scsi_lib.c revision 5b93629b4509c03ffa87a9316412fedf6f58cb37
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/bitops.h>
12#include <linux/blkdev.h>
13#include <linux/completion.h>
14#include <linux/kernel.h>
15#include <linux/mempool.h>
16#include <linux/slab.h>
17#include <linux/init.h>
18#include <linux/pci.h>
19#include <linux/delay.h>
20#include <linux/hardirq.h>
21#include <linux/scatterlist.h>
22
23#include <scsi/scsi.h>
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_dbg.h>
26#include <scsi/scsi_device.h>
27#include <scsi/scsi_driver.h>
28#include <scsi/scsi_eh.h>
29#include <scsi/scsi_host.h>
30
31#include "scsi_priv.h"
32#include "scsi_logging.h"
33
34
35#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36#define SG_MEMPOOL_SIZE		2
37
38struct scsi_host_sg_pool {
39	size_t		size;
40	char		*name;
41	struct kmem_cache	*slab;
42	mempool_t	*pool;
43};
44
45#define SP(x) { x, "sgpool-" __stringify(x) }
46#if (SCSI_MAX_SG_SEGMENTS < 32)
47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48#endif
49static struct scsi_host_sg_pool scsi_sg_pools[] = {
50	SP(8),
51	SP(16),
52#if (SCSI_MAX_SG_SEGMENTS > 32)
53	SP(32),
54#if (SCSI_MAX_SG_SEGMENTS > 64)
55	SP(64),
56#if (SCSI_MAX_SG_SEGMENTS > 128)
57	SP(128),
58#if (SCSI_MAX_SG_SEGMENTS > 256)
59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60#endif
61#endif
62#endif
63#endif
64	SP(SCSI_MAX_SG_SEGMENTS)
65};
66#undef SP
67
68struct kmem_cache *scsi_sdb_cache;
69
70static void scsi_run_queue(struct request_queue *q);
71
72/*
73 * Function:	scsi_unprep_request()
74 *
75 * Purpose:	Remove all preparation done for a request, including its
76 *		associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments:	req	- request to unprepare
79 *
80 * Lock status:	Assumed that no locks are held upon entry.
81 *
82 * Returns:	Nothing.
83 */
84static void scsi_unprep_request(struct request *req)
85{
86	struct scsi_cmnd *cmd = req->special;
87
88	req->cmd_flags &= ~REQ_DONTPREP;
89	req->special = NULL;
90
91	scsi_put_command(cmd);
92}
93
94/**
95 * __scsi_queue_insert - private queue insertion
96 * @cmd: The SCSI command being requeued
97 * @reason:  The reason for the requeue
98 * @unbusy: Whether the queue should be unbusied
99 *
100 * This is a private queue insertion.  The public interface
101 * scsi_queue_insert() always assumes the queue should be unbusied
102 * because it's always called before the completion.  This function is
103 * for a requeue after completion, which should only occur in this
104 * file.
105 */
106static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107{
108	struct Scsi_Host *host = cmd->device->host;
109	struct scsi_device *device = cmd->device;
110	struct scsi_target *starget = scsi_target(device);
111	struct request_queue *q = device->request_queue;
112	unsigned long flags;
113
114	SCSI_LOG_MLQUEUE(1,
115		 printk("Inserting command %p into mlqueue\n", cmd));
116
117	/*
118	 * Set the appropriate busy bit for the device/host.
119	 *
120	 * If the host/device isn't busy, assume that something actually
121	 * completed, and that we should be able to queue a command now.
122	 *
123	 * Note that the prior mid-layer assumption that any host could
124	 * always queue at least one command is now broken.  The mid-layer
125	 * will implement a user specifiable stall (see
126	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127	 * if a command is requeued with no other commands outstanding
128	 * either for the device or for the host.
129	 */
130	switch (reason) {
131	case SCSI_MLQUEUE_HOST_BUSY:
132		host->host_blocked = host->max_host_blocked;
133		break;
134	case SCSI_MLQUEUE_DEVICE_BUSY:
135		device->device_blocked = device->max_device_blocked;
136		break;
137	case SCSI_MLQUEUE_TARGET_BUSY:
138		starget->target_blocked = starget->max_target_blocked;
139		break;
140	}
141
142	/*
143	 * Decrement the counters, since these commands are no longer
144	 * active on the host/device.
145	 */
146	if (unbusy)
147		scsi_device_unbusy(device);
148
149	/*
150	 * Requeue this command.  It will go before all other commands
151	 * that are already in the queue.
152	 *
153	 * NOTE: there is magic here about the way the queue is plugged if
154	 * we have no outstanding commands.
155	 *
156	 * Although we *don't* plug the queue, we call the request
157	 * function.  The SCSI request function detects the blocked condition
158	 * and plugs the queue appropriately.
159         */
160	spin_lock_irqsave(q->queue_lock, flags);
161	blk_requeue_request(q, cmd->request);
162	spin_unlock_irqrestore(q->queue_lock, flags);
163
164	scsi_run_queue(q);
165
166	return 0;
167}
168
169/*
170 * Function:    scsi_queue_insert()
171 *
172 * Purpose:     Insert a command in the midlevel queue.
173 *
174 * Arguments:   cmd    - command that we are adding to queue.
175 *              reason - why we are inserting command to queue.
176 *
177 * Lock status: Assumed that lock is not held upon entry.
178 *
179 * Returns:     Nothing.
180 *
181 * Notes:       We do this for one of two cases.  Either the host is busy
182 *              and it cannot accept any more commands for the time being,
183 *              or the device returned QUEUE_FULL and can accept no more
184 *              commands.
185 * Notes:       This could be called either from an interrupt context or a
186 *              normal process context.
187 */
188int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189{
190	return __scsi_queue_insert(cmd, reason, 1);
191}
192/**
193 * scsi_execute - insert request and wait for the result
194 * @sdev:	scsi device
195 * @cmd:	scsi command
196 * @data_direction: data direction
197 * @buffer:	data buffer
198 * @bufflen:	len of buffer
199 * @sense:	optional sense buffer
200 * @timeout:	request timeout in seconds
201 * @retries:	number of times to retry request
202 * @flags:	or into request flags;
203 * @resid:	optional residual length
204 *
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
207 */
208int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209		 int data_direction, void *buffer, unsigned bufflen,
210		 unsigned char *sense, int timeout, int retries, int flags,
211		 int *resid)
212{
213	struct request *req;
214	int write = (data_direction == DMA_TO_DEVICE);
215	int ret = DRIVER_ERROR << 24;
216
217	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218
219	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
220					buffer, bufflen, __GFP_WAIT))
221		goto out;
222
223	req->cmd_len = COMMAND_SIZE(cmd[0]);
224	memcpy(req->cmd, cmd, req->cmd_len);
225	req->sense = sense;
226	req->sense_len = 0;
227	req->retries = retries;
228	req->timeout = timeout;
229	req->cmd_type = REQ_TYPE_BLOCK_PC;
230	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231
232	/*
233	 * head injection *required* here otherwise quiesce won't work
234	 */
235	blk_execute_rq(req->q, NULL, req, 1);
236
237	/*
238	 * Some devices (USB mass-storage in particular) may transfer
239	 * garbage data together with a residue indicating that the data
240	 * is invalid.  Prevent the garbage from being misinterpreted
241	 * and prevent security leaks by zeroing out the excess data.
242	 */
243	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245
246	if (resid)
247		*resid = req->resid_len;
248	ret = req->errors;
249 out:
250	blk_put_request(req);
251
252	return ret;
253}
254EXPORT_SYMBOL(scsi_execute);
255
256
257int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258		     int data_direction, void *buffer, unsigned bufflen,
259		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260		     int *resid)
261{
262	char *sense = NULL;
263	int result;
264
265	if (sshdr) {
266		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267		if (!sense)
268			return DRIVER_ERROR << 24;
269	}
270	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271			      sense, timeout, retries, 0, resid);
272	if (sshdr)
273		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274
275	kfree(sense);
276	return result;
277}
278EXPORT_SYMBOL(scsi_execute_req);
279
280/*
281 * Function:    scsi_init_cmd_errh()
282 *
283 * Purpose:     Initialize cmd fields related to error handling.
284 *
285 * Arguments:   cmd	- command that is ready to be queued.
286 *
287 * Notes:       This function has the job of initializing a number of
288 *              fields related to error handling.   Typically this will
289 *              be called once for each command, as required.
290 */
291static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292{
293	cmd->serial_number = 0;
294	scsi_set_resid(cmd, 0);
295	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296	if (cmd->cmd_len == 0)
297		cmd->cmd_len = scsi_command_size(cmd->cmnd);
298}
299
300void scsi_device_unbusy(struct scsi_device *sdev)
301{
302	struct Scsi_Host *shost = sdev->host;
303	struct scsi_target *starget = scsi_target(sdev);
304	unsigned long flags;
305
306	spin_lock_irqsave(shost->host_lock, flags);
307	shost->host_busy--;
308	starget->target_busy--;
309	if (unlikely(scsi_host_in_recovery(shost) &&
310		     (shost->host_failed || shost->host_eh_scheduled)))
311		scsi_eh_wakeup(shost);
312	spin_unlock(shost->host_lock);
313	spin_lock(sdev->request_queue->queue_lock);
314	sdev->device_busy--;
315	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316}
317
318/*
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
322 *
323 * Called with *no* scsi locks held.
