scsi_lib.c revision 33659ebbae262228eef4e0fe990f393d1f0ed941
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/bitops.h>
12#include <linux/blkdev.h>
13#include <linux/completion.h>
14#include <linux/kernel.h>
15#include <linux/mempool.h>
16#include <linux/slab.h>
17#include <linux/init.h>
18#include <linux/pci.h>
19#include <linux/delay.h>
20#include <linux/hardirq.h>
21#include <linux/scatterlist.h>
22
23#include <scsi/scsi.h>
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_dbg.h>
26#include <scsi/scsi_device.h>
27#include <scsi/scsi_driver.h>
28#include <scsi/scsi_eh.h>
29#include <scsi/scsi_host.h>
30
31#include "scsi_priv.h"
32#include "scsi_logging.h"
33
34
35#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36#define SG_MEMPOOL_SIZE		2
37
38struct scsi_host_sg_pool {
39	size_t		size;
40	char		*name;
41	struct kmem_cache	*slab;
42	mempool_t	*pool;
43};
44
45#define SP(x) { x, "sgpool-" __stringify(x) }
46#if (SCSI_MAX_SG_SEGMENTS < 32)
47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48#endif
49static struct scsi_host_sg_pool scsi_sg_pools[] = {
50	SP(8),
51	SP(16),
52#if (SCSI_MAX_SG_SEGMENTS > 32)
53	SP(32),
54#if (SCSI_MAX_SG_SEGMENTS > 64)
55	SP(64),
56#if (SCSI_MAX_SG_SEGMENTS > 128)
57	SP(128),
58#if (SCSI_MAX_SG_SEGMENTS > 256)
59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60#endif
61#endif
62#endif
63#endif
64	SP(SCSI_MAX_SG_SEGMENTS)
65};
66#undef SP
67
68struct kmem_cache *scsi_sdb_cache;
69
70static void scsi_run_queue(struct request_queue *q);
71
72/*
73 * Function:	scsi_unprep_request()
74 *
75 * Purpose:	Remove all preparation done for a request, including its
76 *		associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments:	req	- request to unprepare
79 *
80 * Lock status:	Assumed that no locks are held upon entry.
81 *
82 * Returns:	Nothing.
83 */
84static void scsi_unprep_request(struct request *req)
85{
86	struct scsi_cmnd *cmd = req->special;
87
88	req->cmd_flags &= ~REQ_DONTPREP;
89	req->special = NULL;
90
91	scsi_put_command(cmd);
92}
93
94/**
95 * __scsi_queue_insert - private queue insertion
96 * @cmd: The SCSI command being requeued
97 * @reason:  The reason for the requeue
98 * @unbusy: Whether the queue should be unbusied
99 *
100 * This is a private queue insertion.  The public interface
101 * scsi_queue_insert() always assumes the queue should be unbusied
102 * because it's always called before the completion.  This function is
103 * for a requeue after completion, which should only occur in this
104 * file.
105 */
106static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107{
108	struct Scsi_Host *host = cmd->device->host;
109	struct scsi_device *device = cmd->device;
110	struct scsi_target *starget = scsi_target(device);
111	struct request_queue *q = device->request_queue;
112	unsigned long flags;
113
114	SCSI_LOG_MLQUEUE(1,
115		 printk("Inserting command %p into mlqueue\n", cmd));
116
117	/*
118	 * Set the appropriate busy bit for the device/host.
119	 *
120	 * If the host/device isn't busy, assume that something actually
121	 * completed, and that we should be able to queue a command now.
122	 *
123	 * Note that the prior mid-layer assumption that any host could
124	 * always queue at least one command is now broken.  The mid-layer
125	 * will implement a user specifiable stall (see
126	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127	 * if a command is requeued with no other commands outstanding
128	 * either for the device or for the host.
129	 */
130	switch (reason) {
131	case SCSI_MLQUEUE_HOST_BUSY:
132		host->host_blocked = host->max_host_blocked;
133		break;
134	case SCSI_MLQUEUE_DEVICE_BUSY:
135		device->device_blocked = device->max_device_blocked;
136		break;
137	case SCSI_MLQUEUE_TARGET_BUSY:
138		starget->target_blocked = starget->max_target_blocked;
139		break;
140	}
141
142	/*
143	 * Decrement the counters, since these commands are no longer
144	 * active on the host/device.
145	 */
146	if (unbusy)
147		scsi_device_unbusy(device);
148
149	/*
150	 * Requeue this command.  It will go before all other commands
151	 * that are already in the queue.
152	 *
153	 * NOTE: there is magic here about the way the queue is plugged if
154	 * we have no outstanding commands.
155	 *
156	 * Although we *don't* plug the queue, we call the request
157	 * function.  The SCSI request function detects the blocked condition
158	 * and plugs the queue appropriately.
159         */
160	spin_lock_irqsave(q->queue_lock, flags);
161	blk_requeue_request(q, cmd->request);
162	spin_unlock_irqrestore(q->queue_lock, flags);
163
164	scsi_run_queue(q);
165
166	return 0;
167}
168
169/*
170 * Function:    scsi_queue_insert()
171 *
172 * Purpose:     Insert a command in the midlevel queue.
173 *
174 * Arguments:   cmd    - command that we are adding to queue.
175 *              reason - why we are inserting command to queue.
176 *
177 * Lock status: Assumed that lock is not held upon entry.
178 *
179 * Returns:     Nothing.
180 *
181 * Notes:       We do this for one of two cases.  Either the host is busy
182 *              and it cannot accept any more commands for the time being,
183 *              or the device returned QUEUE_FULL and can accept no more
184 *              commands.
185 * Notes:       This could be called either from an interrupt context or a
186 *              normal process context.
187 */
188int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189{
190	return __scsi_queue_insert(cmd, reason, 1);
191}
192/**
193 * scsi_execute - insert request and wait for the result
194 * @sdev:	scsi device
195 * @cmd:	scsi command
196 * @data_direction: data direction
197 * @buffer:	data buffer
198 * @bufflen:	len of buffer
199 * @sense:	optional sense buffer
200 * @timeout:	request timeout in seconds
201 * @retries:	number of times to retry request
202 * @flags:	or into request flags;
203 * @resid:	optional residual length
204 *
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
207 */
208int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209		 int data_direction, void *buffer, unsigned bufflen,
210		 unsigned char *sense, int timeout, int retries, int flags,
211		 int *resid)
212{
213	struct request *req;
214	int write = (data_direction == DMA_TO_DEVICE);
215	int ret = DRIVER_ERROR << 24;
216
217	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218
219	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
220					buffer, bufflen, __GFP_WAIT))
221		goto out;
222
223	req->cmd_len = COMMAND_SIZE(cmd[0]);
224	memcpy(req->cmd, cmd, req->cmd_len);
225	req->sense = sense;
226	req->sense_len = 0;
227	req->retries = retries;
228	req->timeout = timeout;
229	req->cmd_type = REQ_TYPE_BLOCK_PC;
230	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231
232	/*
233	 * head injection *required* here otherwise quiesce won't work
234	 */
235	blk_execute_rq(req->q, NULL, req, 1);
236
237	/*
238	 * Some devices (USB mass-storage in particular) may transfer
239	 * garbage data together with a residue indicating that the data
240	 * is invalid.  Prevent the garbage from being misinterpreted
241	 * and prevent security leaks by zeroing out the excess data.
242	 */
243	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245
246	if (resid)
247		*resid = req->resid_len;
248	ret = req->errors;
249 out:
250	blk_put_request(req);
251
252	return ret;
253}
254EXPORT_SYMBOL(scsi_execute);
255
256
257int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258		     int data_direction, void *buffer, unsigned bufflen,
259		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260		     int *resid)
261{
262	char *sense = NULL;
263	int result;
264
265	if (sshdr) {
266		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267		if (!sense)
268			return DRIVER_ERROR << 24;
269	}
270	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271			      sense, timeout, retries, 0, resid);
272	if (sshdr)
273		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274
275	kfree(sense);
276	return result;
277}
278EXPORT_SYMBOL(scsi_execute_req);
279
280/*
281 * Function:    scsi_init_cmd_errh()
282 *
283 * Purpose:     Initialize cmd fields related to error handling.
284 *
285 * Arguments:   cmd	- command that is ready to be queued.
286 *
287 * Notes:       This function has the job of initializing a number of
288 *              fields related to error handling.   Typically this will
289 *              be called once for each command, as required.
290 */
291static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292{
293	cmd->serial_number = 0;
294	scsi_set_resid(cmd, 0);
295	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296	if (cmd->cmd_len == 0)
297		cmd->cmd_len = scsi_command_size(cmd->cmnd);
298}
299
300void scsi_device_unbusy(struct scsi_device *sdev)
301{
302	struct Scsi_Host *shost = sdev->host;
303	struct scsi_target *starget = scsi_target(sdev);
304	unsigned long flags;
305
306	spin_lock_irqsave(shost->host_lock, flags);
307	shost->host_busy--;
308	starget->target_busy--;
309	if (unlikely(scsi_host_in_recovery(shost) &&
310		     (shost->host_failed || shost->host_eh_scheduled)))
311		scsi_eh_wakeup(shost);
312	spin_unlock(shost->host_lock);
313	spin_lock(sdev->request_queue->queue_lock);
314	sdev->device_busy--;
315	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316}
317
318/*
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
322 *
323 * Called with *no* scsi locks held.
