp:	memory allocation flags
379 */
380int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
381		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
382		       int use_sg, int timeout, int retries, void *privdata,
383		       void (*done)(void *, char *, int, int), gfp_t gfp)
384{
385	struct request *req;
386	struct scsi_io_context *sioc;
387	int err = 0;
388	int write = (data_direction == DMA_TO_DEVICE);
389
390	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
391	if (!sioc)
392		return DRIVER_ERROR << 24;
393
394	req = blk_get_request(sdev->request_queue, write, gfp);
395	if (!req)
396		goto free_sense;
397	req->cmd_type = REQ_TYPE_BLOCK_PC;
398	req->cmd_flags |= REQ_QUIET;
399
400	if (use_sg)
401		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
402	else if (bufflen)
403		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
404
405	if (err)
406		goto free_req;
407
408	req->cmd_len = cmd_len;
409	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
410	memcpy(req->cmd, cmd, req->cmd_len);
411	req->sense = sioc->sense;
412	req->sense_len = 0;
413	req->timeout = timeout;
414	req->retries = retries;
415	req->end_io_data = sioc;
416
417	sioc->data = privdata;
418	sioc->done = done;
419
420	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
421	return 0;
422
423free_req:
424	blk_put_request(req);
425free_sense:
426	kmem_cache_free(scsi_io_context_cache, sioc);
427	return DRIVER_ERROR << 24;
428}
429EXPORT_SYMBOL_GPL(scsi_execute_async);
430
431/*
432 * Function:    scsi_init_cmd_errh()
433 *
434 * Purpose:     Initialize cmd fields related to error handling.
435 *
436 * Arguments:   cmd	- command that is ready to be queued.
437 *
438 * Notes:       This function has the job of initializing a number of
439 *              fields related to error handling.   Typically this will
440 *              be called once for each command, as required.
441 */
442static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
443{
444	cmd->serial_number = 0;
445	scsi_set_resid(cmd, 0);
446	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
447	if (cmd->cmd_len == 0)
448		cmd->cmd_len = scsi_command_size(cmd->cmnd);
449}
450
451void scsi_device_unbusy(struct scsi_device *sdev)
452{
453	struct Scsi_Host *shost = sdev->host;
454	unsigned long flags;
455
456	spin_lock_irqsave(shost->host_lock, flags);
457	shost->host_busy--;
458	if (unlikely(scsi_host_in_recovery(shost) &&
459		     (shost->host_failed || shost->host_eh_scheduled)))
460		scsi_eh_wakeup(shost);
461	spin_unlock(shost->host_lock);
462	spin_lock(sdev->request_queue->queue_lock);
463	sdev->device_busy--;
464	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
465}
466
467/*
468 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
469 * and call blk_run_queue for all the scsi_devices on the target -
470 * including current_sdev first.
471 *
472 * Called with *no* scsi locks held.
473 */
474static void scsi_single_lun_run(struct scsi_device *current_sdev)
475{
476	struct Scsi_Host *shost = current_sdev->host;
477	struct scsi_device *sdev, *tmp;
478	struct scsi_target *starget = scsi_target(current_sdev);
479	unsigned long flags;
480
481	spin_lock_irqsave(shost->host_lock, flags);
482	starget->starget_sdev_user = NULL;
483	spin_unlock_irqrestore(shost->host_lock, flags);
484
485	/*
486	 * Call blk_run_queue for all LUNs on the target, starting with
487	 * current_sdev. We race with others (to set starget_sdev_user),
488	 * but in most cases, we will be first. Ideally, each LU on the
489	 * target would get some limited time or requests on the target.
490	 */
491	blk_run_queue(current_sdev->request_queue);
492
493	spin_lock_irqsave(shost->host_lock, flags);
494	if (starget->starget_sdev_user)
495		goto out;
496	list_for_each_entry_safe(sdev, tmp, &starget->devices,
497			same_target_siblings) {
498		if (sdev == current_sdev)
499			continue;
500		if (scsi_device_get(sdev))
501			continue;
502
503		spin_unlock_irqrestore(shost->host_lock, flags);
504		blk_run_queue(sdev->request_queue);
505		spin_lock_irqsave(shost->host_lock, flags);
506
507		scsi_device_put(sdev);
508	}
509 out:
510	spin_unlock_irqrestore(shost->host_lock, flags);
511}
512
513/*
514 * Function:	scsi_run_queue()
515 *
516 * Purpose:	Select a proper request queue to serve next
517 *
518 * Arguments:	q	- last request's queue
519 *
520 * Returns:     Nothing
521 *
522 * Notes:	The previous command was completely finished, start
523 *		a new one if possible.
524 */
525static void scsi_run_queue(struct request_queue *q)
526{
527	struct scsi_device *sdev = q->queuedata;
528	struct Scsi_Host *shost = sdev->host;
529	unsigned long flags;
530
531	if (scsi_target(sdev)->single_lun)
532		scsi_single_lun_run(sdev);
533
534	spin_lock_irqsave(shost->host_lock, flags);
535	while (!list_empty(&shost->starved_list) &&
536	       !shost->host_blocked && !shost->host_self_blocked &&
537		!((shost->can_queue > 0) &&
538		  (shost->host_busy >= shost->can_queue))) {
539
540		int flagset;
541
542		/*
543		 * As long as shost is accepting commands and we have
544		 * starved queues, call blk_run_queue. scsi_request_fn
545		 * drops the queue_lock and can add us back to the
546		 * starved_list.
547		 *
548		 * host_lock protects the starved_list and starved_entry.
549		 * scsi_request_fn must get the host_lock before checking
550		 * or modifying starved_list or starved_entry.
551		 */
552		sdev = list_entry(shost->starved_list.next,
553					  struct scsi_device, starved_entry);
554		list_del_init(&sdev->starved_entry);
555		spin_unlock(shost->host_lock);
556
557		spin_lock(sdev->request_queue->queue_lock);
558		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
559				!test_bit(QUEUE_FLAG_REENTER,
560					&sdev->request_queue->queue_flags);
561		if (flagset)
562			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
563		__blk_run_queue(sdev->request_queue);
564		if (flagset)
565			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
566		spin_unlock(sdev->request_queue->queue_lock);
567
568		spin_lock(shost->host_lock);
569		if (unlikely(!list_empty(&sdev->starved_entry)))
570			/*
571			 * sdev lost a race, and was put back on the
572			 * starved list. This is unlikely but without this
573			 * in theory we could loop forever.
574			 */
575			break;
576	}
577	spin_unlock_irqrestore(shost->host_lock, flags);
578
579	blk_run_queue(q);
580}
581
582/*
583 * Function:	scsi_requeue_command()
584 *
585 * Purpose:	Handle post-processing of completed commands.
586 *
587 * Arguments:	q	- queue to operate on
588 *		cmd	- command that may need to be requeued.
589 *
590 * Returns:	Nothing
591 *
592 * Notes:	After command completion, there may be blocks left
593 *		over which weren't finished by the previous command
594 *		this can be for a number of reasons - the main one is
595 *		I/O errors in the middle of the request, in which case
596 *		we need to request the blocks that come after the bad
597 *		sector.
598 * Notes:	Upon return, cmd is a stale pointer.
599 */
600static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
601{
602	struct request *req = cmd->request;
603	unsigned long flags;
604
605	scsi_unprep_request(req);
606	spin_lock_irqsave(q->queue_lock, flags);
607	blk_requeue_request(q, req);
608	spin_unlock_irqrestore(q->queue_lock, flags);
609
610	scsi_run_queue(q);
611}
612
613void scsi_next_command(struct scsi_cmnd *cmd)
614{
615	struct scsi_device *sdev = cmd->device;
616	struct request_queue *q = sdev->request_queue;
617
618	/* need to hold a reference on the device before we let go of the cmd */
619	get_device(&sdev->sdev_gendev);
620
621	scsi_put_command(cmd);
622	scsi_run_queue(q);
623
624	/* ok to remove device now */
625	put_device(&sdev->sdev_gendev);
626}
627
628void scsi_run_host_queues(struct Scsi_Host *shost)
629{
630	struct scsi_device *sdev;
631
632	shost_for_each_device(sdev, shost)
633		scsi_run_queue(sdev->request_queue);
634}
635
636/*
637 * Function:    scsi_end_request()
638 *
639 * Purpose:     Post-processing of completed commands (usually invoked at end
640 *		of upper level post-processing and scsi_io_completion).
