scsi_lib.c revision 6470f2ba641cf93d357854cdc63a65350352bb97
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19#include <linux/hardirq.h>
20
21#include <scsi/scsi.h>
22#include <scsi/scsi_cmnd.h>
23#include <scsi/scsi_dbg.h>
24#include <scsi/scsi_device.h>
25#include <scsi/scsi_driver.h>
26#include <scsi/scsi_eh.h>
27#include <scsi/scsi_host.h>
28
29#include "scsi_priv.h"
30#include "scsi_logging.h"
31
32
33#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
34#define SG_MEMPOOL_SIZE		32
35
36struct scsi_host_sg_pool {
37	size_t		size;
38	char		*name;
39	kmem_cache_t	*slab;
40	mempool_t	*pool;
41};
42
43#if (SCSI_MAX_PHYS_SEGMENTS < 32)
44#error SCSI_MAX_PHYS_SEGMENTS is too small
45#endif
46
47#define SP(x) { x, "sgpool-" #x }
48static struct scsi_host_sg_pool scsi_sg_pools[] = {
49	SP(8),
50	SP(16),
51	SP(32),
52#if (SCSI_MAX_PHYS_SEGMENTS > 32)
53	SP(64),
54#if (SCSI_MAX_PHYS_SEGMENTS > 64)
55	SP(128),
56#if (SCSI_MAX_PHYS_SEGMENTS > 128)
57	SP(256),
58#if (SCSI_MAX_PHYS_SEGMENTS > 256)
59#error SCSI_MAX_PHYS_SEGMENTS is too large
60#endif
61#endif
62#endif
63#endif
64};
65#undef SP
66
67static void scsi_run_queue(struct request_queue *q);
68
69/*
70 * Function:	scsi_unprep_request()
71 *
72 * Purpose:	Remove all preparation done for a request, including its
73 *		associated scsi_cmnd, so that it can be requeued.
74 *
75 * Arguments:	req	- request to unprepare
76 *
77 * Lock status:	Assumed that no locks are held upon entry.
78 *
79 * Returns:	Nothing.
80 */
81static void scsi_unprep_request(struct request *req)
82{
83	struct scsi_cmnd *cmd = req->special;
84
85	req->flags &= ~REQ_DONTPREP;
86	req->special = NULL;
87
88	scsi_put_command(cmd);
89}
90
91/*
92 * Function:    scsi_queue_insert()
93 *
94 * Purpose:     Insert a command in the midlevel queue.
95 *
96 * Arguments:   cmd    - command that we are adding to queue.
97 *              reason - why we are inserting command to queue.
98 *
99 * Lock status: Assumed that lock is not held upon entry.
100 *
101 * Returns:     Nothing.
102 *
103 * Notes:       We do this for one of two cases.  Either the host is busy
104 *              and it cannot accept any more commands for the time being,
105 *              or the device returned QUEUE_FULL and can accept no more
106 *              commands.
107 * Notes:       This could be called either from an interrupt context or a
108 *              normal process context.
109 */
110int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111{
112	struct Scsi_Host *host = cmd->device->host;
113	struct scsi_device *device = cmd->device;
114	struct request_queue *q = device->request_queue;
115	unsigned long flags;
116
117	SCSI_LOG_MLQUEUE(1,
118		 printk("Inserting command %p into mlqueue\n", cmd));
119
120	/*
121	 * Set the appropriate busy bit for the device/host.
122	 *
123	 * If the host/device isn't busy, assume that something actually
124	 * completed, and that we should be able to queue a command now.
125	 *
126	 * Note that the prior mid-layer assumption that any host could
127	 * always queue at least one command is now broken.  The mid-layer
128	 * will implement a user specifiable stall (see
129	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130	 * if a command is requeued with no other commands outstanding
131	 * either for the device or for the host.
132	 */
133	if (reason == SCSI_MLQUEUE_HOST_BUSY)
134		host->host_blocked = host->max_host_blocked;
135	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136		device->device_blocked = device->max_device_blocked;
137
138	/*
139	 * Decrement the counters, since these commands are no longer
140	 * active on the host/device.
141	 */
142	scsi_device_unbusy(device);
143
144	/*
145	 * Requeue this command.  It will go before all other commands
146	 * that are already in the queue.
147	 *
148	 * NOTE: there is magic here about the way the queue is plugged if
149	 * we have no outstanding commands.
150	 *
151	 * Although we *don't* plug the queue, we call the request
152	 * function.  The SCSI request function detects the blocked condition
153	 * and plugs the queue appropriately.
154         */
155	spin_lock_irqsave(q->queue_lock, flags);
156	blk_requeue_request(q, cmd->request);
157	spin_unlock_irqrestore(q->queue_lock, flags);
158
159	scsi_run_queue(q);
160
161	return 0;
162}
163
164/**
165 * scsi_execute - insert request and wait for the result
166 * @sdev:	scsi device
167 * @cmd:	scsi command
168 * @data_direction: data direction
169 * @buffer:	data buffer
170 * @bufflen:	len of buffer
171 * @sense:	optional sense buffer
172 * @timeout:	request timeout in seconds
173 * @retries:	number of times to retry request
174 * @flags:	or into request flags;
175 *
176 * returns the req->errors value which is the the scsi_cmnd result
177 * field.