324 */
325static void scsi_single_lun_run(struct scsi_device *current_sdev)
326{
327	struct Scsi_Host *shost = current_sdev->host;
328	struct scsi_device *sdev, *tmp;
329	struct scsi_target *starget = scsi_target(current_sdev);
330	unsigned long flags;
331
332	spin_lock_irqsave(shost->host_lock, flags);
333	starget->starget_sdev_user = NULL;
334	spin_unlock_irqrestore(shost->host_lock, flags);
335
336	/*
337	 * Call blk_run_queue for all LUNs on the target, starting with
338	 * current_sdev. We race with others (to set starget_sdev_user),
339	 * but in most cases, we will be first. Ideally, each LU on the
340	 * target would get some limited time or requests on the target.
341	 */
342	blk_run_queue(current_sdev->request_queue);
343
344	spin_lock_irqsave(shost->host_lock, flags);
345	if (starget->starget_sdev_user)
346		goto out;
347	list_for_each_entry_safe(sdev, tmp, &starget->devices,
348			same_target_siblings) {
349		if (sdev == current_sdev)
350			continue;
351		if (scsi_device_get(sdev))
352			continue;
353
354		spin_unlock_irqrestore(shost->host_lock, flags);
355		blk_run_queue(sdev->request_queue);
356		spin_lock_irqsave(shost->host_lock, flags);
357
358		scsi_device_put(sdev);
359	}
360 out:
361	spin_unlock_irqrestore(shost->host_lock, flags);
362}
363
364static inline int scsi_device_is_busy(struct scsi_device *sdev)
365{
366	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367		return 1;
368
369	return 0;
370}
371
372static inline int scsi_target_is_busy(struct scsi_target *starget)
373{
374	return ((starget->can_queue > 0 &&
375		 starget->target_busy >= starget->can_queue) ||
376		 starget->target_blocked);
377}
378
379static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380{
381	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382	    shost->host_blocked || shost->host_self_blocked)
383		return 1;
384
385	return 0;
386}
387
388/*
389 * Function:	scsi_run_queue()
390 *
391 * Purpose:	Select a proper request queue to serve next
392 *
393 * Arguments:	q	- last request's queue
394 *
395 * Returns:     Nothing
396 *
397 * Notes:	The previous command was completely finished, start
398 *		a new one if possible.
399 */
400static void scsi_run_queue(struct request_queue *q)
401{
402	struct scsi_device *sdev = q->queuedata;
403	struct Scsi_Host *shost = sdev->host;
404	LIST_HEAD(starved_list);
405	unsigned long flags;
406
407	if (scsi_target(sdev)->single_lun)
408		scsi_single_lun_run(sdev);
409
410	spin_lock_irqsave(shost->host_lock, flags);
411	list_splice_init(&shost->starved_list, &starved_list);
412
413	while (!list_empty(&starved_list)) {
414		int flagset;
415
416		/*
417		 * As long as shost is accepting commands and we have
418		 * starved queues, call blk_run_queue. scsi_request_fn
419		 * drops the queue_lock and can add us back to the
420		 * starved_list.
421		 *
422		 * host_lock protects the starved_list and starved_entry.
423		 * scsi_request_fn must get the host_lock before checking
424		 * or modifying starved_list or starved_entry.
425		 */
426		if (scsi_host_is_busy(shost))
427			break;
428
429		sdev = list_entry(starved_list.next,
430				  struct scsi_device, starved_entry);
431		list_del_init(&sdev->starved_entry);
432		if (scsi_target_is_busy(scsi_target(sdev))) {
433			list_move_tail(&sdev->starved_entry,
434				       &shost->starved_list);
435			continue;
436		}
437
438		spin_unlock(shost->host_lock);
439
440		spin_lock(sdev->request_queue->queue_lock);
441		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442				!test_bit(QUEUE_FLAG_REENTER,
443					&sdev->request_queue->queue_flags);
444		if (flagset)
445			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446		__blk_run_queue(sdev->request_queue);
447		if (flagset)
448			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449		spin_unlock(sdev->request_queue->queue_lock);
450
451		spin_lock(shost->host_lock);
452	}
453	/* put any unprocessed entries back */
454	list_splice(&starved_list, &shost->starved_list);
455	spin_unlock_irqrestore(shost->host_lock, flags);
456
457	blk_run_queue(q);
458}
459
460/*
461 * Function:	scsi_requeue_command()
462 *
463 * Purpose:	Handle post-processing of completed commands.
464 *
465 * Arguments:	q	- queue to operate on
466 *		cmd	- command that may need to be requeued.
467 *
468 * Returns:	Nothing
469 *
470 * Notes:	After command completion, there may be blocks left
471 *		over which weren't finished by the previous command
472 *		this can be for a number of reasons - the main one is
473 *		I/O errors in the middle of the request, in which case
474 *		we need to request the blocks that come after the bad
475 *		sector.
476 * Notes:	Upon return, cmd is a stale pointer.
477 */
478static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479{
480	struct request *req = cmd->request;
481	unsigned long flags;
482
483	spin_lock_irqsave(q->queue_lock, flags);
484	scsi_unprep_request(req);
485	blk_requeue_request(q, req);
486	spin_unlock_irqrestore(q->queue_lock, flags);
487
488	scsi_run_queue(q);
489}
490
491void scsi_next_command(struct scsi_cmnd *cmd)
492{
493	struct scsi_device *sdev = cmd->device;
494	struct request_queue *q = sdev->request_queue;
495
496	/* need to hold a reference on the device before we let go of the cmd */
497	get_device(&sdev->sdev_gendev);
498
499	scsi_put_command(cmd);
500	scsi_run_queue(q);
501
502	/* ok to remove device now */
503	put_device(&sdev->sdev_gendev);
504}
505
506void scsi_run_host_queues(struct Scsi_Host *shost)
507{
508	struct scsi_device *sdev;
509
510	shost_for_each_device(sdev, shost)
511		scsi_run_queue(sdev->request_queue);
512}
513
514static void __scsi_release_buffers(struct scsi_cmnd *, int);
515
516/*
517 * Function:    scsi_end_request()
518 *
519 * Purpose:     Post-processing of completed commands (usually invoked at end
520 *		of upper level post-processing and scsi_io_completion).
521 *
522 * Arguments:   cmd	 - command that is complete.
523 *              error    - 0 if I/O indicates success, < 0 for I/O error.
524 *              bytes    - number of bytes of completed I/O
525 *		requeue  - indicates whether we should requeue leftovers.
526 *
527 * Lock status: Assumed that lock is not held upon entry.
528 *
529 * Returns:     cmd if requeue required, NULL otherwise.
530 *
531 * Notes:       This is called for block device requests in order to
532 *              mark some number of sectors as complete.
533 *
534 *		We are guaranteeing that the request queue will be goosed
535 *		at some point during this call.
536 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
537 */
538static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539					  int bytes, int requeue)
540{
541	struct request_queue *q = cmd->device->request_queue;
542	struct request *req = cmd->request;
543
544	/*
545	 * If there are blocks left over at the end, set up the command
546	 * to queue the remainder of them.
547	 */
548	if (blk_end_request(req, error, bytes)) {
549		/* kill remainder if no retrys */
550		if (error && scsi_noretry_cmd(cmd))
551			blk_end_request_all(req, error);
552		else {
553			if (requeue) {
554				/*
555				 * Bleah.  Leftovers again.  Stick the
556				 * leftovers in the front of the
557				 * queue, and goose the queue again.
558				 */
559				scsi_release_buffers(cmd);
560				scsi_requeue_command(q, cmd);
561				cmd = NULL;
562			}
563			return cmd;
564		}
565	}
566
567	/*
568	 * This will goose the queue request function at the end, so we don't
569	 * need to worry about launching another command.
570	 */
571	__scsi_release_buffers(cmd, 0);
572	scsi_next_command(cmd);
573	return NULL;
574}
575
576static inline unsigned int scsi_sgtable_index(unsigned short nents)
577{
578	unsigned int index;
579
580	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
581
582	if (nents <= 8)
583		index = 0;
584	else
585		index = get_count_order(nents) - 3;
586
587	return index;
588}
589
590static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
591{
592	struct scsi_host_sg_pool *sgp;
593
594	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595	mempool_free(sgl, sgp->pool);
596}
597
598static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
599{
600	struct scsi_host_sg_pool *sgp;
601
602	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603	return mempool_alloc(sgp->pool, gfp_mask);
604}
605
606static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607			      gfp_t gfp_mask)
608{
609	int ret;
610
611	BUG_ON(!nents);
612
613	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614			       gfp_mask, scsi_sg_alloc);
615	if (unlikely(ret))
616		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617				scsi_sg_free);
618
619	return ret;
620}
621
622static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
623{
624	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
625}
626
627static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
628{
629
630	if (cmd->sdb.table.nents)
631		scsi_free_sgtable(&cmd->sdb);
632
633	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
634
635	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636		struct scsi_data_buffer *bidi_sdb =
637			cmd->request->next_rq->special;
638		scsi_free_sgtable(bidi_sdb);
639		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640		cmd->request->next_rq->special = NULL;
641	}
642
643	if (scsi_prot_sg_count(cmd))
644		scsi_free_sgtable(cmd->prot_sdb);
645}
646
647/*
648 * Function:    scsi_release_buffers()
649 *
650 * Purpose:     Completion processing for block device I/O requests.
651 *
652 * Arguments:   cmd	- command that we are bailing.
653 *
654 * Lock status: Assumed that no lock is held upon entry.
655 *
656 * Returns:     Nothing
657 *
658 * Notes:       In the event that an upper level driver rejects a
659 *		command, we must release resources allocated during
660 *		the __init_io() function.  Primarily this would involve
661 *		the scatter-gather table, and potentially any bounce
662 *		buffers.