641 *
642 * Arguments:   cmd	 - command that is complete.
643 *              error    - 0 if I/O indicates success, < 0 for I/O error.
644 *              bytes    - number of bytes of completed I/O
645 *		requeue  - indicates whether we should requeue leftovers.
646 *
647 * Lock status: Assumed that lock is not held upon entry.
648 *
649 * Returns:     cmd if requeue required, NULL otherwise.
650 *
651 * Notes:       This is called for block device requests in order to
652 *              mark some number of sectors as complete.
653 *
654 *		We are guaranteeing that the request queue will be goosed
655 *		at some point during this call.
656 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
657 */
658static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
659					  int bytes, int requeue)
660{
661	struct request_queue *q = cmd->device->request_queue;
662	struct request *req = cmd->request;
663
664	/*
665	 * If there are blocks left over at the end, set up the command
666	 * to queue the remainder of them.
667	 */
668	if (blk_end_request(req, error, bytes)) {
669		int leftover = (req->hard_nr_sectors << 9);
670
671		if (blk_pc_request(req))
672			leftover = req->data_len;
673
674		/* kill remainder if no retrys */
675		if (error && blk_noretry_request(req))
676			blk_end_request(req, error, leftover);
677		else {
678			if (requeue) {
679				/*
680				 * Bleah.  Leftovers again.  Stick the
681				 * leftovers in the front of the
682				 * queue, and goose the queue again.
683				 */
684				scsi_requeue_command(q, cmd);
685				cmd = NULL;
686			}
687			return cmd;
688		}
689	}
690
691	/*
692	 * This will goose the queue request function at the end, so we don't
693	 * need to worry about launching another command.
694	 */
695	scsi_next_command(cmd);
696	return NULL;
697}
698
699static inline unsigned int scsi_sgtable_index(unsigned short nents)
700{
701	unsigned int index;
702
703	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
704
705	if (nents <= 8)
706		index = 0;
707	else
708		index = get_count_order(nents) - 3;
709
710	return index;
711}
712
713static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
714{
715	struct scsi_host_sg_pool *sgp;
716
717	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
718	mempool_free(sgl, sgp->pool);
719}
720
721static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
722{
723	struct scsi_host_sg_pool *sgp;
724
725	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
726	return mempool_alloc(sgp->pool, gfp_mask);
727}
728
729static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
730			      gfp_t gfp_mask)
731{
732	int ret;
733
734	BUG_ON(!nents);
735
736	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
737			       gfp_mask, scsi_sg_alloc);
738	if (unlikely(ret))
739		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
740				scsi_sg_free);
741
742	return ret;
743}
744
745static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
746{
747	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
748}
749
750/*
751 * Function:    scsi_release_buffers()
752 *
753 * Purpose:     Completion processing for block device I/O requests.
754 *
755 * Arguments:   cmd	- command that we are bailing.
756 *
757 * Lock status: Assumed that no lock is held upon entry.
758 *
759 * Returns:     Nothing
760 *
761 * Notes:       In the event that an upper level driver rejects a
762 *		command, we must release resources allocated during
763 *		the __init_io() function.  Primarily this would involve
764 *		the scatter-gather table, and potentially any bounce
765 *		buffers.
766 */
767void scsi_release_buffers(struct scsi_cmnd *cmd)
768{
769	if (cmd->sdb.table.nents)
770		scsi_free_sgtable(&cmd->sdb);
771
772	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
773
774	if (scsi_bidi_cmnd(cmd)) {
775		struct scsi_data_buffer *bidi_sdb =
776			cmd->request->next_rq->special;
777		scsi_free_sgtable(bidi_sdb);
778		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
779		cmd->request->next_rq->special = NULL;
780	}
781}
782EXPORT_SYMBOL(scsi_release_buffers);
783
784/*
785 * Bidi commands Must be complete as a whole, both sides at once.
786 * If part of the bytes were written and lld returned
787 * scsi_in()->resid and/or scsi_out()->resid this information will be left
788 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
789 * decide what to do with this information.
790 */
791static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
792{
793	struct request *req = cmd->request;
794	unsigned int dlen = req->data_len;
795	unsigned int next_dlen = req->next_rq->data_len;
796
797	req->data_len = scsi_out(cmd)->resid;
798	req->next_rq->data_len = scsi_in(cmd)->resid;
799
800	/* The req and req->next_rq have not been completed */
801	BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
802
803	scsi_release_buffers(cmd);
804
805	/*
806	 * This will goose the queue request function at the end, so we don't
807	 * need to worry about launching another command.
808	 */
809	scsi_next_command(cmd);
810}
811
812/*
813 * Function:    scsi_io_completion()
814 *
815 * Purpose:     Completion processing for block device I/O requests.
816 *
817 * Arguments:   cmd   - command that is finished.
818 *
819 * Lock status: Assumed that no lock is held upon entry.
820 *
821 * Returns:     Nothing
822 *
823 * Notes:       This function is matched in terms of capabilities to
824 *              the function that created the scatter-gather list.
825 *              In other words, if there are no bounce buffers
826 *              (the normal case for most drivers), we don't need
827 *              the logic to deal with cleaning up afterwards.
828 *
829 *		We must do one of several things here:
830 *
831 *		a) Call scsi_end_request.  This will finish off the
832 *		   specified number of sectors.  If we are done, the
833 *		   command block will be released, and the queue
834 *		   function will be goosed.  If we are not done, then
835 *		   scsi_end_request will directly goose the queue.
836 *
837 *		b) We can just use scsi_requeue_command() here.  This would
838 *		   be used if we just wanted to retry, for example.
839 */
840void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
841{
842	int result = cmd->result;
843	int this_count = scsi_bufflen(cmd);
844	struct request_queue *q = cmd->device->request_queue;
845	struct request *req = cmd->request;
846	int error = 0;
847	struct scsi_sense_hdr sshdr;
848	int sense_valid = 0;
849	int sense_deferred = 0;
850
851	if (result) {
852		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
853		if (sense_valid)
854			sense_deferred = scsi_sense_is_deferred(&sshdr);
855	}
856
857	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
858		req->errors = result;
859		if (result) {
860			if (sense_valid && req->sense) {
861				/*
862				 * SG_IO wants current and deferred errors
863				 */
864				int len = 8 + cmd->sense_buffer[7];
865
866				if (len > SCSI_SENSE_BUFFERSIZE)
867					len = SCSI_SENSE_BUFFERSIZE;
868				memcpy(req->sense, cmd->sense_buffer,  len);
869				req->sense_len = len;
870			}
871			if (!sense_deferred)
872				error = -EIO;
873		}
874		if (scsi_bidi_cmnd(cmd)) {
875			/* will also release_buffers */
876			scsi_end_bidi_request(cmd);
877			return;
878		}
879		req->data_len = scsi_get_resid(cmd);
880	}
881
882	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
883	scsi_release_buffers(cmd);
884
885	/*
886	 * Next deal with any sectors which we were able to correctly
887	 * handle.
888	 */
889	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
890				      "%d bytes done.\n",
891				      req->nr_sectors, good_bytes));
892
893	/* A number of bytes were successfully read.  If there
894	 * are leftovers and there is some kind of error
895	 * (result != 0), retry the rest.
896	 */
897	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
898		return;
899
900	/* good_bytes = 0, or (inclusive) there were leftovers and
901	 * result = 0, so scsi_end_request couldn't retry.
902	 */
903	if (sense_valid && !sense_deferred) {
904		switch (sshdr.sense_key) {
905		case UNIT_ATTENTION:
906			if (cmd->device->removable) {
907				/* Detected disc change.  Set a bit
908				 * and quietly refuse further access.
909				 */
910				cmd->device->changed = 1;
911				scsi_end_request(cmd, -EIO, this_count, 1);
912				return;
913			} else {
914				/* Must have been a power glitch, or a
915				 * bus reset.  Could not have been a
916				 * media change, so we just retry the
917				 * request and see what happens.
