scsi_lib.c revision 63583cca745f440167bf27877182dc13e19d4bcf
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/bitops.h>
12#include <linux/blkdev.h>
13#include <linux/completion.h>
14#include <linux/kernel.h>
15#include <linux/mempool.h>
16#include <linux/slab.h>
17#include <linux/init.h>
18#include <linux/pci.h>
19#include <linux/delay.h>
20#include <linux/hardirq.h>
21#include <linux/scatterlist.h>
22
23#include <scsi/scsi.h>
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_dbg.h>
26#include <scsi/scsi_device.h>
27#include <scsi/scsi_driver.h>
28#include <scsi/scsi_eh.h>
29#include <scsi/scsi_host.h>
30
31#include "scsi_priv.h"
32#include "scsi_logging.h"
33
34
35#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36#define SG_MEMPOOL_SIZE		2
37
38struct scsi_host_sg_pool {
39	size_t		size;
40	char		*name;
41	struct kmem_cache	*slab;
42	mempool_t	*pool;
43};
44
45#define SP(x) { x, "sgpool-" __stringify(x) }
46#if (SCSI_MAX_SG_SEGMENTS < 32)
47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48#endif
49static struct scsi_host_sg_pool scsi_sg_pools[] = {
50	SP(8),
51	SP(16),
52#if (SCSI_MAX_SG_SEGMENTS > 32)
53	SP(32),
54#if (SCSI_MAX_SG_SEGMENTS > 64)
55	SP(64),
56#if (SCSI_MAX_SG_SEGMENTS > 128)
57	SP(128),
58#if (SCSI_MAX_SG_SEGMENTS > 256)
59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60#endif
61#endif
62#endif
63#endif
64	SP(SCSI_MAX_SG_SEGMENTS)
65};
66#undef SP
67
68struct kmem_cache *scsi_sdb_cache;
69
70static void scsi_run_queue(struct request_queue *q);
71
72/*
73 * Function:	scsi_unprep_request()
74 *
75 * Purpose:	Remove all preparation done for a request, including its
76 *		associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments:	req	- request to unprepare
79 *
80 * Lock status:	Assumed that no locks are held upon entry.
81 *
82 * Returns:	Nothing.
83 */
84static void scsi_unprep_request(struct request *req)
85{
86	struct scsi_cmnd *cmd = req->special;
87
88	blk_unprep_request(req);
89	req->special = NULL;
90
91	scsi_put_command(cmd);
92}
93
94/**
95 * __scsi_queue_insert - private queue insertion
96 * @cmd: The SCSI command being requeued
97 * @reason:  The reason for the requeue
98 * @unbusy: Whether the queue should be unbusied
99 *
100 * This is a private queue insertion.  The public interface
101 * scsi_queue_insert() always assumes the queue should be unbusied
102 * because it's always called before the completion.  This function is
103 * for a requeue after completion, which should only occur in this
104 * file.
105 */
106static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107{
108	struct Scsi_Host *host = cmd->device->host;
109	struct scsi_device *device = cmd->device;
110	struct scsi_target *starget = scsi_target(device);
111	struct request_queue *q = device->request_queue;
112	unsigned long flags;
113
114	SCSI_LOG_MLQUEUE(1,
115		 printk("Inserting command %p into mlqueue\n", cmd));
116
117	/*
118	 * Set the appropriate busy bit for the device/host.
119	 *
120	 * If the host/device isn't busy, assume that something actually
121	 * completed, and that we should be able to queue a command now.
122	 *
123	 * Note that the prior mid-layer assumption that any host could
124	 * always queue at least one command is now broken.  The mid-layer
125	 * will implement a user specifiable stall (see
126	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127	 * if a command is requeued with no other commands outstanding
128	 * either for the device or for the host.
129	 */
130	switch (reason) {
131	case SCSI_MLQUEUE_HOST_BUSY:
132		host->host_blocked = host->max_host_blocked;
133		break;
134	case SCSI_MLQUEUE_DEVICE_BUSY:
135		device->device_blocked = device->max_device_blocked;
136		break;
137	case SCSI_MLQUEUE_TARGET_BUSY:
138		starget->target_blocked = starget->max_target_blocked;
139		break;
140	}
141
142	/*
143	 * Decrement the counters, since these commands are no longer
144	 * active on the host/device.
145	 */
146	if (unbusy)
147		scsi_device_unbusy(device);
148
149	/*
150	 * Requeue this command.  It will go before all other commands
151	 * that are already in the queue.
152	 *
153	 * NOTE: there is magic here about the way the queue is plugged if
154	 * we have no outstanding commands.
155	 *
156	 * Although we *don't* plug the queue, we call the request
157	 * function.  The SCSI request function detects the blocked condition
158	 * and plugs the queue appropriately.
159         */
160	spin_lock_irqsave(q->queue_lock, flags);
161	blk_requeue_request(q, cmd->request);
162	spin_unlock_irqrestore(q->queue_lock, flags);
163
164	scsi_run_queue(q);
165
166	return 0;
167}
168
169/*
170 * Function:    scsi_queue_insert()
171 *
172 * Purpose:     Insert a command in the midlevel queue.
173 *
174 * Arguments:   cmd    - command that we are adding to queue.
175 *              reason - why we are inserting command to queue.
176 *
177 * Lock status: Assumed that lock is not held upon entry.
178 *
179 * Returns:     Nothing.
180 *
181 * Notes:       We do this for one of two cases.  Either the host is busy
182 *              and it cannot accept any more commands for the time being,
183 *              or the device returned QUEUE_FULL and can accept no more
184 *              commands.
185 * Notes:       This could be called either from an interrupt context or a
186 *              normal process context.
187 */
188int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189{
190	return __scsi_queue_insert(cmd, reason, 1);
191}
192/**
193 * scsi_execute - insert request and wait for the result
194 * @sdev:	scsi device
195 * @cmd:	scsi command
196 * @data_direction: data direction
197 * @buffer:	data buffer
198 * @bufflen:	len of buffer
199 * @sense:	optional sense buffer
200 * @timeout:	request timeout in seconds
201 * @retries:	number of times to retry request
202 * @flags:	or into request flags;
203 * @resid:	optional residual length
204 *
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
207 */
208int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209		 int data_direction, void *buffer, unsigned bufflen,
210		 unsigned char *sense, int timeout, int retries, int flags,
211		 int *resid)
212{
213	struct request *req;
214	int write = (data_direction == DMA_TO_DEVICE);
215	int ret = DRIVER_ERROR << 24;
216
217	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218
219	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
220					buffer, bufflen, __GFP_WAIT))
221		goto out;
222
223	req->cmd_len = COMMAND_SIZE(cmd[0]);
224	memcpy(req->cmd, cmd, req->cmd_len);
225	req->sense = sense;
226	req->sense_len = 0;
227	req->retries = retries;
228	req->timeout = timeout;
229	req->cmd_type = REQ_TYPE_BLOCK_PC;
230	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231
232	/*
233	 * head injection *required* here otherwise quiesce won't work
234	 */
235	blk_execute_rq(req->q, NULL, req, 1);
236
237	/*
238	 * Some devices (USB mass-storage in particular) may transfer
239	 * garbage data together with a residue indicating that the data
240	 * is invalid.  Prevent the garbage from being misinterpreted
241	 * and prevent security leaks by zeroing out the excess data.
242	 */
243	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245
246	if (resid)
247		*resid = req->resid_len;
248	ret = req->errors;
249 out:
250	blk_put_request(req);
251
252	return ret;
253}
254EXPORT_SYMBOL(scsi_execute);
255
256
257int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258		     int data_direction, void *buffer, unsigned bufflen,
259		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260		     int *resid)
261{
262	char *sense = NULL;
263	int result;
264
265	if (sshdr) {
266		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267		if (!sense)
268			return DRIVER_ERROR << 24;
269	}
270	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271			      sense, timeout, retries, 0, resid);
272	if (sshdr)
273		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274
275	kfree(sense);
276	return result;
277}
278EXPORT_SYMBOL(scsi_execute_req);
279
280/*
281 * Function:    scsi_init_cmd_errh()
282 *
283 * Purpose:     Initialize cmd fields related to error handling.
284 *
285 * Arguments:   cmd	- command that is ready to be queued.
286 *
287 * Notes:       This function has the job of initializing a number of
288 *              fields related to error handling.   Typically this will
289 *              be called once for each command, as required.
290 */
291static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292{
293	cmd->serial_number = 0;
294	scsi_set_resid(cmd, 0);
295	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296	if (cmd->cmd_len == 0)
297		cmd->cmd_len = scsi_command_size(cmd->cmnd);
298}
299
300void scsi_device_unbusy(struct scsi_device *sdev)
301{
302	struct Scsi_Host *shost = sdev->host;
303	struct scsi_target *starget = scsi_target(sdev);
304	unsigned long flags;
305
306	spin_lock_irqsave(shost->host_lock, flags);
307	shost->host_busy--;
308	starget->target_busy--;
309	if (unlikely(scsi_host_in_recovery(shost) &&
310		     (shost->host_failed || shost->host_eh_scheduled)))
311		scsi_eh_wakeup(shost);
312	spin_unlock(shost->host_lock);
313	spin_lock(sdev->request_queue->queue_lock);
314	sdev->device_busy--;
315	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316}
317
318/*
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
322 *
323 * Called with *no* scsi locks held.