663 */
664void scsi_release_buffers(struct scsi_cmnd *cmd)
665{
666	__scsi_release_buffers(cmd, 1);
667}
668EXPORT_SYMBOL(scsi_release_buffers);
669
670/*
671 * Function:    scsi_io_completion()
672 *
673 * Purpose:     Completion processing for block device I/O requests.
674 *
675 * Arguments:   cmd   - command that is finished.
676 *
677 * Lock status: Assumed that no lock is held upon entry.
678 *
679 * Returns:     Nothing
680 *
681 * Notes:       This function is matched in terms of capabilities to
682 *              the function that created the scatter-gather list.
683 *              In other words, if there are no bounce buffers
684 *              (the normal case for most drivers), we don't need
685 *              the logic to deal with cleaning up afterwards.
686 *
687 *		We must call scsi_end_request().  This will finish off
688 *		the specified number of sectors.  If we are done, the
689 *		command block will be released and the queue function
690 *		will be goosed.  If we are not done then we have to
691 *		figure out what to do next:
692 *
693 *		a) We can call scsi_requeue_command().  The request
694 *		   will be unprepared and put back on the queue.  Then
695 *		   a new command will be created for it.  This should
696 *		   be used if we made forward progress, or if we want
697 *		   to switch from READ(10) to READ(6) for example.
698 *
699 *		b) We can call scsi_queue_insert().  The request will
700 *		   be put back on the queue and retried using the same
701 *		   command as before, possibly after a delay.
702 *
703 *		c) We can call blk_end_request() with -EIO to fail
704 *		   the remainder of the request.
705 */
706void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
707{
708	int result = cmd->result;
709	struct request_queue *q = cmd->device->request_queue;
710	struct request *req = cmd->request;
711	int error = 0;
712	struct scsi_sense_hdr sshdr;
713	int sense_valid = 0;
714	int sense_deferred = 0;
715	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
716	      ACTION_DELAYED_RETRY} action;
717	char *description = NULL;
718
719	if (result) {
720		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
721		if (sense_valid)
722			sense_deferred = scsi_sense_is_deferred(&sshdr);
723	}
724
725	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
726		req->errors = result;
727		if (result) {
728			if (sense_valid && req->sense) {
729				/*
730				 * SG_IO wants current and deferred errors
731				 */
732				int len = 8 + cmd->sense_buffer[7];
733
734				if (len > SCSI_SENSE_BUFFERSIZE)
735					len = SCSI_SENSE_BUFFERSIZE;
736				memcpy(req->sense, cmd->sense_buffer,  len);
737				req->sense_len = len;
738			}
739			if (!sense_deferred)
740				error = -EIO;
741		}
742
743		req->resid_len = scsi_get_resid(cmd);
744
745		if (scsi_bidi_cmnd(cmd)) {
746			/*
747			 * Bidi commands Must be complete as a whole,
748			 * both sides at once.
749			 */
750			req->next_rq->resid_len = scsi_in(cmd)->resid;
751
752			scsi_release_buffers(cmd);
753			blk_end_request_all(req, 0);
754
755			scsi_next_command(cmd);
756			return;
757		}
758	}
759
760	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
761	BUG_ON(blk_bidi_rq(req));
762
763	/*
764	 * Next deal with any sectors which we were able to correctly
765	 * handle.
766	 */
767	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
768				      "%d bytes done.\n",
769				      blk_rq_sectors(req), good_bytes));
770
771	/*
772	 * Recovered errors need reporting, but they're always treated
773	 * as success, so fiddle the result code here.  For BLOCK_PC
774	 * we already took a copy of the original into rq->errors which
775	 * is what gets returned to the user
776	 */
777	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
778		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
779		 * print since caller wants ATA registers. Only occurs on
780		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
781		 */
782		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
783			;
784		else if (!(req->cmd_flags & REQ_QUIET))
785			scsi_print_sense("", cmd);
786		result = 0;
787		/* BLOCK_PC may have set error */
788		error = 0;
789	}
790
791	/*
792	 * A number of bytes were successfully read.  If there
793	 * are leftovers and there is some kind of error
794	 * (result != 0), retry the rest.
795	 */
796	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
797		return;
798
799	error = -EIO;
800
801	if (host_byte(result) == DID_RESET) {
802		/* Third party bus reset or reset for error recovery
803		 * reasons.  Just retry the command and see what
804		 * happens.
805		 */
806		action = ACTION_RETRY;
807	} else if (sense_valid && !sense_deferred) {
808		switch (sshdr.sense_key) {
809		case UNIT_ATTENTION:
810			if (cmd->device->removable) {
811				/* Detected disc change.  Set a bit
812				 * and quietly refuse further access.
813				 */
814				cmd->device->changed = 1;
815				description = "Media Changed";
816				action = ACTION_FAIL;
817			} else {
818				/* Must have been a power glitch, or a
819				 * bus reset.  Could not have been a
820				 * media change, so we just retry the
821				 * command and see what happens.
822				 */
823				action = ACTION_RETRY;
824			}
825			break;
826		case ILLEGAL_REQUEST:
827			/* If we had an ILLEGAL REQUEST returned, then
828			 * we may have performed an unsupported
829			 * command.  The only thing this should be
830			 * would be a ten byte read where only a six
831			 * byte read was supported.  Also, on a system
832			 * where READ CAPACITY failed, we may have
833			 * read past the end of the disk.
834			 */
835			if ((cmd->device->use_10_for_rw &&
836			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
837			    (cmd->cmnd[0] == READ_10 ||
838			     cmd->cmnd[0] == WRITE_10)) {
839				/* This will issue a new 6-byte command. */
840				cmd->device->use_10_for_rw = 0;
841				action = ACTION_REPREP;
842			} else if (sshdr.asc == 0x10) /* DIX */ {
843				description = "Host Data Integrity Failure";
844				action = ACTION_FAIL;
845				error = -EILSEQ;
846			} else
847				action = ACTION_FAIL;
848			break;
849		case ABORTED_COMMAND:
850			action = ACTION_FAIL;
851			if (sshdr.asc == 0x10) { /* DIF */
852				description = "Target Data Integrity Failure";
853				error = -EILSEQ;
854			}
855			break;
856		case NOT_READY:
857			/* If the device is in the process of becoming
858			 * ready, or has a temporary blockage, retry.
859			 */
860			if (sshdr.asc == 0x04) {
861				switch (sshdr.ascq) {
862				case 0x01: /* becoming ready */
863				case 0x04: /* format in progress */
864				case 0x05: /* rebuild in progress */
865				case 0x06: /* recalculation in progress */
866				case 0x07: /* operation in progress */
867				case 0x08: /* Long write in progress */
868				case 0x09: /* self test in progress */
869				case 0x14: /* space allocation in progress */
870					action = ACTION_DELAYED_RETRY;
871					break;
872				default:
873					description = "Device not ready";
874					action = ACTION_FAIL;
875					break;
876				}
877			} else {
878				description = "Device not ready";
879				action = ACTION_FAIL;
880			}
881			break;
882		case VOLUME_OVERFLOW:
883			/* See SSC3rXX or current. */
884			action = ACTION_FAIL;
885			break;
886		default:
887			description = "Unhandled sense code";
888			action = ACTION_FAIL;
889			break;
890		}
891	} else {
892		description = "Unhandled error code";
893		action = ACTION_FAIL;
894	}
895
896	switch (action) {
897	case ACTION_FAIL:
898		/* Give up and fail the remainder of the request */
899		scsi_release_buffers(cmd);
900		if (!(req->cmd_flags & REQ_QUIET)) {
901			if (description)
902				scmd_printk(KERN_INFO, cmd, "%s\n",
903					    description);
904			scsi_print_result(cmd);
905			if (driver_byte(result) & DRIVER_SENSE)
906				scsi_print_sense("", cmd);
907			scsi_print_command(cmd);
908		}
909		if (blk_end_request_err(req, error))
910			scsi_requeue_command(q, cmd);
911		else
912			scsi_next_command(cmd);
913		break;
914	case ACTION_REPREP:
915		/* Unprep the request and put it back at the head of the queue.
916		 * A new command will be prepared and issued.
917		 */
918		scsi_release_buffers(cmd);
919		scsi_requeue_command(q, cmd);
920		break;
921	case ACTION_RETRY:
922		/* Retry the same command immediately */
923		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
924		break;
925	case ACTION_DELAYED_RETRY:
926		/* Retry the same command after a delay */
927		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
928		break;
929	}
930}
931
932static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
933			     gfp_t gfp_mask)
934{
935	int count;
936
937	/*
938	 * If sg table allocation fails, requeue request later.
939	 */
940	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
941					gfp_mask))) {
942		return BLKPREP_DEFER;
943	}
944
945	req->buffer = NULL;
946
947	/*
948	 * Next, walk the list, and fill in the addresses and sizes of
949	 * each segment.
950	 */
951	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
952	BUG_ON(count > sdb->table.nents);
953	sdb->table.nents = count;
954	sdb->length = blk_rq_bytes(req);
955	return BLKPREP_OK;
956}
957
958/*
959 * Function:    scsi_init_io()
960 *
961 * Purpose:     SCSI I/O initialize function.