918				 */
919				scsi_requeue_command(q, cmd);
920				return;
921			}
922			break;
923		case ILLEGAL_REQUEST:
924			/* If we had an ILLEGAL REQUEST returned, then
925			 * we may have performed an unsupported
926			 * command.  The only thing this should be
927			 * would be a ten byte read where only a six
928			 * byte read was supported.  Also, on a system
929			 * where READ CAPACITY failed, we may have
930			 * read past the end of the disk.
931			 */
932			if ((cmd->device->use_10_for_rw &&
933			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
934			    (cmd->cmnd[0] == READ_10 ||
935			     cmd->cmnd[0] == WRITE_10)) {
936				cmd->device->use_10_for_rw = 0;
937				/* This will cause a retry with a
938				 * 6-byte command.
939				 */
940				scsi_requeue_command(q, cmd);
941				return;
942			} else {
943				scsi_end_request(cmd, -EIO, this_count, 1);
944				return;
945			}
946			break;
947		case NOT_READY:
948			/* If the device is in the process of becoming
949			 * ready, or has a temporary blockage, retry.
950			 */
951			if (sshdr.asc == 0x04) {
952				switch (sshdr.ascq) {
953				case 0x01: /* becoming ready */
954				case 0x04: /* format in progress */
955				case 0x05: /* rebuild in progress */
956				case 0x06: /* recalculation in progress */
957				case 0x07: /* operation in progress */
958				case 0x08: /* Long write in progress */
959				case 0x09: /* self test in progress */
960					scsi_requeue_command(q, cmd);
961					return;
962				default:
963					break;
964				}
965			}
966			if (!(req->cmd_flags & REQ_QUIET))
967				scsi_cmd_print_sense_hdr(cmd,
968							 "Device not ready",
969							 &sshdr);
970
971			scsi_end_request(cmd, -EIO, this_count, 1);
972			return;
973		case VOLUME_OVERFLOW:
974			if (!(req->cmd_flags & REQ_QUIET)) {
975				scmd_printk(KERN_INFO, cmd,
976					    "Volume overflow, CDB: ");
977				__scsi_print_command(cmd->cmnd);
978				scsi_print_sense("", cmd);
979			}
980			/* See SSC3rXX or current. */
981			scsi_end_request(cmd, -EIO, this_count, 1);
982			return;
983		default:
984			break;
985		}
986	}
987	if (host_byte(result) == DID_RESET) {
988		/* Third party bus reset or reset for error recovery
989		 * reasons.  Just retry the request and see what
990		 * happens.
991		 */
992		scsi_requeue_command(q, cmd);
993		return;
994	}
995	if (result) {
996		if (!(req->cmd_flags & REQ_QUIET)) {
997			scsi_print_result(cmd);
998			if (driver_byte(result) & DRIVER_SENSE)
999				scsi_print_sense("", cmd);
1000		}
1001	}
1002	scsi_end_request(cmd, -EIO, this_count, !result);
1003}
1004
1005static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1006			     gfp_t gfp_mask)
1007{
1008	int count;
1009
1010	/*
1011	 * If sg table allocation fails, requeue request later.
1012	 */
1013	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1014					gfp_mask))) {
1015		return BLKPREP_DEFER;
1016	}
1017
1018	req->buffer = NULL;
1019
1020	/*
1021	 * Next, walk the list, and fill in the addresses and sizes of
1022	 * each segment.
1023	 */
1024	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1025	BUG_ON(count > sdb->table.nents);
1026	sdb->table.nents = count;
1027	if (blk_pc_request(req))
1028		sdb->length = req->data_len;
1029	else
1030		sdb->length = req->nr_sectors << 9;
1031	return BLKPREP_OK;
1032}
1033
1034/*
1035 * Function:    scsi_init_io()
1036 *
1037 * Purpose:     SCSI I/O initialize function.
1038 *
1039 * Arguments:   cmd   - Command descriptor we wish to initialize
1040 *
1041 * Returns:     0 on success
1042 *		BLKPREP_DEFER if the failure is retryable
1043 *		BLKPREP_KILL if the failure is fatal
1044 */
1045int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1046{
1047	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1048	if (error)
1049		goto err_exit;
1050
1051	if (blk_bidi_rq(cmd->request)) {
1052		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1053			scsi_sdb_cache, GFP_ATOMIC);
1054		if (!bidi_sdb) {
1055			error = BLKPREP_DEFER;
1056			goto err_exit;
1057		}
1058
1059		cmd->request->next_rq->special = bidi_sdb;
1060		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1061								    GFP_ATOMIC);
1062		if (error)
1063			goto err_exit;
1064	}
1065
1066	return BLKPREP_OK ;
1067
1068err_exit:
1069	scsi_release_buffers(cmd);
1070	if (error == BLKPREP_KILL)
1071		scsi_put_command(cmd);
1072	else /* BLKPREP_DEFER */
1073		scsi_unprep_request(cmd->request);
1074
1075	return error;
1076}
1077EXPORT_SYMBOL(scsi_init_io);
1078
1079static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1080		struct request *req)
1081{
1082	struct scsi_cmnd *cmd;
1083
1084	if (!req->special) {
1085		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1086		if (unlikely(!cmd))
1087			return NULL;
1088		req->special = cmd;
1089	} else {
1090		cmd = req->special;
1091	}
1092
1093	/* pull a tag out of the request if we have one */
1094	cmd->tag = req->tag;
1095	cmd->request = req;
1096
1097	cmd->cmnd = req->cmd;
1098
1099	return cmd;
1100}
1101
1102int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1103{
1104	struct scsi_cmnd *cmd;
1105	int ret = scsi_prep_state_check(sdev, req);
1106
1107	if (ret != BLKPREP_OK)
1108		return ret;
1109
1110	cmd = scsi_get_cmd_from_req(sdev, req);
1111	if (unlikely(!cmd))
1112		return BLKPREP_DEFER;
1113
1114	/*
1115	 * BLOCK_PC requests may transfer data, in which case they must
1116	 * a bio attached to them.  Or they might contain a SCSI command
1117	 * that does not transfer data, in which case they may optionally
1118	 * submit a request without an attached bio.
1119	 */
1120	if (req->bio) {
1121		int ret;
1122
1123		BUG_ON(!req->nr_phys_segments);
1124
1125		ret = scsi_init_io(cmd, GFP_ATOMIC);
1126		if (unlikely(ret))
1127			return ret;
1128	} else {
1129		BUG_ON(req->data_len);
1130		BUG_ON(req->data);
1131
1132		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1133		req->buffer = NULL;
1134	}
1135
1136	cmd->cmd_len = req->cmd_len;
1137	if (!req->data_len)
1138		cmd->sc_data_direction = DMA_NONE;
1139	else if (rq_data_dir(req) == WRITE)
1140		cmd->sc_data_direction = DMA_TO_DEVICE;
1141	else
1142		cmd->sc_data_direction = DMA_FROM_DEVICE;
1143
1144	cmd->transfersize = req->data_len;
1145	cmd->allowed = req->retries;
1146	cmd->timeout_per_command = req->timeout;
1147	return BLKPREP_OK;
1148}
1149EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1150
1151/*
1152 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1153 * from filesystems that still need to be translated to SCSI CDBs from
1154 * the ULD.
1155 */
1156int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1157{
1158	struct scsi_cmnd *cmd;
1159	int ret = scsi_prep_state_check(sdev, req);
1160
1161	if (ret != BLKPREP_OK)
1162		return ret;
1163
1164	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1165			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1166		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1167		if (ret != BLKPREP_OK)
1168			return ret;
1169	}
1170
1171	/*
1172	 * Filesystem requests must transfer data.
1173	 */
1174	BUG_ON(!req->nr_phys_segments);
1175
1176	cmd = scsi_get_cmd_from_req(sdev, req);
1177	if (unlikely(!cmd))
1178		return BLKPREP_DEFER;
1179
1180	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1181	return scsi_init_io(cmd, GFP_ATOMIC);
1182}
1183EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1184
1185int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1186{
1187	int ret = BLKPREP_OK;
1188
1189	/*
1190	 * If the device is not in running state we will reject some
1191	 * or all commands.