178 **/
179int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180		 int data_direction, void *buffer, unsigned bufflen,
181		 unsigned char *sense, int timeout, int retries, int flags)
182{
183	struct request *req;
184	int write = (data_direction == DMA_TO_DEVICE);
185	int ret = DRIVER_ERROR << 24;
186
187	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
190					buffer, bufflen, __GFP_WAIT))
191		goto out;
192
193	req->cmd_len = COMMAND_SIZE(cmd[0]);
194	memcpy(req->cmd, cmd, req->cmd_len);
195	req->sense = sense;
196	req->sense_len = 0;
197	req->retries = retries;
198	req->timeout = timeout;
199	req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
200
201	/*
202	 * head injection *required* here otherwise quiesce won't work
203	 */
204	blk_execute_rq(req->q, NULL, req, 1);
205
206	ret = req->errors;
207 out:
208	blk_put_request(req);
209
210	return ret;
211}
212EXPORT_SYMBOL(scsi_execute);
213
214
215int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
216		     int data_direction, void *buffer, unsigned bufflen,
217		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
218{
219	char *sense = NULL;
220	int result;
221
222	if (sshdr) {
223		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
224		if (!sense)
225			return DRIVER_ERROR << 24;
226	}
227	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
228			      sense, timeout, retries, 0);
229	if (sshdr)
230		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
231
232	kfree(sense);
233	return result;
234}
235EXPORT_SYMBOL(scsi_execute_req);
236
237struct scsi_io_context {
238	void *data;
239	void (*done)(void *data, char *sense, int result, int resid);
240	char sense[SCSI_SENSE_BUFFERSIZE];
241};
242
243static kmem_cache_t *scsi_io_context_cache;
244
245static void scsi_end_async(struct request *req, int uptodate)
246{
247	struct scsi_io_context *sioc = req->end_io_data;
248
249	if (sioc->done)
250		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
251
252	kmem_cache_free(scsi_io_context_cache, sioc);
253	__blk_put_request(req->q, req);
254}
255
256static int scsi_merge_bio(struct request *rq, struct bio *bio)
257{
258	struct request_queue *q = rq->q;
259
260	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
261	if (rq_data_dir(rq) == WRITE)
262		bio->bi_rw |= (1 << BIO_RW);
263	blk_queue_bounce(q, &bio);
264
265	if (!rq->bio)
266		blk_rq_bio_prep(q, rq, bio);
267	else if (!q->back_merge_fn(q, rq, bio))
268		return -EINVAL;
269	else {
270		rq->biotail->bi_next = bio;
271		rq->biotail = bio;
272		rq->hard_nr_sectors += bio_sectors(bio);
273		rq->nr_sectors = rq->hard_nr_sectors;
274	}
275
276	return 0;
277}
278
279static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
280{
281	if (bio->bi_size)
282		return 1;
283
284	bio_put(bio);
285	return 0;
286}
287
288/**
289 * scsi_req_map_sg - map a scatterlist into a request
290 * @rq:		request to fill
291 * @sg:		scatterlist
292 * @nsegs:	number of elements
293 * @bufflen:	len of buffer
294 * @gfp:	memory allocation flags
295 *
296 * scsi_req_map_sg maps a scatterlist into a request so that the
297 * request can be sent to the block layer. We do not trust the scatterlist
298 * sent to use, as some ULDs use that struct to only organize the pages.
299 */
300static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
301			   int nsegs, unsigned bufflen, gfp_t gfp)
302{
303	struct request_queue *q = rq->q;
304	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
305	unsigned int data_len = 0, len, bytes, off;
306	struct page *page;
307	struct bio *bio = NULL;
308	int i, err, nr_vecs = 0;
309
310	for (i = 0; i < nsegs; i++) {
311		page = sgl[i].page;
312		off = sgl[i].offset;
313		len = sgl[i].length;
314		data_len += len;
315
316		while (len > 0) {
317			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
318
319			if (!bio) {
320				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
321				nr_pages -= nr_vecs;
322
323				bio = bio_alloc(gfp, nr_vecs);
324				if (!bio) {
325					err = -ENOMEM;
326					goto free_bios;
327				}
328				bio->bi_end_io = scsi_bi_endio;
329			}
330
331			if (bio_add_pc_page(q, bio, page, bytes, off) !=
332			    bytes) {
333				bio_put(bio);
334				err = -EINVAL;
335				goto free_bios;
336			}
337
338			if (bio->bi_vcnt >= nr_vecs) {
339				err = scsi_merge_bio(rq, bio);
340				if (err) {
341					bio_endio(bio, bio->bi_size, 0);
342					goto free_bios;
343				}
344				bio = NULL;
345			}
346
347			page++;
348			len -= bytes;
349			off = 0;
350		}
351	}
352
353	rq->buffer = rq->data = NULL;
354	rq->data_len = data_len;
355	return 0;
356
357free_bios:
358	while ((bio = rq->bio) != NULL) {
359		rq->bio = bio->bi_next;
360		/*
361		 * call endio instead of bio_put incase it was bounced
362		 */
363		bio_endio(bio, bio->bi_size, 0);
364	}
365
366	return err;
367}
368
369/**
370 * scsi_execute_async - insert request
371 * @sdev:	scsi device
372 * @cmd:	scsi command
373 * @cmd_len:	length of scsi cdb
374 * @data_direction: data direction
375 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
376 * @bufflen:	len of buffer
377 * @use_sg:	if buffer is a scatterlist this is the number of elements
378 * @timeout:	request timeout in seconds
379 * @retries:	number of times to retry request
380 * @flags:	or into request flags
381 **/
382int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
383		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
384		       int use_sg, int timeout, int retries, void *privdata,
385		       void (*done)(void *, char *, int, int), gfp_t gfp)
386{
387	struct request *req;
388	struct scsi_io_context *sioc;
389	int err = 0;
390	int write = (data_direction == DMA_TO_DEVICE);
391
392	sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
393	if (!sioc)
394		return DRIVER_ERROR << 24;
395	memset(sioc, 0, sizeof(*sioc));
396
397	req = blk_get_request(sdev->request_queue, write, gfp);
398	if (!req)
399		goto free_sense;
400	req->flags |= REQ_BLOCK_PC | REQ_QUIET;
401
402	if (use_sg)
403		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
404	else if (bufflen)
405		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
406
407	if (err)
408		goto free_req;
409
410	req->cmd_len = cmd_len;
411	memcpy(req->cmd, cmd, req->cmd_len);
412	req->sense = sioc->sense;
413	req->sense_len = 0;
414	req->timeout = timeout;
415	req->retries = retries;
416	req->end_io_data = sioc;
417
418	sioc->data = privdata;
419	sioc->done = done;
420
421	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
422	return 0;
423
424free_req:
425	blk_put_request(req);
426free_sense:
427	kmem_cache_free(scsi_io_context_cache, sioc);
428	return DRIVER_ERROR << 24;
429}
430EXPORT_SYMBOL_GPL(scsi_execute_async);
431
432/*
433 * Function:    scsi_init_cmd_errh()
434 *
435 * Purpose:     Initialize cmd fields related to error handling.
