scsi_lib.c revision 466c08c71a7dc19528e9b336c5bfa5ec41730c7c
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/bitops.h>
12#include <linux/blkdev.h>
13#include <linux/completion.h>
14#include <linux/kernel.h>
15#include <linux/export.h>
16#include <linux/mempool.h>
17#include <linux/slab.h>
18#include <linux/init.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hardirq.h>
22#include <linux/scatterlist.h>
23
24#include <scsi/scsi.h>
25#include <scsi/scsi_cmnd.h>
26#include <scsi/scsi_dbg.h>
27#include <scsi/scsi_device.h>
28#include <scsi/scsi_driver.h>
29#include <scsi/scsi_eh.h>
30#include <scsi/scsi_host.h>
31
32#include "scsi_priv.h"
33#include "scsi_logging.h"
34
35
36#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
37#define SG_MEMPOOL_SIZE		2
38
39struct scsi_host_sg_pool {
40	size_t		size;
41	char		*name;
42	struct kmem_cache	*slab;
43	mempool_t	*pool;
44};
45
46#define SP(x) { x, "sgpool-" __stringify(x) }
47#if (SCSI_MAX_SG_SEGMENTS < 32)
48#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49#endif
50static struct scsi_host_sg_pool scsi_sg_pools[] = {
51	SP(8),
52	SP(16),
53#if (SCSI_MAX_SG_SEGMENTS > 32)
54	SP(32),
55#if (SCSI_MAX_SG_SEGMENTS > 64)
56	SP(64),
57#if (SCSI_MAX_SG_SEGMENTS > 128)
58	SP(128),
59#if (SCSI_MAX_SG_SEGMENTS > 256)
60#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61#endif
62#endif
63#endif
64#endif
65	SP(SCSI_MAX_SG_SEGMENTS)
66};
67#undef SP
68
69struct kmem_cache *scsi_sdb_cache;
70
71/*
72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73 * not change behaviour from the previous unplug mechanism, experimentation
74 * may prove this needs changing.
75 */
76#define SCSI_QUEUE_DELAY	3
77
78/*
79 * Function:	scsi_unprep_request()
80 *
81 * Purpose:	Remove all preparation done for a request, including its
82 *		associated scsi_cmnd, so that it can be requeued.
83 *
84 * Arguments:	req	- request to unprepare
85 *
86 * Lock status:	Assumed that no locks are held upon entry.
87 *
88 * Returns:	Nothing.
89 */
90static void scsi_unprep_request(struct request *req)
91{
92	struct scsi_cmnd *cmd = req->special;
93
94	blk_unprep_request(req);
95	req->special = NULL;
96
97	scsi_put_command(cmd);
98}
99
100/**
101 * __scsi_queue_insert - private queue insertion
102 * @cmd: The SCSI command being requeued
103 * @reason:  The reason for the requeue
104 * @unbusy: Whether the queue should be unbusied
105 *
106 * This is a private queue insertion.  The public interface
107 * scsi_queue_insert() always assumes the queue should be unbusied
108 * because it's always called before the completion.  This function is
109 * for a requeue after completion, which should only occur in this
110 * file.
111 */
112static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
113{
114	struct Scsi_Host *host = cmd->device->host;
115	struct scsi_device *device = cmd->device;
116	struct scsi_target *starget = scsi_target(device);
117	struct request_queue *q = device->request_queue;
118	unsigned long flags;
119
120	SCSI_LOG_MLQUEUE(1,
121		 printk("Inserting command %p into mlqueue\n", cmd));
122
123	/*
124	 * Set the appropriate busy bit for the device/host.
125	 *
126	 * If the host/device isn't busy, assume that something actually
127	 * completed, and that we should be able to queue a command now.
128	 *
129	 * Note that the prior mid-layer assumption that any host could
130	 * always queue at least one command is now broken.  The mid-layer
131	 * will implement a user specifiable stall (see
132	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133	 * if a command is requeued with no other commands outstanding
134	 * either for the device or for the host.
135	 */
136	switch (reason) {
137	case SCSI_MLQUEUE_HOST_BUSY:
138		host->host_blocked = host->max_host_blocked;
139		break;
140	case SCSI_MLQUEUE_DEVICE_BUSY:
141	case SCSI_MLQUEUE_EH_RETRY:
142		device->device_blocked = device->max_device_blocked;
143		break;
144	case SCSI_MLQUEUE_TARGET_BUSY:
145		starget->target_blocked = starget->max_target_blocked;
146		break;
147	}
148
149	/*
150	 * Decrement the counters, since these commands are no longer
151	 * active on the host/device.
152	 */
153	if (unbusy)
154		scsi_device_unbusy(device);
155
156	/*
157	 * Requeue this command.  It will go before all other commands
158	 * that are already in the queue.
159	 */
160	spin_lock_irqsave(q->queue_lock, flags);
161	blk_requeue_request(q, cmd->request);
162	spin_unlock_irqrestore(q->queue_lock, flags);
163
164	kblockd_schedule_work(q, &device->requeue_work);
165
166	return 0;
167}
168
169/*
170 * Function:    scsi_queue_insert()
171 *
172 * Purpose:     Insert a command in the midlevel queue.
173 *
174 * Arguments:   cmd    - command that we are adding to queue.
175 *              reason - why we are inserting command to queue.
176 *
177 * Lock status: Assumed that lock is not held upon entry.
178 *
179 * Returns:     Nothing.
180 *
181 * Notes:       We do this for one of two cases.  Either the host is busy
182 *              and it cannot accept any more commands for the time being,
183 *              or the device returned QUEUE_FULL and can accept no more
184 *              commands.
185 * Notes:       This could be called either from an interrupt context or a
186 *              normal process context.
187 */
188int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189{
190	return __scsi_queue_insert(cmd, reason, 1);
191}
192/**
193 * scsi_execute - insert request and wait for the result
194 * @sdev:	scsi device
195 * @cmd:	scsi command
196 * @data_direction: data direction
197 * @buffer:	data buffer
198 * @bufflen:	len of buffer
199 * @sense:	optional sense buffer
200 * @timeout:	request timeout in seconds
201 * @retries:	number of times to retry request
202 * @flags:	or into request flags;
203 * @resid:	optional residual length
204 *
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
207 */
208int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209		 int data_direction, void *buffer, unsigned bufflen,
210		 unsigned char *sense, int timeout, int retries, int flags,
211		 int *resid)
212{
213	struct request *req;
214	int write = (data_direction == DMA_TO_DEVICE);
215	int ret = DRIVER_ERROR << 24;
216
217	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218	if (!req)
219		return ret;
220
221	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
222					buffer, bufflen, __GFP_WAIT))
223		goto out;
224
225	req->cmd_len = COMMAND_SIZE(cmd[0]);
226	memcpy(req->cmd, cmd, req->cmd_len);
227	req->sense = sense;
228	req->sense_len = 0;
229	req->retries = retries;
230	req->timeout = timeout;
231	req->cmd_type = REQ_TYPE_BLOCK_PC;
232	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
233
234	/*
235	 * head injection *required* here otherwise quiesce won't work
236	 */
237	blk_execute_rq(req->q, NULL, req, 1);
238
239	/*
240	 * Some devices (USB mass-storage in particular) may transfer
241	 * garbage data together with a residue indicating that the data
242	 * is invalid.  Prevent the garbage from being misinterpreted
243	 * and prevent security leaks by zeroing out the excess data.
244	 */
245	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
246		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
247
248	if (resid)
249		*resid = req->resid_len;
250	ret = req->errors;
251 out:
252	blk_put_request(req);
253
254	return ret;
255}
256EXPORT_SYMBOL(scsi_execute);
257
258
259int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
260		     int data_direction, void *buffer, unsigned bufflen,
261		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
262		     int *resid)
263{
264	char *sense = NULL;
265	int result;
266
267	if (sshdr) {
268		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
269		if (!sense)
270			return DRIVER_ERROR << 24;
271	}
272	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
273			      sense, timeout, retries, 0, resid);
274	if (sshdr)
275		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
276
277	kfree(sense);
278	return result;
279}
280EXPORT_SYMBOL(scsi_execute_req);
281
282/*
283 * Function:    scsi_init_cmd_errh()
284 *
285 * Purpose:     Initialize cmd fields related to error handling.
286 *
287 * Arguments:   cmd	- command that is ready to be queued.
288 *
289 * Notes:       This function has the job of initializing a number of
290 *              fields related to error handling.   Typically this will
291 *              be called once for each command, as required.
292 */
293static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
294{
295	cmd->serial_number = 0;
296	scsi_set_resid(cmd, 0);
297	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
298	if (cmd->cmd_len == 0)
299		cmd->cmd_len = scsi_command_size(cmd->cmnd);
300}
301
302void scsi_device_unbusy(struct scsi_device *sdev)
303{
304	struct Scsi_Host *shost = sdev->host;
305	struct scsi_target *starget = scsi_target(sdev);
306	unsigned long flags;
307
308	spin_lock_irqsave(shost->host_lock, flags);
309	shost->host_busy--;
310	starget->target_busy--;
311	if (unlikely(scsi_host_in_recovery(shost) &&
312		     (shost->host_failed || shost->host_eh_scheduled)))
313		scsi_eh_wakeup(shost);
314	spin_unlock(shost->host_lock);
315	spin_lock(sdev->request_queue->queue_lock);
316	sdev->device_busy--;
317	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
318}
319
320/*
321 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
322 * and call blk_run_queue for all the scsi_devices on the target -
323 * including current_sdev first.
324 *
325 * Called with *no* scsi locks held.