324 */
325static void scsi_single_lun_run(struct scsi_device *current_sdev)
326{
327	struct Scsi_Host *shost = current_sdev->host;
328	struct scsi_device *sdev, *tmp;
329	struct scsi_target *starget = scsi_target(current_sdev);
330	unsigned long flags;
331
332	spin_lock_irqsave(shost->host_lock, flags);
333	starget->starget_sdev_user = NULL;
334	spin_unlock_irqrestore(shost->host_lock, flags);
335
336	/*
337	 * Call blk_run_queue for all LUNs on the target, starting with
338	 * current_sdev. We race with others (to set starget_sdev_user),
339	 * but in most cases, we will be first. Ideally, each LU on the
340	 * target would get some limited time or requests on the target.
341	 */
342	blk_run_queue(current_sdev->request_queue);
343
344	spin_lock_irqsave(shost->host_lock, flags);
345	if (starget->starget_sdev_user)
346		goto out;
347	list_for_each_entry_safe(sdev, tmp, &starget->devices,
348			same_target_siblings) {
349		if (sdev == current_sdev)
350			continue;
351		if (scsi_device_get(sdev))
352			continue;
353
354		spin_unlock_irqrestore(shost->host_lock, flags);
355		blk_run_queue(sdev->request_queue);
356		spin_lock_irqsave(shost->host_lock, flags);
357
358		scsi_device_put(sdev);
359	}
360 out:
361	spin_unlock_irqrestore(shost->host_lock, flags);
362}
363
364static inline int scsi_device_is_busy(struct scsi_device *sdev)
365{
366	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367		return 1;
368
369	return 0;
370}
371
372static inline int scsi_target_is_busy(struct scsi_target *starget)
373{
374	return ((starget->can_queue > 0 &&
375		 starget->target_busy >= starget->can_queue) ||
376		 starget->target_blocked);
377}
378
379static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380{
381	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382	    shost->host_blocked || shost->host_self_blocked)
383		return 1;
384
385	return 0;
386}
387
388/*
389 * Function:	scsi_run_queue()
390 *
391 * Purpose:	Select a proper request queue to serve next
392 *
393 * Arguments:	q	- last request's queue
394 *
395 * Returns:     Nothing
396 *
397 * Notes:	The previous command was completely finished, start
398 *		a new one if possible.
399 */
400static void scsi_run_queue(struct request_queue *q)
401{
402	struct scsi_device *sdev = q->queuedata;
403	struct Scsi_Host *shost = sdev->host;
404	LIST_HEAD(starved_list);
405	unsigned long flags;
406
407	if (scsi_target(sdev)->single_lun)
408		scsi_single_lun_run(sdev);
409
410	spin_lock_irqsave(shost->host_lock, flags);
411	list_splice_init(&shost->starved_list, &starved_list);
412
413	while (!list_empty(&starved_list)) {
414		int flagset;
415
416		/*
417		 * As long as shost is accepting commands and we have
418		 * starved queues, call blk_run_queue. scsi_request_fn
419		 * drops the queue_lock and can add us back to the
420		 * starved_list.
421		 *
422		 * host_lock protects the starved_list and starved_entry.
423		 * scsi_request_fn must get the host_lock before checking
424		 * or modifying starved_list or starved_entry.
425		 */
426		if (scsi_host_is_busy(shost))
427			break;
428
429		sdev = list_entry(starved_list.next,
430				  struct scsi_device, starved_entry);
431		list_del_init(&sdev->starved_entry);
432		if (scsi_target_is_busy(scsi_target(sdev))) {
433			list_move_tail(&sdev->starved_entry,
434				       &shost->starved_list);
435			continue;
436		}
437
438		spin_unlock(shost->host_lock);
439
440		spin_lock(sdev->request_queue->queue_lock);
441		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442				!test_bit(QUEUE_FLAG_REENTER,
443					&sdev->request_queue->queue_flags);
444		if (flagset)
445			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446		__blk_run_queue(sdev->request_queue);
447		if (flagset)
448			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449		spin_unlock(sdev->request_queue->queue_lock);
450
451		spin_lock(shost->host_lock);
452	}
453	/* put any unprocessed entries back */
454	list_splice(&starved_list, &shost->starved_list);
455	spin_unlock_irqrestore(shost->host_lock, flags);
456
457	blk_run_queue(q);
458}
459
460/*
461 * Function:	scsi_requeue_command()
462 *
463 * Purpose:	Handle post-processing of completed commands.
464 *
465 * Arguments:	q	- queue to operate on
466 *		cmd	- command that may need to be requeued.
467 *
468 * Returns:	Nothing
469 *
470 * Notes:	After command completion, there may be blocks left
471 *		over which weren't finished by the previous command
472 *		this can be for a number of reasons - the main one is
473 *		I/O errors in the middle of the request, in which case
474 *		we need to request the blocks that come after the bad
475 *		sector.
476 * Notes:	Upon return, cmd is a stale pointer.
477 */
478static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479{
480	struct request *req = cmd->request;
481	unsigned long flags;
482
483	spin_lock_irqsave(q->queue_lock, flags);
484	scsi_unprep_request(req);
485	blk_requeue_request(q, req);
486	spin_unlock_irqrestore(q->queue_lock, flags);
487
488	scsi_run_queue(q);
489}
490
491void scsi_next_command(struct scsi_cmnd *cmd)
492{
493	struct scsi_device *sdev = cmd->device;
494	struct request_queue *q = sdev->request_queue;
495
496	/* need to hold a reference on the device before we let go of the cmd */
497	get_device(&sdev->sdev_gendev);
498
499	scsi_put_command(cmd);
500	scsi_run_queue(q);
501
502	/* ok to remove device now */
503	put_device(&sdev->sdev_gendev);
504}
505
506void scsi_run_host_queues(struct Scsi_Host *shost)
507{
508	struct scsi_device *sdev;
509
510	shost_for_each_device(sdev, shost)
511		scsi_run_queue(sdev->request_queue);
512}
513
514static void __scsi_release_buffers(struct scsi_cmnd *, int);
515
516/*
517 * Function:    scsi_end_request()
518 *
519 * Purpose:     Post-processing of completed commands (usually invoked at end
520 *		of upper level post-processing and scsi_io_completion).
521 *
522 * Arguments:   cmd	 - command that is complete.
523 *              error    - 0 if I/O indicates success, < 0 for I/O error.
524 *              bytes    - number of bytes of completed I/O
525 *		requeue  - indicates whether we should requeue leftovers.
526 *
527 * Lock status: Assumed that lock is not held upon entry.
528 *
529 * Returns:     cmd if requeue required, NULL otherwise.
530 *
531 * Notes:       This is called for block device requests in order to
532 *              mark some number of sectors as complete.
533 *
534 *		We are guaranteeing that the request queue will be goosed
535 *		at some point during this call.
536 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
537 */
538static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539					  int bytes, int requeue)
540{
541	struct request_queue *q = cmd->device->request_queue;
542	struct request *req = cmd->request;
543
544	/*
545	 * If there are blocks left over at the end, set up the command
546	 * to queue the remainder of them.
547	 */
548	if (blk_end_request(req, error, bytes)) {
549		int leftover = blk_rq_sectors(req) << 9;
550
551		if (blk_pc_request(req))
552			leftover = req->resid_len;
553
554		/* kill remainder if no retrys */
555		if (error && scsi_noretry_cmd(cmd))
556			blk_end_request(req, error, leftover);
557		else {
558			if (requeue) {
559				/*
560				 * Bleah.  Leftovers again.  Stick the
561				 * leftovers in the front of the
562				 * queue, and goose the queue again.
563				 */
564				scsi_release_buffers(cmd);
565				scsi_requeue_command(q, cmd);
566				cmd = NULL;
567			}
568			return cmd;
569		}
570	}
571
572	/*
573	 * This will goose the queue request function at the end, so we don't
574	 * need to worry about launching another command.
575	 */
576	__scsi_release_buffers(cmd, 0);
577	scsi_next_command(cmd);
578	return NULL;
579}
580
581static inline unsigned int scsi_sgtable_index(unsigned short nents)
582{
583	unsigned int index;
584
585	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
586
587	if (nents <= 8)
588		index = 0;
589	else
590		index = get_count_order(nents) - 3;
591
592	return index;
593}
594
595static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
596{
597	struct scsi_host_sg_pool *sgp;
598
599	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
600	mempool_free(sgl, sgp->pool);
601}
602
603static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
604{
605	struct scsi_host_sg_pool *sgp;
606
607	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
608	return mempool_alloc(sgp->pool, gfp_mask);
609}
610
611static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
612			      gfp_t gfp_mask)
613{
614	int ret;
615
616	BUG_ON(!nents);
617
618	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619			       gfp_mask, scsi_sg_alloc);
620	if (unlikely(ret))
621		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
622				scsi_sg_free);
623
624	return ret;
625}
626
627static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
628{
629	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
630}
631
632static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
633{
634
635	if (cmd->sdb.table.nents)
636		scsi_free_sgtable(&cmd->sdb);
637
638	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
639
640	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
641		struct scsi_data_buffer *bidi_sdb =
642			cmd->request->next_rq->special;
643		scsi_free_sgtable(bidi_sdb);
644		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
645		cmd->request->next_rq->special = NULL;
646	}
647
648	if (scsi_prot_sg_count(cmd))
649		scsi_free_sgtable(cmd->prot_sdb);
650}
651
652/*
653 * Function:    scsi_release_buffers()
654 *
655 * Purpose:     Completion processing for block device I/O requests.
656 *
657 * Arguments:   cmd	- command that we are bailing.
658 *
659 * Lock status: Assumed that no lock is held upon entry.
660 *
661 * Returns:     Nothing
662 *
663 * Notes:       In the event that an upper level driver rejects a
664 *		command, we must release resources allocated during
665 *		the __init_io() function.  Primarily this would involve
666 *		the scatter-gather table, and potentially any bounce
667 *		buffers.