324 */
325static void scsi_single_lun_run(struct scsi_device *current_sdev)
326{
327	struct Scsi_Host *shost = current_sdev->host;
328	struct scsi_device *sdev, *tmp;
329	struct scsi_target *starget = scsi_target(current_sdev);
330	unsigned long flags;
331
332	spin_lock_irqsave(shost->host_lock, flags);
333	starget->starget_sdev_user = NULL;
334	spin_unlock_irqrestore(shost->host_lock, flags);
335
336	/*
337	 * Call blk_run_queue for all LUNs on the target, starting with
338	 * current_sdev. We race with others (to set starget_sdev_user),
339	 * but in most cases, we will be first. Ideally, each LU on the
340	 * target would get some limited time or requests on the target.
341	 */
342	blk_run_queue(current_sdev->request_queue);
343
344	spin_lock_irqsave(shost->host_lock, flags);
345	if (starget->starget_sdev_user)
346		goto out;
347	list_for_each_entry_safe(sdev, tmp, &starget->devices,
348			same_target_siblings) {
349		if (sdev == current_sdev)
350			continue;
351		if (scsi_device_get(sdev))
352			continue;
353
354		spin_unlock_irqrestore(shost->host_lock, flags);
355		blk_run_queue(sdev->request_queue);
356		spin_lock_irqsave(shost->host_lock, flags);
357
358		scsi_device_put(sdev);
359	}
360 out:
361	spin_unlock_irqrestore(shost->host_lock, flags);
362}
363
364static inline int scsi_device_is_busy(struct scsi_device *sdev)
365{
366	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367		return 1;
368
369	return 0;
370}
371
372static inline int scsi_target_is_busy(struct scsi_target *starget)
373{
374	return ((starget->can_queue > 0 &&
375		 starget->target_busy >= starget->can_queue) ||
376		 starget->target_blocked);
377}
378
379static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380{
381	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382	    shost->host_blocked || shost->host_self_blocked)
383		return 1;
384
385	return 0;
386}
387
388/*
389 * Function:	scsi_run_queue()
390 *
391 * Purpose:	Select a proper request queue to serve next
392 *
393 * Arguments:	q	- last request's queue
394 *
395 * Returns:     Nothing
396 *
397 * Notes:	The previous command was completely finished, start
398 *		a new one if possible.
399 */
400static void scsi_run_queue(struct request_queue *q)
401{
402	struct scsi_device *sdev = q->queuedata;
403	struct Scsi_Host *shost = sdev->host;
404	LIST_HEAD(starved_list);
405	unsigned long flags;
406
407	if (scsi_target(sdev)->single_lun)
408		scsi_single_lun_run(sdev);
409
410	spin_lock_irqsave(shost->host_lock, flags);
411	list_splice_init(&shost->starved_list, &starved_list);
412
413	while (!list_empty(&starved_list)) {
414		int flagset;
415
416		/*
417		 * As long as shost is accepting commands and we have
418		 * starved queues, call blk_run_queue. scsi_request_fn
419		 * drops the queue_lock and can add us back to the
420		 * starved_list.
421		 *
422		 * host_lock protects the starved_list and starved_entry.
423		 * scsi_request_fn must get the host_lock before checking
424		 * or modifying starved_list or starved_entry.
425		 */
426		if (scsi_host_is_busy(shost))
427			break;
428
429		sdev = list_entry(starved_list.next,
430				  struct scsi_device, starved_entry);
431		list_del_init(&sdev->starved_entry);
432		if (scsi_target_is_busy(scsi_target(sdev))) {
433			list_move_tail(&sdev->starved_entry,
434				       &shost->starved_list);
435			continue;
436		}
437
438		spin_unlock(shost->host_lock);
439
440		spin_lock(sdev->request_queue->queue_lock);
441		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442				!test_bit(QUEUE_FLAG_REENTER,
443					&sdev->request_queue->queue_flags);
444		if (flagset)
445			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446		__blk_run_queue(sdev->request_queue);
447		if (flagset)
448			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449		spin_unlock(sdev->request_queue->queue_lock);
450
451		spin_lock(shost->host_lock);
452	}
453	/* put any unprocessed entries back */
454	list_splice(&starved_list, &shost->starved_list);
455	spin_unlock_irqrestore(shost->host_lock, flags);
456
457	blk_run_queue(q);
458}
459
460/*
461 * Function:	scsi_requeue_command()
462 *
463 * Purpose:	Handle post-processing of completed commands.
464 *
465 * Arguments:	q	- queue to operate on
466 *		cmd	- command that may need to be requeued.
467 *
468 * Returns:	Nothing
469 *
470 * Notes:	After command completion, there may be blocks left
471 *		over which weren't finished by the previous command
472 *		this can be for a number of reasons - the main one is
473 *		I/O errors in the middle of the request, in which case
474 *		we need to request the blocks that come after the bad
475 *		sector.
476 * Notes:	Upon return, cmd is a stale pointer.
477 */
478static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479{
480	struct request *req = cmd->request;
481	unsigned long flags;
482
483	spin_lock_irqsave(q->queue_lock, flags);
484	scsi_unprep_request(req);
485	blk_requeue_request(q, req);
486	spin_unlock_irqrestore(q->queue_lock, flags);
487
488	scsi_run_queue(q);
489}
490
491void scsi_next_command(struct scsi_cmnd *cmd)
492{
493	struct scsi_device *sdev = cmd->device;
494	struct request_queue *q = sdev->request_queue;
495
496	/* need to hold a reference on the device before we let go of the cmd */
497	get_device(&sdev->sdev_gendev);
498
499	scsi_put_command(cmd);
500	scsi_run_queue(q);
501
502	/* ok to remove device now */
503	put_device(&sdev->sdev_gendev);
504}
505
506void scsi_run_host_queues(struct Scsi_Host *shost)
507{
508	struct scsi_device *sdev;
509
510	shost_for_each_device(sdev, shost)
511		scsi_run_queue(sdev->request_queue);
512}
513
514static void __scsi_release_buffers(struct scsi_cmnd *, int);
515
516/*
517 * Function:    scsi_end_request()
518 *
519 * Purpose:     Post-processing of completed commands (usually invoked at end
520 *		of upper level post-processing and scsi_io_completion).
521 *
522 * Arguments:   cmd	 - command that is complete.
523 *              error    - 0 if I/O indicates success, < 0 for I/O error.
524 *              bytes    - number of bytes of completed I/O
525 *		requeue  - indicates whether we should requeue leftovers.
526 *
527 * Lock status: Assumed that lock is not held upon entry.
528 *
529 * Returns:     cmd if requeue required, NULL otherwise.
530 *
531 * Notes:       This is called for block device requests in order to
532 *              mark some number of sectors as complete.
533 *
534 *		We are guaranteeing that the request queue will be goosed
535 *		at some point during this call.
536 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
537 */
538static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539					  int bytes, int requeue)
540{
541	struct request_queue *q = cmd->device->request_queue;
542	struct request *req = cmd->request;
543
544	/*
545	 * If there are blocks left over at the end, set up the command
546	 * to queue the remainder of them.
547	 */
548	if (blk_end_request(req, error, bytes)) {
549		/* kill remainder if no retrys */
550		if (error && scsi_noretry_cmd(cmd))
551			blk_end_request_all(req, error);
552		else {
553			if (requeue) {
554				/*
555				 * Bleah.  Leftovers again.  Stick the
556				 * leftovers in the front of the
557				 * queue, and goose the queue again.
558				 */
559				scsi_release_buffers(cmd);
560				scsi_requeue_command(q, cmd);
561				cmd = NULL;
562			}
563			return cmd;
564		}
565	}
566
567	/*
568	 * This will goose the queue request function at the end, so we don't
569	 * need to worry about launching another command.
570	 */
571	__scsi_release_buffers(cmd, 0);
572	scsi_next_command(cmd);
573	return NULL;
574}
575
576static inline unsigned int scsi_sgtable_index(unsigned short nents)
577{
578	unsigned int index;
579
580	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
581
582	if (nents <= 8)
583		index = 0;
584	else
585		index = get_count_order(nents) - 3;
586
587	return index;
588}
589
590static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
591{
592	struct scsi_host_sg_pool *sgp;
593
594	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595	mempool_free(sgl, sgp->pool);
596}
597
598static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
599{
600	struct scsi_host_sg_pool *sgp;
601
602	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603	return mempool_alloc(sgp->pool, gfp_mask);
604}
605
606static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607			      gfp_t gfp_mask)
608{
609	int ret;
610
611	BUG_ON(!nents);
612
613	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614			       gfp_mask, scsi_sg_alloc);
615	if (unlikely(ret))
616		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617				scsi_sg_free);
618
619	return ret;
620}
621
622static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
623{
624	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
625}
626
627static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
628{
629
630	if (cmd->sdb.table.nents)
631		scsi_free_sgtable(&cmd->sdb);
632
633	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
634
635	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636		struct scsi_data_buffer *bidi_sdb =
637			cmd->request->next_rq->special;
638		scsi_free_sgtable(bidi_sdb);
639		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640		cmd->request->next_rq->special = NULL;
641	}
642
643	if (scsi_prot_sg_count(cmd))
644		scsi_free_sgtable(cmd->prot_sdb);
645}
646
647/*
648 * Function:    scsi_release_buffers()
649 *
650 * Purpose:     Completion processing for block device I/O requests.
651 *
652 * Arguments:   cmd	- command that we are bailing.
653 *
654 * Lock status: Assumed that no lock is held upon entry.
655 *
656 * Returns:     Nothing
657 *
658 * Notes:       In the event that an upper level driver rejects a
659 *		command, we must release resources allocated during
660 *		the __init_io() function.  Primarily this would involve
661 *		the scatter-gather table, and potentially any bounce
662 *		buffers.