326 */
327static void scsi_single_lun_run(struct scsi_device *current_sdev)
328{
329	struct Scsi_Host *shost = current_sdev->host;
330	struct scsi_device *sdev, *tmp;
331	struct scsi_target *starget = scsi_target(current_sdev);
332	unsigned long flags;
333
334	spin_lock_irqsave(shost->host_lock, flags);
335	starget->starget_sdev_user = NULL;
336	spin_unlock_irqrestore(shost->host_lock, flags);
337
338	/*
339	 * Call blk_run_queue for all LUNs on the target, starting with
340	 * current_sdev. We race with others (to set starget_sdev_user),
341	 * but in most cases, we will be first. Ideally, each LU on the
342	 * target would get some limited time or requests on the target.
343	 */
344	blk_run_queue(current_sdev->request_queue);
345
346	spin_lock_irqsave(shost->host_lock, flags);
347	if (starget->starget_sdev_user)
348		goto out;
349	list_for_each_entry_safe(sdev, tmp, &starget->devices,
350			same_target_siblings) {
351		if (sdev == current_sdev)
352			continue;
353		if (scsi_device_get(sdev))
354			continue;
355
356		spin_unlock_irqrestore(shost->host_lock, flags);
357		blk_run_queue(sdev->request_queue);
358		spin_lock_irqsave(shost->host_lock, flags);
359
360		scsi_device_put(sdev);
361	}
362 out:
363	spin_unlock_irqrestore(shost->host_lock, flags);
364}
365
366static inline int scsi_device_is_busy(struct scsi_device *sdev)
367{
368	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
369		return 1;
370
371	return 0;
372}
373
374static inline int scsi_target_is_busy(struct scsi_target *starget)
375{
376	return ((starget->can_queue > 0 &&
377		 starget->target_busy >= starget->can_queue) ||
378		 starget->target_blocked);
379}
380
381static inline int scsi_host_is_busy(struct Scsi_Host *shost)
382{
383	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
384	    shost->host_blocked || shost->host_self_blocked)
385		return 1;
386
387	return 0;
388}
389
390/*
391 * Function:	scsi_run_queue()
392 *
393 * Purpose:	Select a proper request queue to serve next
394 *
395 * Arguments:	q	- last request's queue
396 *
397 * Returns:     Nothing
398 *
399 * Notes:	The previous command was completely finished, start
400 *		a new one if possible.
401 */
402static void scsi_run_queue(struct request_queue *q)
403{
404	struct scsi_device *sdev = q->queuedata;
405	struct Scsi_Host *shost;
406	LIST_HEAD(starved_list);
407	unsigned long flags;
408
409	/* if the device is dead, sdev will be NULL, so no queue to run */
410	if (!sdev)
411		return;
412
413	shost = sdev->host;
414	if (scsi_target(sdev)->single_lun)
415		scsi_single_lun_run(sdev);
416
417	spin_lock_irqsave(shost->host_lock, flags);
418	list_splice_init(&shost->starved_list, &starved_list);
419
420	while (!list_empty(&starved_list)) {
421		/*
422		 * As long as shost is accepting commands and we have
423		 * starved queues, call blk_run_queue. scsi_request_fn
424		 * drops the queue_lock and can add us back to the
425		 * starved_list.
426		 *
427		 * host_lock protects the starved_list and starved_entry.
428		 * scsi_request_fn must get the host_lock before checking
429		 * or modifying starved_list or starved_entry.
430		 */
431		if (scsi_host_is_busy(shost))
432			break;
433
434		sdev = list_entry(starved_list.next,
435				  struct scsi_device, starved_entry);
436		list_del_init(&sdev->starved_entry);
437		if (scsi_target_is_busy(scsi_target(sdev))) {
438			list_move_tail(&sdev->starved_entry,
439				       &shost->starved_list);
440			continue;
441		}
442
443		spin_unlock(shost->host_lock);
444		spin_lock(sdev->request_queue->queue_lock);
445		__blk_run_queue(sdev->request_queue);
446		spin_unlock(sdev->request_queue->queue_lock);
447		spin_lock(shost->host_lock);
448	}
449	/* put any unprocessed entries back */
450	list_splice(&starved_list, &shost->starved_list);
451	spin_unlock_irqrestore(shost->host_lock, flags);
452
453	blk_run_queue(q);
454}
455
456void scsi_requeue_run_queue(struct work_struct *work)
457{
458	struct scsi_device *sdev;
459	struct request_queue *q;
460
461	sdev = container_of(work, struct scsi_device, requeue_work);
462	q = sdev->request_queue;
463	scsi_run_queue(q);
464}
465
466/*
467 * Function:	scsi_requeue_command()
468 *
469 * Purpose:	Handle post-processing of completed commands.
470 *
471 * Arguments:	q	- queue to operate on
472 *		cmd	- command that may need to be requeued.
473 *
474 * Returns:	Nothing
475 *
476 * Notes:	After command completion, there may be blocks left
477 *		over which weren't finished by the previous command
478 *		this can be for a number of reasons - the main one is
479 *		I/O errors in the middle of the request, in which case
480 *		we need to request the blocks that come after the bad
481 *		sector.
482 * Notes:	Upon return, cmd is a stale pointer.
483 */
484static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
485{
486	struct request *req = cmd->request;
487	unsigned long flags;
488
489	spin_lock_irqsave(q->queue_lock, flags);
490	scsi_unprep_request(req);
491	blk_requeue_request(q, req);
492	spin_unlock_irqrestore(q->queue_lock, flags);
493
494	scsi_run_queue(q);
495}
496
497void scsi_next_command(struct scsi_cmnd *cmd)
498{
499	struct scsi_device *sdev = cmd->device;
500	struct request_queue *q = sdev->request_queue;
501
502	/* need to hold a reference on the device before we let go of the cmd */
503	get_device(&sdev->sdev_gendev);
504
505	scsi_put_command(cmd);
506	scsi_run_queue(q);
507
508	/* ok to remove device now */
509	put_device(&sdev->sdev_gendev);
510}
511
512void scsi_run_host_queues(struct Scsi_Host *shost)
513{
514	struct scsi_device *sdev;
515
516	shost_for_each_device(sdev, shost)
517		scsi_run_queue(sdev->request_queue);
518}
519
520static void __scsi_release_buffers(struct scsi_cmnd *, int);
521
522/*
523 * Function:    scsi_end_request()
524 *
525 * Purpose:     Post-processing of completed commands (usually invoked at end
526 *		of upper level post-processing and scsi_io_completion).
527 *
528 * Arguments:   cmd	 - command that is complete.
529 *              error    - 0 if I/O indicates success, < 0 for I/O error.
530 *              bytes    - number of bytes of completed I/O
531 *		requeue  - indicates whether we should requeue leftovers.
532 *
533 * Lock status: Assumed that lock is not held upon entry.
534 *
535 * Returns:     cmd if requeue required, NULL otherwise.
536 *
537 * Notes:       This is called for block device requests in order to
538 *              mark some number of sectors as complete.
539 *
540 *		We are guaranteeing that the request queue will be goosed
541 *		at some point during this call.
542 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
543 */
544static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
545					  int bytes, int requeue)
546{
547	struct request_queue *q = cmd->device->request_queue;
548	struct request *req = cmd->request;
549
550	/*
551	 * If there are blocks left over at the end, set up the command
552	 * to queue the remainder of them.
553	 */
554	if (blk_end_request(req, error, bytes)) {
555		/* kill remainder if no retrys */
556		if (error && scsi_noretry_cmd(cmd))
557			blk_end_request_all(req, error);
558		else {
559			if (requeue) {
560				/*
561				 * Bleah.  Leftovers again.  Stick the
562				 * leftovers in the front of the
563				 * queue, and goose the queue again.
564				 */
565				scsi_release_buffers(cmd);
566				scsi_requeue_command(q, cmd);
567				cmd = NULL;
568			}
569			return cmd;
570		}
571	}
572
573	/*
574	 * This will goose the queue request function at the end, so we don't
575	 * need to worry about launching another command.
576	 */
577	__scsi_release_buffers(cmd, 0);
578	scsi_next_command(cmd);
579	return NULL;
580}
581
582static inline unsigned int scsi_sgtable_index(unsigned short nents)
583{
584	unsigned int index;
585
586	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
587
588	if (nents <= 8)
589		index = 0;
590	else
591		index = get_count_order(nents) - 3;
592
593	return index;
594}
595
596static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
597{
598	struct scsi_host_sg_pool *sgp;
599
600	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
601	mempool_free(sgl, sgp->pool);
602}
603
604static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
605{
606	struct scsi_host_sg_pool *sgp;
607
608	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
609	return mempool_alloc(sgp->pool, gfp_mask);
610}
611
612static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
613			      gfp_t gfp_mask)
614{
615	int ret;
616
617	BUG_ON(!nents);
618
619	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
620			       gfp_mask, scsi_sg_alloc);
621	if (unlikely(ret))
622		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
623				scsi_sg_free);
624
625	return ret;
626}
627
628static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
629{
630	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
631}
632
633static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
634{
635
636	if (cmd->sdb.table.nents)
637		scsi_free_sgtable(&cmd->sdb);
638
639	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
640
641	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
642		struct scsi_data_buffer *bidi_sdb =
643			cmd->request->next_rq->special;
644		scsi_free_sgtable(bidi_sdb);
645		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
646		cmd->request->next_rq->special = NULL;
647	}
648
649	if (scsi_prot_sg_count(cmd))
650		scsi_free_sgtable(cmd->prot_sdb);
651}
652
653/*
654 * Function:    scsi_release_buffers()
655 *
656 * Purpose:     Completion processing for block device I/O requests.
657 *
658 * Arguments:   cmd	- command that we are bailing.
659 *
660 * Lock status: Assumed that no lock is held upon entry.