436 *
437 * Arguments:   cmd	- command that is ready to be queued.
438 *
439 * Notes:       This function has the job of initializing a number of
440 *              fields related to error handling.   Typically this will
441 *              be called once for each command, as required.
442 */
443static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
444{
445	cmd->serial_number = 0;
446	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
447	if (cmd->cmd_len == 0)
448		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
449}
450
451void scsi_device_unbusy(struct scsi_device *sdev)
452{
453	struct Scsi_Host *shost = sdev->host;
454	unsigned long flags;
455
456	spin_lock_irqsave(shost->host_lock, flags);
457	shost->host_busy--;
458	if (unlikely(scsi_host_in_recovery(shost) &&
459		     (shost->host_failed || shost->host_eh_scheduled)))
460		scsi_eh_wakeup(shost);
461	spin_unlock(shost->host_lock);
462	spin_lock(sdev->request_queue->queue_lock);
463	sdev->device_busy--;
464	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
465}
466
467/*
468 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
469 * and call blk_run_queue for all the scsi_devices on the target -
470 * including current_sdev first.
471 *
472 * Called with *no* scsi locks held.
473 */
474static void scsi_single_lun_run(struct scsi_device *current_sdev)
475{
476	struct Scsi_Host *shost = current_sdev->host;
477	struct scsi_device *sdev, *tmp;
478	struct scsi_target *starget = scsi_target(current_sdev);
479	unsigned long flags;
480
481	spin_lock_irqsave(shost->host_lock, flags);
482	starget->starget_sdev_user = NULL;
483	spin_unlock_irqrestore(shost->host_lock, flags);
484
485	/*
486	 * Call blk_run_queue for all LUNs on the target, starting with
487	 * current_sdev. We race with others (to set starget_sdev_user),
488	 * but in most cases, we will be first. Ideally, each LU on the
489	 * target would get some limited time or requests on the target.
490	 */
491	blk_run_queue(current_sdev->request_queue);
492
493	spin_lock_irqsave(shost->host_lock, flags);
494	if (starget->starget_sdev_user)
495		goto out;
496	list_for_each_entry_safe(sdev, tmp, &starget->devices,
497			same_target_siblings) {
498		if (sdev == current_sdev)
499			continue;
500		if (scsi_device_get(sdev))
501			continue;
502
503		spin_unlock_irqrestore(shost->host_lock, flags);
504		blk_run_queue(sdev->request_queue);
505		spin_lock_irqsave(shost->host_lock, flags);
506
507		scsi_device_put(sdev);
508	}
509 out:
510	spin_unlock_irqrestore(shost->host_lock, flags);
511}
512
513/*
514 * Function:	scsi_run_queue()
515 *
516 * Purpose:	Select a proper request queue to serve next
517 *
518 * Arguments:	q	- last request's queue
519 *
520 * Returns:     Nothing
521 *
522 * Notes:	The previous command was completely finished, start
523 *		a new one if possible.
524 */
525static void scsi_run_queue(struct request_queue *q)
526{
527	struct scsi_device *sdev = q->queuedata;
528	struct Scsi_Host *shost = sdev->host;
529	unsigned long flags;
530
531	if (sdev->single_lun)
532		scsi_single_lun_run(sdev);
533
534	spin_lock_irqsave(shost->host_lock, flags);
535	while (!list_empty(&shost->starved_list) &&
536	       !shost->host_blocked && !shost->host_self_blocked &&
537		!((shost->can_queue > 0) &&
538		  (shost->host_busy >= shost->can_queue))) {
539		/*
540		 * As long as shost is accepting commands and we have
541		 * starved queues, call blk_run_queue. scsi_request_fn
542		 * drops the queue_lock and can add us back to the
543		 * starved_list.
544		 *
545		 * host_lock protects the starved_list and starved_entry.
546		 * scsi_request_fn must get the host_lock before checking
547		 * or modifying starved_list or starved_entry.
548		 */
549		sdev = list_entry(shost->starved_list.next,
550					  struct scsi_device, starved_entry);
551		list_del_init(&sdev->starved_entry);
552		spin_unlock_irqrestore(shost->host_lock, flags);
553
554
555		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
556		    !test_and_set_bit(QUEUE_FLAG_REENTER,
557				      &sdev->request_queue->queue_flags)) {
558			blk_run_queue(sdev->request_queue);
559			clear_bit(QUEUE_FLAG_REENTER,
560				  &sdev->request_queue->queue_flags);
561		} else
562			blk_run_queue(sdev->request_queue);
563
564		spin_lock_irqsave(shost->host_lock, flags);
565		if (unlikely(!list_empty(&sdev->starved_entry)))
566			/*
567			 * sdev lost a race, and was put back on the
568			 * starved list. This is unlikely but without this
569			 * in theory we could loop forever.
570			 */
571			break;
572	}
573	spin_unlock_irqrestore(shost->host_lock, flags);
574
575	blk_run_queue(q);
576}
577
578/*
579 * Function:	scsi_requeue_command()
580 *
581 * Purpose:	Handle post-processing of completed commands.
582 *
583 * Arguments:	q	- queue to operate on
584 *		cmd	- command that may need to be requeued.