668 */
669void scsi_release_buffers(struct scsi_cmnd *cmd)
670{
671	__scsi_release_buffers(cmd, 1);
672}
673EXPORT_SYMBOL(scsi_release_buffers);
674
675/*
676 * Bidi commands Must be complete as a whole, both sides at once.  If
677 * part of the bytes were written and lld returned scsi_in()->resid
678 * and/or scsi_out()->resid this information will be left in
679 * req->resid_len and req->next_rq->resid_len. The upper-layer driver
680 * can decide what to do with this information.
681 */
682static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
683{
684	struct request *req = cmd->request;
685	unsigned int dlen = req->data_len;
686	unsigned int next_dlen = req->next_rq->data_len;
687
688	req->resid_len = scsi_out(cmd)->resid;
689	req->next_rq->resid_len = scsi_in(cmd)->resid;
690
691	/* The req and req->next_rq have not been completed */
692	BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
693
694	scsi_release_buffers(cmd);
695
696	/*
697	 * This will goose the queue request function at the end, so we don't
698	 * need to worry about launching another command.
699	 */
700	scsi_next_command(cmd);
701}
702
703/*
704 * Function:    scsi_io_completion()
705 *
706 * Purpose:     Completion processing for block device I/O requests.
707 *
708 * Arguments:   cmd   - command that is finished.
709 *
710 * Lock status: Assumed that no lock is held upon entry.
711 *
712 * Returns:     Nothing
713 *
714 * Notes:       This function is matched in terms of capabilities to
715 *              the function that created the scatter-gather list.
716 *              In other words, if there are no bounce buffers
717 *              (the normal case for most drivers), we don't need
718 *              the logic to deal with cleaning up afterwards.
719 *
720 *		We must call scsi_end_request().  This will finish off
721 *		the specified number of sectors.  If we are done, the
722 *		command block will be released and the queue function
723 *		will be goosed.  If we are not done then we have to
724 *		figure out what to do next:
725 *
726 *		a) We can call scsi_requeue_command().  The request
727 *		   will be unprepared and put back on the queue.  Then
728 *		   a new command will be created for it.  This should
729 *		   be used if we made forward progress, or if we want
730 *		   to switch from READ(10) to READ(6) for example.
731 *
732 *		b) We can call scsi_queue_insert().  The request will
733 *		   be put back on the queue and retried using the same
734 *		   command as before, possibly after a delay.
735 *
736 *		c) We can call blk_end_request() with -EIO to fail
737 *		   the remainder of the request.
738 */
739void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
740{
741	int result = cmd->result;
742	int this_count;
743	struct request_queue *q = cmd->device->request_queue;
744	struct request *req = cmd->request;
745	int error = 0;
746	struct scsi_sense_hdr sshdr;
747	int sense_valid = 0;
748	int sense_deferred = 0;
749	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
750	      ACTION_DELAYED_RETRY} action;
751	char *description = NULL;
752
753	if (result) {
754		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
755		if (sense_valid)
756			sense_deferred = scsi_sense_is_deferred(&sshdr);
757	}
758
759	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
760		req->errors = result;
761		if (result) {
762			if (sense_valid && req->sense) {
763				/*
764				 * SG_IO wants current and deferred errors
765				 */
766				int len = 8 + cmd->sense_buffer[7];
767
768				if (len > SCSI_SENSE_BUFFERSIZE)
769					len = SCSI_SENSE_BUFFERSIZE;
770				memcpy(req->sense, cmd->sense_buffer,  len);
771				req->sense_len = len;
772			}
773			if (!sense_deferred)
774				error = -EIO;
775		}
776		if (scsi_bidi_cmnd(cmd)) {
777			/* will also release_buffers */
778			scsi_end_bidi_request(cmd);
779			return;
780		}
781		req->resid_len = scsi_get_resid(cmd);
782	}
783
784	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
785
786	/*
787	 * Next deal with any sectors which we were able to correctly
788	 * handle.
789	 */
790	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
791				      "%d bytes done.\n",
792				      req->nr_sectors, good_bytes));
793
794	/*
795	 * Recovered errors need reporting, but they're always treated
796	 * as success, so fiddle the result code here.  For BLOCK_PC
797	 * we already took a copy of the original into rq->errors which
798	 * is what gets returned to the user
799	 */
800	if (sense_valid && sshdr.sense_key == RECOVERED_ERROR) {
801		if (!(req->cmd_flags & REQ_QUIET))
802			scsi_print_sense("", cmd);
803		result = 0;
804		/* BLOCK_PC may have set error */
805		error = 0;
806	}
807
808	/*
809	 * A number of bytes were successfully read.  If there
810	 * are leftovers and there is some kind of error
811	 * (result != 0), retry the rest.
812	 */
813	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
814		return;
815	this_count = blk_rq_bytes(req);
816
817	error = -EIO;
818
819	if (host_byte(result) == DID_RESET) {
820		/* Third party bus reset or reset for error recovery
821		 * reasons.  Just retry the command and see what
822		 * happens.
823		 */
824		action = ACTION_RETRY;
825	} else if (sense_valid && !sense_deferred) {
826		switch (sshdr.sense_key) {
827		case UNIT_ATTENTION:
828			if (cmd->device->removable) {
829				/* Detected disc change.  Set a bit
830				 * and quietly refuse further access.
831				 */
832				cmd->device->changed = 1;
833				description = "Media Changed";
834				action = ACTION_FAIL;
835			} else {
836				/* Must have been a power glitch, or a
837				 * bus reset.  Could not have been a
838				 * media change, so we just retry the
839				 * command and see what happens.
840				 */
841				action = ACTION_RETRY;
842			}
843			break;
844		case ILLEGAL_REQUEST:
845			/* If we had an ILLEGAL REQUEST returned, then
846			 * we may have performed an unsupported
847			 * command.  The only thing this should be
848			 * would be a ten byte read where only a six
849			 * byte read was supported.  Also, on a system
850			 * where READ CAPACITY failed, we may have
851			 * read past the end of the disk.
852			 */
853			if ((cmd->device->use_10_for_rw &&
854			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
855			    (cmd->cmnd[0] == READ_10 ||
856			     cmd->cmnd[0] == WRITE_10)) {
857				/* This will issue a new 6-byte command. */
858				cmd->device->use_10_for_rw = 0;
859				action = ACTION_REPREP;
860			} else if (sshdr.asc == 0x10) /* DIX */ {
861				description = "Host Data Integrity Failure";
862				action = ACTION_FAIL;
863				error = -EILSEQ;
864			} else
865				action = ACTION_FAIL;
866			break;
867		case ABORTED_COMMAND:
868			action = ACTION_FAIL;
869			if (sshdr.asc == 0x10) { /* DIF */
870				description = "Target Data Integrity Failure";
871				error = -EILSEQ;
872			}
873			break;
874		case NOT_READY:
875			/* If the device is in the process of becoming
876			 * ready, or has a temporary blockage, retry.
877			 */
878			if (sshdr.asc == 0x04) {
879				switch (sshdr.ascq) {
880				case 0x01: /* becoming ready */
881				case 0x04: /* format in progress */
882				case 0x05: /* rebuild in progress */
883				case 0x06: /* recalculation in progress */
884				case 0x07: /* operation in progress */
885				case 0x08: /* Long write in progress */
886				case 0x09: /* self test in progress */
887					action = ACTION_DELAYED_RETRY;
888					break;
889				default:
890					description = "Device not ready";
891					action = ACTION_FAIL;
892					break;
893				}
894			} else {
895				description = "Device not ready";
896				action = ACTION_FAIL;
897			}
898			break;
899		case VOLUME_OVERFLOW:
900			/* See SSC3rXX or current. */
901			action = ACTION_FAIL;
902			break;
903		default:
904			description = "Unhandled sense code";
905			action = ACTION_FAIL;
906			break;
907		}
908	} else {
909		description = "Unhandled error code";
910		action = ACTION_FAIL;
911	}
912
913	switch (action) {
914	case ACTION_FAIL:
915		/* Give up and fail the remainder of the request */
916		scsi_release_buffers(cmd);
917		if (!(req->cmd_flags & REQ_QUIET)) {
918			if (description)
919				scmd_printk(KERN_INFO, cmd, "%s\n",
920					    description);
921			scsi_print_result(cmd);
922			if (driver_byte(result) & DRIVER_SENSE)
923				scsi_print_sense("", cmd);
924		}
925		blk_end_request_all(req, -EIO);
926		scsi_next_command(cmd);
927		break;
928	case ACTION_REPREP:
929		/* Unprep the request and put it back at the head of the queue.
930		 * A new command will be prepared and issued.
931		 */
932		scsi_release_buffers(cmd);
933		scsi_requeue_command(q, cmd);
934		break;
935	case ACTION_RETRY:
936		/* Retry the same command immediately */
937		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
938		break;
939	case ACTION_DELAYED_RETRY:
940		/* Retry the same command after a delay */
941		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
942		break;
943	}
944}
945
946static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
947			     gfp_t gfp_mask)
948{
949	int count;
950
951	/*
952	 * If sg table allocation fails, requeue request later.
953	 */
954	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
955					gfp_mask))) {
956		return BLKPREP_DEFER;
957	}
958
959	req->buffer = NULL;
960
961	/*
962	 * Next, walk the list, and fill in the addresses and sizes of
963	 * each segment.
964	 */
965	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
966	BUG_ON(count > sdb->table.nents);
967	sdb->table.nents = count;
968	if (blk_pc_request(req))
969		sdb->length = req->data_len;
970	else
971		sdb->length = req->nr_sectors << 9;
972	return BLKPREP_OK;
973}
974
975/*
976 * Function:    scsi_init_io()
977 *
978 * Purpose:     SCSI I/O initialize function.