661 *
662 * Returns:     Nothing
663 *
664 * Notes:       In the event that an upper level driver rejects a
665 *		command, we must release resources allocated during
666 *		the __init_io() function.  Primarily this would involve
667 *		the scatter-gather table, and potentially any bounce
668 *		buffers.
669 */
670void scsi_release_buffers(struct scsi_cmnd *cmd)
671{
672	__scsi_release_buffers(cmd, 1);
673}
674EXPORT_SYMBOL(scsi_release_buffers);
675
676static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
677{
678	int error = 0;
679
680	switch(host_byte(result)) {
681	case DID_TRANSPORT_FAILFAST:
682		error = -ENOLINK;
683		break;
684	case DID_TARGET_FAILURE:
685		cmd->result |= (DID_OK << 16);
686		error = -EREMOTEIO;
687		break;
688	case DID_NEXUS_FAILURE:
689		cmd->result |= (DID_OK << 16);
690		error = -EBADE;
691		break;
692	default:
693		error = -EIO;
694		break;
695	}
696
697	return error;
698}
699
700/*
701 * Function:    scsi_io_completion()
702 *
703 * Purpose:     Completion processing for block device I/O requests.
704 *
705 * Arguments:   cmd   - command that is finished.
706 *
707 * Lock status: Assumed that no lock is held upon entry.
708 *
709 * Returns:     Nothing
710 *
711 * Notes:       This function is matched in terms of capabilities to
712 *              the function that created the scatter-gather list.
713 *              In other words, if there are no bounce buffers
714 *              (the normal case for most drivers), we don't need
715 *              the logic to deal with cleaning up afterwards.
716 *
717 *		We must call scsi_end_request().  This will finish off
718 *		the specified number of sectors.  If we are done, the
719 *		command block will be released and the queue function
720 *		will be goosed.  If we are not done then we have to
721 *		figure out what to do next:
722 *
723 *		a) We can call scsi_requeue_command().  The request
724 *		   will be unprepared and put back on the queue.  Then
725 *		   a new command will be created for it.  This should
726 *		   be used if we made forward progress, or if we want
727 *		   to switch from READ(10) to READ(6) for example.
728 *
729 *		b) We can call scsi_queue_insert().  The request will
730 *		   be put back on the queue and retried using the same
731 *		   command as before, possibly after a delay.
732 *
733 *		c) We can call blk_end_request() with -EIO to fail
734 *		   the remainder of the request.
735 */
736void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
737{
738	int result = cmd->result;
739	struct request_queue *q = cmd->device->request_queue;
740	struct request *req = cmd->request;
741	int error = 0;
742	struct scsi_sense_hdr sshdr;
743	int sense_valid = 0;
744	int sense_deferred = 0;
745	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
746	      ACTION_DELAYED_RETRY} action;
747	char *description = NULL;
748
749	if (result) {
750		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
751		if (sense_valid)
752			sense_deferred = scsi_sense_is_deferred(&sshdr);
753	}
754
755	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
756		req->errors = result;
757		if (result) {
758			if (sense_valid && req->sense) {
759				/*
760				 * SG_IO wants current and deferred errors
761				 */
762				int len = 8 + cmd->sense_buffer[7];
763
764				if (len > SCSI_SENSE_BUFFERSIZE)
765					len = SCSI_SENSE_BUFFERSIZE;
766				memcpy(req->sense, cmd->sense_buffer,  len);
767				req->sense_len = len;
768			}
769			if (!sense_deferred)
770				error = __scsi_error_from_host_byte(cmd, result);
771		}
772
773		req->resid_len = scsi_get_resid(cmd);
774
775		if (scsi_bidi_cmnd(cmd)) {
776			/*
777			 * Bidi commands Must be complete as a whole,
778			 * both sides at once.
779			 */
780			req->next_rq->resid_len = scsi_in(cmd)->resid;
781
782			scsi_release_buffers(cmd);
783			blk_end_request_all(req, 0);
784
785			scsi_next_command(cmd);
786			return;
787		}
788	}
789
790	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
791	BUG_ON(blk_bidi_rq(req));
792
793	/*
794	 * Next deal with any sectors which we were able to correctly
795	 * handle.
796	 */
797	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
798				      "%d bytes done.\n",
799				      blk_rq_sectors(req), good_bytes));
800
801	/*
802	 * Recovered errors need reporting, but they're always treated
803	 * as success, so fiddle the result code here.  For BLOCK_PC
804	 * we already took a copy of the original into rq->errors which
805	 * is what gets returned to the user
806	 */
807	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
808		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
809		 * print since caller wants ATA registers. Only occurs on
810		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
811		 */
812		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
813			;
814		else if (!(req->cmd_flags & REQ_QUIET))
815			scsi_print_sense("", cmd);
816		result = 0;
817		/* BLOCK_PC may have set error */
818		error = 0;
819	}
820
821	/*
822	 * A number of bytes were successfully read.  If there
823	 * are leftovers and there is some kind of error
824	 * (result != 0), retry the rest.
825	 */
826	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
827		return;
828
829	error = __scsi_error_from_host_byte(cmd, result);
830
831	if (host_byte(result) == DID_RESET) {
832		/* Third party bus reset or reset for error recovery
833		 * reasons.  Just retry the command and see what
834		 * happens.
835		 */
836		action = ACTION_RETRY;
837	} else if (sense_valid && !sense_deferred) {
838		switch (sshdr.sense_key) {
839		case UNIT_ATTENTION:
840			if (cmd->device->removable) {
841				/* Detected disc change.  Set a bit
842				 * and quietly refuse further access.
843				 */
844				cmd->device->changed = 1;
845				description = "Media Changed";
846				action = ACTION_FAIL;
847			} else {
848				/* Must have been a power glitch, or a
849				 * bus reset.  Could not have been a
850				 * media change, so we just retry the
851				 * command and see what happens.
852				 */
853				action = ACTION_RETRY;
854			}
855			break;
856		case ILLEGAL_REQUEST:
857			/* If we had an ILLEGAL REQUEST returned, then
858			 * we may have performed an unsupported
859			 * command.  The only thing this should be
860			 * would be a ten byte read where only a six
861			 * byte read was supported.  Also, on a system
862			 * where READ CAPACITY failed, we may have
863			 * read past the end of the disk.
864			 */
865			if ((cmd->device->use_10_for_rw &&
866			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
867			    (cmd->cmnd[0] == READ_10 ||
868			     cmd->cmnd[0] == WRITE_10)) {
869				/* This will issue a new 6-byte command. */
870				cmd->device->use_10_for_rw = 0;
871				action = ACTION_REPREP;
872			} else if (sshdr.asc == 0x10) /* DIX */ {
873				description = "Host Data Integrity Failure";
874				action = ACTION_FAIL;
875				error = -EILSEQ;
876			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
877			} else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
878				   (cmd->cmnd[0] == UNMAP ||
879				    cmd->cmnd[0] == WRITE_SAME_16 ||
880				    cmd->cmnd[0] == WRITE_SAME)) {
881				description = "Discard failure";
882				action = ACTION_FAIL;
883			} else
884				action = ACTION_FAIL;
885			break;
886		case ABORTED_COMMAND:
887			action = ACTION_FAIL;
888			if (sshdr.asc == 0x10) { /* DIF */
889				description = "Target Data Integrity Failure";
890				error = -EILSEQ;
891			}
892			break;
893		case NOT_READY:
894			/* If the device is in the process of becoming
895			 * ready, or has a temporary blockage, retry.
896			 */
897			if (sshdr.asc == 0x04) {
898				switch (sshdr.ascq) {
899				case 0x01: /* becoming ready */
900				case 0x04: /* format in progress */
901				case 0x05: /* rebuild in progress */
902				case 0x06: /* recalculation in progress */
903				case 0x07: /* operation in progress */
904				case 0x08: /* Long write in progress */
905				case 0x09: /* self test in progress */
906				case 0x14: /* space allocation in progress */
907					action = ACTION_DELAYED_RETRY;
908					break;
909				default:
910					description = "Device not ready";
911					action = ACTION_FAIL;
912					break;
913				}
914			} else {
915				description = "Device not ready";
916				action = ACTION_FAIL;
917			}
918			break;
919		case VOLUME_OVERFLOW:
920			/* See SSC3rXX or current. */
921			action = ACTION_FAIL;
922			break;
923		default:
924			description = "Unhandled sense code";
925			action = ACTION_FAIL;
926			break;
927		}
928	} else {
929		description = "Unhandled error code";
930		action = ACTION_FAIL;
931	}
932
933	switch (action) {
934	case ACTION_FAIL:
935		/* Give up and fail the remainder of the request */
936		scsi_release_buffers(cmd);
937		if (!(req->cmd_flags & REQ_QUIET)) {
938			if (description)
939				scmd_printk(KERN_INFO, cmd, "%s\n",
940					    description);
941			scsi_print_result(cmd);
942			if (driver_byte(result) & DRIVER_SENSE)
943				scsi_print_sense("", cmd);
944			scsi_print_command(cmd);
945		}
946		if (blk_end_request_err(req, error))
947			scsi_requeue_command(q, cmd);
948		else
949			scsi_next_command(cmd);
950		break;
951	case ACTION_REPREP:
952		/* Unprep the request and put it back at the head of the queue.
953		 * A new command will be prepared and issued.
954		 */
955		scsi_release_buffers(cmd);
956		scsi_requeue_command(q, cmd);
957		break;
958	case ACTION_RETRY:
959		/* Retry the same command immediately */
960		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
961		break;
962	case ACTION_DELAYED_RETRY:
963		/* Retry the same command after a delay */
964		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
965		break;
966	}
967}
968
969static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
970			     gfp_t gfp_mask)
971{
972	int count;
973
974	/*
975	 * If sg table allocation fails, requeue request later.