585 *
586 * Returns:	Nothing
587 *
588 * Notes:	After command completion, there may be blocks left
589 *		over which weren't finished by the previous command
590 *		this can be for a number of reasons - the main one is
591 *		I/O errors in the middle of the request, in which case
592 *		we need to request the blocks that come after the bad
593 *		sector.
594 * Notes:	Upon return, cmd is a stale pointer.
595 */
596static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
597{
598	struct request *req = cmd->request;
599	unsigned long flags;
600
601	scsi_unprep_request(req);
602	spin_lock_irqsave(q->queue_lock, flags);
603	blk_requeue_request(q, req);
604	spin_unlock_irqrestore(q->queue_lock, flags);
605
606	scsi_run_queue(q);
607}
608
609void scsi_next_command(struct scsi_cmnd *cmd)
610{
611	struct scsi_device *sdev = cmd->device;
612	struct request_queue *q = sdev->request_queue;
613
614	/* need to hold a reference on the device before we let go of the cmd */
615	get_device(&sdev->sdev_gendev);
616
617	scsi_put_command(cmd);
618	scsi_run_queue(q);
619
620	/* ok to remove device now */
621	put_device(&sdev->sdev_gendev);
622}
623
624void scsi_run_host_queues(struct Scsi_Host *shost)
625{
626	struct scsi_device *sdev;
627
628	shost_for_each_device(sdev, shost)
629		scsi_run_queue(sdev->request_queue);
630}
631
632/*
633 * Function:    scsi_end_request()
634 *
635 * Purpose:     Post-processing of completed commands (usually invoked at end
636 *		of upper level post-processing and scsi_io_completion).
637 *
638 * Arguments:   cmd	 - command that is complete.
639 *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
640 *              bytes    - number of bytes of completed I/O
641 *		requeue  - indicates whether we should requeue leftovers.
642 *
643 * Lock status: Assumed that lock is not held upon entry.
644 *
645 * Returns:     cmd if requeue required, NULL otherwise.
646 *
647 * Notes:       This is called for block device requests in order to
648 *              mark some number of sectors as complete.
649 *
650 *		We are guaranteeing that the request queue will be goosed
651 *		at some point during this call.
652 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
653 */
654static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
655					  int bytes, int requeue)
656{
657	request_queue_t *q = cmd->device->request_queue;
658	struct request *req = cmd->request;
659	unsigned long flags;
660
661	/*
662	 * If there are blocks left over at the end, set up the command
663	 * to queue the remainder of them.
664	 */
665	if (end_that_request_chunk(req, uptodate, bytes)) {
666		int leftover = (req->hard_nr_sectors << 9);
667
668		if (blk_pc_request(req))
669			leftover = req->data_len;
670
671		/* kill remainder if no retrys */
672		if (!uptodate && blk_noretry_request(req))
673			end_that_request_chunk(req, 0, leftover);
674		else {
675			if (requeue) {
676				/*
677				 * Bleah.  Leftovers again.  Stick the
678				 * leftovers in the front of the
679				 * queue, and goose the queue again.
680				 */
681				scsi_requeue_command(q, cmd);
682				cmd = NULL;
683			}
684			return cmd;
685		}
686	}
687
688	add_disk_randomness(req->rq_disk);
689
690	spin_lock_irqsave(q->queue_lock, flags);
691	if (blk_rq_tagged(req))
692		blk_queue_end_tag(q, req);
693	end_that_request_last(req, uptodate);
694	spin_unlock_irqrestore(q->queue_lock, flags);
695
696	/*
697	 * This will goose the queue request function at the end, so we don't
698	 * need to worry about launching another command.
699	 */
700	scsi_next_command(cmd);
701	return NULL;
702}
703
704static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
705{
706	struct scsi_host_sg_pool *sgp;
707	struct scatterlist *sgl;
708
709	BUG_ON(!cmd->use_sg);
710
711	switch (cmd->use_sg) {
712	case 1 ... 8:
713		cmd->sglist_len = 0;
714		break;
715	case 9 ... 16:
716		cmd->sglist_len = 1;
717		break;
718	case 17 ... 32:
719		cmd->sglist_len = 2;
720		break;
721#if (SCSI_MAX_PHYS_SEGMENTS > 32)
722	case 33 ... 64:
723		cmd->sglist_len = 3;
724		break;
725#if (SCSI_MAX_PHYS_SEGMENTS > 64)
726	case 65 ... 128:
727		cmd->sglist_len = 4;
728		break;
729#if (SCSI_MAX_PHYS_SEGMENTS  > 128)
730	case 129 ... 256:
731		cmd->sglist_len = 5;
732		break;
733#endif
734#endif
735#endif
736	default:
737		return NULL;
738	}
739
740	sgp = scsi_sg_pools + cmd->sglist_len;
741	sgl = mempool_alloc(sgp->pool, gfp_mask);
742	return sgl;
743}
744
745static void scsi_free_sgtable(struct scatterlist *sgl, int index)
746{
747	struct scsi_host_sg_pool *sgp;
748
749	BUG_ON(index >= SG_MEMPOOL_NR);
750
751	sgp = scsi_sg_pools + index;
752	mempool_free(sgl, sgp->pool);
753}
754
755/*
756 * Function:    scsi_release_buffers()
757 *
758 * Purpose:     Completion processing for block device I/O requests.
759 *
760 * Arguments:   cmd	- command that we are bailing.
761 *
762 * Lock status: Assumed that no lock is held upon entry.
763 *
764 * Returns:     Nothing
765 *
766 * Notes:       In the event that an upper level driver rejects a
767 *		command, we must release resources allocated during
768 *		the __init_io() function.  Primarily this would involve
769 *		the scatter-gather table, and potentially any bounce
770 *		buffers.