962 *
963 * Arguments:   cmd   - Command descriptor we wish to initialize
964 *
965 * Returns:     0 on success
966 *		BLKPREP_DEFER if the failure is retryable
967 *		BLKPREP_KILL if the failure is fatal
968 */
969int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
970{
971	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
972	if (error)
973		goto err_exit;
974
975	if (blk_bidi_rq(cmd->request)) {
976		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
977			scsi_sdb_cache, GFP_ATOMIC);
978		if (!bidi_sdb) {
979			error = BLKPREP_DEFER;
980			goto err_exit;
981		}
982
983		cmd->request->next_rq->special = bidi_sdb;
984		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
985								    GFP_ATOMIC);
986		if (error)
987			goto err_exit;
988	}
989
990	if (blk_integrity_rq(cmd->request)) {
991		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
992		int ivecs, count;
993
994		BUG_ON(prot_sdb == NULL);
995		ivecs = blk_rq_count_integrity_sg(cmd->request);
996
997		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
998			error = BLKPREP_DEFER;
999			goto err_exit;
1000		}
1001
1002		count = blk_rq_map_integrity_sg(cmd->request,
1003						prot_sdb->table.sgl);
1004		BUG_ON(unlikely(count > ivecs));
1005
1006		cmd->prot_sdb = prot_sdb;
1007		cmd->prot_sdb->table.nents = count;
1008	}
1009
1010	return BLKPREP_OK ;
1011
1012err_exit:
1013	scsi_release_buffers(cmd);
1014	if (error == BLKPREP_KILL)
1015		scsi_put_command(cmd);
1016	else /* BLKPREP_DEFER */
1017		scsi_unprep_request(cmd->request);
1018
1019	return error;
1020}
1021EXPORT_SYMBOL(scsi_init_io);
1022
1023static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1024		struct request *req)
1025{
1026	struct scsi_cmnd *cmd;
1027
1028	if (!req->special) {
1029		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1030		if (unlikely(!cmd))
1031			return NULL;
1032		req->special = cmd;
1033	} else {
1034		cmd = req->special;
1035	}
1036
1037	/* pull a tag out of the request if we have one */
1038	cmd->tag = req->tag;
1039	cmd->request = req;
1040
1041	cmd->cmnd = req->cmd;
1042
1043	return cmd;
1044}
1045
1046int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1047{
1048	struct scsi_cmnd *cmd;
1049	int ret = scsi_prep_state_check(sdev, req);
1050
1051	if (ret != BLKPREP_OK)
1052		return ret;
1053
1054	cmd = scsi_get_cmd_from_req(sdev, req);
1055	if (unlikely(!cmd))
1056		return BLKPREP_DEFER;
1057
1058	/*
1059	 * BLOCK_PC requests may transfer data, in which case they must
1060	 * a bio attached to them.  Or they might contain a SCSI command
1061	 * that does not transfer data, in which case they may optionally
1062	 * submit a request without an attached bio.
1063	 */
1064	if (req->bio) {
1065		int ret;
1066
1067		BUG_ON(!req->nr_phys_segments);
1068
1069		ret = scsi_init_io(cmd, GFP_ATOMIC);
1070		if (unlikely(ret))
1071			return ret;
1072	} else {
1073		BUG_ON(blk_rq_bytes(req));
1074
1075		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1076		req->buffer = NULL;
1077	}
1078
1079	cmd->cmd_len = req->cmd_len;
1080	if (!blk_rq_bytes(req))
1081		cmd->sc_data_direction = DMA_NONE;
1082	else if (rq_data_dir(req) == WRITE)
1083		cmd->sc_data_direction = DMA_TO_DEVICE;
1084	else
1085		cmd->sc_data_direction = DMA_FROM_DEVICE;
1086
1087	cmd->transfersize = blk_rq_bytes(req);
1088	cmd->allowed = req->retries;
1089	return BLKPREP_OK;
1090}
1091EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1092
1093/*
1094 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1095 * from filesystems that still need to be translated to SCSI CDBs from
1096 * the ULD.
1097 */
1098int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1099{
1100	struct scsi_cmnd *cmd;
1101	int ret = scsi_prep_state_check(sdev, req);
1102
1103	if (ret != BLKPREP_OK)
1104		return ret;
1105
1106	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1107			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1108		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1109		if (ret != BLKPREP_OK)
1110			return ret;
1111	}
1112
1113	/*
1114	 * Filesystem requests must transfer data.
1115	 */
1116	BUG_ON(!req->nr_phys_segments);
1117
1118	cmd = scsi_get_cmd_from_req(sdev, req);
1119	if (unlikely(!cmd))
1120		return BLKPREP_DEFER;
1121
1122	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1123	return scsi_init_io(cmd, GFP_ATOMIC);
1124}
1125EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1126
1127int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1128{
1129	int ret = BLKPREP_OK;
1130
1131	/*
1132	 * If the device is not in running state we will reject some
1133	 * or all commands.
1134	 */
1135	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1136		switch (sdev->sdev_state) {
1137		case SDEV_OFFLINE:
1138			/*
1139			 * If the device is offline we refuse to process any
1140			 * commands.  The device must be brought online
1141			 * before trying any recovery commands.
1142			 */
1143			sdev_printk(KERN_ERR, sdev,
1144				    "rejecting I/O to offline device\n");
1145			ret = BLKPREP_KILL;
1146			break;
1147		case SDEV_DEL:
1148			/*
1149			 * If the device is fully deleted, we refuse to
1150			 * process any commands as well.
1151			 */
1152			sdev_printk(KERN_ERR, sdev,
1153				    "rejecting I/O to dead device\n");
1154			ret = BLKPREP_KILL;
1155			break;
1156		case SDEV_QUIESCE:
1157		case SDEV_BLOCK:
1158		case SDEV_CREATED_BLOCK:
1159			/*
1160			 * If the devices is blocked we defer normal commands.
1161			 */
1162			if (!(req->cmd_flags & REQ_PREEMPT))
1163				ret = BLKPREP_DEFER;
1164			break;
1165		default:
1166			/*
1167			 * For any other not fully online state we only allow
1168			 * special commands.  In particular any user initiated
1169			 * command is not allowed.
1170			 */
1171			if (!(req->cmd_flags & REQ_PREEMPT))
1172				ret = BLKPREP_KILL;
1173			break;
1174		}
1175	}
1176	return ret;
1177}
1178EXPORT_SYMBOL(scsi_prep_state_check);
1179
1180int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1181{
1182	struct scsi_device *sdev = q->queuedata;
1183
1184	switch (ret) {
1185	case BLKPREP_KILL:
1186		req->errors = DID_NO_CONNECT << 16;
1187		/* release the command and kill it */
1188		if (req->special) {
1189			struct scsi_cmnd *cmd = req->special;
1190			scsi_release_buffers(cmd);
1191			scsi_put_command(cmd);
1192			req->special = NULL;
1193		}
1194		break;
1195	case BLKPREP_DEFER:
1196		/*
1197		 * If we defer, the blk_peek_request() returns NULL, but the
1198		 * queue must be restarted, so we plug here if no returning
1199		 * command will automatically do that.
1200		 */
1201		if (sdev->device_busy == 0)
1202			blk_plug_device(q);
1203		break;
1204	default:
1205		req->cmd_flags |= REQ_DONTPREP;
1206	}
1207
1208	return ret;
1209}
1210EXPORT_SYMBOL(scsi_prep_return);
1211
1212int scsi_prep_fn(struct request_queue *q, struct request *req)
1213{
1214	struct scsi_device *sdev = q->queuedata;
1215	int ret = BLKPREP_KILL;
1216
1217	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1218		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1219	return scsi_prep_return(q, req, ret);
1220}
1221EXPORT_SYMBOL(scsi_prep_fn);
1222
1223/*
1224 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1225 * return 0.
1226 *
1227 * Called with the queue_lock held.
1228 */
1229static inline int scsi_dev_queue_ready(struct request_queue *q,
1230				  struct scsi_device *sdev)
1231{
1232	if (sdev->device_busy == 0 && sdev->device_blocked) {
1233		/*
1234		 * unblock after device_blocked iterates to zero
1235		 */
1236		if (--sdev->device_blocked == 0) {
1237			SCSI_LOG_MLQUEUE(3,
1238				   sdev_printk(KERN_INFO, sdev,
1239				   "unblocking device at zero depth\n"));
1240		} else {
1241			blk_plug_device(q);
1242			return 0;
1243		}
1244	}
1245	if (scsi_device_is_busy(sdev))
1246		return 0;
1247
1248	return 1;
1249}
1250
1251
1252/*
1253 * scsi_target_queue_ready: checks if there we can send commands to target
1254 * @sdev: scsi device on starget to check.
1255 *
1256 * Called with the host lock held.
1257 */
1258static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1259					   struct scsi_device *sdev)
1260{
1261	struct scsi_target *starget = scsi_target(sdev);
1262
1263	if (starget->single_lun) {
1264		if (starget->starget_sdev_user &&
1265		    starget->starget_sdev_user != sdev)
1266			return 0;
1267		starget->starget_sdev_user = sdev;
1268	}
1269
1270	if (starget->target_busy == 0 && starget->target_blocked) {
1271		/*
1272		 * unblock after target_blocked iterates to zero
1273		 */
1274		if (--starget->target_blocked == 0) {
1275			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1276					 "unblocking target at zero depth\n"));
1277		} else
1278			return 0;
1279	}
1280
1281	if (scsi_target_is_busy(starget)) {
1282		if (list_empty(&sdev->starved_entry)) {
1283			list_add_tail(&sdev->starved_entry,
1284				      &shost->starved_list);
1285			return 0;
1286		}
1287	}
1288
1289	/* We're OK to process the command, so we can't be starved */
1290	if (!list_empty(&sdev->starved_entry))
1291		list_del_init(&sdev->starved_entry);
1292	return 1;
1293}
1294
1295/*
1296 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1297 * return 0. We must end up running the queue again whenever 0 is
1298 * returned, else IO can hang.
1299 *
1300 * Called with host_lock held.