976	 */
977	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
978					gfp_mask))) {
979		return BLKPREP_DEFER;
980	}
981
982	req->buffer = NULL;
983
984	/*
985	 * Next, walk the list, and fill in the addresses and sizes of
986	 * each segment.
987	 */
988	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
989	BUG_ON(count > sdb->table.nents);
990	sdb->table.nents = count;
991	sdb->length = blk_rq_bytes(req);
992	return BLKPREP_OK;
993}
994
995/*
996 * Function:    scsi_init_io()
997 *
998 * Purpose:     SCSI I/O initialize function.
999 *
1000 * Arguments:   cmd   - Command descriptor we wish to initialize
1001 *
1002 * Returns:     0 on success
1003 *		BLKPREP_DEFER if the failure is retryable
1004 *		BLKPREP_KILL if the failure is fatal
1005 */
1006int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1007{
1008	struct request *rq = cmd->request;
1009
1010	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1011	if (error)
1012		goto err_exit;
1013
1014	if (blk_bidi_rq(rq)) {
1015		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1016			scsi_sdb_cache, GFP_ATOMIC);
1017		if (!bidi_sdb) {
1018			error = BLKPREP_DEFER;
1019			goto err_exit;
1020		}
1021
1022		rq->next_rq->special = bidi_sdb;
1023		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1024		if (error)
1025			goto err_exit;
1026	}
1027
1028	if (blk_integrity_rq(rq)) {
1029		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1030		int ivecs, count;
1031
1032		BUG_ON(prot_sdb == NULL);
1033		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1034
1035		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1036			error = BLKPREP_DEFER;
1037			goto err_exit;
1038		}
1039
1040		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1041						prot_sdb->table.sgl);
1042		BUG_ON(unlikely(count > ivecs));
1043		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1044
1045		cmd->prot_sdb = prot_sdb;
1046		cmd->prot_sdb->table.nents = count;
1047	}
1048
1049	return BLKPREP_OK ;
1050
1051err_exit:
1052	scsi_release_buffers(cmd);
1053	cmd->request->special = NULL;
1054	scsi_put_command(cmd);
1055	return error;
1056}
1057EXPORT_SYMBOL(scsi_init_io);
1058
1059static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1060		struct request *req)
1061{
1062	struct scsi_cmnd *cmd;
1063
1064	if (!req->special) {
1065		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1066		if (unlikely(!cmd))
1067			return NULL;
1068		req->special = cmd;
1069	} else {
1070		cmd = req->special;
1071	}
1072
1073	/* pull a tag out of the request if we have one */
1074	cmd->tag = req->tag;
1075	cmd->request = req;
1076
1077	cmd->cmnd = req->cmd;
1078	cmd->prot_op = SCSI_PROT_NORMAL;
1079
1080	return cmd;
1081}
1082
1083int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1084{
1085	struct scsi_cmnd *cmd;
1086	int ret = scsi_prep_state_check(sdev, req);
1087
1088	if (ret != BLKPREP_OK)
1089		return ret;
1090
1091	cmd = scsi_get_cmd_from_req(sdev, req);
1092	if (unlikely(!cmd))
1093		return BLKPREP_DEFER;
1094
1095	/*
1096	 * BLOCK_PC requests may transfer data, in which case they must
1097	 * a bio attached to them.  Or they might contain a SCSI command
1098	 * that does not transfer data, in which case they may optionally
1099	 * submit a request without an attached bio.
1100	 */
1101	if (req->bio) {
1102		int ret;
1103
1104		BUG_ON(!req->nr_phys_segments);
1105
1106		ret = scsi_init_io(cmd, GFP_ATOMIC);
1107		if (unlikely(ret))
1108			return ret;
1109	} else {
1110		BUG_ON(blk_rq_bytes(req));
1111
1112		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1113		req->buffer = NULL;
1114	}
1115
1116	cmd->cmd_len = req->cmd_len;
1117	if (!blk_rq_bytes(req))
1118		cmd->sc_data_direction = DMA_NONE;
1119	else if (rq_data_dir(req) == WRITE)
1120		cmd->sc_data_direction = DMA_TO_DEVICE;
1121	else
1122		cmd->sc_data_direction = DMA_FROM_DEVICE;
1123
1124	cmd->transfersize = blk_rq_bytes(req);
1125	cmd->allowed = req->retries;
1126	return BLKPREP_OK;
1127}
1128EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1129
1130/*
1131 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1132 * from filesystems that still need to be translated to SCSI CDBs from
1133 * the ULD.
1134 */
1135int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1136{
1137	struct scsi_cmnd *cmd;
1138	int ret = scsi_prep_state_check(sdev, req);
1139
1140	if (ret != BLKPREP_OK)
1141		return ret;
1142
1143	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1144			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1145		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1146		if (ret != BLKPREP_OK)
1147			return ret;
1148	}
1149
1150	/*
1151	 * Filesystem requests must transfer data.
1152	 */
1153	BUG_ON(!req->nr_phys_segments);
1154
1155	cmd = scsi_get_cmd_from_req(sdev, req);
1156	if (unlikely(!cmd))
1157		return BLKPREP_DEFER;
1158
1159	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1160	return scsi_init_io(cmd, GFP_ATOMIC);
1161}
1162EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1163
1164int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1165{
1166	int ret = BLKPREP_OK;
1167
1168	/*
1169	 * If the device is not in running state we will reject some
1170	 * or all commands.
1171	 */
1172	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1173		switch (sdev->sdev_state) {
1174		case SDEV_OFFLINE:
1175			/*
1176			 * If the device is offline we refuse to process any
1177			 * commands.  The device must be brought online
1178			 * before trying any recovery commands.
1179			 */
1180			sdev_printk(KERN_ERR, sdev,
1181				    "rejecting I/O to offline device\n");
1182			ret = BLKPREP_KILL;
1183			break;
1184		case SDEV_DEL:
1185			/*
1186			 * If the device is fully deleted, we refuse to
1187			 * process any commands as well.
1188			 */
1189			sdev_printk(KERN_ERR, sdev,
1190				    "rejecting I/O to dead device\n");
1191			ret = BLKPREP_KILL;
1192			break;
1193		case SDEV_QUIESCE:
1194		case SDEV_BLOCK:
1195		case SDEV_CREATED_BLOCK:
1196			/*
1197			 * If the devices is blocked we defer normal commands.
1198			 */
1199			if (!(req->cmd_flags & REQ_PREEMPT))
1200				ret = BLKPREP_DEFER;
1201			break;
1202		default:
1203			/*
1204			 * For any other not fully online state we only allow
1205			 * special commands.  In particular any user initiated
1206			 * command is not allowed.
1207			 */
1208			if (!(req->cmd_flags & REQ_PREEMPT))
1209				ret = BLKPREP_KILL;
1210			break;
1211		}
1212	}
1213	return ret;
1214}
1215EXPORT_SYMBOL(scsi_prep_state_check);
1216
1217int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1218{
1219	struct scsi_device *sdev = q->queuedata;
1220
1221	switch (ret) {
1222	case BLKPREP_KILL:
1223		req->errors = DID_NO_CONNECT << 16;
1224		/* release the command and kill it */
1225		if (req->special) {
1226			struct scsi_cmnd *cmd = req->special;
1227			scsi_release_buffers(cmd);
1228			scsi_put_command(cmd);
1229			req->special = NULL;
1230		}
1231		break;
1232	case BLKPREP_DEFER:
1233		/*
1234		 * If we defer, the blk_peek_request() returns NULL, but the
1235		 * queue must be restarted, so we schedule a callback to happen
1236		 * shortly.
1237		 */
1238		if (sdev->device_busy == 0)
1239			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1240		break;
1241	default:
1242		req->cmd_flags |= REQ_DONTPREP;
1243	}
1244
1245	return ret;
1246}
1247EXPORT_SYMBOL(scsi_prep_return);
1248
1249int scsi_prep_fn(struct request_queue *q, struct request *req)
1250{
1251	struct scsi_device *sdev = q->queuedata;
1252	int ret = BLKPREP_KILL;
1253
1254	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1255		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1256	return scsi_prep_return(q, req, ret);
1257}
1258EXPORT_SYMBOL(scsi_prep_fn);
1259
1260/*
1261 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1262 * return 0.
1263 *
1264 * Called with the queue_lock held.
1265 */
1266static inline int scsi_dev_queue_ready(struct request_queue *q,
1267				  struct scsi_device *sdev)
1268{
1269	if (sdev->device_busy == 0 && sdev->device_blocked) {
1270		/*
1271		 * unblock after device_blocked iterates to zero
1272		 */
1273		if (--sdev->device_blocked == 0) {
1274			SCSI_LOG_MLQUEUE(3,
1275				   sdev_printk(KERN_INFO, sdev,
1276				   "unblocking device at zero depth\n"));
1277		} else {
1278			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1279			return 0;
1280		}
1281	}
1282	if (scsi_device_is_busy(sdev))
1283		return 0;
1284
1285	return 1;
1286}
1287
1288
1289/*
1290 * scsi_target_queue_ready: checks if there we can send commands to target
1291 * @sdev: scsi device on starget to check.
1292 *
1293 * Called with the host lock held.
1294 */
1295static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1296					   struct scsi_device *sdev)
1297{
1298	struct scsi_target *starget = scsi_target(sdev);
1299
1300	if (starget->single_lun) {
1301		if (starget->starget_sdev_user &&
1302		    starget->starget_sdev_user != sdev)
1303			return 0;
1304		starget->starget_sdev_user = sdev;
1305	}
1306
1307	if (starget->target_busy == 0 && starget->target_blocked) {
1308		/*
1309		 * unblock after target_blocked iterates to zero
1310		 */
1311		if (--starget->target_blocked == 0) {
1312			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1313					 "unblocking target at zero depth\n"));
1314		} else
1315			return 0;
1316	}
1317
1318	if (scsi_target_is_busy(starget)) {
1319		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1320		return 0;
1321	}
1322
1323	return 1;
1324}
1325
1326/*
1327 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1328 * return 0. We must end up running the queue again whenever 0 is
1329 * returned, else IO can hang.