1192	 */
1193	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1194		switch (sdev->sdev_state) {
1195		case SDEV_OFFLINE:
1196			/*
1197			 * If the device is offline we refuse to process any
1198			 * commands.  The device must be brought online
1199			 * before trying any recovery commands.
1200			 */
1201			sdev_printk(KERN_ERR, sdev,
1202				    "rejecting I/O to offline device\n");
1203			ret = BLKPREP_KILL;
1204			break;
1205		case SDEV_DEL:
1206			/*
1207			 * If the device is fully deleted, we refuse to
1208			 * process any commands as well.
1209			 */
1210			sdev_printk(KERN_ERR, sdev,
1211				    "rejecting I/O to dead device\n");
1212			ret = BLKPREP_KILL;
1213			break;
1214		case SDEV_QUIESCE:
1215		case SDEV_BLOCK:
1216			/*
1217			 * If the devices is blocked we defer normal commands.
1218			 */
1219			if (!(req->cmd_flags & REQ_PREEMPT))
1220				ret = BLKPREP_DEFER;
1221			break;
1222		default:
1223			/*
1224			 * For any other not fully online state we only allow
1225			 * special commands.  In particular any user initiated
1226			 * command is not allowed.
1227			 */
1228			if (!(req->cmd_flags & REQ_PREEMPT))
1229				ret = BLKPREP_KILL;
1230			break;
1231		}
1232	}
1233	return ret;
1234}
1235EXPORT_SYMBOL(scsi_prep_state_check);
1236
1237int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1238{
1239	struct scsi_device *sdev = q->queuedata;
1240
1241	switch (ret) {
1242	case BLKPREP_KILL:
1243		req->errors = DID_NO_CONNECT << 16;
1244		/* release the command and kill it */
1245		if (req->special) {
1246			struct scsi_cmnd *cmd = req->special;
1247			scsi_release_buffers(cmd);
1248			scsi_put_command(cmd);
1249			req->special = NULL;
1250		}
1251		break;
1252	case BLKPREP_DEFER:
1253		/*
1254		 * If we defer, the elv_next_request() returns NULL, but the
1255		 * queue must be restarted, so we plug here if no returning
1256		 * command will automatically do that.
1257		 */
1258		if (sdev->device_busy == 0)
1259			blk_plug_device(q);
1260		break;
1261	default:
1262		req->cmd_flags |= REQ_DONTPREP;
1263	}
1264
1265	return ret;
1266}
1267EXPORT_SYMBOL(scsi_prep_return);
1268
1269int scsi_prep_fn(struct request_queue *q, struct request *req)
1270{
1271	struct scsi_device *sdev = q->queuedata;
1272	int ret = BLKPREP_KILL;
1273
1274	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1275		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1276	return scsi_prep_return(q, req, ret);
1277}
1278
1279/*
1280 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1281 * return 0.
1282 *
1283 * Called with the queue_lock held.
1284 */
1285static inline int scsi_dev_queue_ready(struct request_queue *q,
1286				  struct scsi_device *sdev)
1287{
1288	if (sdev->device_busy >= sdev->queue_depth)
1289		return 0;
1290	if (sdev->device_busy == 0 && sdev->device_blocked) {
1291		/*
1292		 * unblock after device_blocked iterates to zero
1293		 */
1294		if (--sdev->device_blocked == 0) {
1295			SCSI_LOG_MLQUEUE(3,
1296				   sdev_printk(KERN_INFO, sdev,
1297				   "unblocking device at zero depth\n"));
1298		} else {
1299			blk_plug_device(q);
1300			return 0;
1301		}
1302	}
1303	if (sdev->device_blocked)
1304		return 0;
1305
1306	return 1;
1307}
1308
1309/*
1310 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1311 * return 0. We must end up running the queue again whenever 0 is
1312 * returned, else IO can hang.
1313 *
1314 * Called with host_lock held.
1315 */
1316static inline int scsi_host_queue_ready(struct request_queue *q,
1317				   struct Scsi_Host *shost,
1318				   struct scsi_device *sdev)
1319{
1320	if (scsi_host_in_recovery(shost))
1321		return 0;
1322	if (shost->host_busy == 0 && shost->host_blocked) {
1323		/*
1324		 * unblock after host_blocked iterates to zero
1325		 */
1326		if (--shost->host_blocked == 0) {
1327			SCSI_LOG_MLQUEUE(3,
1328				printk("scsi%d unblocking host at zero depth\n",
1329					shost->host_no));
1330		} else {
1331			return 0;
1332		}
1333	}
1334	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1335	    shost->host_blocked || shost->host_self_blocked) {
1336		if (list_empty(&sdev->starved_entry))
1337			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1338		return 0;
1339	}
1340
1341	/* We're OK to process the command, so we can't be starved */
1342	if (!list_empty(&sdev->starved_entry))
1343		list_del_init(&sdev->starved_entry);
1344
1345	return 1;
1346}
1347
1348/*
1349 * Kill a request for a dead device
1350 */
1351static void scsi_kill_request(struct request *req, struct request_queue *q)
1352{
1353	struct scsi_cmnd *cmd = req->special;
1354	struct scsi_device *sdev = cmd->device;
1355	struct Scsi_Host *shost = sdev->host;
1356
1357	blkdev_dequeue_request(req);
1358
1359	if (unlikely(cmd == NULL)) {
1360		printk(KERN_CRIT "impossible request in %s.\n",
1361				 __FUNCTION__);
1362		BUG();
1363	}
1364
1365	scsi_init_cmd_errh(cmd);
1366	cmd->result = DID_NO_CONNECT << 16;
1367	atomic_inc(&cmd->device->iorequest_cnt);
1368
1369	/*
1370	 * SCSI request completion path will do scsi_device_unbusy(),
1371	 * bump busy counts.  To bump the counters, we need to dance
1372	 * with the locks as normal issue path does.
1373	 */
1374	sdev->device_busy++;
1375	spin_unlock(sdev->request_queue->queue_lock);
1376	spin_lock(shost->host_lock);
1377	shost->host_busy++;
1378	spin_unlock(shost->host_lock);
1379	spin_lock(sdev->request_queue->queue_lock);
1380
1381	__scsi_done(cmd);
1382}
1383
1384static void scsi_softirq_done(struct request *rq)
1385{
1386	struct scsi_cmnd *cmd = rq->completion_data;
1387	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1388	int disposition;
1389
1390	INIT_LIST_HEAD(&cmd->eh_entry);
1391
1392	disposition = scsi_decide_disposition(cmd);
1393	if (disposition != SUCCESS &&
1394	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1395		sdev_printk(KERN_ERR, cmd->device,
1396			    "timing out command, waited %lus\n",
1397			    wait_for/HZ);
1398		disposition = SUCCESS;
1399	}
1400
1401	scsi_log_completion(cmd, disposition);
1402
1403	switch (disposition) {
1404		case SUCCESS:
1405			scsi_finish_command(cmd);
1406			break;
1407		case NEEDS_RETRY:
1408			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1409			break;
1410		case ADD_TO_MLQUEUE:
1411			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1412			break;
1413		default:
1414			if (!scsi_eh_scmd_add(cmd, 0))
1415				scsi_finish_command(cmd);
1416	}
1417}
1418
1419/*
1420 * Function:    scsi_request_fn()
1421 *
1422 * Purpose:     Main strategy routine for SCSI.
1423 *
1424 * Arguments:   q       - Pointer to actual queue.
1425 *
1426 * Returns:     Nothing
1427 *
1428 * Lock status: IO request lock assumed to be held when called.
1429 */
1430static void scsi_request_fn(struct request_queue *q)
1431{
1432	struct scsi_device *sdev = q->queuedata;
1433	struct Scsi_Host *shost;
1434	struct scsi_cmnd *cmd;
1435	struct request *req;
1436
1437	if (!sdev) {
1438		printk("scsi: killing requests for dead queue\n");
1439		while ((req = elv_next_request(q)) != NULL)
1440			scsi_kill_request(req, q);
1441		return;
1442	}
1443
1444	if(!get_device(&sdev->sdev_gendev))
1445		/* We must be tearing the block queue down already */
1446		return;
1447
1448	/*
1449	 * To start with, we keep looping until the queue is empty, or until
1450	 * the host is no longer able to accept any more requests.