771 */
772static void scsi_release_buffers(struct scsi_cmnd *cmd)
773{
774	if (cmd->use_sg)
775		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
776
777	/*
778	 * Zero these out.  They now point to freed memory, and it is
779	 * dangerous to hang onto the pointers.
780	 */
781	cmd->request_buffer = NULL;
782	cmd->request_bufflen = 0;
783}
784
785/*
786 * Function:    scsi_io_completion()
787 *
788 * Purpose:     Completion processing for block device I/O requests.
789 *
790 * Arguments:   cmd   - command that is finished.
791 *
792 * Lock status: Assumed that no lock is held upon entry.
793 *
794 * Returns:     Nothing
795 *
796 * Notes:       This function is matched in terms of capabilities to
797 *              the function that created the scatter-gather list.
798 *              In other words, if there are no bounce buffers
799 *              (the normal case for most drivers), we don't need
800 *              the logic to deal with cleaning up afterwards.
801 *
802 *		We must do one of several things here:
803 *
804 *		a) Call scsi_end_request.  This will finish off the
805 *		   specified number of sectors.  If we are done, the
806 *		   command block will be released, and the queue
807 *		   function will be goosed.  If we are not done, then
808 *		   scsi_end_request will directly goose the queue.
809 *
810 *		b) We can just use scsi_requeue_command() here.  This would
811 *		   be used if we just wanted to retry, for example.
812 */
813void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
814{
815	int result = cmd->result;
816	int this_count = cmd->request_bufflen;
817	request_queue_t *q = cmd->device->request_queue;
818	struct request *req = cmd->request;
819	int clear_errors = 1;
820	struct scsi_sense_hdr sshdr;
821	int sense_valid = 0;
822	int sense_deferred = 0;
823
824	scsi_release_buffers(cmd);
825
826	if (result) {
827		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
828		if (sense_valid)
829			sense_deferred = scsi_sense_is_deferred(&sshdr);
830	}
831
832	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
833		req->errors = result;
834		if (result) {
835			clear_errors = 0;
836			if (sense_valid && req->sense) {
837				/*
838				 * SG_IO wants current and deferred errors
839				 */
840				int len = 8 + cmd->sense_buffer[7];
841
842				if (len > SCSI_SENSE_BUFFERSIZE)
843					len = SCSI_SENSE_BUFFERSIZE;
844				memcpy(req->sense, cmd->sense_buffer,  len);
845				req->sense_len = len;
846			}
847		} else
848			req->data_len = cmd->resid;
849	}
850
851	/*
852	 * Next deal with any sectors which we were able to correctly
853	 * handle.
854	 */
855	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
856				      "%d bytes done.\n",
857				      req->nr_sectors, good_bytes));
858	SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
859
860	if (clear_errors)
861		req->errors = 0;
862
863	/* A number of bytes were successfully read.  If there
864	 * are leftovers and there is some kind of error
865	 * (result != 0), retry the rest.
866	 */
867	if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
868		return;
869
870	/* good_bytes = 0, or (inclusive) there were leftovers and
871	 * result = 0, so scsi_end_request couldn't retry.
872	 */
873	if (sense_valid && !sense_deferred) {
874		switch (sshdr.sense_key) {
875		case UNIT_ATTENTION:
876			if (cmd->device->removable) {
877				/* Detected disc change.  Set a bit
878				 * and quietly refuse further access.
879				 */
880				cmd->device->changed = 1;
881				scsi_end_request(cmd, 0, this_count, 1);
882				return;
883			} else {
884				/* Must have been a power glitch, or a
885				 * bus reset.  Could not have been a
886				 * media change, so we just retry the
887				 * request and see what happens.
888				 */
889				scsi_requeue_command(q, cmd);
890				return;
891			}
892			break;
893		case ILLEGAL_REQUEST:
894			/* If we had an ILLEGAL REQUEST returned, then
895			 * we may have performed an unsupported
896			 * command.  The only thing this should be
897			 * would be a ten byte read where only a six
898			 * byte read was supported.  Also, on a system
899			 * where READ CAPACITY failed, we may have
900			 * read past the end of the disk.
901			 */
902			if ((cmd->device->use_10_for_rw &&
903			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
904			    (cmd->cmnd[0] == READ_10 ||
905			     cmd->cmnd[0] == WRITE_10)) {
906				cmd->device->use_10_for_rw = 0;
907				/* This will cause a retry with a
908				 * 6-byte command.
909				 */
910				scsi_requeue_command(q, cmd);
911				return;
912			} else {
913				scsi_end_request(cmd, 0, this_count, 1);
914				return;
915			}
916			break;
917		case NOT_READY:
918			/* If the device is in the process of becoming
919			 * ready, or has a temporary blockage, retry.
920			 */
921			if (sshdr.asc == 0x04) {
922				switch (sshdr.ascq) {
923				case 0x01: /* becoming ready */
924				case 0x04: /* format in progress */
925				case 0x05: /* rebuild in progress */
926				case 0x06: /* recalculation in progress */
927				case 0x07: /* operation in progress */
928				case 0x08: /* Long write in progress */
929				case 0x09: /* self test in progress */
930					scsi_requeue_command(q, cmd);
931					return;
932				default:
933					break;
934				}
935			}
936			if (!(req->flags & REQ_QUIET)) {
937				scmd_printk(KERN_INFO, cmd,
938					    "Device not ready: ");
939				scsi_print_sense_hdr("", &sshdr);
940			}
941			scsi_end_request(cmd, 0, this_count, 1);
942			return;
943		case VOLUME_OVERFLOW:
944			if (!(req->flags & REQ_QUIET)) {
945				scmd_printk(KERN_INFO, cmd,
946					    "Volume overflow, CDB: ");
947				__scsi_print_command(cmd->cmnd);
948				scsi_print_sense("", cmd);
949			}
950			/* See SSC3rXX or current. */
951			scsi_end_request(cmd, 0, this_count, 1);
952			return;
953		default:
954			break;
955		}
956	}
957	if (host_byte(result) == DID_RESET) {
958		/* Third party bus reset or reset for error recovery
959		 * reasons.  Just retry the request and see what
960		 * happens.