663 */
664void scsi_release_buffers(struct scsi_cmnd *cmd)
665{
666	__scsi_release_buffers(cmd, 1);
667}
668EXPORT_SYMBOL(scsi_release_buffers);
669
670static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
671{
672	int error = 0;
673
674	switch(host_byte(result)) {
675	case DID_TRANSPORT_FAILFAST:
676		error = -ENOLINK;
677		break;
678	case DID_TARGET_FAILURE:
679		cmd->result |= (DID_OK << 16);
680		error = -EREMOTEIO;
681		break;
682	case DID_NEXUS_FAILURE:
683		cmd->result |= (DID_OK << 16);
684		error = -EBADE;
685		break;
686	default:
687		error = -EIO;
688		break;
689	}
690
691	return error;
692}
693
694/*
695 * Function:    scsi_io_completion()
696 *
697 * Purpose:     Completion processing for block device I/O requests.
698 *
699 * Arguments:   cmd   - command that is finished.
700 *
701 * Lock status: Assumed that no lock is held upon entry.
702 *
703 * Returns:     Nothing
704 *
705 * Notes:       This function is matched in terms of capabilities to
706 *              the function that created the scatter-gather list.
707 *              In other words, if there are no bounce buffers
708 *              (the normal case for most drivers), we don't need
709 *              the logic to deal with cleaning up afterwards.
710 *
711 *		We must call scsi_end_request().  This will finish off
712 *		the specified number of sectors.  If we are done, the
713 *		command block will be released and the queue function
714 *		will be goosed.  If we are not done then we have to
715 *		figure out what to do next:
716 *
717 *		a) We can call scsi_requeue_command().  The request
718 *		   will be unprepared and put back on the queue.  Then
719 *		   a new command will be created for it.  This should
720 *		   be used if we made forward progress, or if we want
721 *		   to switch from READ(10) to READ(6) for example.
722 *
723 *		b) We can call scsi_queue_insert().  The request will
724 *		   be put back on the queue and retried using the same
725 *		   command as before, possibly after a delay.
726 *
727 *		c) We can call blk_end_request() with -EIO to fail
728 *		   the remainder of the request.
729 */
730void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
731{
732	int result = cmd->result;
733	struct request_queue *q = cmd->device->request_queue;
734	struct request *req = cmd->request;
735	int error = 0;
736	struct scsi_sense_hdr sshdr;
737	int sense_valid = 0;
738	int sense_deferred = 0;
739	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
740	      ACTION_DELAYED_RETRY} action;
741	char *description = NULL;
742
743	if (result) {
744		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
745		if (sense_valid)
746			sense_deferred = scsi_sense_is_deferred(&sshdr);
747	}
748
749	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
750		req->errors = result;
751		if (result) {
752			if (sense_valid && req->sense) {
753				/*
754				 * SG_IO wants current and deferred errors
755				 */
756				int len = 8 + cmd->sense_buffer[7];
757
758				if (len > SCSI_SENSE_BUFFERSIZE)
759					len = SCSI_SENSE_BUFFERSIZE;
760				memcpy(req->sense, cmd->sense_buffer,  len);
761				req->sense_len = len;
762			}
763			if (!sense_deferred)
764				error = __scsi_error_from_host_byte(cmd, result);
765		}
766
767		req->resid_len = scsi_get_resid(cmd);
768
769		if (scsi_bidi_cmnd(cmd)) {
770			/*
771			 * Bidi commands Must be complete as a whole,
772			 * both sides at once.
773			 */
774			req->next_rq->resid_len = scsi_in(cmd)->resid;
775
776			scsi_release_buffers(cmd);
777			blk_end_request_all(req, 0);
778
779			scsi_next_command(cmd);
780			return;
781		}
782	}
783
784	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
785	BUG_ON(blk_bidi_rq(req));
786
787	/*
788	 * Next deal with any sectors which we were able to correctly
789	 * handle.
790	 */
791	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
792				      "%d bytes done.\n",
793				      blk_rq_sectors(req), good_bytes));
794
795	/*
796	 * Recovered errors need reporting, but they're always treated
797	 * as success, so fiddle the result code here.  For BLOCK_PC
798	 * we already took a copy of the original into rq->errors which
799	 * is what gets returned to the user
800	 */
801	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
802		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
803		 * print since caller wants ATA registers. Only occurs on
804		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
805		 */
806		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
807			;
808		else if (!(req->cmd_flags & REQ_QUIET))
809			scsi_print_sense("", cmd);
810		result = 0;
811		/* BLOCK_PC may have set error */
812		error = 0;
813	}
814
815	/*
816	 * A number of bytes were successfully read.  If there
817	 * are leftovers and there is some kind of error
818	 * (result != 0), retry the rest.
819	 */
820	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
821		return;
822
823	error = __scsi_error_from_host_byte(cmd, result);
824
825	if (host_byte(result) == DID_RESET) {
826		/* Third party bus reset or reset for error recovery
827		 * reasons.  Just retry the command and see what
828		 * happens.
829		 */
830		action = ACTION_RETRY;
831	} else if (sense_valid && !sense_deferred) {
832		switch (sshdr.sense_key) {
833		case UNIT_ATTENTION:
834			if (cmd->device->removable) {
835				/* Detected disc change.  Set a bit
836				 * and quietly refuse further access.
837				 */
838				cmd->device->changed = 1;
839				description = "Media Changed";
840				action = ACTION_FAIL;
841			} else {
842				/* Must have been a power glitch, or a
843				 * bus reset.  Could not have been a
844				 * media change, so we just retry the
845				 * command and see what happens.
846				 */
847				action = ACTION_RETRY;
848			}
849			break;
850		case ILLEGAL_REQUEST:
851			/* If we had an ILLEGAL REQUEST returned, then
852			 * we may have performed an unsupported
853			 * command.  The only thing this should be
854			 * would be a ten byte read where only a six
855			 * byte read was supported.  Also, on a system
856			 * where READ CAPACITY failed, we may have
857			 * read past the end of the disk.
858			 */
859			if ((cmd->device->use_10_for_rw &&
860			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
861			    (cmd->cmnd[0] == READ_10 ||
862			     cmd->cmnd[0] == WRITE_10)) {
863				/* This will issue a new 6-byte command. */
864				cmd->device->use_10_for_rw = 0;
865				action = ACTION_REPREP;
866			} else if (sshdr.asc == 0x10) /* DIX */ {
867				description = "Host Data Integrity Failure";
868				action = ACTION_FAIL;
869				error = -EILSEQ;
870			} else
871				action = ACTION_FAIL;
872			break;
873		case ABORTED_COMMAND:
874			action = ACTION_FAIL;
875			if (sshdr.asc == 0x10) { /* DIF */
876				description = "Target Data Integrity Failure";
877				error = -EILSEQ;
878			}
879			break;
880		case NOT_READY:
881			/* If the device is in the process of becoming
882			 * ready, or has a temporary blockage, retry.
883			 */
884			if (sshdr.asc == 0x04) {
885				switch (sshdr.ascq) {
886				case 0x01: /* becoming ready */
887				case 0x04: /* format in progress */
888				case 0x05: /* rebuild in progress */
889				case 0x06: /* recalculation in progress */
890				case 0x07: /* operation in progress */
891				case 0x08: /* Long write in progress */
892				case 0x09: /* self test in progress */
893				case 0x14: /* space allocation in progress */
894					action = ACTION_DELAYED_RETRY;
895					break;
896				default:
897					description = "Device not ready";
898					action = ACTION_FAIL;
899					break;
900				}
901			} else {
902				description = "Device not ready";
903				action = ACTION_FAIL;
904			}
905			break;
906		case VOLUME_OVERFLOW:
907			/* See SSC3rXX or current. */
908			action = ACTION_FAIL;
909			break;
910		default:
911			description = "Unhandled sense code";
912			action = ACTION_FAIL;
913			break;
914		}
915	} else {
916		description = "Unhandled error code";
917		action = ACTION_FAIL;
918	}
919
920	switch (action) {
921	case ACTION_FAIL:
922		/* Give up and fail the remainder of the request */
923		scsi_release_buffers(cmd);
924		if (!(req->cmd_flags & REQ_QUIET)) {
925			if (description)
926				scmd_printk(KERN_INFO, cmd, "%s\n",
927					    description);
928			scsi_print_result(cmd);
929			if (driver_byte(result) & DRIVER_SENSE)
930				scsi_print_sense("", cmd);
931			scsi_print_command(cmd);
932		}
933		if (blk_end_request_err(req, error))
934			scsi_requeue_command(q, cmd);
935		else
936			scsi_next_command(cmd);
937		break;
938	case ACTION_REPREP:
939		/* Unprep the request and put it back at the head of the queue.
940		 * A new command will be prepared and issued.
941		 */
942		scsi_release_buffers(cmd);
943		scsi_requeue_command(q, cmd);
944		break;
945	case ACTION_RETRY:
946		/* Retry the same command immediately */
947		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
948		break;
949	case ACTION_DELAYED_RETRY:
950		/* Retry the same command after a delay */
951		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
952		break;
953	}
954}
955
956static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
957			     gfp_t gfp_mask)
958{
959	int count;
960
961	/*
962	 * If sg table allocation fails, requeue request later.
963	 */
964	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
965					gfp_mask))) {
966		return BLKPREP_DEFER;
967	}
968
969	req->buffer = NULL;
970
971	/*
972	 * Next, walk the list, and fill in the addresses and sizes of
973	 * each segment.
974	 */
975	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
976	BUG_ON(count > sdb->table.nents);
977	sdb->table.nents = count;
978	sdb->length = blk_rq_bytes(req);
979	return BLKPREP_OK;
980}
981
982/*
983 * Function:    scsi_init_io()
984 *
985 * Purpose:     SCSI I/O initialize function.