1451	 */
1452	shost = sdev->host;
1453	while (!blk_queue_plugged(q)) {
1454		int rtn;
1455		/*
1456		 * get next queueable request.  We do this early to make sure
1457		 * that the request is fully prepared even if we cannot
1458		 * accept it.
1459		 */
1460		req = elv_next_request(q);
1461		if (!req || !scsi_dev_queue_ready(q, sdev))
1462			break;
1463
1464		if (unlikely(!scsi_device_online(sdev))) {
1465			sdev_printk(KERN_ERR, sdev,
1466				    "rejecting I/O to offline device\n");
1467			scsi_kill_request(req, q);
1468			continue;
1469		}
1470
1471
1472		/*
1473		 * Remove the request from the request list.
1474		 */
1475		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1476			blkdev_dequeue_request(req);
1477		sdev->device_busy++;
1478
1479		spin_unlock(q->queue_lock);
1480		cmd = req->special;
1481		if (unlikely(cmd == NULL)) {
1482			printk(KERN_CRIT "impossible request in %s.\n"
1483					 "please mail a stack trace to "
1484					 "linux-scsi@vger.kernel.org\n",
1485					 __FUNCTION__);
1486			blk_dump_rq_flags(req, "foo");
1487			BUG();
1488		}
1489		spin_lock(shost->host_lock);
1490
1491		if (!scsi_host_queue_ready(q, shost, sdev))
1492			goto not_ready;
1493		if (scsi_target(sdev)->single_lun) {
1494			if (scsi_target(sdev)->starget_sdev_user &&
1495			    scsi_target(sdev)->starget_sdev_user != sdev)
1496				goto not_ready;
1497			scsi_target(sdev)->starget_sdev_user = sdev;
1498		}
1499		shost->host_busy++;
1500
1501		/*
1502		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1503		 *		take the lock again.
1504		 */
1505		spin_unlock_irq(shost->host_lock);
1506
1507		/*
1508		 * Finally, initialize any error handling parameters, and set up
1509		 * the timers for timeouts.
1510		 */
1511		scsi_init_cmd_errh(cmd);
1512
1513		/*
1514		 * Dispatch the command to the low-level driver.
1515		 */
1516		rtn = scsi_dispatch_cmd(cmd);
1517		spin_lock_irq(q->queue_lock);
1518		if(rtn) {
1519			/* we're refusing the command; because of
1520			 * the way locks get dropped, we need to
1521			 * check here if plugging is required */
1522			if(sdev->device_busy == 0)
1523				blk_plug_device(q);
1524
1525			break;
1526		}
1527	}
1528
1529	goto out;
1530
1531 not_ready:
1532	spin_unlock_irq(shost->host_lock);
1533
1534	/*
1535	 * lock q, handle tag, requeue req, and decrement device_busy. We
1536	 * must return with queue_lock held.
1537	 *
1538	 * Decrementing device_busy without checking it is OK, as all such
1539	 * cases (host limits or settings) should run the queue at some
1540	 * later time.
1541	 */
1542	spin_lock_irq(q->queue_lock);
1543	blk_requeue_request(q, req);
1544	sdev->device_busy--;
1545	if(sdev->device_busy == 0)
1546		blk_plug_device(q);
1547 out:
1548	/* must be careful here...if we trigger the ->remove() function
1549	 * we cannot be holding the q lock */
1550	spin_unlock_irq(q->queue_lock);
1551	put_device(&sdev->sdev_gendev);
1552	spin_lock_irq(q->queue_lock);
1553}
1554
1555u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1556{
1557	struct device *host_dev;
1558	u64 bounce_limit = 0xffffffff;
1559
1560	if (shost->unchecked_isa_dma)
1561		return BLK_BOUNCE_ISA;
1562	/*
1563	 * Platforms with virtual-DMA translation
1564	 * hardware have no practical limit.
1565	 */
1566	if (!PCI_DMA_BUS_IS_PHYS)
1567		return BLK_BOUNCE_ANY;
1568
1569	host_dev = scsi_get_device(shost);
1570	if (host_dev && host_dev->dma_mask)
1571		bounce_limit = *host_dev->dma_mask;
1572
1573	return bounce_limit;
1574}
1575EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1576
1577struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1578					 request_fn_proc *request_fn)
1579{
1580	struct request_queue *q;
1581	struct device *dev = shost->shost_gendev.parent;
1582
1583	q = blk_init_queue(request_fn, NULL);
1584	if (!q)
1585		return NULL;
1586
1587	/*
1588	 * this limit is imposed by hardware restrictions
1589	 */
1590	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1591	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1592
1593	blk_queue_max_sectors(q, shost->max_sectors);
1594	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1595	blk_queue_segment_boundary(q, shost->dma_boundary);
1596	dma_set_seg_boundary(dev, shost->dma_boundary);
1597
1598	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1599
1600	/* New queue, no concurrency on queue_flags */
1601	if (!shost->use_clustering)
1602		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1603
1604	/*
1605	 * set a reasonable default alignment on word boundaries: the
1606	 * host and device may alter it using
1607	 * blk_queue_update_dma_alignment() later.
1608	 */
1609	blk_queue_dma_alignment(q, 0x03);
1610
1611	return q;
1612}
1613EXPORT_SYMBOL(__scsi_alloc_queue);
1614
1615struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1616{
1617	struct request_queue *q;
1618
1619	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1620	if (!q)
1621		return NULL;
1622
1623	blk_queue_prep_rq(q, scsi_prep_fn);
1624	blk_queue_softirq_done(q, scsi_softirq_done);
1625	return q;
1626}
1627
1628void scsi_free_queue(struct request_queue *q)
1629{
1630	blk_cleanup_queue(q);
1631}
1632
1633/*
1634 * Function:    scsi_block_requests()
1635 *
1636 * Purpose:     Utility function used by low-level drivers to prevent further
1637 *		commands from being queued to the device.
1638 *
1639 * Arguments:   shost       - Host in question
1640 *
1641 * Returns:     Nothing
1642 *
1643 * Lock status: No locks are assumed held.
1644 *
1645 * Notes:       There is no timer nor any other means by which the requests
1646 *		get unblocked other than the low-level driver calling
1647 *		scsi_unblock_requests().
1648 */
1649void scsi_block_requests(struct Scsi_Host *shost)
1650{
1651	shost->host_self_blocked = 1;
1652}
1653EXPORT_SYMBOL(scsi_block_requests);
1654
1655/*
1656 * Function:    scsi_unblock_requests()
1657 *
1658 * Purpose:     Utility function used by low-level drivers to allow further
1659 *		commands from being queued to the device.
1660 *
1661 * Arguments:   shost       - Host in question
1662 *
1663 * Returns:     Nothing
1664 *
1665 * Lock status: No locks are assumed held.
1666 *
1667 * Notes:       There is no timer nor any other means by which the requests
1668 *		get unblocked other than the low-level driver calling
1669 *		scsi_unblock_requests().
1670 *
1671 *		This is done as an API function so that changes to the
1672 *		internals of the scsi mid-layer won't require wholesale
1673 *		changes to drivers that use this feature.