979 *
980 * Arguments:   cmd   - Command descriptor we wish to initialize
981 *
982 * Returns:     0 on success
983 *		BLKPREP_DEFER if the failure is retryable
984 *		BLKPREP_KILL if the failure is fatal
985 */
986int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
987{
988	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
989	if (error)
990		goto err_exit;
991
992	if (blk_bidi_rq(cmd->request)) {
993		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
994			scsi_sdb_cache, GFP_ATOMIC);
995		if (!bidi_sdb) {
996			error = BLKPREP_DEFER;
997			goto err_exit;
998		}
999
1000		cmd->request->next_rq->special = bidi_sdb;
1001		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1002								    GFP_ATOMIC);
1003		if (error)
1004			goto err_exit;
1005	}
1006
1007	if (blk_integrity_rq(cmd->request)) {
1008		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1009		int ivecs, count;
1010
1011		BUG_ON(prot_sdb == NULL);
1012		ivecs = blk_rq_count_integrity_sg(cmd->request);
1013
1014		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1015			error = BLKPREP_DEFER;
1016			goto err_exit;
1017		}
1018
1019		count = blk_rq_map_integrity_sg(cmd->request,
1020						prot_sdb->table.sgl);
1021		BUG_ON(unlikely(count > ivecs));
1022
1023		cmd->prot_sdb = prot_sdb;
1024		cmd->prot_sdb->table.nents = count;
1025	}
1026
1027	return BLKPREP_OK ;
1028
1029err_exit:
1030	scsi_release_buffers(cmd);
1031	if (error == BLKPREP_KILL)
1032		scsi_put_command(cmd);
1033	else /* BLKPREP_DEFER */
1034		scsi_unprep_request(cmd->request);
1035
1036	return error;
1037}
1038EXPORT_SYMBOL(scsi_init_io);
1039
1040static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1041		struct request *req)
1042{
1043	struct scsi_cmnd *cmd;
1044
1045	if (!req->special) {
1046		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1047		if (unlikely(!cmd))
1048			return NULL;
1049		req->special = cmd;
1050	} else {
1051		cmd = req->special;
1052	}
1053
1054	/* pull a tag out of the request if we have one */
1055	cmd->tag = req->tag;
1056	cmd->request = req;
1057
1058	cmd->cmnd = req->cmd;
1059
1060	return cmd;
1061}
1062
1063int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1064{
1065	struct scsi_cmnd *cmd;
1066	int ret = scsi_prep_state_check(sdev, req);
1067
1068	if (ret != BLKPREP_OK)
1069		return ret;
1070
1071	cmd = scsi_get_cmd_from_req(sdev, req);
1072	if (unlikely(!cmd))
1073		return BLKPREP_DEFER;
1074
1075	/*
1076	 * BLOCK_PC requests may transfer data, in which case they must
1077	 * a bio attached to them.  Or they might contain a SCSI command
1078	 * that does not transfer data, in which case they may optionally
1079	 * submit a request without an attached bio.
1080	 */
1081	if (req->bio) {
1082		int ret;
1083
1084		BUG_ON(!req->nr_phys_segments);
1085
1086		ret = scsi_init_io(cmd, GFP_ATOMIC);
1087		if (unlikely(ret))
1088			return ret;
1089	} else {
1090		BUG_ON(req->data_len);
1091
1092		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1093		req->buffer = NULL;
1094	}
1095
1096	cmd->cmd_len = req->cmd_len;
1097	if (!req->data_len)
1098		cmd->sc_data_direction = DMA_NONE;
1099	else if (rq_data_dir(req) == WRITE)
1100		cmd->sc_data_direction = DMA_TO_DEVICE;
1101	else
1102		cmd->sc_data_direction = DMA_FROM_DEVICE;
1103
1104	cmd->transfersize = req->data_len;
1105	cmd->allowed = req->retries;
1106	return BLKPREP_OK;
1107}
1108EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1109
1110/*
1111 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1112 * from filesystems that still need to be translated to SCSI CDBs from
1113 * the ULD.
1114 */
1115int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1116{
1117	struct scsi_cmnd *cmd;
1118	int ret = scsi_prep_state_check(sdev, req);
1119
1120	if (ret != BLKPREP_OK)
1121		return ret;
1122
1123	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1124			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1125		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1126		if (ret != BLKPREP_OK)
1127			return ret;
1128	}
1129
1130	/*
1131	 * Filesystem requests must transfer data.
1132	 */
1133	BUG_ON(!req->nr_phys_segments);
1134
1135	cmd = scsi_get_cmd_from_req(sdev, req);
1136	if (unlikely(!cmd))
1137		return BLKPREP_DEFER;
1138
1139	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1140	return scsi_init_io(cmd, GFP_ATOMIC);
1141}
1142EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1143
1144int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1145{
1146	int ret = BLKPREP_OK;
1147
1148	/*
1149	 * If the device is not in running state we will reject some
1150	 * or all commands.
1151	 */
1152	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1153		switch (sdev->sdev_state) {
1154		case SDEV_OFFLINE:
1155			/*
1156			 * If the device is offline we refuse to process any
1157			 * commands.  The device must be brought online
1158			 * before trying any recovery commands.
1159			 */
1160			sdev_printk(KERN_ERR, sdev,
1161				    "rejecting I/O to offline device\n");
1162			ret = BLKPREP_KILL;
1163			break;
1164		case SDEV_DEL:
1165			/*
1166			 * If the device is fully deleted, we refuse to
1167			 * process any commands as well.
1168			 */
1169			sdev_printk(KERN_ERR, sdev,
1170				    "rejecting I/O to dead device\n");
1171			ret = BLKPREP_KILL;
1172			break;
1173		case SDEV_QUIESCE:
1174		case SDEV_BLOCK:
1175		case SDEV_CREATED_BLOCK:
1176			/*
1177			 * If the devices is blocked we defer normal commands.
1178			 */
1179			if (!(req->cmd_flags & REQ_PREEMPT))
1180				ret = BLKPREP_DEFER;
1181			break;
1182		default:
1183			/*
1184			 * For any other not fully online state we only allow
1185			 * special commands.  In particular any user initiated
1186			 * command is not allowed.
1187			 */
1188			if (!(req->cmd_flags & REQ_PREEMPT))
1189				ret = BLKPREP_KILL;
1190			break;
1191		}
1192	}
1193	return ret;
1194}
1195EXPORT_SYMBOL(scsi_prep_state_check);
1196
1197int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1198{
1199	struct scsi_device *sdev = q->queuedata;
1200
1201	switch (ret) {
1202	case BLKPREP_KILL:
1203		req->errors = DID_NO_CONNECT << 16;
1204		/* release the command and kill it */
1205		if (req->special) {
1206			struct scsi_cmnd *cmd = req->special;
1207			scsi_release_buffers(cmd);
1208			scsi_put_command(cmd);
1209			req->special = NULL;
1210		}
1211		break;
1212	case BLKPREP_DEFER:
1213		/*
1214		 * If we defer, the elv_next_request() returns NULL, but the
1215		 * queue must be restarted, so we plug here if no returning
1216		 * command will automatically do that.
1217		 */
1218		if (sdev->device_busy == 0)
1219			blk_plug_device(q);
1220		break;
1221	default:
1222		req->cmd_flags |= REQ_DONTPREP;
1223	}
1224
1225	return ret;
1226}
1227EXPORT_SYMBOL(scsi_prep_return);
1228
1229int scsi_prep_fn(struct request_queue *q, struct request *req)
1230{
1231	struct scsi_device *sdev = q->queuedata;
1232	int ret = BLKPREP_KILL;
1233
1234	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1235		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1236	return scsi_prep_return(q, req, ret);
1237}
1238
1239/*
1240 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1241 * return 0.
1242 *
1243 * Called with the queue_lock held.
1244 */
1245static inline int scsi_dev_queue_ready(struct request_queue *q,
1246				  struct scsi_device *sdev)
1247{
1248	if (sdev->device_busy == 0 && sdev->device_blocked) {
1249		/*
1250		 * unblock after device_blocked iterates to zero
1251		 */
1252		if (--sdev->device_blocked == 0) {
1253			SCSI_LOG_MLQUEUE(3,
1254				   sdev_printk(KERN_INFO, sdev,
1255				   "unblocking device at zero depth\n"));
1256		} else {
1257			blk_plug_device(q);
1258			return 0;
1259		}
1260	}
1261	if (scsi_device_is_busy(sdev))
1262		return 0;
1263
1264	return 1;
1265}
1266
1267
1268/*
1269 * scsi_target_queue_ready: checks if there we can send commands to target
1270 * @sdev: scsi device on starget to check.
1271 *
1272 * Called with the host lock held.
1273 */
1274static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1275					   struct scsi_device *sdev)
1276{
1277	struct scsi_target *starget = scsi_target(sdev);
1278
1279	if (starget->single_lun) {
1280		if (starget->starget_sdev_user &&
1281		    starget->starget_sdev_user != sdev)
1282			return 0;
1283		starget->starget_sdev_user = sdev;
1284	}
1285
1286	if (starget->target_busy == 0 && starget->target_blocked) {
1287		/*
1288		 * unblock after target_blocked iterates to zero
1289		 */
1290		if (--starget->target_blocked == 0) {
1291			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1292					 "unblocking target at zero depth\n"));
1293		} else {
1294			blk_plug_device(sdev->request_queue);
1295			return 0;
1296		}
1297	}
1298
1299	if (scsi_target_is_busy(starget)) {
1300		if (list_empty(&sdev->starved_entry)) {
1301			list_add_tail(&sdev->starved_entry,
1302				      &shost->starved_list);
1303			return 0;
1304		}
1305	}
1306
1307	/* We're OK to process the command, so we can't be starved */
1308	if (!list_empty(&sdev->starved_entry))
1309		list_del_init(&sdev->starved_entry);
1310	return 1;
1311}
1312
1313/*
1314 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1315 * return 0. We must end up running the queue again whenever 0 is
1316 * returned, else IO can hang.