986 *
987 * Arguments:   cmd   - Command descriptor we wish to initialize
988 *
989 * Returns:     0 on success
990 *		BLKPREP_DEFER if the failure is retryable
991 *		BLKPREP_KILL if the failure is fatal
992 */
993int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
994{
995	struct request *rq = cmd->request;
996
997	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
998	if (error)
999		goto err_exit;
1000
1001	if (blk_bidi_rq(rq)) {
1002		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1003			scsi_sdb_cache, GFP_ATOMIC);
1004		if (!bidi_sdb) {
1005			error = BLKPREP_DEFER;
1006			goto err_exit;
1007		}
1008
1009		rq->next_rq->special = bidi_sdb;
1010		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1011		if (error)
1012			goto err_exit;
1013	}
1014
1015	if (blk_integrity_rq(rq)) {
1016		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1017		int ivecs, count;
1018
1019		BUG_ON(prot_sdb == NULL);
1020		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1021
1022		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1023			error = BLKPREP_DEFER;
1024			goto err_exit;
1025		}
1026
1027		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1028						prot_sdb->table.sgl);
1029		BUG_ON(unlikely(count > ivecs));
1030		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1031
1032		cmd->prot_sdb = prot_sdb;
1033		cmd->prot_sdb->table.nents = count;
1034	}
1035
1036	return BLKPREP_OK ;
1037
1038err_exit:
1039	scsi_release_buffers(cmd);
1040	cmd->request->special = NULL;
1041	scsi_put_command(cmd);
1042	return error;
1043}
1044EXPORT_SYMBOL(scsi_init_io);
1045
1046static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1047		struct request *req)
1048{
1049	struct scsi_cmnd *cmd;
1050
1051	if (!req->special) {
1052		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1053		if (unlikely(!cmd))
1054			return NULL;
1055		req->special = cmd;
1056	} else {
1057		cmd = req->special;
1058	}
1059
1060	/* pull a tag out of the request if we have one */
1061	cmd->tag = req->tag;
1062	cmd->request = req;
1063
1064	cmd->cmnd = req->cmd;
1065
1066	return cmd;
1067}
1068
1069int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1070{
1071	struct scsi_cmnd *cmd;
1072	int ret = scsi_prep_state_check(sdev, req);
1073
1074	if (ret != BLKPREP_OK)
1075		return ret;
1076
1077	cmd = scsi_get_cmd_from_req(sdev, req);
1078	if (unlikely(!cmd))
1079		return BLKPREP_DEFER;
1080
1081	/*
1082	 * BLOCK_PC requests may transfer data, in which case they must
1083	 * a bio attached to them.  Or they might contain a SCSI command
1084	 * that does not transfer data, in which case they may optionally
1085	 * submit a request without an attached bio.
1086	 */
1087	if (req->bio) {
1088		int ret;
1089
1090		BUG_ON(!req->nr_phys_segments);
1091
1092		ret = scsi_init_io(cmd, GFP_ATOMIC);
1093		if (unlikely(ret))
1094			return ret;
1095	} else {
1096		BUG_ON(blk_rq_bytes(req));
1097
1098		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1099		req->buffer = NULL;
1100	}
1101
1102	cmd->cmd_len = req->cmd_len;
1103	if (!blk_rq_bytes(req))
1104		cmd->sc_data_direction = DMA_NONE;
1105	else if (rq_data_dir(req) == WRITE)
1106		cmd->sc_data_direction = DMA_TO_DEVICE;
1107	else
1108		cmd->sc_data_direction = DMA_FROM_DEVICE;
1109
1110	cmd->transfersize = blk_rq_bytes(req);
1111	cmd->allowed = req->retries;
1112	return BLKPREP_OK;
1113}
1114EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1115
1116/*
1117 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1118 * from filesystems that still need to be translated to SCSI CDBs from
1119 * the ULD.
1120 */
1121int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1122{
1123	struct scsi_cmnd *cmd;
1124	int ret = scsi_prep_state_check(sdev, req);
1125
1126	if (ret != BLKPREP_OK)
1127		return ret;
1128
1129	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1130			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1131		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1132		if (ret != BLKPREP_OK)
1133			return ret;
1134	}
1135
1136	/*
1137	 * Filesystem requests must transfer data.
1138	 */
1139	BUG_ON(!req->nr_phys_segments);
1140
1141	cmd = scsi_get_cmd_from_req(sdev, req);
1142	if (unlikely(!cmd))
1143		return BLKPREP_DEFER;
1144
1145	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1146	return scsi_init_io(cmd, GFP_ATOMIC);
1147}
1148EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1149
1150int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1151{
1152	int ret = BLKPREP_OK;
1153
1154	/*
1155	 * If the device is not in running state we will reject some
1156	 * or all commands.
1157	 */
1158	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1159		switch (sdev->sdev_state) {
1160		case SDEV_OFFLINE:
1161			/*
1162			 * If the device is offline we refuse to process any
1163			 * commands.  The device must be brought online
1164			 * before trying any recovery commands.
1165			 */
1166			sdev_printk(KERN_ERR, sdev,
1167				    "rejecting I/O to offline device\n");
1168			ret = BLKPREP_KILL;
1169			break;
1170		case SDEV_DEL:
1171			/*
1172			 * If the device is fully deleted, we refuse to
1173			 * process any commands as well.
1174			 */
1175			sdev_printk(KERN_ERR, sdev,
1176				    "rejecting I/O to dead device\n");
1177			ret = BLKPREP_KILL;
1178			break;
1179		case SDEV_QUIESCE:
1180		case SDEV_BLOCK:
1181		case SDEV_CREATED_BLOCK:
1182			/*
1183			 * If the devices is blocked we defer normal commands.
1184			 */
1185			if (!(req->cmd_flags & REQ_PREEMPT))
1186				ret = BLKPREP_DEFER;
1187			break;
1188		default:
1189			/*
1190			 * For any other not fully online state we only allow
1191			 * special commands.  In particular any user initiated
1192			 * command is not allowed.
1193			 */
1194			if (!(req->cmd_flags & REQ_PREEMPT))
1195				ret = BLKPREP_KILL;
1196			break;
1197		}
1198	}
1199	return ret;
1200}
1201EXPORT_SYMBOL(scsi_prep_state_check);
1202
1203int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1204{
1205	struct scsi_device *sdev = q->queuedata;
1206
1207	switch (ret) {
1208	case BLKPREP_KILL:
1209		req->errors = DID_NO_CONNECT << 16;
1210		/* release the command and kill it */
1211		if (req->special) {
1212			struct scsi_cmnd *cmd = req->special;
1213			scsi_release_buffers(cmd);
1214			scsi_put_command(cmd);
1215			req->special = NULL;
1216		}
1217		break;
1218	case BLKPREP_DEFER:
1219		/*
1220		 * If we defer, the blk_peek_request() returns NULL, but the
1221		 * queue must be restarted, so we plug here if no returning
1222		 * command will automatically do that.
1223		 */
1224		if (sdev->device_busy == 0)
1225			blk_plug_device(q);
1226		break;
1227	default:
1228		req->cmd_flags |= REQ_DONTPREP;
1229	}
1230
1231	return ret;
1232}
1233EXPORT_SYMBOL(scsi_prep_return);
1234
1235int scsi_prep_fn(struct request_queue *q, struct request *req)
1236{
1237	struct scsi_device *sdev = q->queuedata;
1238	int ret = BLKPREP_KILL;
1239
1240	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1241		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1242	return scsi_prep_return(q, req, ret);
1243}
1244EXPORT_SYMBOL(scsi_prep_fn);
1245
1246/*
1247 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1248 * return 0.
1249 *
1250 * Called with the queue_lock held.
1251 */
1252static inline int scsi_dev_queue_ready(struct request_queue *q,
1253				  struct scsi_device *sdev)
1254{
1255	if (sdev->device_busy == 0 && sdev->device_blocked) {
1256		/*
1257		 * unblock after device_blocked iterates to zero
1258		 */
1259		if (--sdev->device_blocked == 0) {
1260			SCSI_LOG_MLQUEUE(3,
1261				   sdev_printk(KERN_INFO, sdev,
1262				   "unblocking device at zero depth\n"));
1263		} else {
1264			blk_plug_device(q);
1265			return 0;
1266		}
1267	}
1268	if (scsi_device_is_busy(sdev))
1269		return 0;
1270
1271	return 1;
1272}
1273
1274
1275/*
1276 * scsi_target_queue_ready: checks if there we can send commands to target
1277 * @sdev: scsi device on starget to check.
1278 *
1279 * Called with the host lock held.
1280 */
1281static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1282					   struct scsi_device *sdev)
1283{
1284	struct scsi_target *starget = scsi_target(sdev);
1285
1286	if (starget->single_lun) {
1287		if (starget->starget_sdev_user &&
1288		    starget->starget_sdev_user != sdev)
1289			return 0;
1290		starget->starget_sdev_user = sdev;
1291	}
1292
1293	if (starget->target_busy == 0 && starget->target_blocked) {
1294		/*
1295		 * unblock after target_blocked iterates to zero
1296		 */
1297		if (--starget->target_blocked == 0) {
1298			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1299					 "unblocking target at zero depth\n"));
1300		} else
1301			return 0;
1302	}
1303
1304	if (scsi_target_is_busy(starget)) {
1305		if (list_empty(&sdev->starved_entry))
1306			list_add_tail(&sdev->starved_entry,
1307				      &shost->starved_list);
1308		return 0;
1309	}
1310
1311	/* We're OK to process the command, so we can't be starved */
1312	if (!list_empty(&sdev->starved_entry))
1313		list_del_init(&sdev->starved_entry);
1314	return 1;
1315}
1316
1317/*
1318 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1319 * return 0. We must end up running the queue again whenever 0 is
1320 * returned, else IO can hang.