1674 */
1675void scsi_unblock_requests(struct Scsi_Host *shost)
1676{
1677	shost->host_self_blocked = 0;
1678	scsi_run_host_queues(shost);
1679}
1680EXPORT_SYMBOL(scsi_unblock_requests);
1681
1682int __init scsi_init_queue(void)
1683{
1684	int i;
1685
1686	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1687					sizeof(struct scsi_io_context),
1688					0, 0, NULL);
1689	if (!scsi_io_context_cache) {
1690		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1691		return -ENOMEM;
1692	}
1693
1694	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1695					   sizeof(struct scsi_data_buffer),
1696					   0, 0, NULL);
1697	if (!scsi_sdb_cache) {
1698		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1699		goto cleanup_io_context;
1700	}
1701
1702	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1703		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1704		int size = sgp->size * sizeof(struct scatterlist);
1705
1706		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1707				SLAB_HWCACHE_ALIGN, NULL);
1708		if (!sgp->slab) {
1709			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1710					sgp->name);
1711			goto cleanup_sdb;
1712		}
1713
1714		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1715						     sgp->slab);
1716		if (!sgp->pool) {
1717			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1718					sgp->name);
1719			goto cleanup_sdb;
1720		}
1721	}
1722
1723	return 0;
1724
1725cleanup_sdb:
1726	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1727		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1728		if (sgp->pool)
1729			mempool_destroy(sgp->pool);
1730		if (sgp->slab)
1731			kmem_cache_destroy(sgp->slab);
1732	}
1733	kmem_cache_destroy(scsi_sdb_cache);
1734cleanup_io_context:
1735	kmem_cache_destroy(scsi_io_context_cache);
1736
1737	return -ENOMEM;
1738}
1739
1740void scsi_exit_queue(void)
1741{
1742	int i;
1743
1744	kmem_cache_destroy(scsi_io_context_cache);
1745	kmem_cache_destroy(scsi_sdb_cache);
1746
1747	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1748		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1749		mempool_destroy(sgp->pool);
1750		kmem_cache_destroy(sgp->slab);
1751	}
1752}
1753
1754/**
1755 *	scsi_mode_select - issue a mode select
1756 *	@sdev:	SCSI device to be queried
1757 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1758 *	@sp:	Save page bit (0 == don't save, 1 == save)
1759 *	@modepage: mode page being requested
1760 *	@buffer: request buffer (may not be smaller than eight bytes)
1761 *	@len:	length of request buffer.
1762 *	@timeout: command timeout
1763 *	@retries: number of retries before failing
1764 *	@data: returns a structure abstracting the mode header data
1765 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1766 *		must be SCSI_SENSE_BUFFERSIZE big.
1767 *
1768 *	Returns zero if successful; negative error number or scsi
1769 *	status on error
1770 *
1771 */
1772int
1773scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1774		 unsigned char *buffer, int len, int timeout, int retries,
1775		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1776{
1777	unsigned char cmd[10];
1778	unsigned char *real_buffer;
1779	int ret;
1780
1781	memset(cmd, 0, sizeof(cmd));
1782	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1783
1784	if (sdev->use_10_for_ms) {
1785		if (len > 65535)
1786			return -EINVAL;
1787		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1788		if (!real_buffer)
1789			return -ENOMEM;
1790		memcpy(real_buffer + 8, buffer, len);
1791		len += 8;
1792		real_buffer[0] = 0;
1793		real_buffer[1] = 0;
1794		real_buffer[2] = data->medium_type;
1795		real_buffer[3] = data->device_specific;
1796		real_buffer[4] = data->longlba ? 0x01 : 0;
1797		real_buffer[5] = 0;
1798		real_buffer[6] = data->block_descriptor_length >> 8;
1799		real_buffer[7] = data->block_descriptor_length;
1800
1801		cmd[0] = MODE_SELECT_10;
1802		cmd[7] = len >> 8;
1803		cmd[8] = len;
1804	} else {
1805		if (len > 255 || data->block_descriptor_length > 255 ||
1806		    data->longlba)
1807			return -EINVAL;
1808
1809		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1810		if (!real_buffer)
1811			return -ENOMEM;
1812		memcpy(real_buffer + 4, buffer, len);
1813		len += 4;
1814		real_buffer[0] = 0;
1815		real_buffer[1] = data->medium_type;
1816		real_buffer[2] = data->device_specific;
1817		real_buffer[3] = data->block_descriptor_length;
1818
1819
1820		cmd[0] = MODE_SELECT;
1821		cmd[4] = len;
1822	}
1823
1824	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1825			       sshdr, timeout, retries);
1826	kfree(real_buffer);
1827	return ret;
1828}
1829EXPORT_SYMBOL_GPL(scsi_mode_select);
1830
1831/**
1832 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1833 *	@sdev:	SCSI device to be queried
1834 *	@dbd:	set if mode sense will allow block descriptors to be returned
1835 *	@modepage: mode page being requested
1836 *	@buffer: request buffer (may not be smaller than eight bytes)
1837 *	@len:	length of request buffer.
1838 *	@timeout: command timeout
1839 *	@retries: number of retries before failing
1840 *	@data: returns a structure abstracting the mode header data
1841 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1842 *		must be SCSI_SENSE_BUFFERSIZE big.
1843 *
1844 *	Returns zero if unsuccessful, or the header offset (either 4
1845 *	or 8 depending on whether a six or ten byte command was
1846 *	issued) if successful.
1847 */
1848int
1849scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1850		  unsigned char *buffer, int len, int timeout, int retries,
1851		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1852{
1853	unsigned char cmd[12];
1854	int use_10_for_ms;
1855	int header_length;
1856	int result;
1857	struct scsi_sense_hdr my_sshdr;
1858
1859	memset(data, 0, sizeof(*data));
1860	memset(&cmd[0], 0, 12);
1861	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1862	cmd[2] = modepage;
1863
1864	/* caller might not be interested in sense, but we need it */
1865	if (!sshdr)
1866		sshdr = &my_sshdr;
1867
1868 retry:
1869	use_10_for_ms = sdev->use_10_for_ms;
1870
1871	if (use_10_for_ms) {
1872		if (len < 8)
1873			len = 8;
1874
1875		cmd[0] = MODE_SENSE_10;
1876		cmd[8] = len;
1877		header_length = 8;
1878	} else {
1879		if (len < 4)
1880			len = 4;
1881
1882		cmd[0] = MODE_SENSE;
1883		cmd[4] = len;
1884		header_length = 4;
1885	}
1886
1887	memset(buffer, 0, len);
1888
1889	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1890				  sshdr, timeout, retries);
1891
1892	/* This code looks awful: what it's doing is making sure an
1893	 * ILLEGAL REQUEST sense return identifies the actual command
1894	 * byte as the problem.  MODE_SENSE commands can return
1895	 * ILLEGAL REQUEST if the code page isn't supported */
1896
1897	if (use_10_for_ms && !scsi_status_is_good(result) &&
1898	    (driver_byte(result) & DRIVER_SENSE)) {
1899		if (scsi_sense_valid(sshdr)) {
1900			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1901			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1902				/*
1903				 * Invalid command operation code
1904				 */
1905				sdev->use_10_for_ms = 0;
1906				goto retry;
1907			}
1908		}
1909	}
1910
1911	if(scsi_status_is_good(result)) {
1912		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1913			     (modepage == 6 || modepage == 8))) {
1914			/* Initio breakage? */
1915			header_length = 0;
1916			data->length = 13;
1917			data->medium_type = 0;
1918			data->device_specific = 0;
1919			data->longlba = 0;
1920			data->block_descriptor_length = 0;
1921		} else if(use_10_for_ms) {
1922			data->length = buffer[0]*256 + buffer[1] + 2;
1923			data->medium_type = buffer[2];
1924			data->device_specific = buffer[3];
1925			data->longlba = buffer[4] & 0x01;
1926			data->block_descriptor_length = buffer[6]*256
1927				+ buffer[7];
1928		} else {
1929			data->length = buffer[0] + 1;
1930			data->medium_type = buffer[1];
1931			data->device_specific = buffer[2];
1932			data->block_descriptor_length = buffer[3];
1933		}
1934		data->header_length = header_length;
1935	}
1936
1937	return result;
1938}
1939EXPORT_SYMBOL(scsi_mode_sense);
1940
1941/**
1942 *	scsi_test_unit_ready - test if unit is ready
1943 *	@sdev:	scsi device to change the state of.
1944 *	@timeout: command timeout
1945 *	@retries: number of retries before failing
1946 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1947 *		returning sense. Make sure that this is cleared before passing
1948 *		in.
1949 *
1950 *	Returns zero if unsuccessful or an error if TUR failed.  For
1951 *	removable media, a return of NOT_READY or UNIT_ATTENTION is
1952 *	translated to success, with the ->changed flag updated.