1330 *
1331 * Called with host_lock held.
1332 */
1333static inline int scsi_host_queue_ready(struct request_queue *q,
1334				   struct Scsi_Host *shost,
1335				   struct scsi_device *sdev)
1336{
1337	if (scsi_host_in_recovery(shost))
1338		return 0;
1339	if (shost->host_busy == 0 && shost->host_blocked) {
1340		/*
1341		 * unblock after host_blocked iterates to zero
1342		 */
1343		if (--shost->host_blocked == 0) {
1344			SCSI_LOG_MLQUEUE(3,
1345				printk("scsi%d unblocking host at zero depth\n",
1346					shost->host_no));
1347		} else {
1348			return 0;
1349		}
1350	}
1351	if (scsi_host_is_busy(shost)) {
1352		if (list_empty(&sdev->starved_entry))
1353			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1354		return 0;
1355	}
1356
1357	/* We're OK to process the command, so we can't be starved */
1358	if (!list_empty(&sdev->starved_entry))
1359		list_del_init(&sdev->starved_entry);
1360
1361	return 1;
1362}
1363
1364/*
1365 * Busy state exporting function for request stacking drivers.
1366 *
1367 * For efficiency, no lock is taken to check the busy state of
1368 * shost/starget/sdev, since the returned value is not guaranteed and
1369 * may be changed after request stacking drivers call the function,
1370 * regardless of taking lock or not.
1371 *
1372 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1373 * (e.g. !sdev), scsi needs to return 'not busy'.
1374 * Otherwise, request stacking drivers may hold requests forever.
1375 */
1376static int scsi_lld_busy(struct request_queue *q)
1377{
1378	struct scsi_device *sdev = q->queuedata;
1379	struct Scsi_Host *shost;
1380	struct scsi_target *starget;
1381
1382	if (!sdev)
1383		return 0;
1384
1385	shost = sdev->host;
1386	starget = scsi_target(sdev);
1387
1388	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1389	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1390		return 1;
1391
1392	return 0;
1393}
1394
1395/*
1396 * Kill a request for a dead device
1397 */
1398static void scsi_kill_request(struct request *req, struct request_queue *q)
1399{
1400	struct scsi_cmnd *cmd = req->special;
1401	struct scsi_device *sdev;
1402	struct scsi_target *starget;
1403	struct Scsi_Host *shost;
1404
1405	blk_start_request(req);
1406
1407	scmd_printk(KERN_INFO, cmd, "killing request\n");
1408
1409	sdev = cmd->device;
1410	starget = scsi_target(sdev);
1411	shost = sdev->host;
1412	scsi_init_cmd_errh(cmd);
1413	cmd->result = DID_NO_CONNECT << 16;
1414	atomic_inc(&cmd->device->iorequest_cnt);
1415
1416	/*
1417	 * SCSI request completion path will do scsi_device_unbusy(),
1418	 * bump busy counts.  To bump the counters, we need to dance
1419	 * with the locks as normal issue path does.
1420	 */
1421	sdev->device_busy++;
1422	spin_unlock(sdev->request_queue->queue_lock);
1423	spin_lock(shost->host_lock);
1424	shost->host_busy++;
1425	starget->target_busy++;
1426	spin_unlock(shost->host_lock);
1427	spin_lock(sdev->request_queue->queue_lock);
1428
1429	blk_complete_request(req);
1430}
1431
1432static void scsi_softirq_done(struct request *rq)
1433{
1434	struct scsi_cmnd *cmd = rq->special;
1435	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1436	int disposition;
1437
1438	INIT_LIST_HEAD(&cmd->eh_entry);
1439
1440	atomic_inc(&cmd->device->iodone_cnt);
1441	if (cmd->result)
1442		atomic_inc(&cmd->device->ioerr_cnt);
1443
1444	disposition = scsi_decide_disposition(cmd);
1445	if (disposition != SUCCESS &&
1446	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1447		sdev_printk(KERN_ERR, cmd->device,
1448			    "timing out command, waited %lus\n",
1449			    wait_for/HZ);
1450		disposition = SUCCESS;
1451	}
1452
1453	scsi_log_completion(cmd, disposition);
1454
1455	switch (disposition) {
1456		case SUCCESS:
1457			scsi_finish_command(cmd);
1458			break;
1459		case NEEDS_RETRY:
1460			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1461			break;
1462		case ADD_TO_MLQUEUE:
1463			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1464			break;
1465		default:
1466			if (!scsi_eh_scmd_add(cmd, 0))
1467				scsi_finish_command(cmd);
1468	}
1469}
1470
1471/*
1472 * Function:    scsi_request_fn()
1473 *
1474 * Purpose:     Main strategy routine for SCSI.
1475 *
1476 * Arguments:   q       - Pointer to actual queue.
1477 *
1478 * Returns:     Nothing
1479 *
1480 * Lock status: IO request lock assumed to be held when called.
1481 */
1482static void scsi_request_fn(struct request_queue *q)
1483{
1484	struct scsi_device *sdev = q->queuedata;
1485	struct Scsi_Host *shost;
1486	struct scsi_cmnd *cmd;
1487	struct request *req;
1488
1489	if (!sdev) {
1490		while ((req = blk_peek_request(q)) != NULL)
1491			scsi_kill_request(req, q);
1492		return;
1493	}
1494
1495	if(!get_device(&sdev->sdev_gendev))
1496		/* We must be tearing the block queue down already */
1497		return;
1498
1499	/*
1500	 * To start with, we keep looping until the queue is empty, or until
1501	 * the host is no longer able to accept any more requests.
1502	 */
1503	shost = sdev->host;
1504	for (;;) {
1505		int rtn;
1506		/*
1507		 * get next queueable request.  We do this early to make sure
1508		 * that the request is fully prepared even if we cannot
1509		 * accept it.
1510		 */
1511		req = blk_peek_request(q);
1512		if (!req || !scsi_dev_queue_ready(q, sdev))
1513			break;
1514
1515		if (unlikely(!scsi_device_online(sdev))) {
1516			sdev_printk(KERN_ERR, sdev,
1517				    "rejecting I/O to offline device\n");
1518			scsi_kill_request(req, q);
1519			continue;
1520		}
1521
1522
1523		/*
1524		 * Remove the request from the request list.
1525		 */
1526		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1527			blk_start_request(req);
1528		sdev->device_busy++;
1529
1530		spin_unlock(q->queue_lock);
1531		cmd = req->special;
1532		if (unlikely(cmd == NULL)) {
1533			printk(KERN_CRIT "impossible request in %s.\n"
1534					 "please mail a stack trace to "
1535					 "linux-scsi@vger.kernel.org\n",
1536					 __func__);
1537			blk_dump_rq_flags(req, "foo");
1538			BUG();
1539		}
1540		spin_lock(shost->host_lock);
1541
1542		/*
1543		 * We hit this when the driver is using a host wide
1544		 * tag map. For device level tag maps the queue_depth check
1545		 * in the device ready fn would prevent us from trying
1546		 * to allocate a tag. Since the map is a shared host resource
1547		 * we add the dev to the starved list so it eventually gets
1548		 * a run when a tag is freed.
1549		 */
1550		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1551			if (list_empty(&sdev->starved_entry))
1552				list_add_tail(&sdev->starved_entry,
1553					      &shost->starved_list);
1554			goto not_ready;
1555		}
1556
1557		if (!scsi_target_queue_ready(shost, sdev))
1558			goto not_ready;
1559
1560		if (!scsi_host_queue_ready(q, shost, sdev))
1561			goto not_ready;
1562
1563		scsi_target(sdev)->target_busy++;
1564		shost->host_busy++;
1565
1566		/*
1567		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1568		 *		take the lock again.
1569		 */
1570		spin_unlock_irq(shost->host_lock);
1571
1572		/*
1573		 * Finally, initialize any error handling parameters, and set up
1574		 * the timers for timeouts.
1575		 */
1576		scsi_init_cmd_errh(cmd);
1577
1578		/*
1579		 * Dispatch the command to the low-level driver.
1580		 */
1581		rtn = scsi_dispatch_cmd(cmd);
1582		spin_lock_irq(q->queue_lock);
1583		if (rtn)
1584			goto out_delay;
1585	}
1586
1587	goto out;
1588
1589 not_ready:
1590	spin_unlock_irq(shost->host_lock);
1591
1592	/*
1593	 * lock q, handle tag, requeue req, and decrement device_busy. We
1594	 * must return with queue_lock held.
1595	 *
1596	 * Decrementing device_busy without checking it is OK, as all such
1597	 * cases (host limits or settings) should run the queue at some
1598	 * later time.
1599	 */
1600	spin_lock_irq(q->queue_lock);
1601	blk_requeue_request(q, req);
1602	sdev->device_busy--;
1603out_delay:
1604	if (sdev->device_busy == 0)
1605		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1606out:
1607	/* must be careful here...if we trigger the ->remove() function
1608	 * we cannot be holding the q lock */
1609	spin_unlock_irq(q->queue_lock);
1610	put_device(&sdev->sdev_gendev);
1611	spin_lock_irq(q->queue_lock);
1612}
1613
1614u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1615{
1616	struct device *host_dev;
1617	u64 bounce_limit = 0xffffffff;
1618
1619	if (shost->unchecked_isa_dma)
1620		return BLK_BOUNCE_ISA;
1621	/*
1622	 * Platforms with virtual-DMA translation
1623	 * hardware have no practical limit.