1321 *
1322 * Called with host_lock held.
1323 */
1324static inline int scsi_host_queue_ready(struct request_queue *q,
1325				   struct Scsi_Host *shost,
1326				   struct scsi_device *sdev)
1327{
1328	if (scsi_host_in_recovery(shost))
1329		return 0;
1330	if (shost->host_busy == 0 && shost->host_blocked) {
1331		/*
1332		 * unblock after host_blocked iterates to zero
1333		 */
1334		if (--shost->host_blocked == 0) {
1335			SCSI_LOG_MLQUEUE(3,
1336				printk("scsi%d unblocking host at zero depth\n",
1337					shost->host_no));
1338		} else {
1339			return 0;
1340		}
1341	}
1342	if (scsi_host_is_busy(shost)) {
1343		if (list_empty(&sdev->starved_entry))
1344			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1345		return 0;
1346	}
1347
1348	/* We're OK to process the command, so we can't be starved */
1349	if (!list_empty(&sdev->starved_entry))
1350		list_del_init(&sdev->starved_entry);
1351
1352	return 1;
1353}
1354
1355/*
1356 * Busy state exporting function for request stacking drivers.
1357 *
1358 * For efficiency, no lock is taken to check the busy state of
1359 * shost/starget/sdev, since the returned value is not guaranteed and
1360 * may be changed after request stacking drivers call the function,
1361 * regardless of taking lock or not.
1362 *
1363 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1364 * (e.g. !sdev), scsi needs to return 'not busy'.
1365 * Otherwise, request stacking drivers may hold requests forever.
1366 */
1367static int scsi_lld_busy(struct request_queue *q)
1368{
1369	struct scsi_device *sdev = q->queuedata;
1370	struct Scsi_Host *shost;
1371	struct scsi_target *starget;
1372
1373	if (!sdev)
1374		return 0;
1375
1376	shost = sdev->host;
1377	starget = scsi_target(sdev);
1378
1379	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1380	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1381		return 1;
1382
1383	return 0;
1384}
1385
1386/*
1387 * Kill a request for a dead device
1388 */
1389static void scsi_kill_request(struct request *req, struct request_queue *q)
1390{
1391	struct scsi_cmnd *cmd = req->special;
1392	struct scsi_device *sdev;
1393	struct scsi_target *starget;
1394	struct Scsi_Host *shost;
1395
1396	blk_start_request(req);
1397
1398	sdev = cmd->device;
1399	starget = scsi_target(sdev);
1400	shost = sdev->host;
1401	scsi_init_cmd_errh(cmd);
1402	cmd->result = DID_NO_CONNECT << 16;
1403	atomic_inc(&cmd->device->iorequest_cnt);
1404
1405	/*
1406	 * SCSI request completion path will do scsi_device_unbusy(),
1407	 * bump busy counts.  To bump the counters, we need to dance
1408	 * with the locks as normal issue path does.
1409	 */
1410	sdev->device_busy++;
1411	spin_unlock(sdev->request_queue->queue_lock);
1412	spin_lock(shost->host_lock);
1413	shost->host_busy++;
1414	starget->target_busy++;
1415	spin_unlock(shost->host_lock);
1416	spin_lock(sdev->request_queue->queue_lock);
1417
1418	blk_complete_request(req);
1419}
1420
1421static void scsi_softirq_done(struct request *rq)
1422{
1423	struct scsi_cmnd *cmd = rq->special;
1424	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1425	int disposition;
1426
1427	INIT_LIST_HEAD(&cmd->eh_entry);
1428
1429	atomic_inc(&cmd->device->iodone_cnt);
1430	if (cmd->result)
1431		atomic_inc(&cmd->device->ioerr_cnt);
1432
1433	disposition = scsi_decide_disposition(cmd);
1434	if (disposition != SUCCESS &&
1435	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1436		sdev_printk(KERN_ERR, cmd->device,
1437			    "timing out command, waited %lus\n",
1438			    wait_for/HZ);
1439		disposition = SUCCESS;
1440	}
1441
1442	scsi_log_completion(cmd, disposition);
1443
1444	switch (disposition) {
1445		case SUCCESS:
1446			scsi_finish_command(cmd);
1447			break;
1448		case NEEDS_RETRY:
1449			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1450			break;
1451		case ADD_TO_MLQUEUE:
1452			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1453			break;
1454		default:
1455			if (!scsi_eh_scmd_add(cmd, 0))
1456				scsi_finish_command(cmd);
1457	}
1458}
1459
1460/*
1461 * Function:    scsi_request_fn()
1462 *
1463 * Purpose:     Main strategy routine for SCSI.
1464 *
1465 * Arguments:   q       - Pointer to actual queue.
1466 *
1467 * Returns:     Nothing
1468 *
1469 * Lock status: IO request lock assumed to be held when called.
1470 */
1471static void scsi_request_fn(struct request_queue *q)
1472{
1473	struct scsi_device *sdev = q->queuedata;
1474	struct Scsi_Host *shost;
1475	struct scsi_cmnd *cmd;
1476	struct request *req;
1477
1478	if (!sdev) {
1479		printk("scsi: killing requests for dead queue\n");
1480		while ((req = blk_peek_request(q)) != NULL)
1481			scsi_kill_request(req, q);
1482		return;
1483	}
1484
1485	if(!get_device(&sdev->sdev_gendev))
1486		/* We must be tearing the block queue down already */
1487		return;
1488
1489	/*
1490	 * To start with, we keep looping until the queue is empty, or until
1491	 * the host is no longer able to accept any more requests.
1492	 */
1493	shost = sdev->host;
1494	while (!blk_queue_plugged(q)) {
1495		int rtn;
1496		/*
1497		 * get next queueable request.  We do this early to make sure
1498		 * that the request is fully prepared even if we cannot
1499		 * accept it.
1500		 */
1501		req = blk_peek_request(q);
1502		if (!req || !scsi_dev_queue_ready(q, sdev))
1503			break;
1504
1505		if (unlikely(!scsi_device_online(sdev))) {
1506			sdev_printk(KERN_ERR, sdev,
1507				    "rejecting I/O to offline device\n");
1508			scsi_kill_request(req, q);
1509			continue;
1510		}
1511
1512
1513		/*
1514		 * Remove the request from the request list.
1515		 */
1516		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1517			blk_start_request(req);
1518		sdev->device_busy++;
1519
1520		spin_unlock(q->queue_lock);
1521		cmd = req->special;
1522		if (unlikely(cmd == NULL)) {
1523			printk(KERN_CRIT "impossible request in %s.\n"
1524					 "please mail a stack trace to "
1525					 "linux-scsi@vger.kernel.org\n",
1526					 __func__);
1527			blk_dump_rq_flags(req, "foo");
1528			BUG();
1529		}
1530		spin_lock(shost->host_lock);
1531
1532		/*
1533		 * We hit this when the driver is using a host wide
1534		 * tag map. For device level tag maps the queue_depth check
1535		 * in the device ready fn would prevent us from trying
1536		 * to allocate a tag. Since the map is a shared host resource
1537		 * we add the dev to the starved list so it eventually gets
1538		 * a run when a tag is freed.
1539		 */
1540		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1541			if (list_empty(&sdev->starved_entry))
1542				list_add_tail(&sdev->starved_entry,
1543					      &shost->starved_list);
1544			goto not_ready;
1545		}
1546
1547		if (!scsi_target_queue_ready(shost, sdev))
1548			goto not_ready;
1549
1550		if (!scsi_host_queue_ready(q, shost, sdev))
1551			goto not_ready;
1552
1553		scsi_target(sdev)->target_busy++;
1554		shost->host_busy++;
1555
1556		/*
1557		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1558		 *		take the lock again.
1559		 */
1560		spin_unlock_irq(shost->host_lock);
1561
1562		/*
1563		 * Finally, initialize any error handling parameters, and set up
1564		 * the timers for timeouts.
1565		 */
1566		scsi_init_cmd_errh(cmd);
1567
1568		/*
1569		 * Dispatch the command to the low-level driver.
1570		 */
1571		rtn = scsi_dispatch_cmd(cmd);
1572		spin_lock_irq(q->queue_lock);
1573		if(rtn) {
1574			/* we're refusing the command; because of
1575			 * the way locks get dropped, we need to
1576			 * check here if plugging is required */
1577			if(sdev->device_busy == 0)
1578				blk_plug_device(q);
1579
1580			break;
1581		}
1582	}
1583
1584	goto out;
1585
1586 not_ready:
1587	spin_unlock_irq(shost->host_lock);
1588
1589	/*
1590	 * lock q, handle tag, requeue req, and decrement device_busy. We
1591	 * must return with queue_lock held.
1592	 *
1593	 * Decrementing device_busy without checking it is OK, as all such
1594	 * cases (host limits or settings) should run the queue at some
1595	 * later time.
1596	 */
1597	spin_lock_irq(q->queue_lock);
1598	blk_requeue_request(q, req);
1599	sdev->device_busy--;
1600	if(sdev->device_busy == 0)
1601		blk_plug_device(q);
1602 out:
1603	/* must be careful here...if we trigger the ->remove() function
1604	 * we cannot be holding the q lock */
1605	spin_unlock_irq(q->queue_lock);
1606	put_device(&sdev->sdev_gendev);
1607	spin_lock_irq(q->queue_lock);
1608}
1609
1610u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1611{
1612	struct device *host_dev;
1613	u64 bounce_limit = 0xffffffff;
1614
1615	if (shost->unchecked_isa_dma)
1616		return BLK_BOUNCE_ISA;
1617	/*
1618	 * Platforms with virtual-DMA translation
1619	 * hardware have no practical limit.