1953 **/
1954int
1955scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1956		     struct scsi_sense_hdr *sshdr_external)
1957{
1958	char cmd[] = {
1959		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1960	};
1961	struct scsi_sense_hdr *sshdr;
1962	int result;
1963
1964	if (!sshdr_external)
1965		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1966	else
1967		sshdr = sshdr_external;
1968
1969	/* try to eat the UNIT_ATTENTION if there are enough retries */
1970	do {
1971		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1972					  timeout, retries);
1973	} while ((driver_byte(result) & DRIVER_SENSE) &&
1974		 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
1975		 --retries);
1976
1977	if (!sshdr)
1978		/* could not allocate sense buffer, so can't process it */
1979		return result;
1980
1981	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1982
1983		if ((scsi_sense_valid(sshdr)) &&
1984		    ((sshdr->sense_key == UNIT_ATTENTION) ||
1985		     (sshdr->sense_key == NOT_READY))) {
1986			sdev->changed = 1;
1987			result = 0;
1988		}
1989	}
1990	if (!sshdr_external)
1991		kfree(sshdr);
1992	return result;
1993}
1994EXPORT_SYMBOL(scsi_test_unit_ready);
1995
1996/**
1997 *	scsi_device_set_state - Take the given device through the device state model.
1998 *	@sdev:	scsi device to change the state of.
1999 *	@state:	state to change to.
2000 *
2001 *	Returns zero if unsuccessful or an error if the requested
2002 *	transition is illegal.
2003 */
2004int
2005scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2006{
2007	enum scsi_device_state oldstate = sdev->sdev_state;
2008
2009	if (state == oldstate)
2010		return 0;
2011
2012	switch (state) {
2013	case SDEV_CREATED:
2014		/* There are no legal states that come back to
2015		 * created.  This is the manually initialised start
2016		 * state */
2017		goto illegal;
2018
2019	case SDEV_RUNNING:
2020		switch (oldstate) {
2021		case SDEV_CREATED:
2022		case SDEV_OFFLINE:
2023		case SDEV_QUIESCE:
2024		case SDEV_BLOCK:
2025			break;
2026		default:
2027			goto illegal;
2028		}
2029		break;
2030
2031	case SDEV_QUIESCE:
2032		switch (oldstate) {
2033		case SDEV_RUNNING:
2034		case SDEV_OFFLINE:
2035			break;
2036		default:
2037			goto illegal;
2038		}
2039		break;
2040
2041	case SDEV_OFFLINE:
2042		switch (oldstate) {
2043		case SDEV_CREATED:
2044		case SDEV_RUNNING:
2045		case SDEV_QUIESCE:
2046		case SDEV_BLOCK:
2047			break;
2048		default:
2049			goto illegal;
2050		}
2051		break;
2052
2053	case SDEV_BLOCK:
2054		switch (oldstate) {
2055		case SDEV_CREATED:
2056		case SDEV_RUNNING:
2057			break;
2058		default:
2059			goto illegal;
2060		}
2061		break;
2062
2063	case SDEV_CANCEL:
2064		switch (oldstate) {
2065		case SDEV_CREATED:
2066		case SDEV_RUNNING:
2067		case SDEV_QUIESCE:
2068		case SDEV_OFFLINE:
2069		case SDEV_BLOCK:
2070			break;
2071		default:
2072			goto illegal;
2073		}
2074		break;
2075
2076	case SDEV_DEL:
2077		switch (oldstate) {
2078		case SDEV_CREATED:
2079		case SDEV_RUNNING:
2080		case SDEV_OFFLINE:
2081		case SDEV_CANCEL:
2082			break;
2083		default:
2084			goto illegal;
2085		}
2086		break;
2087
2088	}
2089	sdev->sdev_state = state;
2090	return 0;
2091
2092 illegal:
2093	SCSI_LOG_ERROR_RECOVERY(1,
2094				sdev_printk(KERN_ERR, sdev,
2095					    "Illegal state transition %s->%s\n",
2096					    scsi_device_state_name(oldstate),
2097					    scsi_device_state_name(state))
2098				);
2099	return -EINVAL;
2100}
2101EXPORT_SYMBOL(scsi_device_set_state);
2102
2103/**
2104 * 	sdev_evt_emit - emit a single SCSI device uevent
2105 *	@sdev: associated SCSI device
2106 *	@evt: event to emit
2107 *
2108 *	Send a single uevent (scsi_event) to the associated scsi_device.
2109 */
2110static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2111{
2112	int idx = 0;
2113	char *envp[3];
2114
2115	switch (evt->evt_type) {
2116	case SDEV_EVT_MEDIA_CHANGE:
2117		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2118		break;
2119
2120	default:
2121		/* do nothing */
2122		break;
2123	}
2124
2125	envp[idx++] = NULL;
2126
2127	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2128}
2129
2130/**
2131 * 	sdev_evt_thread - send a uevent for each scsi event
2132 *	@work: work struct for scsi_device
2133 *
2134 *	Dispatch queued events to their associated scsi_device kobjects
2135 *	as uevents.
2136 */
2137void scsi_evt_thread(struct work_struct *work)
2138{
2139	struct scsi_device *sdev;
2140	LIST_HEAD(event_list);
2141
2142	sdev = container_of(work, struct scsi_device, event_work);
2143
2144	while (1) {
2145		struct scsi_event *evt;
2146		struct list_head *this, *tmp;
2147		unsigned long flags;
2148
2149		spin_lock_irqsave(&sdev->list_lock, flags);
2150		list_splice_init(&sdev->event_list, &event_list);
2151		spin_unlock_irqrestore(&sdev->list_lock, flags);
2152
2153		if (list_empty(&event_list))
2154			break;
2155
2156		list_for_each_safe(this, tmp, &event_list) {
2157			evt = list_entry(this, struct scsi_event, node);
2158			list_del(&evt->node);
2159			scsi_evt_emit(sdev, evt);
2160			kfree(evt);
2161		}
2162	}
2163}
2164
2165/**
2166 * 	sdev_evt_send - send asserted event to uevent thread
2167 *	@sdev: scsi_device event occurred on
2168 *	@evt: event to send
2169 *
2170 *	Assert scsi device event asynchronously.
2171 */
2172void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2173{
2174	unsigned long flags;
2175
2176#if 0
2177	/* FIXME: currently this check eliminates all media change events
2178	 * for polled devices.  Need to update to discriminate between AN
2179	 * and polled events */
2180	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2181		kfree(evt);
2182		return;
2183	}
2184#endif
2185
2186	spin_lock_irqsave(&sdev->list_lock, flags);
2187	list_add_tail(&evt->node, &sdev->event_list);
2188	schedule_work(&sdev->event_work);
2189	spin_unlock_irqrestore(&sdev->list_lock, flags);
2190}
2191EXPORT_SYMBOL_GPL(sdev_evt_send);
2192
2193/**
2194 * 	sdev_evt_alloc - allocate a new scsi event
2195 *	@evt_type: type of event to allocate
2196 *	@gfpflags: GFP flags for allocation
2197 *
2198 *	Allocates and returns a new scsi_event.
2199 */
2200struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2201				  gfp_t gfpflags)
2202{
2203	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2204	if (!evt)
2205		return NULL;
2206
2207	evt->evt_type = evt_type;
2208	INIT_LIST_HEAD(&evt->node);
2209
2210	/* evt_type-specific initialization, if any */
2211	switch (evt_type) {
2212	case SDEV_EVT_MEDIA_CHANGE:
2213	default:
2214		/* do nothing */
2215		break;
2216	}
2217
2218	return evt;
2219}
2220EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2221
2222/**
2223 * 	sdev_evt_send_simple - send asserted event to uevent thread
2224 *	@sdev: scsi_device event occurred on
2225 *	@evt_type: type of event to send
2226 *	@gfpflags: GFP flags for allocation
2227 *
2228 *	Assert scsi device event asynchronously, given an event type.
2229 */
2230void sdev_evt_send_simple(struct scsi_device *sdev,
2231			  enum scsi_device_event evt_type, gfp_t gfpflags)
2232{
2233	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2234	if (!evt) {
2235		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2236			    evt_type);
2237		return;
2238	}
2239
2240	sdev_evt_send(sdev, evt);
2241}
2242EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2243
2244/**
2245 *	scsi_device_quiesce - Block user issued commands.