1317 *
1318 * Called with host_lock held.
1319 */
1320static inline int scsi_host_queue_ready(struct request_queue *q,
1321				   struct Scsi_Host *shost,
1322				   struct scsi_device *sdev)
1323{
1324	if (scsi_host_in_recovery(shost))
1325		return 0;
1326	if (shost->host_busy == 0 && shost->host_blocked) {
1327		/*
1328		 * unblock after host_blocked iterates to zero
1329		 */
1330		if (--shost->host_blocked == 0) {
1331			SCSI_LOG_MLQUEUE(3,
1332				printk("scsi%d unblocking host at zero depth\n",
1333					shost->host_no));
1334		} else {
1335			return 0;
1336		}
1337	}
1338	if (scsi_host_is_busy(shost)) {
1339		if (list_empty(&sdev->starved_entry))
1340			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1341		return 0;
1342	}
1343
1344	/* We're OK to process the command, so we can't be starved */
1345	if (!list_empty(&sdev->starved_entry))
1346		list_del_init(&sdev->starved_entry);
1347
1348	return 1;
1349}
1350
1351/*
1352 * Busy state exporting function for request stacking drivers.
1353 *
1354 * For efficiency, no lock is taken to check the busy state of
1355 * shost/starget/sdev, since the returned value is not guaranteed and
1356 * may be changed after request stacking drivers call the function,
1357 * regardless of taking lock or not.
1358 *
1359 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1360 * (e.g. !sdev), scsi needs to return 'not busy'.
1361 * Otherwise, request stacking drivers may hold requests forever.
1362 */
1363static int scsi_lld_busy(struct request_queue *q)
1364{
1365	struct scsi_device *sdev = q->queuedata;
1366	struct Scsi_Host *shost;
1367	struct scsi_target *starget;
1368
1369	if (!sdev)
1370		return 0;
1371
1372	shost = sdev->host;
1373	starget = scsi_target(sdev);
1374
1375	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1376	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1377		return 1;
1378
1379	return 0;
1380}
1381
1382/*
1383 * Kill a request for a dead device
1384 */
1385static void scsi_kill_request(struct request *req, struct request_queue *q)
1386{
1387	struct scsi_cmnd *cmd = req->special;
1388	struct scsi_device *sdev = cmd->device;
1389	struct scsi_target *starget = scsi_target(sdev);
1390	struct Scsi_Host *shost = sdev->host;
1391
1392	blkdev_dequeue_request(req);
1393
1394	if (unlikely(cmd == NULL)) {
1395		printk(KERN_CRIT "impossible request in %s.\n",
1396				 __func__);
1397		BUG();
1398	}
1399
1400	scsi_init_cmd_errh(cmd);
1401	cmd->result = DID_NO_CONNECT << 16;
1402	atomic_inc(&cmd->device->iorequest_cnt);
1403
1404	/*
1405	 * SCSI request completion path will do scsi_device_unbusy(),
1406	 * bump busy counts.  To bump the counters, we need to dance
1407	 * with the locks as normal issue path does.
1408	 */
1409	sdev->device_busy++;
1410	spin_unlock(sdev->request_queue->queue_lock);
1411	spin_lock(shost->host_lock);
1412	shost->host_busy++;
1413	starget->target_busy++;
1414	spin_unlock(shost->host_lock);
1415	spin_lock(sdev->request_queue->queue_lock);
1416
1417	blk_complete_request(req);
1418}
1419
1420static void scsi_softirq_done(struct request *rq)
1421{
1422	struct scsi_cmnd *cmd = rq->special;
1423	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1424	int disposition;
1425
1426	INIT_LIST_HEAD(&cmd->eh_entry);
1427
1428	/*
1429	 * Set the serial numbers back to zero
1430	 */
1431	cmd->serial_number = 0;
1432
1433	atomic_inc(&cmd->device->iodone_cnt);
1434	if (cmd->result)
1435		atomic_inc(&cmd->device->ioerr_cnt);
1436
1437	disposition = scsi_decide_disposition(cmd);
1438	if (disposition != SUCCESS &&
1439	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1440		sdev_printk(KERN_ERR, cmd->device,
1441			    "timing out command, waited %lus\n",
1442			    wait_for/HZ);
1443		disposition = SUCCESS;
1444	}
1445
1446	scsi_log_completion(cmd, disposition);
1447
1448	switch (disposition) {
1449		case SUCCESS:
1450			scsi_finish_command(cmd);
1451			break;
1452		case NEEDS_RETRY:
1453			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1454			break;
1455		case ADD_TO_MLQUEUE:
1456			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1457			break;
1458		default:
1459			if (!scsi_eh_scmd_add(cmd, 0))
1460				scsi_finish_command(cmd);
1461	}
1462}
1463
1464/*
1465 * Function:    scsi_request_fn()
1466 *
1467 * Purpose:     Main strategy routine for SCSI.
1468 *
1469 * Arguments:   q       - Pointer to actual queue.
1470 *
1471 * Returns:     Nothing
1472 *
1473 * Lock status: IO request lock assumed to be held when called.
1474 */
1475static void scsi_request_fn(struct request_queue *q)
1476{
1477	struct scsi_device *sdev = q->queuedata;
1478	struct Scsi_Host *shost;
1479	struct scsi_cmnd *cmd;
1480	struct request *req;
1481
1482	if (!sdev) {
1483		printk("scsi: killing requests for dead queue\n");
1484		while ((req = elv_next_request(q)) != NULL)
1485			scsi_kill_request(req, q);
1486		return;
1487	}
1488
1489	if(!get_device(&sdev->sdev_gendev))
1490		/* We must be tearing the block queue down already */
1491		return;
1492
1493	/*
1494	 * To start with, we keep looping until the queue is empty, or until
1495	 * the host is no longer able to accept any more requests.
1496	 */
1497	shost = sdev->host;
1498	while (!blk_queue_plugged(q)) {
1499		int rtn;
1500		/*
1501		 * get next queueable request.  We do this early to make sure
1502		 * that the request is fully prepared even if we cannot
1503		 * accept it.
1504		 */
1505		req = elv_next_request(q);
1506		if (!req || !scsi_dev_queue_ready(q, sdev))
1507			break;
1508
1509		if (unlikely(!scsi_device_online(sdev))) {
1510			sdev_printk(KERN_ERR, sdev,
1511				    "rejecting I/O to offline device\n");
1512			scsi_kill_request(req, q);
1513			continue;
1514		}
1515
1516
1517		/*
1518		 * Remove the request from the request list.
1519		 */
1520		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1521			blkdev_dequeue_request(req);
1522		sdev->device_busy++;
1523
1524		spin_unlock(q->queue_lock);
1525		cmd = req->special;
1526		if (unlikely(cmd == NULL)) {
1527			printk(KERN_CRIT "impossible request in %s.\n"
1528					 "please mail a stack trace to "
1529					 "linux-scsi@vger.kernel.org\n",
1530					 __func__);
1531			blk_dump_rq_flags(req, "foo");
1532			BUG();
1533		}
1534		spin_lock(shost->host_lock);
1535
1536		/*
1537		 * We hit this when the driver is using a host wide
1538		 * tag map. For device level tag maps the queue_depth check
1539		 * in the device ready fn would prevent us from trying
1540		 * to allocate a tag. Since the map is a shared host resource
1541		 * we add the dev to the starved list so it eventually gets
1542		 * a run when a tag is freed.
1543		 */
1544		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1545			if (list_empty(&sdev->starved_entry))
1546				list_add_tail(&sdev->starved_entry,
1547					      &shost->starved_list);
1548			goto not_ready;
1549		}
1550
1551		if (!scsi_target_queue_ready(shost, sdev))
1552			goto not_ready;
1553
1554		if (!scsi_host_queue_ready(q, shost, sdev))
1555			goto not_ready;
1556
1557		scsi_target(sdev)->target_busy++;
1558		shost->host_busy++;
1559
1560		/*
1561		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1562		 *		take the lock again.
1563		 */
1564		spin_unlock_irq(shost->host_lock);
1565
1566		/*
1567		 * Finally, initialize any error handling parameters, and set up
1568		 * the timers for timeouts.
1569		 */
1570		scsi_init_cmd_errh(cmd);
1571
1572		/*
1573		 * Dispatch the command to the low-level driver.
1574		 */
1575		rtn = scsi_dispatch_cmd(cmd);
1576		spin_lock_irq(q->queue_lock);
1577		if(rtn) {
1578			/* we're refusing the command; because of
1579			 * the way locks get dropped, we need to
1580			 * check here if plugging is required */
1581			if(sdev->device_busy == 0)
1582				blk_plug_device(q);
1583
1584			break;
1585		}
1586	}
1587
1588	goto out;
1589
1590 not_ready:
1591	spin_unlock_irq(shost->host_lock);
1592
1593	/*
1594	 * lock q, handle tag, requeue req, and decrement device_busy. We
1595	 * must return with queue_lock held.
1596	 *
1597	 * Decrementing device_busy without checking it is OK, as all such
1598	 * cases (host limits or settings) should run the queue at some
1599	 * later time.
1600	 */
1601	spin_lock_irq(q->queue_lock);
1602	blk_requeue_request(q, req);
1603	sdev->device_busy--;
1604	if(sdev->device_busy == 0)
1605		blk_plug_device(q);
1606 out:
1607	/* must be careful here...if we trigger the ->remove() function
1608	 * we cannot be holding the q lock */
1609	spin_unlock_irq(q->queue_lock);
1610	put_device(&sdev->sdev_gendev);
1611	spin_lock_irq(q->queue_lock);
1612}
1613
1614u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1615{
1616	struct device *host_dev;
1617	u64 bounce_limit = 0xffffffff;
1618
1619	if (shost->unchecked_isa_dma)
1620		return BLK_BOUNCE_ISA;
1621	/*
1622	 * Platforms with virtual-DMA translation
1623	 * hardware have no practical limit.