1620	 */
1621	if (!PCI_DMA_BUS_IS_PHYS)
1622		return BLK_BOUNCE_ANY;
1623
1624	host_dev = scsi_get_device(shost);
1625	if (host_dev && host_dev->dma_mask)
1626		bounce_limit = *host_dev->dma_mask;
1627
1628	return bounce_limit;
1629}
1630EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1631
1632struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1633					 request_fn_proc *request_fn)
1634{
1635	struct request_queue *q;
1636	struct device *dev = shost->shost_gendev.parent;
1637
1638	q = blk_init_queue(request_fn, NULL);
1639	if (!q)
1640		return NULL;
1641
1642	/*
1643	 * this limit is imposed by hardware restrictions
1644	 */
1645	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1646					SCSI_MAX_SG_CHAIN_SEGMENTS));
1647
1648	if (scsi_host_prot_dma(shost)) {
1649		shost->sg_prot_tablesize =
1650			min_not_zero(shost->sg_prot_tablesize,
1651				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1652		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1653		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1654	}
1655
1656	blk_queue_max_hw_sectors(q, shost->max_sectors);
1657	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1658	blk_queue_segment_boundary(q, shost->dma_boundary);
1659	dma_set_seg_boundary(dev, shost->dma_boundary);
1660
1661	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1662
1663	if (!shost->use_clustering)
1664		q->limits.cluster = 0;
1665
1666	/*
1667	 * set a reasonable default alignment on word boundaries: the
1668	 * host and device may alter it using
1669	 * blk_queue_update_dma_alignment() later.
1670	 */
1671	blk_queue_dma_alignment(q, 0x03);
1672
1673	return q;
1674}
1675EXPORT_SYMBOL(__scsi_alloc_queue);
1676
1677struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1678{
1679	struct request_queue *q;
1680
1681	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1682	if (!q)
1683		return NULL;
1684
1685	blk_queue_prep_rq(q, scsi_prep_fn);
1686	blk_queue_softirq_done(q, scsi_softirq_done);
1687	blk_queue_rq_timed_out(q, scsi_times_out);
1688	blk_queue_lld_busy(q, scsi_lld_busy);
1689	return q;
1690}
1691
1692void scsi_free_queue(struct request_queue *q)
1693{
1694	blk_cleanup_queue(q);
1695}
1696
1697/*
1698 * Function:    scsi_block_requests()
1699 *
1700 * Purpose:     Utility function used by low-level drivers to prevent further
1701 *		commands from being queued to the device.
1702 *
1703 * Arguments:   shost       - Host in question
1704 *
1705 * Returns:     Nothing
1706 *
1707 * Lock status: No locks are assumed held.
1708 *
1709 * Notes:       There is no timer nor any other means by which the requests
1710 *		get unblocked other than the low-level driver calling
1711 *		scsi_unblock_requests().
1712 */
1713void scsi_block_requests(struct Scsi_Host *shost)
1714{
1715	shost->host_self_blocked = 1;
1716}
1717EXPORT_SYMBOL(scsi_block_requests);
1718
1719/*
1720 * Function:    scsi_unblock_requests()
1721 *
1722 * Purpose:     Utility function used by low-level drivers to allow further
1723 *		commands from being queued to the device.
1724 *
1725 * Arguments:   shost       - Host in question
1726 *
1727 * Returns:     Nothing
1728 *
1729 * Lock status: No locks are assumed held.
1730 *
1731 * Notes:       There is no timer nor any other means by which the requests
1732 *		get unblocked other than the low-level driver calling
1733 *		scsi_unblock_requests().
1734 *
1735 *		This is done as an API function so that changes to the
1736 *		internals of the scsi mid-layer won't require wholesale
1737 *		changes to drivers that use this feature.
1738 */
1739void scsi_unblock_requests(struct Scsi_Host *shost)
1740{
1741	shost->host_self_blocked = 0;
1742	scsi_run_host_queues(shost);
1743}
1744EXPORT_SYMBOL(scsi_unblock_requests);
1745
1746int __init scsi_init_queue(void)
1747{
1748	int i;
1749
1750	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1751					   sizeof(struct scsi_data_buffer),
1752					   0, 0, NULL);
1753	if (!scsi_sdb_cache) {
1754		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1755		return -ENOMEM;
1756	}
1757
1758	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1759		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1760		int size = sgp->size * sizeof(struct scatterlist);
1761
1762		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1763				SLAB_HWCACHE_ALIGN, NULL);
1764		if (!sgp->slab) {
1765			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1766					sgp->name);
1767			goto cleanup_sdb;
1768		}
1769
1770		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1771						     sgp->slab);
1772		if (!sgp->pool) {
1773			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1774					sgp->name);
1775			goto cleanup_sdb;
1776		}
1777	}
1778
1779	return 0;
1780
1781cleanup_sdb:
1782	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1783		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1784		if (sgp->pool)
1785			mempool_destroy(sgp->pool);
1786		if (sgp->slab)
1787			kmem_cache_destroy(sgp->slab);
1788	}
1789	kmem_cache_destroy(scsi_sdb_cache);
1790
1791	return -ENOMEM;
1792}
1793
1794void scsi_exit_queue(void)
1795{
1796	int i;
1797
1798	kmem_cache_destroy(scsi_sdb_cache);
1799
1800	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1801		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1802		mempool_destroy(sgp->pool);
1803		kmem_cache_destroy(sgp->slab);
1804	}
1805}
1806
1807/**
1808 *	scsi_mode_select - issue a mode select
1809 *	@sdev:	SCSI device to be queried
1810 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1811 *	@sp:	Save page bit (0 == don't save, 1 == save)
1812 *	@modepage: mode page being requested
1813 *	@buffer: request buffer (may not be smaller than eight bytes)
1814 *	@len:	length of request buffer.
1815 *	@timeout: command timeout
1816 *	@retries: number of retries before failing
1817 *	@data: returns a structure abstracting the mode header data
1818 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1819 *		must be SCSI_SENSE_BUFFERSIZE big.
1820 *
1821 *	Returns zero if successful; negative error number or scsi
1822 *	status on error
1823 *
1824 */
1825int
1826scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1827		 unsigned char *buffer, int len, int timeout, int retries,
1828		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1829{
1830	unsigned char cmd[10];
1831	unsigned char *real_buffer;
1832	int ret;
1833
1834	memset(cmd, 0, sizeof(cmd));
1835	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1836
1837	if (sdev->use_10_for_ms) {
1838		if (len > 65535)
1839			return -EINVAL;
1840		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1841		if (!real_buffer)
1842			return -ENOMEM;
1843		memcpy(real_buffer + 8, buffer, len);
1844		len += 8;
1845		real_buffer[0] = 0;
1846		real_buffer[1] = 0;
1847		real_buffer[2] = data->medium_type;
1848		real_buffer[3] = data->device_specific;
1849		real_buffer[4] = data->longlba ? 0x01 : 0;
1850		real_buffer[5] = 0;
1851		real_buffer[6] = data->block_descriptor_length >> 8;
1852		real_buffer[7] = data->block_descriptor_length;
1853
1854		cmd[0] = MODE_SELECT_10;
1855		cmd[7] = len >> 8;
1856		cmd[8] = len;
1857	} else {
1858		if (len > 255 || data->block_descriptor_length > 255 ||
1859		    data->longlba)
1860			return -EINVAL;
1861
1862		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1863		if (!real_buffer)
1864			return -ENOMEM;
1865		memcpy(real_buffer + 4, buffer, len);
1866		len += 4;
1867		real_buffer[0] = 0;
1868		real_buffer[1] = data->medium_type;
1869		real_buffer[2] = data->device_specific;
1870		real_buffer[3] = data->block_descriptor_length;
1871
1872
1873		cmd[0] = MODE_SELECT;
1874		cmd[4] = len;
1875	}
1876
1877	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1878			       sshdr, timeout, retries, NULL);
1879	kfree(real_buffer);
1880	return ret;
1881}
1882EXPORT_SYMBOL_GPL(scsi_mode_select);
1883
1884/**
1885 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1886 *	@sdev:	SCSI device to be queried
1887 *	@dbd:	set if mode sense will allow block descriptors to be returned
1888 *	@modepage: mode page being requested
1889 *	@buffer: request buffer (may not be smaller than eight bytes)
1890 *	@len:	length of request buffer.
1891 *	@timeout: command timeout
1892 *	@retries: number of retries before failing
1893 *	@data: returns a structure abstracting the mode header data
1894 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1895 *		must be SCSI_SENSE_BUFFERSIZE big.
1896 *
1897 *	Returns zero if unsuccessful, or the header offset (either 4
1898 *	or 8 depending on whether a six or ten byte command was
1899 *	issued) if successful.