961		 */
962		scsi_requeue_command(q, cmd);
963		return;
964	}
965	if (result) {
966		if (!(req->flags & REQ_QUIET)) {
967			scmd_printk(KERN_INFO, cmd,
968				    "SCSI error: return code = 0x%08x\n",
969				    result);
970			if (driver_byte(result) & DRIVER_SENSE)
971				scsi_print_sense("", cmd);
972		}
973	}
974	scsi_end_request(cmd, 0, this_count, !result);
975}
976EXPORT_SYMBOL(scsi_io_completion);
977
978/*
979 * Function:    scsi_init_io()
980 *
981 * Purpose:     SCSI I/O initialize function.
982 *
983 * Arguments:   cmd   - Command descriptor we wish to initialize
984 *
985 * Returns:     0 on success
986 *		BLKPREP_DEFER if the failure is retryable
987 *		BLKPREP_KILL if the failure is fatal
988 */
989static int scsi_init_io(struct scsi_cmnd *cmd)
990{
991	struct request     *req = cmd->request;
992	struct scatterlist *sgpnt;
993	int		   count;
994
995	/*
996	 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
997	 */
998	if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
999		cmd->request_bufflen = req->data_len;
1000		cmd->request_buffer = req->data;
1001		req->buffer = req->data;
1002		cmd->use_sg = 0;
1003		return 0;
1004	}
1005
1006	/*
1007	 * we used to not use scatter-gather for single segment request,
1008	 * but now we do (it makes highmem I/O easier to support without
1009	 * kmapping pages)
1010	 */
1011	cmd->use_sg = req->nr_phys_segments;
1012
1013	/*
1014	 * if sg table allocation fails, requeue request later.
1015	 */
1016	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1017	if (unlikely(!sgpnt)) {
1018		scsi_unprep_request(req);
1019		return BLKPREP_DEFER;
1020	}
1021
1022	cmd->request_buffer = (char *) sgpnt;
1023	cmd->request_bufflen = req->nr_sectors << 9;
1024	if (blk_pc_request(req))
1025		cmd->request_bufflen = req->data_len;
1026	req->buffer = NULL;
1027
1028	/*
1029	 * Next, walk the list, and fill in the addresses and sizes of
1030	 * each segment.
1031	 */
1032	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1033
1034	/*
1035	 * mapped well, send it off
1036	 */
1037	if (likely(count <= cmd->use_sg)) {
1038		cmd->use_sg = count;
1039		return 0;
1040	}
1041
1042	printk(KERN_ERR "Incorrect number of segments after building list\n");
1043	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1044	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1045			req->current_nr_sectors);
1046
1047	/* release the command and kill it */
1048	scsi_release_buffers(cmd);
1049	scsi_put_command(cmd);
1050	return BLKPREP_KILL;
1051}
1052
1053static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1054			       sector_t *error_sector)
1055{
1056	struct scsi_device *sdev = q->queuedata;
1057	struct scsi_driver *drv;
1058
1059	if (sdev->sdev_state != SDEV_RUNNING)
1060		return -ENXIO;
1061
1062	drv = *(struct scsi_driver **) disk->private_data;
1063	if (drv->issue_flush)
1064		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1065
1066	return -EOPNOTSUPP;
1067}
1068
1069static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1070{
1071	BUG_ON(!blk_pc_request(cmd->request));
1072	/*
1073	 * This will complete the whole command with uptodate=1 so
1074	 * as far as the block layer is concerned the command completed
1075	 * successfully. Since this is a REQ_BLOCK_PC command the
1076	 * caller should check the request's errors value
1077	 */
1078	scsi_io_completion(cmd, cmd->request_bufflen);
1079}
1080
1081static void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd)
1082{
1083	struct request *req = cmd->request;
1084
1085	BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1086	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1087	cmd->cmd_len = req->cmd_len;
1088	if (!req->data_len)
1089		cmd->sc_data_direction = DMA_NONE;
1090	else if (rq_data_dir(req) == WRITE)
1091		cmd->sc_data_direction = DMA_TO_DEVICE;
1092	else
1093		cmd->sc_data_direction = DMA_FROM_DEVICE;
1094
1095	cmd->transfersize = req->data_len;
1096	cmd->allowed = req->retries;
1097	cmd->timeout_per_command = req->timeout;
1098	cmd->done = scsi_blk_pc_done;
1099}
1100
1101static int scsi_prep_fn(struct request_queue *q, struct request *req)
1102{
1103	struct scsi_device *sdev = q->queuedata;
1104	struct scsi_cmnd *cmd;
1105	int specials_only = 0;
1106
1107	/*
1108	 * Just check to see if the device is online.  If it isn't, we
1109	 * refuse to process any commands.  The device must be brought
1110	 * online before trying any recovery commands
1111	 */
1112	if (unlikely(!scsi_device_online(sdev))) {
1113		sdev_printk(KERN_ERR, sdev,
1114			    "rejecting I/O to offline device\n");
1115		goto kill;
1116	}
1117	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1118		/* OK, we're not in a running state don't prep
1119		 * user commands */
1120		if (sdev->sdev_state == SDEV_DEL) {
1121			/* Device is fully deleted, no commands
1122			 * at all allowed down */
1123			sdev_printk(KERN_ERR, sdev,
1124				    "rejecting I/O to dead device\n");
1125			goto kill;
1126		}
1127		/* OK, we only allow special commands (i.e. not
1128		 * user initiated ones */
1129		specials_only = sdev->sdev_state;
1130	}
1131
1132	/*
1133	 * Find the actual device driver associated with this command.