1301 */
1302static inline int scsi_host_queue_ready(struct request_queue *q,
1303				   struct Scsi_Host *shost,
1304				   struct scsi_device *sdev)
1305{
1306	if (scsi_host_in_recovery(shost))
1307		return 0;
1308	if (shost->host_busy == 0 && shost->host_blocked) {
1309		/*
1310		 * unblock after host_blocked iterates to zero
1311		 */
1312		if (--shost->host_blocked == 0) {
1313			SCSI_LOG_MLQUEUE(3,
1314				printk("scsi%d unblocking host at zero depth\n",
1315					shost->host_no));
1316		} else {
1317			return 0;
1318		}
1319	}
1320	if (scsi_host_is_busy(shost)) {
1321		if (list_empty(&sdev->starved_entry))
1322			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1323		return 0;
1324	}
1325
1326	/* We're OK to process the command, so we can't be starved */
1327	if (!list_empty(&sdev->starved_entry))
1328		list_del_init(&sdev->starved_entry);
1329
1330	return 1;
1331}
1332
1333/*
1334 * Busy state exporting function for request stacking drivers.
1335 *
1336 * For efficiency, no lock is taken to check the busy state of
1337 * shost/starget/sdev, since the returned value is not guaranteed and
1338 * may be changed after request stacking drivers call the function,
1339 * regardless of taking lock or not.
1340 *
1341 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1342 * (e.g. !sdev), scsi needs to return 'not busy'.
1343 * Otherwise, request stacking drivers may hold requests forever.
1344 */
1345static int scsi_lld_busy(struct request_queue *q)
1346{
1347	struct scsi_device *sdev = q->queuedata;
1348	struct Scsi_Host *shost;
1349	struct scsi_target *starget;
1350
1351	if (!sdev)
1352		return 0;
1353
1354	shost = sdev->host;
1355	starget = scsi_target(sdev);
1356
1357	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1358	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1359		return 1;
1360
1361	return 0;
1362}
1363
1364/*
1365 * Kill a request for a dead device
1366 */
1367static void scsi_kill_request(struct request *req, struct request_queue *q)
1368{
1369	struct scsi_cmnd *cmd = req->special;
1370	struct scsi_device *sdev;
1371	struct scsi_target *starget;
1372	struct Scsi_Host *shost;
1373
1374	blk_start_request(req);
1375
1376	if (unlikely(cmd == NULL)) {
1377		printk(KERN_CRIT "impossible request in %s.\n",
1378				 __func__);
1379		BUG();
1380	}
1381
1382	sdev = cmd->device;
1383	starget = scsi_target(sdev);
1384	shost = sdev->host;
1385	scsi_init_cmd_errh(cmd);
1386	cmd->result = DID_NO_CONNECT << 16;
1387	atomic_inc(&cmd->device->iorequest_cnt);
1388
1389	/*
1390	 * SCSI request completion path will do scsi_device_unbusy(),
1391	 * bump busy counts.  To bump the counters, we need to dance
1392	 * with the locks as normal issue path does.
1393	 */
1394	sdev->device_busy++;
1395	spin_unlock(sdev->request_queue->queue_lock);
1396	spin_lock(shost->host_lock);
1397	shost->host_busy++;
1398	starget->target_busy++;
1399	spin_unlock(shost->host_lock);
1400	spin_lock(sdev->request_queue->queue_lock);
1401
1402	blk_complete_request(req);
1403}
1404
1405static void scsi_softirq_done(struct request *rq)
1406{
1407	struct scsi_cmnd *cmd = rq->special;
1408	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1409	int disposition;
1410
1411	INIT_LIST_HEAD(&cmd->eh_entry);
1412
1413	/*
1414	 * Set the serial numbers back to zero
1415	 */
1416	cmd->serial_number = 0;
1417
1418	atomic_inc(&cmd->device->iodone_cnt);
1419	if (cmd->result)
1420		atomic_inc(&cmd->device->ioerr_cnt);
1421
1422	disposition = scsi_decide_disposition(cmd);
1423	if (disposition != SUCCESS &&
1424	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1425		sdev_printk(KERN_ERR, cmd->device,
1426			    "timing out command, waited %lus\n",
1427			    wait_for/HZ);
1428		disposition = SUCCESS;
1429	}
1430
1431	scsi_log_completion(cmd, disposition);
1432
1433	switch (disposition) {
1434		case SUCCESS:
1435			scsi_finish_command(cmd);
1436			break;
1437		case NEEDS_RETRY:
1438			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1439			break;
1440		case ADD_TO_MLQUEUE:
1441			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1442			break;
1443		default:
1444			if (!scsi_eh_scmd_add(cmd, 0))
1445				scsi_finish_command(cmd);
1446	}
1447}
1448
1449/*
1450 * Function:    scsi_request_fn()
1451 *
1452 * Purpose:     Main strategy routine for SCSI.
1453 *
1454 * Arguments:   q       - Pointer to actual queue.
1455 *
1456 * Returns:     Nothing
1457 *
1458 * Lock status: IO request lock assumed to be held when called.
1459 */
1460static void scsi_request_fn(struct request_queue *q)
1461{
1462	struct scsi_device *sdev = q->queuedata;
1463	struct Scsi_Host *shost;
1464	struct scsi_cmnd *cmd;
1465	struct request *req;
1466
1467	if (!sdev) {
1468		printk("scsi: killing requests for dead queue\n");
1469		while ((req = blk_peek_request(q)) != NULL)
1470			scsi_kill_request(req, q);
1471		return;
1472	}
1473
1474	if(!get_device(&sdev->sdev_gendev))
1475		/* We must be tearing the block queue down already */
1476		return;
1477
1478	/*
1479	 * To start with, we keep looping until the queue is empty, or until
1480	 * the host is no longer able to accept any more requests.
1481	 */
1482	shost = sdev->host;
1483	while (!blk_queue_plugged(q)) {
1484		int rtn;
1485		/*
1486		 * get next queueable request.  We do this early to make sure
1487		 * that the request is fully prepared even if we cannot
1488		 * accept it.
1489		 */
1490		req = blk_peek_request(q);
1491		if (!req || !scsi_dev_queue_ready(q, sdev))
1492			break;
1493
1494		if (unlikely(!scsi_device_online(sdev))) {
1495			sdev_printk(KERN_ERR, sdev,
1496				    "rejecting I/O to offline device\n");
1497			scsi_kill_request(req, q);
1498			continue;
1499		}
1500
1501
1502		/*
1503		 * Remove the request from the request list.
1504		 */
1505		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1506			blk_start_request(req);
1507		sdev->device_busy++;
1508
1509		spin_unlock(q->queue_lock);
1510		cmd = req->special;
1511		if (unlikely(cmd == NULL)) {
1512			printk(KERN_CRIT "impossible request in %s.\n"
1513					 "please mail a stack trace to "
1514					 "linux-scsi@vger.kernel.org\n",
1515					 __func__);
1516			blk_dump_rq_flags(req, "foo");
1517			BUG();
1518		}
1519		spin_lock(shost->host_lock);
1520
1521		/*
1522		 * We hit this when the driver is using a host wide
1523		 * tag map. For device level tag maps the queue_depth check
1524		 * in the device ready fn would prevent us from trying
1525		 * to allocate a tag. Since the map is a shared host resource
1526		 * we add the dev to the starved list so it eventually gets
1527		 * a run when a tag is freed.
1528		 */
1529		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1530			if (list_empty(&sdev->starved_entry))
1531				list_add_tail(&sdev->starved_entry,
1532					      &shost->starved_list);
1533			goto not_ready;
1534		}
1535
1536		if (!scsi_target_queue_ready(shost, sdev))
1537			goto not_ready;
1538
1539		if (!scsi_host_queue_ready(q, shost, sdev))
1540			goto not_ready;
1541
1542		scsi_target(sdev)->target_busy++;
1543		shost->host_busy++;
1544
1545		/*
1546		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1547		 *		take the lock again.
1548		 */
1549		spin_unlock_irq(shost->host_lock);
1550
1551		/*
1552		 * Finally, initialize any error handling parameters, and set up
1553		 * the timers for timeouts.
1554		 */
1555		scsi_init_cmd_errh(cmd);
1556
1557		/*
1558		 * Dispatch the command to the low-level driver.
1559		 */
1560		rtn = scsi_dispatch_cmd(cmd);
1561		spin_lock_irq(q->queue_lock);
1562		if(rtn) {
1563			/* we're refusing the command; because of
1564			 * the way locks get dropped, we need to
1565			 * check here if plugging is required */
1566			if(sdev->device_busy == 0)
1567				blk_plug_device(q);
1568
1569			break;
1570		}
1571	}
1572
1573	goto out;
1574
1575 not_ready:
1576	spin_unlock_irq(shost->host_lock);
1577
1578	/*
1579	 * lock q, handle tag, requeue req, and decrement device_busy. We
1580	 * must return with queue_lock held.
1581	 *
1582	 * Decrementing device_busy without checking it is OK, as all such
1583	 * cases (host limits or settings) should run the queue at some
1584	 * later time.
1585	 */
1586	spin_lock_irq(q->queue_lock);
1587	blk_requeue_request(q, req);
1588	sdev->device_busy--;
1589	if(sdev->device_busy == 0)
1590		blk_plug_device(q);
1591 out:
1592	/* must be careful here...if we trigger the ->remove() function
1593	 * we cannot be holding the q lock */
1594	spin_unlock_irq(q->queue_lock);
1595	put_device(&sdev->sdev_gendev);
1596	spin_lock_irq(q->queue_lock);
1597}
1598
1599u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1600{
1601	struct device *host_dev;
1602	u64 bounce_limit = 0xffffffff;
1603
1604	if (shost->unchecked_isa_dma)
1605		return BLK_BOUNCE_ISA;
1606	/*
1607	 * Platforms with virtual-DMA translation
1608	 * hardware have no practical limit.