1900 */
1901int
1902scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1903		  unsigned char *buffer, int len, int timeout, int retries,
1904		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1905{
1906	unsigned char cmd[12];
1907	int use_10_for_ms;
1908	int header_length;
1909	int result;
1910	struct scsi_sense_hdr my_sshdr;
1911
1912	memset(data, 0, sizeof(*data));
1913	memset(&cmd[0], 0, 12);
1914	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1915	cmd[2] = modepage;
1916
1917	/* caller might not be interested in sense, but we need it */
1918	if (!sshdr)
1919		sshdr = &my_sshdr;
1920
1921 retry:
1922	use_10_for_ms = sdev->use_10_for_ms;
1923
1924	if (use_10_for_ms) {
1925		if (len < 8)
1926			len = 8;
1927
1928		cmd[0] = MODE_SENSE_10;
1929		cmd[8] = len;
1930		header_length = 8;
1931	} else {
1932		if (len < 4)
1933			len = 4;
1934
1935		cmd[0] = MODE_SENSE;
1936		cmd[4] = len;
1937		header_length = 4;
1938	}
1939
1940	memset(buffer, 0, len);
1941
1942	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1943				  sshdr, timeout, retries, NULL);
1944
1945	/* This code looks awful: what it's doing is making sure an
1946	 * ILLEGAL REQUEST sense return identifies the actual command
1947	 * byte as the problem.  MODE_SENSE commands can return
1948	 * ILLEGAL REQUEST if the code page isn't supported */
1949
1950	if (use_10_for_ms && !scsi_status_is_good(result) &&
1951	    (driver_byte(result) & DRIVER_SENSE)) {
1952		if (scsi_sense_valid(sshdr)) {
1953			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1954			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1955				/*
1956				 * Invalid command operation code
1957				 */
1958				sdev->use_10_for_ms = 0;
1959				goto retry;
1960			}
1961		}
1962	}
1963
1964	if(scsi_status_is_good(result)) {
1965		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1966			     (modepage == 6 || modepage == 8))) {
1967			/* Initio breakage? */
1968			header_length = 0;
1969			data->length = 13;
1970			data->medium_type = 0;
1971			data->device_specific = 0;
1972			data->longlba = 0;
1973			data->block_descriptor_length = 0;
1974		} else if(use_10_for_ms) {
1975			data->length = buffer[0]*256 + buffer[1] + 2;
1976			data->medium_type = buffer[2];
1977			data->device_specific = buffer[3];
1978			data->longlba = buffer[4] & 0x01;
1979			data->block_descriptor_length = buffer[6]*256
1980				+ buffer[7];
1981		} else {
1982			data->length = buffer[0] + 1;
1983			data->medium_type = buffer[1];
1984			data->device_specific = buffer[2];
1985			data->block_descriptor_length = buffer[3];
1986		}
1987		data->header_length = header_length;
1988	}
1989
1990	return result;
1991}
1992EXPORT_SYMBOL(scsi_mode_sense);
1993
1994/**
1995 *	scsi_test_unit_ready - test if unit is ready
1996 *	@sdev:	scsi device to change the state of.
1997 *	@timeout: command timeout
1998 *	@retries: number of retries before failing
1999 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2000 *		returning sense. Make sure that this is cleared before passing
2001 *		in.
2002 *
2003 *	Returns zero if unsuccessful or an error if TUR failed.  For
2004 *	removable media, UNIT_ATTENTION sets ->changed flag.
2005 **/
2006int
2007scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2008		     struct scsi_sense_hdr *sshdr_external)
2009{
2010	char cmd[] = {
2011		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2012	};
2013	struct scsi_sense_hdr *sshdr;
2014	int result;
2015
2016	if (!sshdr_external)
2017		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2018	else
2019		sshdr = sshdr_external;
2020
2021	/* try to eat the UNIT_ATTENTION if there are enough retries */
2022	do {
2023		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2024					  timeout, retries, NULL);
2025		if (sdev->removable && scsi_sense_valid(sshdr) &&
2026		    sshdr->sense_key == UNIT_ATTENTION)
2027			sdev->changed = 1;
2028	} while (scsi_sense_valid(sshdr) &&
2029		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2030
2031	if (!sshdr_external)
2032		kfree(sshdr);
2033	return result;
2034}
2035EXPORT_SYMBOL(scsi_test_unit_ready);
2036
2037/**
2038 *	scsi_device_set_state - Take the given device through the device state model.
2039 *	@sdev:	scsi device to change the state of.
2040 *	@state:	state to change to.
2041 *
2042 *	Returns zero if unsuccessful or an error if the requested
2043 *	transition is illegal.
2044 */
2045int
2046scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2047{
2048	enum scsi_device_state oldstate = sdev->sdev_state;
2049
2050	if (state == oldstate)
2051		return 0;
2052
2053	switch (state) {
2054	case SDEV_CREATED:
2055		switch (oldstate) {
2056		case SDEV_CREATED_BLOCK:
2057			break;
2058		default:
2059			goto illegal;
2060		}
2061		break;
2062
2063	case SDEV_RUNNING:
2064		switch (oldstate) {
2065		case SDEV_CREATED:
2066		case SDEV_OFFLINE:
2067		case SDEV_QUIESCE:
2068		case SDEV_BLOCK:
2069			break;
2070		default:
2071			goto illegal;
2072		}
2073		break;
2074
2075	case SDEV_QUIESCE:
2076		switch (oldstate) {
2077		case SDEV_RUNNING:
2078		case SDEV_OFFLINE:
2079			break;
2080		default:
2081			goto illegal;
2082		}
2083		break;
2084
2085	case SDEV_OFFLINE:
2086		switch (oldstate) {
2087		case SDEV_CREATED:
2088		case SDEV_RUNNING:
2089		case SDEV_QUIESCE:
2090		case SDEV_BLOCK:
2091			break;
2092		default:
2093			goto illegal;
2094		}
2095		break;
2096
2097	case SDEV_BLOCK:
2098		switch (oldstate) {
2099		case SDEV_RUNNING:
2100		case SDEV_CREATED_BLOCK:
2101			break;
2102		default:
2103			goto illegal;
2104		}
2105		break;
2106
2107	case SDEV_CREATED_BLOCK:
2108		switch (oldstate) {
2109		case SDEV_CREATED:
2110			break;
2111		default:
2112			goto illegal;
2113		}
2114		break;
2115
2116	case SDEV_CANCEL:
2117		switch (oldstate) {
2118		case SDEV_CREATED:
2119		case SDEV_RUNNING:
2120		case SDEV_QUIESCE:
2121		case SDEV_OFFLINE:
2122		case SDEV_BLOCK:
2123			break;
2124		default:
2125			goto illegal;
2126		}
2127		break;
2128
2129	case SDEV_DEL:
2130		switch (oldstate) {
2131		case SDEV_CREATED:
2132		case SDEV_RUNNING:
2133		case SDEV_OFFLINE:
2134		case SDEV_CANCEL:
2135			break;
2136		default:
2137			goto illegal;
2138		}
2139		break;
2140
2141	}
2142	sdev->sdev_state = state;
2143	return 0;
2144
2145 illegal:
2146	SCSI_LOG_ERROR_RECOVERY(1,
2147				sdev_printk(KERN_ERR, sdev,
2148					    "Illegal state transition %s->%s\n",
2149					    scsi_device_state_name(oldstate),
2150					    scsi_device_state_name(state))
2151				);
2152	return -EINVAL;
2153}
2154EXPORT_SYMBOL(scsi_device_set_state);
2155
2156/**
2157 * 	sdev_evt_emit - emit a single SCSI device uevent
2158 *	@sdev: associated SCSI device
2159 *	@evt: event to emit
2160 *
2161 *	Send a single uevent (scsi_event) to the associated scsi_device.
2162 */
2163static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2164{
2165	int idx = 0;
2166	char *envp[3];
2167
2168	switch (evt->evt_type) {
2169	case SDEV_EVT_MEDIA_CHANGE:
2170		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2171		break;
2172
2173	default:
2174		/* do nothing */
2175		break;
2176	}
2177
2178	envp[idx++] = NULL;
2179
2180	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2181}
2182
2183/**
2184 * 	sdev_evt_thread - send a uevent for each scsi event
2185 *	@work: work struct for scsi_device
2186 *
2187 *	Dispatch queued events to their associated scsi_device kobjects
2188 *	as uevents.
2189 */
2190void scsi_evt_thread(struct work_struct *work)
2191{
2192	struct scsi_device *sdev;
2193	LIST_HEAD(event_list);
2194
2195	sdev = container_of(work, struct scsi_device, event_work);
2196
2197	while (1) {
2198		struct scsi_event *evt;
2199		struct list_head *this, *tmp;
2200		unsigned long flags;
2201
2202		spin_lock_irqsave(&sdev->list_lock, flags);
2203		list_splice_init(&sdev->event_list, &event_list);
2204		spin_unlock_irqrestore(&sdev->list_lock, flags);
2205
2206		if (list_empty(&event_list))
2207			break;
2208
2209		list_for_each_safe(this, tmp, &event_list) {
2210			evt = list_entry(this, struct scsi_event, node);
2211			list_del(&evt->node);
2212			scsi_evt_emit(sdev, evt);
2213			kfree(evt);
2214		}
2215	}
2216}
2217
2218/**
2219 * 	sdev_evt_send - send asserted event to uevent thread
2220 *	@sdev: scsi_device event occurred on
2221 *	@evt: event to send
2222 *
2223 *	Assert scsi device event asynchronously.
2224 */
2225void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2226{
2227	unsigned long flags;
2228
2229#if 0
2230	/* FIXME: currently this check eliminates all media change events
2231	 * for polled devices.  Need to update to discriminate between AN
2232	 * and polled events */
2233	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2234		kfree(evt);
2235		return;
2236	}
2237#endif
2238
2239	spin_lock_irqsave(&sdev->list_lock, flags);
2240	list_add_tail(&evt->node, &sdev->event_list);
2241	schedule_work(&sdev->event_work);
2242	spin_unlock_irqrestore(&sdev->list_lock, flags);
2243}
2244EXPORT_SYMBOL_GPL(sdev_evt_send);
2245
2246/**
2247 * 	sdev_evt_alloc - allocate a new scsi event
2248 *	@evt_type: type of event to allocate
2249 *	@gfpflags: GFP flags for allocation
2250 *
2251 *	Allocates and returns a new scsi_event.