2246 *	@sdev:	scsi device to quiesce.
2247 *
2248 *	This works by trying to transition to the SDEV_QUIESCE state
2249 *	(which must be a legal transition).  When the device is in this
2250 *	state, only special requests will be accepted, all others will
2251 *	be deferred.  Since special requests may also be requeued requests,
2252 *	a successful return doesn't guarantee the device will be
2253 *	totally quiescent.
2254 *
2255 *	Must be called with user context, may sleep.
2256 *
2257 *	Returns zero if unsuccessful or an error if not.
2258 */
2259int
2260scsi_device_quiesce(struct scsi_device *sdev)
2261{
2262	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2263	if (err)
2264		return err;
2265
2266	scsi_run_queue(sdev->request_queue);
2267	while (sdev->device_busy) {
2268		msleep_interruptible(200);
2269		scsi_run_queue(sdev->request_queue);
2270	}
2271	return 0;
2272}
2273EXPORT_SYMBOL(scsi_device_quiesce);
2274
2275/**
2276 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2277 *	@sdev:	scsi device to resume.
2278 *
2279 *	Moves the device from quiesced back to running and restarts the
2280 *	queues.
2281 *
2282 *	Must be called with user context, may sleep.
2283 */
2284void
2285scsi_device_resume(struct scsi_device *sdev)
2286{
2287	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2288		return;
2289	scsi_run_queue(sdev->request_queue);
2290}
2291EXPORT_SYMBOL(scsi_device_resume);
2292
2293static void
2294device_quiesce_fn(struct scsi_device *sdev, void *data)
2295{
2296	scsi_device_quiesce(sdev);
2297}
2298
2299void
2300scsi_target_quiesce(struct scsi_target *starget)
2301{
2302	starget_for_each_device(starget, NULL, device_quiesce_fn);
2303}
2304EXPORT_SYMBOL(scsi_target_quiesce);
2305
2306static void
2307device_resume_fn(struct scsi_device *sdev, void *data)
2308{
2309	scsi_device_resume(sdev);
2310}
2311
2312void
2313scsi_target_resume(struct scsi_target *starget)
2314{
2315	starget_for_each_device(starget, NULL, device_resume_fn);
2316}
2317EXPORT_SYMBOL(scsi_target_resume);
2318
2319/**
2320 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2321 * @sdev:	device to block
2322 *
2323 * Block request made by scsi lld's to temporarily stop all
2324 * scsi commands on the specified device.  Called from interrupt
2325 * or normal process context.
2326 *
2327 * Returns zero if successful or error if not
2328 *
2329 * Notes:
2330 *	This routine transitions the device to the SDEV_BLOCK state
2331 *	(which must be a legal transition).  When the device is in this
2332 *	state, all commands are deferred until the scsi lld reenables
2333 *	the device with scsi_device_unblock or device_block_tmo fires.
2334 *	This routine assumes the host_lock is held on entry.
2335 */
2336int
2337scsi_internal_device_block(struct scsi_device *sdev)
2338{
2339	struct request_queue *q = sdev->request_queue;
2340	unsigned long flags;
2341	int err = 0;
2342
2343	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2344	if (err)
2345		return err;
2346
2347	/*
2348	 * The device has transitioned to SDEV_BLOCK.  Stop the
2349	 * block layer from calling the midlayer with this device's
2350	 * request queue.
2351	 */
2352	spin_lock_irqsave(q->queue_lock, flags);
2353	blk_stop_queue(q);
2354	spin_unlock_irqrestore(q->queue_lock, flags);
2355
2356	return 0;
2357}
2358EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2359
2360/**
2361 * scsi_internal_device_unblock - resume a device after a block request
2362 * @sdev:	device to resume
2363 *
2364 * Called by scsi lld's or the midlayer to restart the device queue
2365 * for the previously suspended scsi device.  Called from interrupt or
2366 * normal process context.
2367 *
2368 * Returns zero if successful or error if not.
2369 *
2370 * Notes:
2371 *	This routine transitions the device to the SDEV_RUNNING state
2372 *	(which must be a legal transition) allowing the midlayer to
2373 *	goose the queue for this device.  This routine assumes the
2374 *	host_lock is held upon entry.
2375 */
2376int
2377scsi_internal_device_unblock(struct scsi_device *sdev)
2378{
2379	struct request_queue *q = sdev->request_queue;
2380	int err;
2381	unsigned long flags;
2382
2383	/*
2384	 * Try to transition the scsi device to SDEV_RUNNING
2385	 * and goose the device queue if successful.
2386	 */
2387	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2388	if (err)
2389		return err;
2390
2391	spin_lock_irqsave(q->queue_lock, flags);
2392	blk_start_queue(q);
2393	spin_unlock_irqrestore(q->queue_lock, flags);
2394
2395	return 0;
2396}
2397EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2398
2399static void
2400device_block(struct scsi_device *sdev, void *data)
2401{
2402	scsi_internal_device_block(sdev);
2403}
2404
2405static int
2406target_block(struct device *dev, void *data)
2407{
2408	if (scsi_is_target_device(dev))
2409		starget_for_each_device(to_scsi_target(dev), NULL,
2410					device_block);
2411	return 0;
2412}
2413
2414void
2415scsi_target_block(struct device *dev)
2416{
2417	if (scsi_is_target_device(dev))
2418		starget_for_each_device(to_scsi_target(dev), NULL,
2419					device_block);
2420	else
2421		device_for_each_child(dev, NULL, target_block);
2422}
2423EXPORT_SYMBOL_GPL(scsi_target_block);
2424
2425static void
2426device_unblock(struct scsi_device *sdev, void *data)
2427{
2428	scsi_internal_device_unblock(sdev);
2429}
2430
2431static int
2432target_unblock(struct device *dev, void *data)
2433{
2434	if (scsi_is_target_device(dev))
2435		starget_for_each_device(to_scsi_target(dev), NULL,
2436					device_unblock);
2437	return 0;
2438}
2439
2440void
2441scsi_target_unblock(struct device *dev)
2442{
2443	if (scsi_is_target_device(dev))
2444		starget_for_each_device(to_scsi_target(dev), NULL,
2445					device_unblock);
2446	else
2447		device_for_each_child(dev, NULL, target_unblock);
2448}
2449EXPORT_SYMBOL_GPL(scsi_target_unblock);
2450
2451/**
2452 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2453 * @sgl:	scatter-gather list
2454 * @sg_count:	number of segments in sg
2455 * @offset:	offset in bytes into sg, on return offset into the mapped area
2456 * @len:	bytes to map, on return number of bytes mapped
2457 *
2458 * Returns virtual address of the start of the mapped page
2459 */
2460void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2461			  size_t *offset, size_t *len)
2462{
2463	int i;
2464	size_t sg_len = 0, len_complete = 0;
2465	struct scatterlist *sg;
2466	struct page *page;
2467
2468	WARN_ON(!irqs_disabled());
2469
2470	for_each_sg(sgl, sg, sg_count, i) {
2471		len_complete = sg_len; /* Complete sg-entries */
2472		sg_len += sg->length;
2473		if (sg_len > *offset)
2474			break;
2475	}
2476
2477	if (unlikely(i == sg_count)) {
2478		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2479			"elements %d\n",
2480		       __FUNCTION__, sg_len, *offset, sg_count);
2481		WARN_ON(1);
2482		return NULL;
2483	}
2484
2485	/* Offset starting from the beginning of first page in this sg-entry */
2486	*offset = *offset - len_complete + sg->offset;
2487
2488	/* Assumption: contiguous pages can be accessed as "page + i" */
2489	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2490	*offset &= ~PAGE_MASK;
2491
2492	/* Bytes in this sg-entry from *offset to the end of the page */
2493	sg_len = PAGE_SIZE - *offset;
2494	if (*len > sg_len)
2495		*len = sg_len;
2496
2497	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2498}
2499EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2500
2501/**
2502 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2503 * @virt:	virtual address to be unmapped
2504 */
2505void scsi_kunmap_atomic_sg(void *virt)
2506{
2507	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2508}
2509EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2510