1134	 * The SPECIAL requests are things like character device or
1135	 * ioctls, which did not originate from ll_rw_blk.  Note that
1136	 * the special field is also used to indicate the cmd for
1137	 * the remainder of a partially fulfilled request that can
1138	 * come up when there is a medium error.  We have to treat
1139	 * these two cases differently.  We differentiate by looking
1140	 * at request->cmd, as this tells us the real story.
1141	 */
1142	if (req->flags & REQ_SPECIAL && req->special) {
1143		cmd = req->special;
1144	} else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1145
1146		if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1147			if(specials_only == SDEV_QUIESCE ||
1148					specials_only == SDEV_BLOCK)
1149				goto defer;
1150
1151			sdev_printk(KERN_ERR, sdev,
1152				    "rejecting I/O to device being removed\n");
1153			goto kill;
1154		}
1155
1156
1157		/*
1158		 * Now try and find a command block that we can use.
1159		 */
1160		if (!req->special) {
1161			cmd = scsi_get_command(sdev, GFP_ATOMIC);
1162			if (unlikely(!cmd))
1163				goto defer;
1164		} else
1165			cmd = req->special;
1166
1167		/* pull a tag out of the request if we have one */
1168		cmd->tag = req->tag;
1169	} else {
1170		blk_dump_rq_flags(req, "SCSI bad req");
1171		goto kill;
1172	}
1173
1174	/* note the overloading of req->special.  When the tag
1175	 * is active it always means cmd.  If the tag goes
1176	 * back for re-queueing, it may be reset */
1177	req->special = cmd;
1178	cmd->request = req;
1179
1180	/*
1181	 * FIXME: drop the lock here because the functions below
1182	 * expect to be called without the queue lock held.  Also,
1183	 * previously, we dequeued the request before dropping the
1184	 * lock.  We hope REQ_STARTED prevents anything untoward from
1185	 * happening now.
1186	 */
1187	if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1188		int ret;
1189
1190		/*
1191		 * This will do a couple of things:
1192		 *  1) Fill in the actual SCSI command.
1193		 *  2) Fill in any other upper-level specific fields
1194		 * (timeout).
1195		 *
1196		 * If this returns 0, it means that the request failed
1197		 * (reading past end of disk, reading offline device,
1198		 * etc).   This won't actually talk to the device, but
1199		 * some kinds of consistency checking may cause the
1200		 * request to be rejected immediately.
1201		 */
1202
1203		/*
1204		 * This sets up the scatter-gather table (allocating if
1205		 * required).
1206		 */
1207		ret = scsi_init_io(cmd);
1208		switch(ret) {
1209			/* For BLKPREP_KILL/DEFER the cmd was released */
1210		case BLKPREP_KILL:
1211			goto kill;
1212		case BLKPREP_DEFER:
1213			goto defer;
1214		}
1215
1216		/*
1217		 * Initialize the actual SCSI command for this request.
1218		 */
1219		if (req->flags & REQ_BLOCK_PC) {
1220			scsi_setup_blk_pc_cmnd(cmd);
1221		} else if (req->rq_disk) {
1222			struct scsi_driver *drv;
1223
1224			drv = *(struct scsi_driver **)req->rq_disk->private_data;
1225			if (unlikely(!drv->init_command(cmd))) {
1226				scsi_release_buffers(cmd);
1227				scsi_put_command(cmd);
1228				goto kill;
1229			}
1230		}
1231	}
1232
1233	/*
1234	 * The request is now prepped, no need to come back here
1235	 */
1236	req->flags |= REQ_DONTPREP;
1237	return BLKPREP_OK;
1238
1239 defer:
1240	/* If we defer, the elv_next_request() returns NULL, but the
1241	 * queue must be restarted, so we plug here if no returning
1242	 * command will automatically do that. */
1243	if (sdev->device_busy == 0)
1244		blk_plug_device(q);
1245	return BLKPREP_DEFER;
1246 kill:
1247	req->errors = DID_NO_CONNECT << 16;
1248	return BLKPREP_KILL;
1249}
1250
1251/*
1252 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1253 * return 0.
1254 *
1255 * Called with the queue_lock held.
1256 */
1257static inline int scsi_dev_queue_ready(struct request_queue *q,
1258				  struct scsi_device *sdev)
1259{
1260	if (sdev->device_busy >= sdev->queue_depth)
1261		return 0;
1262	if (sdev->device_busy == 0 && sdev->device_blocked) {
1263		/*
1264		 * unblock after device_blocked iterates to zero
1265		 */
1266		if (--sdev->device_blocked == 0) {
1267			SCSI_LOG_MLQUEUE(3,
1268				   sdev_printk(KERN_INFO, sdev,
1269				   "unblocking device at zero depth\n"));
1270		} else {
1271			blk_plug_device(q);
1272			return 0;
1273		}
1274	}
1275	if (sdev->device_blocked)
1276		return 0;
1277
1278	return 1;
1279}
1280
1281/*
1282 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1283 * return 0. We must end up running the queue again whenever 0 is
1284 * returned, else IO can hang.
1285 *
1286 * Called with host_lock held.