2252 */
2253struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2254				  gfp_t gfpflags)
2255{
2256	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2257	if (!evt)
2258		return NULL;
2259
2260	evt->evt_type = evt_type;
2261	INIT_LIST_HEAD(&evt->node);
2262
2263	/* evt_type-specific initialization, if any */
2264	switch (evt_type) {
2265	case SDEV_EVT_MEDIA_CHANGE:
2266	default:
2267		/* do nothing */
2268		break;
2269	}
2270
2271	return evt;
2272}
2273EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2274
2275/**
2276 * 	sdev_evt_send_simple - send asserted event to uevent thread
2277 *	@sdev: scsi_device event occurred on
2278 *	@evt_type: type of event to send
2279 *	@gfpflags: GFP flags for allocation
2280 *
2281 *	Assert scsi device event asynchronously, given an event type.
2282 */
2283void sdev_evt_send_simple(struct scsi_device *sdev,
2284			  enum scsi_device_event evt_type, gfp_t gfpflags)
2285{
2286	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2287	if (!evt) {
2288		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2289			    evt_type);
2290		return;
2291	}
2292
2293	sdev_evt_send(sdev, evt);
2294}
2295EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2296
2297/**
2298 *	scsi_device_quiesce - Block user issued commands.
2299 *	@sdev:	scsi device to quiesce.
2300 *
2301 *	This works by trying to transition to the SDEV_QUIESCE state
2302 *	(which must be a legal transition).  When the device is in this
2303 *	state, only special requests will be accepted, all others will
2304 *	be deferred.  Since special requests may also be requeued requests,
2305 *	a successful return doesn't guarantee the device will be
2306 *	totally quiescent.
2307 *
2308 *	Must be called with user context, may sleep.
2309 *
2310 *	Returns zero if unsuccessful or an error if not.
2311 */
2312int
2313scsi_device_quiesce(struct scsi_device *sdev)
2314{
2315	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2316	if (err)
2317		return err;
2318
2319	scsi_run_queue(sdev->request_queue);
2320	while (sdev->device_busy) {
2321		msleep_interruptible(200);
2322		scsi_run_queue(sdev->request_queue);
2323	}
2324	return 0;
2325}
2326EXPORT_SYMBOL(scsi_device_quiesce);
2327
2328/**
2329 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2330 *	@sdev:	scsi device to resume.
2331 *
2332 *	Moves the device from quiesced back to running and restarts the
2333 *	queues.
2334 *
2335 *	Must be called with user context, may sleep.
2336 */
2337void
2338scsi_device_resume(struct scsi_device *sdev)
2339{
2340	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2341		return;
2342	scsi_run_queue(sdev->request_queue);
2343}
2344EXPORT_SYMBOL(scsi_device_resume);
2345
2346static void
2347device_quiesce_fn(struct scsi_device *sdev, void *data)
2348{
2349	scsi_device_quiesce(sdev);
2350}
2351
2352void
2353scsi_target_quiesce(struct scsi_target *starget)
2354{
2355	starget_for_each_device(starget, NULL, device_quiesce_fn);
2356}
2357EXPORT_SYMBOL(scsi_target_quiesce);
2358
2359static void
2360device_resume_fn(struct scsi_device *sdev, void *data)
2361{
2362	scsi_device_resume(sdev);
2363}
2364
2365void
2366scsi_target_resume(struct scsi_target *starget)
2367{
2368	starget_for_each_device(starget, NULL, device_resume_fn);
2369}
2370EXPORT_SYMBOL(scsi_target_resume);
2371
2372/**
2373 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2374 * @sdev:	device to block
2375 *
2376 * Block request made by scsi lld's to temporarily stop all
2377 * scsi commands on the specified device.  Called from interrupt
2378 * or normal process context.
2379 *
2380 * Returns zero if successful or error if not
2381 *
2382 * Notes:
2383 *	This routine transitions the device to the SDEV_BLOCK state
2384 *	(which must be a legal transition).  When the device is in this
2385 *	state, all commands are deferred until the scsi lld reenables
2386 *	the device with scsi_device_unblock or device_block_tmo fires.
2387 *	This routine assumes the host_lock is held on entry.
2388 */
2389int
2390scsi_internal_device_block(struct scsi_device *sdev)
2391{
2392	struct request_queue *q = sdev->request_queue;
2393	unsigned long flags;
2394	int err = 0;
2395
2396	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2397	if (err) {
2398		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2399
2400		if (err)
2401			return err;
2402	}
2403
2404	/*
2405	 * The device has transitioned to SDEV_BLOCK.  Stop the
2406	 * block layer from calling the midlayer with this device's
2407	 * request queue.
2408	 */
2409	spin_lock_irqsave(q->queue_lock, flags);
2410	blk_stop_queue(q);
2411	spin_unlock_irqrestore(q->queue_lock, flags);
2412
2413	return 0;
2414}
2415EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2416
2417/**
2418 * scsi_internal_device_unblock - resume a device after a block request
2419 * @sdev:	device to resume
2420 *
2421 * Called by scsi lld's or the midlayer to restart the device queue
2422 * for the previously suspended scsi device.  Called from interrupt or
2423 * normal process context.
2424 *
2425 * Returns zero if successful or error if not.
2426 *
2427 * Notes:
2428 *	This routine transitions the device to the SDEV_RUNNING state
2429 *	(which must be a legal transition) allowing the midlayer to
2430 *	goose the queue for this device.  This routine assumes the
2431 *	host_lock is held upon entry.
2432 */
2433int
2434scsi_internal_device_unblock(struct scsi_device *sdev)
2435{
2436	struct request_queue *q = sdev->request_queue;
2437	unsigned long flags;
2438
2439	/*
2440	 * Try to transition the scsi device to SDEV_RUNNING
2441	 * and goose the device queue if successful.
2442	 */
2443	if (sdev->sdev_state == SDEV_BLOCK)
2444		sdev->sdev_state = SDEV_RUNNING;
2445	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2446		sdev->sdev_state = SDEV_CREATED;
2447	else if (sdev->sdev_state != SDEV_CANCEL &&
2448		 sdev->sdev_state != SDEV_OFFLINE)
2449		return -EINVAL;
2450
2451	spin_lock_irqsave(q->queue_lock, flags);
2452	blk_start_queue(q);
2453	spin_unlock_irqrestore(q->queue_lock, flags);
2454
2455	return 0;
2456}
2457EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2458
2459static void
2460device_block(struct scsi_device *sdev, void *data)
2461{
2462	scsi_internal_device_block(sdev);
2463}
2464
2465static int
2466target_block(struct device *dev, void *data)
2467{
2468	if (scsi_is_target_device(dev))
2469		starget_for_each_device(to_scsi_target(dev), NULL,
2470					device_block);
2471	return 0;
2472}
2473
2474void
2475scsi_target_block(struct device *dev)
2476{
2477	if (scsi_is_target_device(dev))
2478		starget_for_each_device(to_scsi_target(dev), NULL,
2479					device_block);
2480	else
2481		device_for_each_child(dev, NULL, target_block);
2482}
2483EXPORT_SYMBOL_GPL(scsi_target_block);
2484
2485static void
2486device_unblock(struct scsi_device *sdev, void *data)
2487{
2488	scsi_internal_device_unblock(sdev);
2489}
2490
2491static int
2492target_unblock(struct device *dev, void *data)
2493{
2494	if (scsi_is_target_device(dev))
2495		starget_for_each_device(to_scsi_target(dev), NULL,
2496					device_unblock);
2497	return 0;
2498}
2499
2500void
2501scsi_target_unblock(struct device *dev)
2502{
2503	if (scsi_is_target_device(dev))
2504		starget_for_each_device(to_scsi_target(dev), NULL,
2505					device_unblock);
2506	else
2507		device_for_each_child(dev, NULL, target_unblock);
2508}
2509EXPORT_SYMBOL_GPL(scsi_target_unblock);
2510
2511/**
2512 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2513 * @sgl:	scatter-gather list
2514 * @sg_count:	number of segments in sg
2515 * @offset:	offset in bytes into sg, on return offset into the mapped area
2516 * @len:	bytes to map, on return number of bytes mapped
2517 *
2518 * Returns virtual address of the start of the mapped page
2519 */
2520void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2521			  size_t *offset, size_t *len)
2522{
2523	int i;
2524	size_t sg_len = 0, len_complete = 0;
2525	struct scatterlist *sg;
2526	struct page *page;
2527
2528	WARN_ON(!irqs_disabled());
2529
2530	for_each_sg(sgl, sg, sg_count, i) {
2531		len_complete = sg_len; /* Complete sg-entries */
2532		sg_len += sg->length;
2533		if (sg_len > *offset)
2534			break;
2535	}
2536
2537	if (unlikely(i == sg_count)) {
2538		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2539			"elements %d\n",
2540		       __func__, sg_len, *offset, sg_count);
2541		WARN_ON(1);
2542		return NULL;
2543	}
2544
2545	/* Offset starting from the beginning of first page in this sg-entry */
2546	*offset = *offset - len_complete + sg->offset;
2547
2548	/* Assumption: contiguous pages can be accessed as "page + i" */
2549	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2550	*offset &= ~PAGE_MASK;
2551
2552	/* Bytes in this sg-entry from *offset to the end of the page */
2553	sg_len = PAGE_SIZE - *offset;
2554	if (*len > sg_len)
2555		*len = sg_len;
2556
2557	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2558}
2559EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2560
2561/**
2562 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2563 * @virt:	virtual address to be unmapped
2564 */
2565void scsi_kunmap_atomic_sg(void *virt)
2566{
2567	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2568}
2569EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2570