1624	 */
1625	if (!PCI_DMA_BUS_IS_PHYS)
1626		return BLK_BOUNCE_ANY;
1627
1628	host_dev = scsi_get_device(shost);
1629	if (host_dev && host_dev->dma_mask)
1630		bounce_limit = *host_dev->dma_mask;
1631
1632	return bounce_limit;
1633}
1634EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1635
1636struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1637					 request_fn_proc *request_fn)
1638{
1639	struct request_queue *q;
1640	struct device *dev = shost->shost_gendev.parent;
1641
1642	q = blk_init_queue(request_fn, NULL);
1643	if (!q)
1644		return NULL;
1645
1646	/*
1647	 * this limit is imposed by hardware restrictions
1648	 */
1649	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1650					SCSI_MAX_SG_CHAIN_SEGMENTS));
1651
1652	if (scsi_host_prot_dma(shost)) {
1653		shost->sg_prot_tablesize =
1654			min_not_zero(shost->sg_prot_tablesize,
1655				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1656		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1657		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1658	}
1659
1660	blk_queue_max_hw_sectors(q, shost->max_sectors);
1661	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1662	blk_queue_segment_boundary(q, shost->dma_boundary);
1663	dma_set_seg_boundary(dev, shost->dma_boundary);
1664
1665	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1666
1667	if (!shost->use_clustering)
1668		q->limits.cluster = 0;
1669
1670	/*
1671	 * set a reasonable default alignment on word boundaries: the
1672	 * host and device may alter it using
1673	 * blk_queue_update_dma_alignment() later.
1674	 */
1675	blk_queue_dma_alignment(q, 0x03);
1676
1677	return q;
1678}
1679EXPORT_SYMBOL(__scsi_alloc_queue);
1680
1681struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1682{
1683	struct request_queue *q;
1684
1685	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1686	if (!q)
1687		return NULL;
1688
1689	blk_queue_prep_rq(q, scsi_prep_fn);
1690	blk_queue_softirq_done(q, scsi_softirq_done);
1691	blk_queue_rq_timed_out(q, scsi_times_out);
1692	blk_queue_lld_busy(q, scsi_lld_busy);
1693	return q;
1694}
1695
1696void scsi_free_queue(struct request_queue *q)
1697{
1698	unsigned long flags;
1699
1700	WARN_ON(q->queuedata);
1701
1702	/* cause scsi_request_fn() to kill all non-finished requests */
1703	spin_lock_irqsave(q->queue_lock, flags);
1704	q->request_fn(q);
1705	spin_unlock_irqrestore(q->queue_lock, flags);
1706
1707	blk_cleanup_queue(q);
1708}
1709
1710/*
1711 * Function:    scsi_block_requests()
1712 *
1713 * Purpose:     Utility function used by low-level drivers to prevent further
1714 *		commands from being queued to the device.
1715 *
1716 * Arguments:   shost       - Host in question
1717 *
1718 * Returns:     Nothing
1719 *
1720 * Lock status: No locks are assumed held.
1721 *
1722 * Notes:       There is no timer nor any other means by which the requests
1723 *		get unblocked other than the low-level driver calling
1724 *		scsi_unblock_requests().
1725 */
1726void scsi_block_requests(struct Scsi_Host *shost)
1727{
1728	shost->host_self_blocked = 1;
1729}
1730EXPORT_SYMBOL(scsi_block_requests);
1731
1732/*
1733 * Function:    scsi_unblock_requests()
1734 *
1735 * Purpose:     Utility function used by low-level drivers to allow further
1736 *		commands from being queued to the device.
1737 *
1738 * Arguments:   shost       - Host in question
1739 *
1740 * Returns:     Nothing
1741 *
1742 * Lock status: No locks are assumed held.
1743 *
1744 * Notes:       There is no timer nor any other means by which the requests
1745 *		get unblocked other than the low-level driver calling
1746 *		scsi_unblock_requests().
1747 *
1748 *		This is done as an API function so that changes to the
1749 *		internals of the scsi mid-layer won't require wholesale
1750 *		changes to drivers that use this feature.
1751 */
1752void scsi_unblock_requests(struct Scsi_Host *shost)
1753{
1754	shost->host_self_blocked = 0;
1755	scsi_run_host_queues(shost);
1756}
1757EXPORT_SYMBOL(scsi_unblock_requests);
1758
1759int __init scsi_init_queue(void)
1760{
1761	int i;
1762
1763	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1764					   sizeof(struct scsi_data_buffer),
1765					   0, 0, NULL);
1766	if (!scsi_sdb_cache) {
1767		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1768		return -ENOMEM;
1769	}
1770
1771	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1772		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1773		int size = sgp->size * sizeof(struct scatterlist);
1774
1775		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1776				SLAB_HWCACHE_ALIGN, NULL);
1777		if (!sgp->slab) {
1778			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1779					sgp->name);
1780			goto cleanup_sdb;
1781		}
1782
1783		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1784						     sgp->slab);
1785		if (!sgp->pool) {
1786			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1787					sgp->name);
1788			goto cleanup_sdb;
1789		}
1790	}
1791
1792	return 0;
1793
1794cleanup_sdb:
1795	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1796		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1797		if (sgp->pool)
1798			mempool_destroy(sgp->pool);
1799		if (sgp->slab)
1800			kmem_cache_destroy(sgp->slab);
1801	}
1802	kmem_cache_destroy(scsi_sdb_cache);
1803
1804	return -ENOMEM;
1805}
1806
1807void scsi_exit_queue(void)
1808{
1809	int i;
1810
1811	kmem_cache_destroy(scsi_sdb_cache);
1812
1813	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1814		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1815		mempool_destroy(sgp->pool);
1816		kmem_cache_destroy(sgp->slab);
1817	}
1818}
1819
1820/**
1821 *	scsi_mode_select - issue a mode select
1822 *	@sdev:	SCSI device to be queried
1823 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1824 *	@sp:	Save page bit (0 == don't save, 1 == save)
1825 *	@modepage: mode page being requested
1826 *	@buffer: request buffer (may not be smaller than eight bytes)
1827 *	@len:	length of request buffer.
1828 *	@timeout: command timeout
1829 *	@retries: number of retries before failing
1830 *	@data: returns a structure abstracting the mode header data
1831 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1832 *		must be SCSI_SENSE_BUFFERSIZE big.
1833 *
1834 *	Returns zero if successful; negative error number or scsi
1835 *	status on error
1836 *
1837 */
1838int
1839scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1840		 unsigned char *buffer, int len, int timeout, int retries,
1841		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1842{
1843	unsigned char cmd[10];
1844	unsigned char *real_buffer;
1845	int ret;
1846
1847	memset(cmd, 0, sizeof(cmd));
1848	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1849
1850	if (sdev->use_10_for_ms) {
1851		if (len > 65535)
1852			return -EINVAL;
1853		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1854		if (!real_buffer)
1855			return -ENOMEM;
1856		memcpy(real_buffer + 8, buffer, len);
1857		len += 8;
1858		real_buffer[0] = 0;
1859		real_buffer[1] = 0;
1860		real_buffer[2] = data->medium_type;
1861		real_buffer[3] = data->device_specific;
1862		real_buffer[4] = data->longlba ? 0x01 : 0;
1863		real_buffer[5] = 0;
1864		real_buffer[6] = data->block_descriptor_length >> 8;
1865		real_buffer[7] = data->block_descriptor_length;
1866
1867		cmd[0] = MODE_SELECT_10;
1868		cmd[7] = len >> 8;
1869		cmd[8] = len;
1870	} else {
1871		if (len > 255 || data->block_descriptor_length > 255 ||
1872		    data->longlba)
1873			return -EINVAL;
1874
1875		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1876		if (!real_buffer)
1877			return -ENOMEM;
1878		memcpy(real_buffer + 4, buffer, len);
1879		len += 4;
1880		real_buffer[0] = 0;
1881		real_buffer[1] = data->medium_type;
1882		real_buffer[2] = data->device_specific;
1883		real_buffer[3] = data->block_descriptor_length;
1884
1885
1886		cmd[0] = MODE_SELECT;
1887		cmd[4] = len;
1888	}
1889
1890	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1891			       sshdr, timeout, retries, NULL);
1892	kfree(real_buffer);
1893	return ret;
1894}
1895EXPORT_SYMBOL_GPL(scsi_mode_select);
1896
1897/**
1898 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1899 *	@sdev:	SCSI device to be queried
1900 *	@dbd:	set if mode sense will allow block descriptors to be returned
1901 *	@modepage: mode page being requested
1902 *	@buffer: request buffer (may not be smaller than eight bytes)
1903 *	@len:	length of request buffer.
1904 *	@timeout: command timeout
1905 *	@retries: number of retries before failing
1906 *	@data: returns a structure abstracting the mode header data
1907 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1908 *		must be SCSI_SENSE_BUFFERSIZE big.
1909 *
1910 *	Returns zero if unsuccessful, or the header offset (either 4
1911 *	or 8 depending on whether a six or ten byte command was
1912 *	issued) if successful.