1609	 */
1610	if (!PCI_DMA_BUS_IS_PHYS)
1611		return BLK_BOUNCE_ANY;
1612
1613	host_dev = scsi_get_device(shost);
1614	if (host_dev && host_dev->dma_mask)
1615		bounce_limit = *host_dev->dma_mask;
1616
1617	return bounce_limit;
1618}
1619EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1620
1621struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1622					 request_fn_proc *request_fn)
1623{
1624	struct request_queue *q;
1625	struct device *dev = shost->shost_gendev.parent;
1626
1627	q = blk_init_queue(request_fn, NULL);
1628	if (!q)
1629		return NULL;
1630
1631	/*
1632	 * this limit is imposed by hardware restrictions
1633	 */
1634	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1635					SCSI_MAX_SG_CHAIN_SEGMENTS));
1636
1637	blk_queue_max_hw_sectors(q, shost->max_sectors);
1638	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1639	blk_queue_segment_boundary(q, shost->dma_boundary);
1640	dma_set_seg_boundary(dev, shost->dma_boundary);
1641
1642	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1643
1644	/* New queue, no concurrency on queue_flags */
1645	if (!shost->use_clustering)
1646		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1647
1648	/*
1649	 * set a reasonable default alignment on word boundaries: the
1650	 * host and device may alter it using
1651	 * blk_queue_update_dma_alignment() later.
1652	 */
1653	blk_queue_dma_alignment(q, 0x03);
1654
1655	return q;
1656}
1657EXPORT_SYMBOL(__scsi_alloc_queue);
1658
1659struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1660{
1661	struct request_queue *q;
1662
1663	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1664	if (!q)
1665		return NULL;
1666
1667	blk_queue_prep_rq(q, scsi_prep_fn);
1668	blk_queue_softirq_done(q, scsi_softirq_done);
1669	blk_queue_rq_timed_out(q, scsi_times_out);
1670	blk_queue_lld_busy(q, scsi_lld_busy);
1671	return q;
1672}
1673
1674void scsi_free_queue(struct request_queue *q)
1675{
1676	blk_cleanup_queue(q);
1677}
1678
1679/*
1680 * Function:    scsi_block_requests()
1681 *
1682 * Purpose:     Utility function used by low-level drivers to prevent further
1683 *		commands from being queued to the device.
1684 *
1685 * Arguments:   shost       - Host in question
1686 *
1687 * Returns:     Nothing
1688 *
1689 * Lock status: No locks are assumed held.
1690 *
1691 * Notes:       There is no timer nor any other means by which the requests
1692 *		get unblocked other than the low-level driver calling
1693 *		scsi_unblock_requests().
1694 */
1695void scsi_block_requests(struct Scsi_Host *shost)
1696{
1697	shost->host_self_blocked = 1;
1698}
1699EXPORT_SYMBOL(scsi_block_requests);
1700
1701/*
1702 * Function:    scsi_unblock_requests()
1703 *
1704 * Purpose:     Utility function used by low-level drivers to allow further
1705 *		commands from being queued to the device.
1706 *
1707 * Arguments:   shost       - Host in question
1708 *
1709 * Returns:     Nothing
1710 *
1711 * Lock status: No locks are assumed held.
1712 *
1713 * Notes:       There is no timer nor any other means by which the requests
1714 *		get unblocked other than the low-level driver calling
1715 *		scsi_unblock_requests().
1716 *
1717 *		This is done as an API function so that changes to the
1718 *		internals of the scsi mid-layer won't require wholesale
1719 *		changes to drivers that use this feature.
1720 */
1721void scsi_unblock_requests(struct Scsi_Host *shost)
1722{
1723	shost->host_self_blocked = 0;
1724	scsi_run_host_queues(shost);
1725}
1726EXPORT_SYMBOL(scsi_unblock_requests);
1727
1728int __init scsi_init_queue(void)
1729{
1730	int i;
1731
1732	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1733					   sizeof(struct scsi_data_buffer),
1734					   0, 0, NULL);
1735	if (!scsi_sdb_cache) {
1736		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1737		return -ENOMEM;
1738	}
1739
1740	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1741		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1742		int size = sgp->size * sizeof(struct scatterlist);
1743
1744		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1745				SLAB_HWCACHE_ALIGN, NULL);
1746		if (!sgp->slab) {
1747			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1748					sgp->name);
1749			goto cleanup_sdb;
1750		}
1751
1752		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1753						     sgp->slab);
1754		if (!sgp->pool) {
1755			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1756					sgp->name);
1757			goto cleanup_sdb;
1758		}
1759	}
1760
1761	return 0;
1762
1763cleanup_sdb:
1764	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1765		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1766		if (sgp->pool)
1767			mempool_destroy(sgp->pool);
1768		if (sgp->slab)
1769			kmem_cache_destroy(sgp->slab);
1770	}
1771	kmem_cache_destroy(scsi_sdb_cache);
1772
1773	return -ENOMEM;
1774}
1775
1776void scsi_exit_queue(void)
1777{
1778	int i;
1779
1780	kmem_cache_destroy(scsi_sdb_cache);
1781
1782	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1783		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1784		mempool_destroy(sgp->pool);
1785		kmem_cache_destroy(sgp->slab);
1786	}
1787}
1788
1789/**
1790 *	scsi_mode_select - issue a mode select
1791 *	@sdev:	SCSI device to be queried
1792 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1793 *	@sp:	Save page bit (0 == don't save, 1 == save)
1794 *	@modepage: mode page being requested
1795 *	@buffer: request buffer (may not be smaller than eight bytes)
1796 *	@len:	length of request buffer.
1797 *	@timeout: command timeout
1798 *	@retries: number of retries before failing
1799 *	@data: returns a structure abstracting the mode header data
1800 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1801 *		must be SCSI_SENSE_BUFFERSIZE big.
1802 *
1803 *	Returns zero if successful; negative error number or scsi
1804 *	status on error
1805 *
1806 */
1807int
1808scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1809		 unsigned char *buffer, int len, int timeout, int retries,
1810		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1811{
1812	unsigned char cmd[10];
1813	unsigned char *real_buffer;
1814	int ret;
1815
1816	memset(cmd, 0, sizeof(cmd));
1817	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1818
1819	if (sdev->use_10_for_ms) {
1820		if (len > 65535)
1821			return -EINVAL;
1822		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1823		if (!real_buffer)
1824			return -ENOMEM;
1825		memcpy(real_buffer + 8, buffer, len);
1826		len += 8;
1827		real_buffer[0] = 0;
1828		real_buffer[1] = 0;
1829		real_buffer[2] = data->medium_type;
1830		real_buffer[3] = data->device_specific;
1831		real_buffer[4] = data->longlba ? 0x01 : 0;
1832		real_buffer[5] = 0;
1833		real_buffer[6] = data->block_descriptor_length >> 8;
1834		real_buffer[7] = data->block_descriptor_length;
1835
1836		cmd[0] = MODE_SELECT_10;
1837		cmd[7] = len >> 8;
1838		cmd[8] = len;
1839	} else {
1840		if (len > 255 || data->block_descriptor_length > 255 ||
1841		    data->longlba)
1842			return -EINVAL;
1843
1844		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1845		if (!real_buffer)
1846			return -ENOMEM;
1847		memcpy(real_buffer + 4, buffer, len);
1848		len += 4;
1849		real_buffer[0] = 0;
1850		real_buffer[1] = data->medium_type;
1851		real_buffer[2] = data->device_specific;
1852		real_buffer[3] = data->block_descriptor_length;
1853
1854
1855		cmd[0] = MODE_SELECT;
1856		cmd[4] = len;
1857	}
1858
1859	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1860			       sshdr, timeout, retries, NULL);
1861	kfree(real_buffer);
1862	return ret;
1863}
1864EXPORT_SYMBOL_GPL(scsi_mode_select);
1865
1866/**
1867 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1868 *	@sdev:	SCSI device to be queried
1869 *	@dbd:	set if mode sense will allow block descriptors to be returned
1870 *	@modepage: mode page being requested
1871 *	@buffer: request buffer (may not be smaller than eight bytes)
1872 *	@len:	length of request buffer.
1873 *	@timeout: command timeout
1874 *	@retries: number of retries before failing
1875 *	@data: returns a structure abstracting the mode header data
1876 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1877 *		must be SCSI_SENSE_BUFFERSIZE big.
1878 *
1879 *	Returns zero if unsuccessful, or the header offset (either 4
1880 *	or 8 depending on whether a six or ten byte command was
1881 *	issued) if successful.