1624	 */
1625	if (!PCI_DMA_BUS_IS_PHYS)
1626		return BLK_BOUNCE_ANY;
1627
1628	host_dev = scsi_get_device(shost);
1629	if (host_dev && host_dev->dma_mask)
1630		bounce_limit = *host_dev->dma_mask;
1631
1632	return bounce_limit;
1633}
1634EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1635
1636struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1637					 request_fn_proc *request_fn)
1638{
1639	struct request_queue *q;
1640	struct device *dev = shost->shost_gendev.parent;
1641
1642	q = blk_init_queue(request_fn, NULL);
1643	if (!q)
1644		return NULL;
1645
1646	/*
1647	 * this limit is imposed by hardware restrictions
1648	 */
1649	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1650	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1651
1652	blk_queue_max_sectors(q, shost->max_sectors);
1653	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1654	blk_queue_segment_boundary(q, shost->dma_boundary);
1655	dma_set_seg_boundary(dev, shost->dma_boundary);
1656
1657	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1658
1659	/* New queue, no concurrency on queue_flags */
1660	if (!shost->use_clustering)
1661		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1662
1663	/*
1664	 * set a reasonable default alignment on word boundaries: the
1665	 * host and device may alter it using
1666	 * blk_queue_update_dma_alignment() later.
1667	 */
1668	blk_queue_dma_alignment(q, 0x03);
1669
1670	return q;
1671}
1672EXPORT_SYMBOL(__scsi_alloc_queue);
1673
1674struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1675{
1676	struct request_queue *q;
1677
1678	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1679	if (!q)
1680		return NULL;
1681
1682	blk_queue_prep_rq(q, scsi_prep_fn);
1683	blk_queue_softirq_done(q, scsi_softirq_done);
1684	blk_queue_rq_timed_out(q, scsi_times_out);
1685	blk_queue_lld_busy(q, scsi_lld_busy);
1686	return q;
1687}
1688
1689void scsi_free_queue(struct request_queue *q)
1690{
1691	blk_cleanup_queue(q);
1692}
1693
1694/*
1695 * Function:    scsi_block_requests()
1696 *
1697 * Purpose:     Utility function used by low-level drivers to prevent further
1698 *		commands from being queued to the device.
1699 *
1700 * Arguments:   shost       - Host in question
1701 *
1702 * Returns:     Nothing
1703 *
1704 * Lock status: No locks are assumed held.
1705 *
1706 * Notes:       There is no timer nor any other means by which the requests
1707 *		get unblocked other than the low-level driver calling
1708 *		scsi_unblock_requests().
1709 */
1710void scsi_block_requests(struct Scsi_Host *shost)
1711{
1712	shost->host_self_blocked = 1;
1713}
1714EXPORT_SYMBOL(scsi_block_requests);
1715
1716/*
1717 * Function:    scsi_unblock_requests()
1718 *
1719 * Purpose:     Utility function used by low-level drivers to allow further
1720 *		commands from being queued to the device.
1721 *
1722 * Arguments:   shost       - Host in question
1723 *
1724 * Returns:     Nothing
1725 *
1726 * Lock status: No locks are assumed held.
1727 *
1728 * Notes:       There is no timer nor any other means by which the requests
1729 *		get unblocked other than the low-level driver calling
1730 *		scsi_unblock_requests().
1731 *
1732 *		This is done as an API function so that changes to the
1733 *		internals of the scsi mid-layer won't require wholesale
1734 *		changes to drivers that use this feature.
1735 */
1736void scsi_unblock_requests(struct Scsi_Host *shost)
1737{
1738	shost->host_self_blocked = 0;
1739	scsi_run_host_queues(shost);
1740}
1741EXPORT_SYMBOL(scsi_unblock_requests);
1742
1743int __init scsi_init_queue(void)
1744{
1745	int i;
1746
1747	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1748					   sizeof(struct scsi_data_buffer),
1749					   0, 0, NULL);
1750	if (!scsi_sdb_cache) {
1751		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1752		return -ENOMEM;
1753	}
1754
1755	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1756		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1757		int size = sgp->size * sizeof(struct scatterlist);
1758
1759		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1760				SLAB_HWCACHE_ALIGN, NULL);
1761		if (!sgp->slab) {
1762			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1763					sgp->name);
1764			goto cleanup_sdb;
1765		}
1766
1767		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1768						     sgp->slab);
1769		if (!sgp->pool) {
1770			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1771					sgp->name);
1772			goto cleanup_sdb;
1773		}
1774	}
1775
1776	return 0;
1777
1778cleanup_sdb:
1779	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1780		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1781		if (sgp->pool)
1782			mempool_destroy(sgp->pool);
1783		if (sgp->slab)
1784			kmem_cache_destroy(sgp->slab);
1785	}
1786	kmem_cache_destroy(scsi_sdb_cache);
1787
1788	return -ENOMEM;
1789}
1790
1791void scsi_exit_queue(void)
1792{
1793	int i;
1794
1795	kmem_cache_destroy(scsi_sdb_cache);
1796
1797	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1798		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1799		mempool_destroy(sgp->pool);
1800		kmem_cache_destroy(sgp->slab);
1801	}
1802}
1803
1804/**
1805 *	scsi_mode_select - issue a mode select
1806 *	@sdev:	SCSI device to be queried
1807 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1808 *	@sp:	Save page bit (0 == don't save, 1 == save)
1809 *	@modepage: mode page being requested
1810 *	@buffer: request buffer (may not be smaller than eight bytes)
1811 *	@len:	length of request buffer.
1812 *	@timeout: command timeout
1813 *	@retries: number of retries before failing
1814 *	@data: returns a structure abstracting the mode header data
1815 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1816 *		must be SCSI_SENSE_BUFFERSIZE big.
1817 *
1818 *	Returns zero if successful; negative error number or scsi
1819 *	status on error
1820 *
1821 */
1822int
1823scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1824		 unsigned char *buffer, int len, int timeout, int retries,
1825		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1826{
1827	unsigned char cmd[10];
1828	unsigned char *real_buffer;
1829	int ret;
1830
1831	memset(cmd, 0, sizeof(cmd));
1832	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1833
1834	if (sdev->use_10_for_ms) {
1835		if (len > 65535)
1836			return -EINVAL;
1837		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1838		if (!real_buffer)
1839			return -ENOMEM;
1840		memcpy(real_buffer + 8, buffer, len);
1841		len += 8;
1842		real_buffer[0] = 0;
1843		real_buffer[1] = 0;
1844		real_buffer[2] = data->medium_type;
1845		real_buffer[3] = data->device_specific;
1846		real_buffer[4] = data->longlba ? 0x01 : 0;
1847		real_buffer[5] = 0;
1848		real_buffer[6] = data->block_descriptor_length >> 8;
1849		real_buffer[7] = data->block_descriptor_length;
1850
1851		cmd[0] = MODE_SELECT_10;
1852		cmd[7] = len >> 8;
1853		cmd[8] = len;
1854	} else {
1855		if (len > 255 || data->block_descriptor_length > 255 ||
1856		    data->longlba)
1857			return -EINVAL;
1858
1859		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1860		if (!real_buffer)
1861			return -ENOMEM;
1862		memcpy(real_buffer + 4, buffer, len);
1863		len += 4;
1864		real_buffer[0] = 0;
1865		real_buffer[1] = data->medium_type;
1866		real_buffer[2] = data->device_specific;
1867		real_buffer[3] = data->block_descriptor_length;
1868
1869
1870		cmd[0] = MODE_SELECT;
1871		cmd[4] = len;
1872	}
1873
1874	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1875			       sshdr, timeout, retries, NULL);
1876	kfree(real_buffer);
1877	return ret;
1878}
1879EXPORT_SYMBOL_GPL(scsi_mode_select);
1880
1881/**
1882 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1883 *	@sdev:	SCSI device to be queried
1884 *	@dbd:	set if mode sense will allow block descriptors to be returned
1885 *	@modepage: mode page being requested
1886 *	@buffer: request buffer (may not be smaller than eight bytes)
1887 *	@len:	length of request buffer.
1888 *	@timeout: command timeout
1889 *	@retries: number of retries before failing
1890 *	@data: returns a structure abstracting the mode header data
1891 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1892 *		must be SCSI_SENSE_BUFFERSIZE big.
1893 *
1894 *	Returns zero if unsuccessful, or the header offset (either 4
1895 *	or 8 depending on whether a six or ten byte command was
1896 *	issued) if successful.