1913 */
1914int
1915scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1916		  unsigned char *buffer, int len, int timeout, int retries,
1917		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1918{
1919	unsigned char cmd[12];
1920	int use_10_for_ms;
1921	int header_length;
1922	int result;
1923	struct scsi_sense_hdr my_sshdr;
1924
1925	memset(data, 0, sizeof(*data));
1926	memset(&cmd[0], 0, 12);
1927	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1928	cmd[2] = modepage;
1929
1930	/* caller might not be interested in sense, but we need it */
1931	if (!sshdr)
1932		sshdr = &my_sshdr;
1933
1934 retry:
1935	use_10_for_ms = sdev->use_10_for_ms;
1936
1937	if (use_10_for_ms) {
1938		if (len < 8)
1939			len = 8;
1940
1941		cmd[0] = MODE_SENSE_10;
1942		cmd[8] = len;
1943		header_length = 8;
1944	} else {
1945		if (len < 4)
1946			len = 4;
1947
1948		cmd[0] = MODE_SENSE;
1949		cmd[4] = len;
1950		header_length = 4;
1951	}
1952
1953	memset(buffer, 0, len);
1954
1955	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1956				  sshdr, timeout, retries, NULL);
1957
1958	/* This code looks awful: what it's doing is making sure an
1959	 * ILLEGAL REQUEST sense return identifies the actual command
1960	 * byte as the problem.  MODE_SENSE commands can return
1961	 * ILLEGAL REQUEST if the code page isn't supported */
1962
1963	if (use_10_for_ms && !scsi_status_is_good(result) &&
1964	    (driver_byte(result) & DRIVER_SENSE)) {
1965		if (scsi_sense_valid(sshdr)) {
1966			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1967			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1968				/*
1969				 * Invalid command operation code
1970				 */
1971				sdev->use_10_for_ms = 0;
1972				goto retry;
1973			}
1974		}
1975	}
1976
1977	if(scsi_status_is_good(result)) {
1978		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1979			     (modepage == 6 || modepage == 8))) {
1980			/* Initio breakage? */
1981			header_length = 0;
1982			data->length = 13;
1983			data->medium_type = 0;
1984			data->device_specific = 0;
1985			data->longlba = 0;
1986			data->block_descriptor_length = 0;
1987		} else if(use_10_for_ms) {
1988			data->length = buffer[0]*256 + buffer[1] + 2;
1989			data->medium_type = buffer[2];
1990			data->device_specific = buffer[3];
1991			data->longlba = buffer[4] & 0x01;
1992			data->block_descriptor_length = buffer[6]*256
1993				+ buffer[7];
1994		} else {
1995			data->length = buffer[0] + 1;
1996			data->medium_type = buffer[1];
1997			data->device_specific = buffer[2];
1998			data->block_descriptor_length = buffer[3];
1999		}
2000		data->header_length = header_length;
2001	}
2002
2003	return result;
2004}
2005EXPORT_SYMBOL(scsi_mode_sense);
2006
2007/**
2008 *	scsi_test_unit_ready - test if unit is ready
2009 *	@sdev:	scsi device to change the state of.
2010 *	@timeout: command timeout
2011 *	@retries: number of retries before failing
2012 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2013 *		returning sense. Make sure that this is cleared before passing
2014 *		in.
2015 *
2016 *	Returns zero if unsuccessful or an error if TUR failed.  For
2017 *	removable media, UNIT_ATTENTION sets ->changed flag.
2018 **/
2019int
2020scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2021		     struct scsi_sense_hdr *sshdr_external)
2022{
2023	char cmd[] = {
2024		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2025	};
2026	struct scsi_sense_hdr *sshdr;
2027	int result;
2028
2029	if (!sshdr_external)
2030		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2031	else
2032		sshdr = sshdr_external;
2033
2034	/* try to eat the UNIT_ATTENTION if there are enough retries */
2035	do {
2036		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2037					  timeout, retries, NULL);
2038		if (sdev->removable && scsi_sense_valid(sshdr) &&
2039		    sshdr->sense_key == UNIT_ATTENTION)
2040			sdev->changed = 1;
2041	} while (scsi_sense_valid(sshdr) &&
2042		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2043
2044	if (!sshdr_external)
2045		kfree(sshdr);
2046	return result;
2047}
2048EXPORT_SYMBOL(scsi_test_unit_ready);
2049
2050/**
2051 *	scsi_device_set_state - Take the given device through the device state model.
2052 *	@sdev:	scsi device to change the state of.
2053 *	@state:	state to change to.
2054 *
2055 *	Returns zero if unsuccessful or an error if the requested
2056 *	transition is illegal.
2057 */
2058int
2059scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2060{
2061	enum scsi_device_state oldstate = sdev->sdev_state;
2062
2063	if (state == oldstate)
2064		return 0;
2065
2066	switch (state) {
2067	case SDEV_CREATED:
2068		switch (oldstate) {
2069		case SDEV_CREATED_BLOCK:
2070			break;
2071		default:
2072			goto illegal;
2073		}
2074		break;
2075
2076	case SDEV_RUNNING:
2077		switch (oldstate) {
2078		case SDEV_CREATED:
2079		case SDEV_OFFLINE:
2080		case SDEV_QUIESCE:
2081		case SDEV_BLOCK:
2082			break;
2083		default:
2084			goto illegal;
2085		}
2086		break;
2087
2088	case SDEV_QUIESCE:
2089		switch (oldstate) {
2090		case SDEV_RUNNING:
2091		case SDEV_OFFLINE:
2092			break;
2093		default:
2094			goto illegal;
2095		}
2096		break;
2097
2098	case SDEV_OFFLINE:
2099		switch (oldstate) {
2100		case SDEV_CREATED:
2101		case SDEV_RUNNING:
2102		case SDEV_QUIESCE:
2103		case SDEV_BLOCK:
2104			break;
2105		default:
2106			goto illegal;
2107		}
2108		break;
2109
2110	case SDEV_BLOCK:
2111		switch (oldstate) {
2112		case SDEV_RUNNING:
2113		case SDEV_CREATED_BLOCK:
2114			break;
2115		default:
2116			goto illegal;
2117		}
2118		break;
2119
2120	case SDEV_CREATED_BLOCK:
2121		switch (oldstate) {
2122		case SDEV_CREATED:
2123			break;
2124		default:
2125			goto illegal;
2126		}
2127		break;
2128
2129	case SDEV_CANCEL:
2130		switch (oldstate) {
2131		case SDEV_CREATED:
2132		case SDEV_RUNNING:
2133		case SDEV_QUIESCE:
2134		case SDEV_OFFLINE:
2135		case SDEV_BLOCK:
2136			break;
2137		default:
2138			goto illegal;
2139		}
2140		break;
2141
2142	case SDEV_DEL:
2143		switch (oldstate) {
2144		case SDEV_CREATED:
2145		case SDEV_RUNNING:
2146		case SDEV_OFFLINE:
2147		case SDEV_CANCEL:
2148			break;
2149		default:
2150			goto illegal;
2151		}
2152		break;
2153
2154	}
2155	sdev->sdev_state = state;
2156	return 0;
2157
2158 illegal:
2159	SCSI_LOG_ERROR_RECOVERY(1,
2160				sdev_printk(KERN_ERR, sdev,
2161					    "Illegal state transition %s->%s\n",
2162					    scsi_device_state_name(oldstate),
2163					    scsi_device_state_name(state))
2164				);
2165	return -EINVAL;
2166}
2167EXPORT_SYMBOL(scsi_device_set_state);
2168
2169/**
2170 * 	sdev_evt_emit - emit a single SCSI device uevent
2171 *	@sdev: associated SCSI device
2172 *	@evt: event to emit
2173 *
2174 *	Send a single uevent (scsi_event) to the associated scsi_device.
2175 */
2176static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2177{
2178	int idx = 0;
2179	char *envp[3];
2180
2181	switch (evt->evt_type) {
2182	case SDEV_EVT_MEDIA_CHANGE:
2183		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2184		break;
2185
2186	default:
2187		/* do nothing */
2188		break;
2189	}
2190
2191	envp[idx++] = NULL;
2192
2193	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2194}
2195
2196/**
2197 * 	sdev_evt_thread - send a uevent for each scsi event
2198 *	@work: work struct for scsi_device
2199 *
2200 *	Dispatch queued events to their associated scsi_device kobjects
2201 *	as uevents.
2202 */
2203void scsi_evt_thread(struct work_struct *work)
2204{
2205	struct scsi_device *sdev;
2206	LIST_HEAD(event_list);
2207
2208	sdev = container_of(work, struct scsi_device, event_work);
2209
2210	while (1) {
2211		struct scsi_event *evt;
2212		struct list_head *this, *tmp;
2213		unsigned long flags;
2214
2215		spin_lock_irqsave(&sdev->list_lock, flags);
2216		list_splice_init(&sdev->event_list, &event_list);
2217		spin_unlock_irqrestore(&sdev->list_lock, flags);
2218
2219		if (list_empty(&event_list))
2220			break;
2221
2222		list_for_each_safe(this, tmp, &event_list) {
2223			evt = list_entry(this, struct scsi_event, node);
2224			list_del(&evt->node);
2225			scsi_evt_emit(sdev, evt);
2226			kfree(evt);
2227		}
2228	}
2229}
2230
2231/**
2232 * 	sdev_evt_send - send asserted event to uevent thread
2233 *	@sdev: scsi_device event occurred on
2234 *	@evt: event to send
2235 *
2236 *	Assert scsi device event asynchronously.
2237 */
2238void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2239{
2240	unsigned long flags;
2241
2242#if 0
2243	/* FIXME: currently this check eliminates all media change events
2244	 * for polled devices.  Need to update to discriminate between AN
2245	 * and polled events */
2246	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2247		kfree(evt);
2248		return;
2249	}
2250#endif
2251
2252	spin_lock_irqsave(&sdev->list_lock, flags);
2253	list_add_tail(&evt->node, &sdev->event_list);
2254	schedule_work(&sdev->event_work);
2255	spin_unlock_irqrestore(&sdev->list_lock, flags);
2256}
2257EXPORT_SYMBOL_GPL(sdev_evt_send);
2258
2259/**
2260 * 	sdev_evt_alloc - allocate a new scsi event
2261 *	@evt_type: type of event to allocate
2262 *	@gfpflags: GFP flags for allocation
2263 *
2264 *	Allocates and returns a new scsi_event.