1882 */
1883int
1884scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1885		  unsigned char *buffer, int len, int timeout, int retries,
1886		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1887{
1888	unsigned char cmd[12];
1889	int use_10_for_ms;
1890	int header_length;
1891	int result;
1892	struct scsi_sense_hdr my_sshdr;
1893
1894	memset(data, 0, sizeof(*data));
1895	memset(&cmd[0], 0, 12);
1896	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1897	cmd[2] = modepage;
1898
1899	/* caller might not be interested in sense, but we need it */
1900	if (!sshdr)
1901		sshdr = &my_sshdr;
1902
1903 retry:
1904	use_10_for_ms = sdev->use_10_for_ms;
1905
1906	if (use_10_for_ms) {
1907		if (len < 8)
1908			len = 8;
1909
1910		cmd[0] = MODE_SENSE_10;
1911		cmd[8] = len;
1912		header_length = 8;
1913	} else {
1914		if (len < 4)
1915			len = 4;
1916
1917		cmd[0] = MODE_SENSE;
1918		cmd[4] = len;
1919		header_length = 4;
1920	}
1921
1922	memset(buffer, 0, len);
1923
1924	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1925				  sshdr, timeout, retries, NULL);
1926
1927	/* This code looks awful: what it's doing is making sure an
1928	 * ILLEGAL REQUEST sense return identifies the actual command
1929	 * byte as the problem.  MODE_SENSE commands can return
1930	 * ILLEGAL REQUEST if the code page isn't supported */
1931
1932	if (use_10_for_ms && !scsi_status_is_good(result) &&
1933	    (driver_byte(result) & DRIVER_SENSE)) {
1934		if (scsi_sense_valid(sshdr)) {
1935			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1936			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1937				/*
1938				 * Invalid command operation code
1939				 */
1940				sdev->use_10_for_ms = 0;
1941				goto retry;
1942			}
1943		}
1944	}
1945
1946	if(scsi_status_is_good(result)) {
1947		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1948			     (modepage == 6 || modepage == 8))) {
1949			/* Initio breakage? */
1950			header_length = 0;
1951			data->length = 13;
1952			data->medium_type = 0;
1953			data->device_specific = 0;
1954			data->longlba = 0;
1955			data->block_descriptor_length = 0;
1956		} else if(use_10_for_ms) {
1957			data->length = buffer[0]*256 + buffer[1] + 2;
1958			data->medium_type = buffer[2];
1959			data->device_specific = buffer[3];
1960			data->longlba = buffer[4] & 0x01;
1961			data->block_descriptor_length = buffer[6]*256
1962				+ buffer[7];
1963		} else {
1964			data->length = buffer[0] + 1;
1965			data->medium_type = buffer[1];
1966			data->device_specific = buffer[2];
1967			data->block_descriptor_length = buffer[3];
1968		}
1969		data->header_length = header_length;
1970	}
1971
1972	return result;
1973}
1974EXPORT_SYMBOL(scsi_mode_sense);
1975
1976/**
1977 *	scsi_test_unit_ready - test if unit is ready
1978 *	@sdev:	scsi device to change the state of.
1979 *	@timeout: command timeout
1980 *	@retries: number of retries before failing
1981 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1982 *		returning sense. Make sure that this is cleared before passing
1983 *		in.
1984 *
1985 *	Returns zero if unsuccessful or an error if TUR failed.  For
1986 *	removable media, a return of NOT_READY or UNIT_ATTENTION is
1987 *	translated to success, with the ->changed flag updated.
1988 **/
1989int
1990scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1991		     struct scsi_sense_hdr *sshdr_external)
1992{
1993	char cmd[] = {
1994		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1995	};
1996	struct scsi_sense_hdr *sshdr;
1997	int result;
1998
1999	if (!sshdr_external)
2000		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2001	else
2002		sshdr = sshdr_external;
2003
2004	/* try to eat the UNIT_ATTENTION if there are enough retries */
2005	do {
2006		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2007					  timeout, retries, NULL);
2008		if (sdev->removable && scsi_sense_valid(sshdr) &&
2009		    sshdr->sense_key == UNIT_ATTENTION)
2010			sdev->changed = 1;
2011	} while (scsi_sense_valid(sshdr) &&
2012		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2013
2014	if (!sshdr)
2015		/* could not allocate sense buffer, so can't process it */
2016		return result;
2017
2018	if (sdev->removable && scsi_sense_valid(sshdr) &&
2019	    (sshdr->sense_key == UNIT_ATTENTION ||
2020	     sshdr->sense_key == NOT_READY)) {
2021		sdev->changed = 1;
2022		result = 0;
2023	}
2024	if (!sshdr_external)
2025		kfree(sshdr);
2026	return result;
2027}
2028EXPORT_SYMBOL(scsi_test_unit_ready);
2029
2030/**
2031 *	scsi_device_set_state - Take the given device through the device state model.
2032 *	@sdev:	scsi device to change the state of.
2033 *	@state:	state to change to.
2034 *
2035 *	Returns zero if unsuccessful or an error if the requested
2036 *	transition is illegal.
2037 */
2038int
2039scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2040{
2041	enum scsi_device_state oldstate = sdev->sdev_state;
2042
2043	if (state == oldstate)
2044		return 0;
2045
2046	switch (state) {
2047	case SDEV_CREATED:
2048		switch (oldstate) {
2049		case SDEV_CREATED_BLOCK:
2050			break;
2051		default:
2052			goto illegal;
2053		}
2054		break;
2055
2056	case SDEV_RUNNING:
2057		switch (oldstate) {
2058		case SDEV_CREATED:
2059		case SDEV_OFFLINE:
2060		case SDEV_QUIESCE:
2061		case SDEV_BLOCK:
2062			break;
2063		default:
2064			goto illegal;
2065		}
2066		break;
2067
2068	case SDEV_QUIESCE:
2069		switch (oldstate) {
2070		case SDEV_RUNNING:
2071		case SDEV_OFFLINE:
2072			break;
2073		default:
2074			goto illegal;
2075		}
2076		break;
2077
2078	case SDEV_OFFLINE:
2079		switch (oldstate) {
2080		case SDEV_CREATED:
2081		case SDEV_RUNNING:
2082		case SDEV_QUIESCE:
2083		case SDEV_BLOCK:
2084			break;
2085		default:
2086			goto illegal;
2087		}
2088		break;
2089
2090	case SDEV_BLOCK:
2091		switch (oldstate) {
2092		case SDEV_RUNNING:
2093		case SDEV_CREATED_BLOCK:
2094			break;
2095		default:
2096			goto illegal;
2097		}
2098		break;
2099
2100	case SDEV_CREATED_BLOCK:
2101		switch (oldstate) {
2102		case SDEV_CREATED:
2103			break;
2104		default:
2105			goto illegal;
2106		}
2107		break;
2108
2109	case SDEV_CANCEL:
2110		switch (oldstate) {
2111		case SDEV_CREATED:
2112		case SDEV_RUNNING:
2113		case SDEV_QUIESCE:
2114		case SDEV_OFFLINE:
2115		case SDEV_BLOCK:
2116			break;
2117		default:
2118			goto illegal;
2119		}
2120		break;
2121
2122	case SDEV_DEL:
2123		switch (oldstate) {
2124		case SDEV_CREATED:
2125		case SDEV_RUNNING:
2126		case SDEV_OFFLINE:
2127		case SDEV_CANCEL:
2128			break;
2129		default:
2130			goto illegal;
2131		}
2132		break;
2133
2134	}
2135	sdev->sdev_state = state;
2136	return 0;
2137
2138 illegal:
2139	SCSI_LOG_ERROR_RECOVERY(1,
2140				sdev_printk(KERN_ERR, sdev,
2141					    "Illegal state transition %s->%s\n",
2142					    scsi_device_state_name(oldstate),
2143					    scsi_device_state_name(state))
2144				);
2145	return -EINVAL;
2146}
2147EXPORT_SYMBOL(scsi_device_set_state);
2148
2149/**
2150 * 	sdev_evt_emit - emit a single SCSI device uevent
2151 *	@sdev: associated SCSI device
2152 *	@evt: event to emit
2153 *
2154 *	Send a single uevent (scsi_event) to the associated scsi_device.
2155 */
2156static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2157{
2158	int idx = 0;
2159	char *envp[3];
2160
2161	switch (evt->evt_type) {
2162	case SDEV_EVT_MEDIA_CHANGE:
2163		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2164		break;
2165
2166	default:
2167		/* do nothing */
2168		break;
2169	}
2170
2171	envp[idx++] = NULL;
2172
2173	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2174}
2175
2176/**
2177 * 	sdev_evt_thread - send a uevent for each scsi event
2178 *	@work: work struct for scsi_device
2179 *
2180 *	Dispatch queued events to their associated scsi_device kobjects
2181 *	as uevents.
2182 */
2183void scsi_evt_thread(struct work_struct *work)
2184{
2185	struct scsi_device *sdev;
2186	LIST_HEAD(event_list);
2187
2188	sdev = container_of(work, struct scsi_device, event_work);
2189
2190	while (1) {
2191		struct scsi_event *evt;
2192		struct list_head *this, *tmp;
2193		unsigned long flags;
2194
2195		spin_lock_irqsave(&sdev->list_lock, flags);
2196		list_splice_init(&sdev->event_list, &event_list);
2197		spin_unlock_irqrestore(&sdev->list_lock, flags);
2198
2199		if (list_empty(&event_list))
2200			break;
2201
2202		list_for_each_safe(this, tmp, &event_list) {
2203			evt = list_entry(this, struct scsi_event, node);
2204			list_del(&evt->node);
2205			scsi_evt_emit(sdev, evt);
2206			kfree(evt);
2207		}
2208	}
2209}
2210
2211/**
2212 * 	sdev_evt_send - send asserted event to uevent thread
2213 *	@sdev: scsi_device event occurred on
2214 *	@evt: event to send
2215 *
2216 *	Assert scsi device event asynchronously.
2217 */
2218void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2219{
2220	unsigned long flags;
2221
2222#if 0
2223	/* FIXME: currently this check eliminates all media change events
2224	 * for polled devices.  Need to update to discriminate between AN
2225	 * and polled events */
2226	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2227		kfree(evt);
2228		return;
2229	}
2230#endif
2231
2232	spin_lock_irqsave(&sdev->list_lock, flags);
2233	list_add_tail(&evt->node, &sdev->event_list);
2234	schedule_work(&sdev->event_work);
2235	spin_unlock_irqrestore(&sdev->list_lock, flags);
2236}
2237EXPORT_SYMBOL_GPL(sdev_evt_send);
2238
2239/**
2240 * 	sdev_evt_alloc - allocate a new scsi event
2241 *	@evt_type: type of event to allocate
2242 *	@gfpflags: GFP flags for allocation
2243 *
2244 *	Allocates and returns a new scsi_event.