1897 */
1898int
1899scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1900		  unsigned char *buffer, int len, int timeout, int retries,
1901		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1902{
1903	unsigned char cmd[12];
1904	int use_10_for_ms;
1905	int header_length;
1906	int result;
1907	struct scsi_sense_hdr my_sshdr;
1908
1909	memset(data, 0, sizeof(*data));
1910	memset(&cmd[0], 0, 12);
1911	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1912	cmd[2] = modepage;
1913
1914	/* caller might not be interested in sense, but we need it */
1915	if (!sshdr)
1916		sshdr = &my_sshdr;
1917
1918 retry:
1919	use_10_for_ms = sdev->use_10_for_ms;
1920
1921	if (use_10_for_ms) {
1922		if (len < 8)
1923			len = 8;
1924
1925		cmd[0] = MODE_SENSE_10;
1926		cmd[8] = len;
1927		header_length = 8;
1928	} else {
1929		if (len < 4)
1930			len = 4;
1931
1932		cmd[0] = MODE_SENSE;
1933		cmd[4] = len;
1934		header_length = 4;
1935	}
1936
1937	memset(buffer, 0, len);
1938
1939	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1940				  sshdr, timeout, retries, NULL);
1941
1942	/* This code looks awful: what it's doing is making sure an
1943	 * ILLEGAL REQUEST sense return identifies the actual command
1944	 * byte as the problem.  MODE_SENSE commands can return
1945	 * ILLEGAL REQUEST if the code page isn't supported */
1946
1947	if (use_10_for_ms && !scsi_status_is_good(result) &&
1948	    (driver_byte(result) & DRIVER_SENSE)) {
1949		if (scsi_sense_valid(sshdr)) {
1950			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1951			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1952				/*
1953				 * Invalid command operation code
1954				 */
1955				sdev->use_10_for_ms = 0;
1956				goto retry;
1957			}
1958		}
1959	}
1960
1961	if(scsi_status_is_good(result)) {
1962		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1963			     (modepage == 6 || modepage == 8))) {
1964			/* Initio breakage? */
1965			header_length = 0;
1966			data->length = 13;
1967			data->medium_type = 0;
1968			data->device_specific = 0;
1969			data->longlba = 0;
1970			data->block_descriptor_length = 0;
1971		} else if(use_10_for_ms) {
1972			data->length = buffer[0]*256 + buffer[1] + 2;
1973			data->medium_type = buffer[2];
1974			data->device_specific = buffer[3];
1975			data->longlba = buffer[4] & 0x01;
1976			data->block_descriptor_length = buffer[6]*256
1977				+ buffer[7];
1978		} else {
1979			data->length = buffer[0] + 1;
1980			data->medium_type = buffer[1];
1981			data->device_specific = buffer[2];
1982			data->block_descriptor_length = buffer[3];
1983		}
1984		data->header_length = header_length;
1985	}
1986
1987	return result;
1988}
1989EXPORT_SYMBOL(scsi_mode_sense);
1990
1991/**
1992 *	scsi_test_unit_ready - test if unit is ready
1993 *	@sdev:	scsi device to change the state of.
1994 *	@timeout: command timeout
1995 *	@retries: number of retries before failing
1996 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1997 *		returning sense. Make sure that this is cleared before passing
1998 *		in.
1999 *
2000 *	Returns zero if unsuccessful or an error if TUR failed.  For
2001 *	removable media, a return of NOT_READY or UNIT_ATTENTION is
2002 *	translated to success, with the ->changed flag updated.
2003 **/
2004int
2005scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2006		     struct scsi_sense_hdr *sshdr_external)
2007{
2008	char cmd[] = {
2009		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2010	};
2011	struct scsi_sense_hdr *sshdr;
2012	int result;
2013
2014	if (!sshdr_external)
2015		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2016	else
2017		sshdr = sshdr_external;
2018
2019	/* try to eat the UNIT_ATTENTION if there are enough retries */
2020	do {
2021		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2022					  timeout, retries, NULL);
2023		if (sdev->removable && scsi_sense_valid(sshdr) &&
2024		    sshdr->sense_key == UNIT_ATTENTION)
2025			sdev->changed = 1;
2026	} while (scsi_sense_valid(sshdr) &&
2027		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2028
2029	if (!sshdr)
2030		/* could not allocate sense buffer, so can't process it */
2031		return result;
2032
2033	if (sdev->removable && scsi_sense_valid(sshdr) &&
2034	    (sshdr->sense_key == UNIT_ATTENTION ||
2035	     sshdr->sense_key == NOT_READY)) {
2036		sdev->changed = 1;
2037		result = 0;
2038	}
2039	if (!sshdr_external)
2040		kfree(sshdr);
2041	return result;
2042}
2043EXPORT_SYMBOL(scsi_test_unit_ready);
2044
2045/**
2046 *	scsi_device_set_state - Take the given device through the device state model.
2047 *	@sdev:	scsi device to change the state of.
2048 *	@state:	state to change to.
2049 *
2050 *	Returns zero if unsuccessful or an error if the requested
2051 *	transition is illegal.
2052 */
2053int
2054scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2055{
2056	enum scsi_device_state oldstate = sdev->sdev_state;
2057
2058	if (state == oldstate)
2059		return 0;
2060
2061	switch (state) {
2062	case SDEV_CREATED:
2063		switch (oldstate) {
2064		case SDEV_CREATED_BLOCK:
2065			break;
2066		default:
2067			goto illegal;
2068		}
2069		break;
2070
2071	case SDEV_RUNNING:
2072		switch (oldstate) {
2073		case SDEV_CREATED:
2074		case SDEV_OFFLINE:
2075		case SDEV_QUIESCE:
2076		case SDEV_BLOCK:
2077			break;
2078		default:
2079			goto illegal;
2080		}
2081		break;
2082
2083	case SDEV_QUIESCE:
2084		switch (oldstate) {
2085		case SDEV_RUNNING:
2086		case SDEV_OFFLINE:
2087			break;
2088		default:
2089			goto illegal;
2090		}
2091		break;
2092
2093	case SDEV_OFFLINE:
2094		switch (oldstate) {
2095		case SDEV_CREATED:
2096		case SDEV_RUNNING:
2097		case SDEV_QUIESCE:
2098		case SDEV_BLOCK:
2099			break;
2100		default:
2101			goto illegal;
2102		}
2103		break;
2104
2105	case SDEV_BLOCK:
2106		switch (oldstate) {
2107		case SDEV_RUNNING:
2108		case SDEV_CREATED_BLOCK:
2109			break;
2110		default:
2111			goto illegal;
2112		}
2113		break;
2114
2115	case SDEV_CREATED_BLOCK:
2116		switch (oldstate) {
2117		case SDEV_CREATED:
2118			break;
2119		default:
2120			goto illegal;
2121		}
2122		break;
2123
2124	case SDEV_CANCEL:
2125		switch (oldstate) {
2126		case SDEV_CREATED:
2127		case SDEV_RUNNING:
2128		case SDEV_QUIESCE:
2129		case SDEV_OFFLINE:
2130		case SDEV_BLOCK:
2131			break;
2132		default:
2133			goto illegal;
2134		}
2135		break;
2136
2137	case SDEV_DEL:
2138		switch (oldstate) {
2139		case SDEV_CREATED:
2140		case SDEV_RUNNING:
2141		case SDEV_OFFLINE:
2142		case SDEV_CANCEL:
2143			break;
2144		default:
2145			goto illegal;
2146		}
2147		break;
2148
2149	}
2150	sdev->sdev_state = state;
2151	return 0;
2152
2153 illegal:
2154	SCSI_LOG_ERROR_RECOVERY(1,
2155				sdev_printk(KERN_ERR, sdev,
2156					    "Illegal state transition %s->%s\n",
2157					    scsi_device_state_name(oldstate),
2158					    scsi_device_state_name(state))
2159				);
2160	return -EINVAL;
2161}
2162EXPORT_SYMBOL(scsi_device_set_state);
2163
2164/**
2165 * 	sdev_evt_emit - emit a single SCSI device uevent
2166 *	@sdev: associated SCSI device
2167 *	@evt: event to emit
2168 *
2169 *	Send a single uevent (scsi_event) to the associated scsi_device.
2170 */
2171static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2172{
2173	int idx = 0;
2174	char *envp[3];
2175
2176	switch (evt->evt_type) {
2177	case SDEV_EVT_MEDIA_CHANGE:
2178		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2179		break;
2180
2181	default:
2182		/* do nothing */
2183		break;
2184	}
2185
2186	envp[idx++] = NULL;
2187
2188	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2189}
2190
2191/**
2192 * 	sdev_evt_thread - send a uevent for each scsi event
2193 *	@work: work struct for scsi_device
2194 *
2195 *	Dispatch queued events to their associated scsi_device kobjects
2196 *	as uevents.
2197 */
2198void scsi_evt_thread(struct work_struct *work)
2199{
2200	struct scsi_device *sdev;
2201	LIST_HEAD(event_list);
2202
2203	sdev = container_of(work, struct scsi_device, event_work);
2204
2205	while (1) {
2206		struct scsi_event *evt;
2207		struct list_head *this, *tmp;
2208		unsigned long flags;
2209
2210		spin_lock_irqsave(&sdev->list_lock, flags);
2211		list_splice_init(&sdev->event_list, &event_list);
2212		spin_unlock_irqrestore(&sdev->list_lock, flags);
2213
2214		if (list_empty(&event_list))
2215			break;
2216
2217		list_for_each_safe(this, tmp, &event_list) {
2218			evt = list_entry(this, struct scsi_event, node);
2219			list_del(&evt->node);
2220			scsi_evt_emit(sdev, evt);
2221			kfree(evt);
2222		}
2223	}
2224}
2225
2226/**
2227 * 	sdev_evt_send - send asserted event to uevent thread
2228 *	@sdev: scsi_device event occurred on
2229 *	@evt: event to send
2230 *
2231 *	Assert scsi device event asynchronously.
2232 */
2233void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2234{
2235	unsigned long flags;
2236
2237#if 0
2238	/* FIXME: currently this check eliminates all media change events
2239	 * for polled devices.  Need to update to discriminate between AN
2240	 * and polled events */
2241	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2242		kfree(evt);
2243		return;
2244	}
2245#endif
2246
2247	spin_lock_irqsave(&sdev->list_lock, flags);
2248	list_add_tail(&evt->node, &sdev->event_list);
2249	schedule_work(&sdev->event_work);
2250	spin_unlock_irqrestore(&sdev->list_lock, flags);
2251}
2252EXPORT_SYMBOL_GPL(sdev_evt_send);
2253
2254/**
2255 * 	sdev_evt_alloc - allocate a new scsi event
2256 *	@evt_type: type of event to allocate
2257 *	@gfpflags: GFP flags for allocation
2258 *
2259 *	Allocates and returns a new scsi_event.