2265 */
2266struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2267				  gfp_t gfpflags)
2268{
2269	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2270	if (!evt)
2271		return NULL;
2272
2273	evt->evt_type = evt_type;
2274	INIT_LIST_HEAD(&evt->node);
2275
2276	/* evt_type-specific initialization, if any */
2277	switch (evt_type) {
2278	case SDEV_EVT_MEDIA_CHANGE:
2279	default:
2280		/* do nothing */
2281		break;
2282	}
2283
2284	return evt;
2285}
2286EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2287
2288/**
2289 * 	sdev_evt_send_simple - send asserted event to uevent thread
2290 *	@sdev: scsi_device event occurred on
2291 *	@evt_type: type of event to send
2292 *	@gfpflags: GFP flags for allocation
2293 *
2294 *	Assert scsi device event asynchronously, given an event type.
2295 */
2296void sdev_evt_send_simple(struct scsi_device *sdev,
2297			  enum scsi_device_event evt_type, gfp_t gfpflags)
2298{
2299	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2300	if (!evt) {
2301		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2302			    evt_type);
2303		return;
2304	}
2305
2306	sdev_evt_send(sdev, evt);
2307}
2308EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2309
2310/**
2311 *	scsi_device_quiesce - Block user issued commands.
2312 *	@sdev:	scsi device to quiesce.
2313 *
2314 *	This works by trying to transition to the SDEV_QUIESCE state
2315 *	(which must be a legal transition).  When the device is in this
2316 *	state, only special requests will be accepted, all others will
2317 *	be deferred.  Since special requests may also be requeued requests,
2318 *	a successful return doesn't guarantee the device will be
2319 *	totally quiescent.
2320 *
2321 *	Must be called with user context, may sleep.
2322 *
2323 *	Returns zero if unsuccessful or an error if not.
2324 */
2325int
2326scsi_device_quiesce(struct scsi_device *sdev)
2327{
2328	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2329	if (err)
2330		return err;
2331
2332	scsi_run_queue(sdev->request_queue);
2333	while (sdev->device_busy) {
2334		msleep_interruptible(200);
2335		scsi_run_queue(sdev->request_queue);
2336	}
2337	return 0;
2338}
2339EXPORT_SYMBOL(scsi_device_quiesce);
2340
2341/**
2342 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2343 *	@sdev:	scsi device to resume.
2344 *
2345 *	Moves the device from quiesced back to running and restarts the
2346 *	queues.
2347 *
2348 *	Must be called with user context, may sleep.
2349 */
2350void
2351scsi_device_resume(struct scsi_device *sdev)
2352{
2353	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2354		return;
2355	scsi_run_queue(sdev->request_queue);
2356}
2357EXPORT_SYMBOL(scsi_device_resume);
2358
2359static void
2360device_quiesce_fn(struct scsi_device *sdev, void *data)
2361{
2362	scsi_device_quiesce(sdev);
2363}
2364
2365void
2366scsi_target_quiesce(struct scsi_target *starget)
2367{
2368	starget_for_each_device(starget, NULL, device_quiesce_fn);
2369}
2370EXPORT_SYMBOL(scsi_target_quiesce);
2371
2372static void
2373device_resume_fn(struct scsi_device *sdev, void *data)
2374{
2375	scsi_device_resume(sdev);
2376}
2377
2378void
2379scsi_target_resume(struct scsi_target *starget)
2380{
2381	starget_for_each_device(starget, NULL, device_resume_fn);
2382}
2383EXPORT_SYMBOL(scsi_target_resume);
2384
2385/**
2386 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2387 * @sdev:	device to block
2388 *
2389 * Block request made by scsi lld's to temporarily stop all
2390 * scsi commands on the specified device.  Called from interrupt
2391 * or normal process context.
2392 *
2393 * Returns zero if successful or error if not
2394 *
2395 * Notes:
2396 *	This routine transitions the device to the SDEV_BLOCK state
2397 *	(which must be a legal transition).  When the device is in this
2398 *	state, all commands are deferred until the scsi lld reenables
2399 *	the device with scsi_device_unblock or device_block_tmo fires.
2400 *	This routine assumes the host_lock is held on entry.
2401 */
2402int
2403scsi_internal_device_block(struct scsi_device *sdev)
2404{
2405	struct request_queue *q = sdev->request_queue;
2406	unsigned long flags;
2407	int err = 0;
2408
2409	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2410	if (err) {
2411		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2412
2413		if (err)
2414			return err;
2415	}
2416
2417	/*
2418	 * The device has transitioned to SDEV_BLOCK.  Stop the
2419	 * block layer from calling the midlayer with this device's
2420	 * request queue.
2421	 */
2422	spin_lock_irqsave(q->queue_lock, flags);
2423	blk_stop_queue(q);
2424	spin_unlock_irqrestore(q->queue_lock, flags);
2425
2426	return 0;
2427}
2428EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2429
2430/**
2431 * scsi_internal_device_unblock - resume a device after a block request
2432 * @sdev:	device to resume
2433 *
2434 * Called by scsi lld's or the midlayer to restart the device queue
2435 * for the previously suspended scsi device.  Called from interrupt or
2436 * normal process context.
2437 *
2438 * Returns zero if successful or error if not.
2439 *
2440 * Notes:
2441 *	This routine transitions the device to the SDEV_RUNNING state
2442 *	(which must be a legal transition) allowing the midlayer to
2443 *	goose the queue for this device.  This routine assumes the
2444 *	host_lock is held upon entry.
2445 */
2446int
2447scsi_internal_device_unblock(struct scsi_device *sdev)
2448{
2449	struct request_queue *q = sdev->request_queue;
2450	unsigned long flags;
2451
2452	/*
2453	 * Try to transition the scsi device to SDEV_RUNNING
2454	 * and goose the device queue if successful.
2455	 */
2456	if (sdev->sdev_state == SDEV_BLOCK)
2457		sdev->sdev_state = SDEV_RUNNING;
2458	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2459		sdev->sdev_state = SDEV_CREATED;
2460	else if (sdev->sdev_state != SDEV_CANCEL &&
2461		 sdev->sdev_state != SDEV_OFFLINE)
2462		return -EINVAL;
2463
2464	spin_lock_irqsave(q->queue_lock, flags);
2465	blk_start_queue(q);
2466	spin_unlock_irqrestore(q->queue_lock, flags);
2467
2468	return 0;
2469}
2470EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2471
2472static void
2473device_block(struct scsi_device *sdev, void *data)
2474{
2475	scsi_internal_device_block(sdev);
2476}
2477
2478static int
2479target_block(struct device *dev, void *data)
2480{
2481	if (scsi_is_target_device(dev))
2482		starget_for_each_device(to_scsi_target(dev), NULL,
2483					device_block);
2484	return 0;
2485}
2486
2487void
2488scsi_target_block(struct device *dev)
2489{
2490	if (scsi_is_target_device(dev))
2491		starget_for_each_device(to_scsi_target(dev), NULL,
2492					device_block);
2493	else
2494		device_for_each_child(dev, NULL, target_block);
2495}
2496EXPORT_SYMBOL_GPL(scsi_target_block);
2497
2498static void
2499device_unblock(struct scsi_device *sdev, void *data)
2500{
2501	scsi_internal_device_unblock(sdev);
2502}
2503
2504static int
2505target_unblock(struct device *dev, void *data)
2506{
2507	if (scsi_is_target_device(dev))
2508		starget_for_each_device(to_scsi_target(dev), NULL,
2509					device_unblock);
2510	return 0;
2511}
2512
2513void
2514scsi_target_unblock(struct device *dev)
2515{
2516	if (scsi_is_target_device(dev))
2517		starget_for_each_device(to_scsi_target(dev), NULL,
2518					device_unblock);
2519	else
2520		device_for_each_child(dev, NULL, target_unblock);
2521}
2522EXPORT_SYMBOL_GPL(scsi_target_unblock);
2523
2524/**
2525 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2526 * @sgl:	scatter-gather list
2527 * @sg_count:	number of segments in sg
2528 * @offset:	offset in bytes into sg, on return offset into the mapped area
2529 * @len:	bytes to map, on return number of bytes mapped
2530 *
2531 * Returns virtual address of the start of the mapped page
2532 */
2533void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2534			  size_t *offset, size_t *len)
2535{
2536	int i;
2537	size_t sg_len = 0, len_complete = 0;
2538	struct scatterlist *sg;
2539	struct page *page;
2540
2541	WARN_ON(!irqs_disabled());
2542
2543	for_each_sg(sgl, sg, sg_count, i) {
2544		len_complete = sg_len; /* Complete sg-entries */
2545		sg_len += sg->length;
2546		if (sg_len > *offset)
2547			break;
2548	}
2549
2550	if (unlikely(i == sg_count)) {
2551		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2552			"elements %d\n",
2553		       __func__, sg_len, *offset, sg_count);
2554		WARN_ON(1);
2555		return NULL;
2556	}
2557
2558	/* Offset starting from the beginning of first page in this sg-entry */
2559	*offset = *offset - len_complete + sg->offset;
2560
2561	/* Assumption: contiguous pages can be accessed as "page + i" */
2562	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2563	*offset &= ~PAGE_MASK;
2564
2565	/* Bytes in this sg-entry from *offset to the end of the page */
2566	sg_len = PAGE_SIZE - *offset;
2567	if (*len > sg_len)
2568		*len = sg_len;
2569
2570	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2571}
2572EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2573
2574/**
2575 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2576 * @virt:	virtual address to be unmapped
2577 */
2578void scsi_kunmap_atomic_sg(void *virt)
2579{
2580	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2581}
2582EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2583