2245 */
2246struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2247				  gfp_t gfpflags)
2248{
2249	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2250	if (!evt)
2251		return NULL;
2252
2253	evt->evt_type = evt_type;
2254	INIT_LIST_HEAD(&evt->node);
2255
2256	/* evt_type-specific initialization, if any */
2257	switch (evt_type) {
2258	case SDEV_EVT_MEDIA_CHANGE:
2259	default:
2260		/* do nothing */
2261		break;
2262	}
2263
2264	return evt;
2265}
2266EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2267
2268/**
2269 * 	sdev_evt_send_simple - send asserted event to uevent thread
2270 *	@sdev: scsi_device event occurred on
2271 *	@evt_type: type of event to send
2272 *	@gfpflags: GFP flags for allocation
2273 *
2274 *	Assert scsi device event asynchronously, given an event type.
2275 */
2276void sdev_evt_send_simple(struct scsi_device *sdev,
2277			  enum scsi_device_event evt_type, gfp_t gfpflags)
2278{
2279	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2280	if (!evt) {
2281		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2282			    evt_type);
2283		return;
2284	}
2285
2286	sdev_evt_send(sdev, evt);
2287}
2288EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2289
2290/**
2291 *	scsi_device_quiesce - Block user issued commands.
2292 *	@sdev:	scsi device to quiesce.
2293 *
2294 *	This works by trying to transition to the SDEV_QUIESCE state
2295 *	(which must be a legal transition).  When the device is in this
2296 *	state, only special requests will be accepted, all others will
2297 *	be deferred.  Since special requests may also be requeued requests,
2298 *	a successful return doesn't guarantee the device will be
2299 *	totally quiescent.
2300 *
2301 *	Must be called with user context, may sleep.
2302 *
2303 *	Returns zero if unsuccessful or an error if not.
2304 */
2305int
2306scsi_device_quiesce(struct scsi_device *sdev)
2307{
2308	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2309	if (err)
2310		return err;
2311
2312	scsi_run_queue(sdev->request_queue);
2313	while (sdev->device_busy) {
2314		msleep_interruptible(200);
2315		scsi_run_queue(sdev->request_queue);
2316	}
2317	return 0;
2318}
2319EXPORT_SYMBOL(scsi_device_quiesce);
2320
2321/**
2322 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2323 *	@sdev:	scsi device to resume.
2324 *
2325 *	Moves the device from quiesced back to running and restarts the
2326 *	queues.
2327 *
2328 *	Must be called with user context, may sleep.
2329 */
2330void
2331scsi_device_resume(struct scsi_device *sdev)
2332{
2333	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2334		return;
2335	scsi_run_queue(sdev->request_queue);
2336}
2337EXPORT_SYMBOL(scsi_device_resume);
2338
2339static void
2340device_quiesce_fn(struct scsi_device *sdev, void *data)
2341{
2342	scsi_device_quiesce(sdev);
2343}
2344
2345void
2346scsi_target_quiesce(struct scsi_target *starget)
2347{
2348	starget_for_each_device(starget, NULL, device_quiesce_fn);
2349}
2350EXPORT_SYMBOL(scsi_target_quiesce);
2351
2352static void
2353device_resume_fn(struct scsi_device *sdev, void *data)
2354{
2355	scsi_device_resume(sdev);
2356}
2357
2358void
2359scsi_target_resume(struct scsi_target *starget)
2360{
2361	starget_for_each_device(starget, NULL, device_resume_fn);
2362}
2363EXPORT_SYMBOL(scsi_target_resume);
2364
2365/**
2366 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2367 * @sdev:	device to block
2368 *
2369 * Block request made by scsi lld's to temporarily stop all
2370 * scsi commands on the specified device.  Called from interrupt
2371 * or normal process context.
2372 *
2373 * Returns zero if successful or error if not
2374 *
2375 * Notes:
2376 *	This routine transitions the device to the SDEV_BLOCK state
2377 *	(which must be a legal transition).  When the device is in this
2378 *	state, all commands are deferred until the scsi lld reenables
2379 *	the device with scsi_device_unblock or device_block_tmo fires.
2380 *	This routine assumes the host_lock is held on entry.
2381 */
2382int
2383scsi_internal_device_block(struct scsi_device *sdev)
2384{
2385	struct request_queue *q = sdev->request_queue;
2386	unsigned long flags;
2387	int err = 0;
2388
2389	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2390	if (err) {
2391		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2392
2393		if (err)
2394			return err;
2395	}
2396
2397	/*
2398	 * The device has transitioned to SDEV_BLOCK.  Stop the
2399	 * block layer from calling the midlayer with this device's
2400	 * request queue.
2401	 */
2402	spin_lock_irqsave(q->queue_lock, flags);
2403	blk_stop_queue(q);
2404	spin_unlock_irqrestore(q->queue_lock, flags);
2405
2406	return 0;
2407}
2408EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2409
2410/**
2411 * scsi_internal_device_unblock - resume a device after a block request
2412 * @sdev:	device to resume
2413 *
2414 * Called by scsi lld's or the midlayer to restart the device queue
2415 * for the previously suspended scsi device.  Called from interrupt or
2416 * normal process context.
2417 *
2418 * Returns zero if successful or error if not.
2419 *
2420 * Notes:
2421 *	This routine transitions the device to the SDEV_RUNNING state
2422 *	(which must be a legal transition) allowing the midlayer to
2423 *	goose the queue for this device.  This routine assumes the
2424 *	host_lock is held upon entry.
2425 */
2426int
2427scsi_internal_device_unblock(struct scsi_device *sdev)
2428{
2429	struct request_queue *q = sdev->request_queue;
2430	unsigned long flags;
2431
2432	/*
2433	 * Try to transition the scsi device to SDEV_RUNNING
2434	 * and goose the device queue if successful.
2435	 */
2436	if (sdev->sdev_state == SDEV_BLOCK)
2437		sdev->sdev_state = SDEV_RUNNING;
2438	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2439		sdev->sdev_state = SDEV_CREATED;
2440	else
2441		return -EINVAL;
2442
2443	spin_lock_irqsave(q->queue_lock, flags);
2444	blk_start_queue(q);
2445	spin_unlock_irqrestore(q->queue_lock, flags);
2446
2447	return 0;
2448}
2449EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2450
2451static void
2452device_block(struct scsi_device *sdev, void *data)
2453{
2454	scsi_internal_device_block(sdev);
2455}
2456
2457static int
2458target_block(struct device *dev, void *data)
2459{
2460	if (scsi_is_target_device(dev))
2461		starget_for_each_device(to_scsi_target(dev), NULL,
2462					device_block);
2463	return 0;
2464}
2465
2466void
2467scsi_target_block(struct device *dev)
2468{
2469	if (scsi_is_target_device(dev))
2470		starget_for_each_device(to_scsi_target(dev), NULL,
2471					device_block);
2472	else
2473		device_for_each_child(dev, NULL, target_block);
2474}
2475EXPORT_SYMBOL_GPL(scsi_target_block);
2476
2477static void
2478device_unblock(struct scsi_device *sdev, void *data)
2479{
2480	scsi_internal_device_unblock(sdev);
2481}
2482
2483static int
2484target_unblock(struct device *dev, void *data)
2485{
2486	if (scsi_is_target_device(dev))
2487		starget_for_each_device(to_scsi_target(dev), NULL,
2488					device_unblock);
2489	return 0;
2490}
2491
2492void
2493scsi_target_unblock(struct device *dev)
2494{
2495	if (scsi_is_target_device(dev))
2496		starget_for_each_device(to_scsi_target(dev), NULL,
2497					device_unblock);
2498	else
2499		device_for_each_child(dev, NULL, target_unblock);
2500}
2501EXPORT_SYMBOL_GPL(scsi_target_unblock);
2502
2503/**
2504 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2505 * @sgl:	scatter-gather list
2506 * @sg_count:	number of segments in sg
2507 * @offset:	offset in bytes into sg, on return offset into the mapped area
2508 * @len:	bytes to map, on return number of bytes mapped
2509 *
2510 * Returns virtual address of the start of the mapped page
2511 */
2512void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2513			  size_t *offset, size_t *len)
2514{
2515	int i;
2516	size_t sg_len = 0, len_complete = 0;
2517	struct scatterlist *sg;
2518	struct page *page;
2519
2520	WARN_ON(!irqs_disabled());
2521
2522	for_each_sg(sgl, sg, sg_count, i) {
2523		len_complete = sg_len; /* Complete sg-entries */
2524		sg_len += sg->length;
2525		if (sg_len > *offset)
2526			break;
2527	}
2528
2529	if (unlikely(i == sg_count)) {
2530		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2531			"elements %d\n",
2532		       __func__, sg_len, *offset, sg_count);
2533		WARN_ON(1);
2534		return NULL;
2535	}
2536
2537	/* Offset starting from the beginning of first page in this sg-entry */
2538	*offset = *offset - len_complete + sg->offset;
2539
2540	/* Assumption: contiguous pages can be accessed as "page + i" */
2541	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2542	*offset &= ~PAGE_MASK;
2543
2544	/* Bytes in this sg-entry from *offset to the end of the page */
2545	sg_len = PAGE_SIZE - *offset;
2546	if (*len > sg_len)
2547		*len = sg_len;
2548
2549	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2550}
2551EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2552
2553/**
2554 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2555 * @virt:	virtual address to be unmapped
2556 */
2557void scsi_kunmap_atomic_sg(void *virt)
2558{
2559	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2560}
2561EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2562