2260 */
2261struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2262				  gfp_t gfpflags)
2263{
2264	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2265	if (!evt)
2266		return NULL;
2267
2268	evt->evt_type = evt_type;
2269	INIT_LIST_HEAD(&evt->node);
2270
2271	/* evt_type-specific initialization, if any */
2272	switch (evt_type) {
2273	case SDEV_EVT_MEDIA_CHANGE:
2274	default:
2275		/* do nothing */
2276		break;
2277	}
2278
2279	return evt;
2280}
2281EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2282
2283/**
2284 * 	sdev_evt_send_simple - send asserted event to uevent thread
2285 *	@sdev: scsi_device event occurred on
2286 *	@evt_type: type of event to send
2287 *	@gfpflags: GFP flags for allocation
2288 *
2289 *	Assert scsi device event asynchronously, given an event type.
2290 */
2291void sdev_evt_send_simple(struct scsi_device *sdev,
2292			  enum scsi_device_event evt_type, gfp_t gfpflags)
2293{
2294	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2295	if (!evt) {
2296		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2297			    evt_type);
2298		return;
2299	}
2300
2301	sdev_evt_send(sdev, evt);
2302}
2303EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2304
2305/**
2306 *	scsi_device_quiesce - Block user issued commands.
2307 *	@sdev:	scsi device to quiesce.
2308 *
2309 *	This works by trying to transition to the SDEV_QUIESCE state
2310 *	(which must be a legal transition).  When the device is in this
2311 *	state, only special requests will be accepted, all others will
2312 *	be deferred.  Since special requests may also be requeued requests,
2313 *	a successful return doesn't guarantee the device will be
2314 *	totally quiescent.
2315 *
2316 *	Must be called with user context, may sleep.
2317 *
2318 *	Returns zero if unsuccessful or an error if not.
2319 */
2320int
2321scsi_device_quiesce(struct scsi_device *sdev)
2322{
2323	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2324	if (err)
2325		return err;
2326
2327	scsi_run_queue(sdev->request_queue);
2328	while (sdev->device_busy) {
2329		msleep_interruptible(200);
2330		scsi_run_queue(sdev->request_queue);
2331	}
2332	return 0;
2333}
2334EXPORT_SYMBOL(scsi_device_quiesce);
2335
2336/**
2337 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2338 *	@sdev:	scsi device to resume.
2339 *
2340 *	Moves the device from quiesced back to running and restarts the
2341 *	queues.
2342 *
2343 *	Must be called with user context, may sleep.
2344 */
2345void
2346scsi_device_resume(struct scsi_device *sdev)
2347{
2348	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2349		return;
2350	scsi_run_queue(sdev->request_queue);
2351}
2352EXPORT_SYMBOL(scsi_device_resume);
2353
2354static void
2355device_quiesce_fn(struct scsi_device *sdev, void *data)
2356{
2357	scsi_device_quiesce(sdev);
2358}
2359
2360void
2361scsi_target_quiesce(struct scsi_target *starget)
2362{
2363	starget_for_each_device(starget, NULL, device_quiesce_fn);
2364}
2365EXPORT_SYMBOL(scsi_target_quiesce);
2366
2367static void
2368device_resume_fn(struct scsi_device *sdev, void *data)
2369{
2370	scsi_device_resume(sdev);
2371}
2372
2373void
2374scsi_target_resume(struct scsi_target *starget)
2375{
2376	starget_for_each_device(starget, NULL, device_resume_fn);
2377}
2378EXPORT_SYMBOL(scsi_target_resume);
2379
2380/**
2381 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2382 * @sdev:	device to block
2383 *
2384 * Block request made by scsi lld's to temporarily stop all
2385 * scsi commands on the specified device.  Called from interrupt
2386 * or normal process context.
2387 *
2388 * Returns zero if successful or error if not
2389 *
2390 * Notes:
2391 *	This routine transitions the device to the SDEV_BLOCK state
2392 *	(which must be a legal transition).  When the device is in this
2393 *	state, all commands are deferred until the scsi lld reenables
2394 *	the device with scsi_device_unblock or device_block_tmo fires.
2395 *	This routine assumes the host_lock is held on entry.
2396 */
2397int
2398scsi_internal_device_block(struct scsi_device *sdev)
2399{
2400	struct request_queue *q = sdev->request_queue;
2401	unsigned long flags;
2402	int err = 0;
2403
2404	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2405	if (err) {
2406		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2407
2408		if (err)
2409			return err;
2410	}
2411
2412	/*
2413	 * The device has transitioned to SDEV_BLOCK.  Stop the
2414	 * block layer from calling the midlayer with this device's
2415	 * request queue.
2416	 */
2417	spin_lock_irqsave(q->queue_lock, flags);
2418	blk_stop_queue(q);
2419	spin_unlock_irqrestore(q->queue_lock, flags);
2420
2421	return 0;
2422}
2423EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2424
2425/**
2426 * scsi_internal_device_unblock - resume a device after a block request
2427 * @sdev:	device to resume
2428 *
2429 * Called by scsi lld's or the midlayer to restart the device queue
2430 * for the previously suspended scsi device.  Called from interrupt or
2431 * normal process context.
2432 *
2433 * Returns zero if successful or error if not.
2434 *
2435 * Notes:
2436 *	This routine transitions the device to the SDEV_RUNNING state
2437 *	(which must be a legal transition) allowing the midlayer to
2438 *	goose the queue for this device.  This routine assumes the
2439 *	host_lock is held upon entry.
2440 */
2441int
2442scsi_internal_device_unblock(struct scsi_device *sdev)
2443{
2444	struct request_queue *q = sdev->request_queue;
2445	int err;
2446	unsigned long flags;
2447
2448	/*
2449	 * Try to transition the scsi device to SDEV_RUNNING
2450	 * and goose the device queue if successful.
2451	 */
2452	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2453	if (err) {
2454		err = scsi_device_set_state(sdev, SDEV_CREATED);
2455
2456		if (err)
2457			return err;
2458	}
2459
2460	spin_lock_irqsave(q->queue_lock, flags);
2461	blk_start_queue(q);
2462	spin_unlock_irqrestore(q->queue_lock, flags);
2463
2464	return 0;
2465}
2466EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2467
2468static void
2469device_block(struct scsi_device *sdev, void *data)
2470{
2471	scsi_internal_device_block(sdev);
2472}
2473
2474static int
2475target_block(struct device *dev, void *data)
2476{
2477	if (scsi_is_target_device(dev))
2478		starget_for_each_device(to_scsi_target(dev), NULL,
2479					device_block);
2480	return 0;
2481}
2482
2483void
2484scsi_target_block(struct device *dev)
2485{
2486	if (scsi_is_target_device(dev))
2487		starget_for_each_device(to_scsi_target(dev), NULL,
2488					device_block);
2489	else
2490		device_for_each_child(dev, NULL, target_block);
2491}
2492EXPORT_SYMBOL_GPL(scsi_target_block);
2493
2494static void
2495device_unblock(struct scsi_device *sdev, void *data)
2496{
2497	scsi_internal_device_unblock(sdev);
2498}
2499
2500static int
2501target_unblock(struct device *dev, void *data)
2502{
2503	if (scsi_is_target_device(dev))
2504		starget_for_each_device(to_scsi_target(dev), NULL,
2505					device_unblock);
2506	return 0;
2507}
2508
2509void
2510scsi_target_unblock(struct device *dev)
2511{
2512	if (scsi_is_target_device(dev))
2513		starget_for_each_device(to_scsi_target(dev), NULL,
2514					device_unblock);
2515	else
2516		device_for_each_child(dev, NULL, target_unblock);
2517}
2518EXPORT_SYMBOL_GPL(scsi_target_unblock);
2519
2520/**
2521 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2522 * @sgl:	scatter-gather list
2523 * @sg_count:	number of segments in sg
2524 * @offset:	offset in bytes into sg, on return offset into the mapped area
2525 * @len:	bytes to map, on return number of bytes mapped
2526 *
2527 * Returns virtual address of the start of the mapped page
2528 */
2529void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2530			  size_t *offset, size_t *len)
2531{
2532	int i;
2533	size_t sg_len = 0, len_complete = 0;
2534	struct scatterlist *sg;
2535	struct page *page;
2536
2537	WARN_ON(!irqs_disabled());
2538
2539	for_each_sg(sgl, sg, sg_count, i) {
2540		len_complete = sg_len; /* Complete sg-entries */
2541		sg_len += sg->length;
2542		if (sg_len > *offset)
2543			break;
2544	}
2545
2546	if (unlikely(i == sg_count)) {
2547		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2548			"elements %d\n",
2549		       __func__, sg_len, *offset, sg_count);
2550		WARN_ON(1);
2551		return NULL;
2552	}
2553
2554	/* Offset starting from the beginning of first page in this sg-entry */
2555	*offset = *offset - len_complete + sg->offset;
2556
2557	/* Assumption: contiguous pages can be accessed as "page + i" */
2558	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2559	*offset &= ~PAGE_MASK;
2560
2561	/* Bytes in this sg-entry from *offset to the end of the page */
2562	sg_len = PAGE_SIZE - *offset;
2563	if (*len > sg_len)
2564		*len = sg_len;
2565
2566	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2567}
2568EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2569
2570/**
2571 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2572 * @virt:	virtual address to be unmapped
2573 */
2574void scsi_kunmap_atomic_sg(void *virt)
2575{
2576	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2577}
2578EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2579