1287 */
1288static inline int scsi_host_queue_ready(struct request_queue *q,
1289				   struct Scsi_Host *shost,
1290				   struct scsi_device *sdev)
1291{
1292	if (scsi_host_in_recovery(shost))
1293		return 0;
1294	if (shost->host_busy == 0 && shost->host_blocked) {
1295		/*
1296		 * unblock after host_blocked iterates to zero
1297		 */
1298		if (--shost->host_blocked == 0) {
1299			SCSI_LOG_MLQUEUE(3,
1300				printk("scsi%d unblocking host at zero depth\n",
1301					shost->host_no));
1302		} else {
1303			blk_plug_device(q);
1304			return 0;
1305		}
1306	}
1307	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1308	    shost->host_blocked || shost->host_self_blocked) {
1309		if (list_empty(&sdev->starved_entry))
1310			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1311		return 0;
1312	}
1313
1314	/* We're OK to process the command, so we can't be starved */
1315	if (!list_empty(&sdev->starved_entry))
1316		list_del_init(&sdev->starved_entry);
1317
1318	return 1;
1319}
1320
1321/*
1322 * Kill a request for a dead device
1323 */
1324static void scsi_kill_request(struct request *req, request_queue_t *q)
1325{
1326	struct scsi_cmnd *cmd = req->special;
1327	struct scsi_device *sdev = cmd->device;
1328	struct Scsi_Host *shost = sdev->host;
1329
1330	blkdev_dequeue_request(req);
1331
1332	if (unlikely(cmd == NULL)) {
1333		printk(KERN_CRIT "impossible request in %s.\n",
1334				 __FUNCTION__);
1335		BUG();
1336	}
1337
1338	scsi_init_cmd_errh(cmd);
1339	cmd->result = DID_NO_CONNECT << 16;
1340	atomic_inc(&cmd->device->iorequest_cnt);
1341
1342	/*
1343	 * SCSI request completion path will do scsi_device_unbusy(),
1344	 * bump busy counts.  To bump the counters, we need to dance
1345	 * with the locks as normal issue path does.
1346	 */
1347	sdev->device_busy++;
1348	spin_unlock(sdev->request_queue->queue_lock);
1349	spin_lock(shost->host_lock);
1350	shost->host_busy++;
1351	spin_unlock(shost->host_lock);
1352	spin_lock(sdev->request_queue->queue_lock);
1353
1354	__scsi_done(cmd);
1355}
1356
1357static void scsi_softirq_done(struct request *rq)
1358{
1359	struct scsi_cmnd *cmd = rq->completion_data;
1360	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1361	int disposition;
1362
1363	INIT_LIST_HEAD(&cmd->eh_entry);
1364
1365	disposition = scsi_decide_disposition(cmd);
1366	if (disposition != SUCCESS &&
1367	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1368		sdev_printk(KERN_ERR, cmd->device,
1369			    "timing out command, waited %lus\n",
1370			    wait_for/HZ);
1371		disposition = SUCCESS;
1372	}
1373
1374	scsi_log_completion(cmd, disposition);
1375
1376	switch (disposition) {
1377		case SUCCESS:
1378			scsi_finish_command(cmd);
1379			break;
1380		case NEEDS_RETRY:
1381			scsi_retry_command(cmd);
1382			break;
1383		case ADD_TO_MLQUEUE:
1384			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1385			break;
1386		default:
1387			if (!scsi_eh_scmd_add(cmd, 0))
1388				scsi_finish_command(cmd);
1389	}
1390}
1391
1392/*
1393 * Function:    scsi_request_fn()
1394 *
1395 * Purpose:     Main strategy routine for SCSI.
1396 *
1397 * Arguments:   q       - Pointer to actual queue.
1398 *
1399 * Returns:     Nothing
1400 *
1401 * Lock status: IO request lock assumed to be held when called.
1402 */
1403static void scsi_request_fn(struct request_queue *q)
1404{
1405	struct scsi_device *sdev = q->queuedata;
1406	struct Scsi_Host *shost;
1407	struct scsi_cmnd *cmd;
1408	struct request *req;
1409
1410	if (!sdev) {
1411		printk("scsi: killing requests for dead queue\n");
1412		while ((req = elv_next_request(q)) != NULL)
1413			scsi_kill_request(req, q);
1414		return;
1415	}
1416
1417	if(!get_device(&sdev->sdev_gendev))
1418		/* We must be tearing the block queue down already */
1419		return;
1420
1421	/*
1422	 * To start with, we keep looping until the queue is empty, or until
1423	 * the host is no longer able to accept any more requests.
1424	 */
1425	shost = sdev->host;
1426	while (!blk_queue_plugged(q)) {
1427		int rtn;
1428		/*
1429		 * get next queueable request.  We do this early to make sure
1430		 * that the request is fully prepared even if we cannot
1431		 * accept it.
1432		 */
1433		req = elv_next_request(q);
1434		if (!req || !scsi_dev_queue_ready(q, sdev))
1435			break;
1436
1437		if (unlikely(!scsi_device_online(sdev))) {
1438			sdev_printk(KERN_ERR, sdev,
1439				    "rejecting I/O to offline device\n");
1440			scsi_kill_request(req, q);
1441			continue;
1442		}
1443
1444
1445		/*
1446		 * Remove the request from the request list.
1447		 */
1448		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1449			blkdev_dequeue_request(req);
1450		sdev->device_busy++;
1451
1452		spin_unlock(q->queue_lock);
1453		cmd = req->special;
1454		if (unlikely(cmd == NULL)) {
1455			printk(KERN_CRIT "impossible request in %s.\n"
1456					 "please mail a stack trace to "
1457					 "linux-scsi@vger.kernel.org",
1458					 __FUNCTION__);
1459			BUG();
1460		}
1461		spin_lock(shost->host_lock);
1462
1463		if (!scsi_host_queue_ready(q, shost, sdev))
1464			goto not_ready;
1465		if (sdev->single_lun) {
1466			if (scsi_target(sdev)->starget_sdev_user &&
1467			    scsi_target(sdev)->starget_sdev_user != sdev)
1468				goto not_ready;
1469			scsi_target(sdev)->starget_sdev_user = sdev;
1470		}
1471		shost->host_busy++;
1472
1473		/*
1474		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1475		 *		take the lock again.
1476		 */
1477		spin_unlock_irq(shost->host_lock);
1478
1479		/*
1480		 * Finally, initialize any error handling parameters, and set up
1481		 * the timers for timeouts.
1482		 */
1483		scsi_init_cmd_errh(cmd);
1484
1485		/*
1486		 * Dispatch the command to the low-level driver.
1487		 */
1488		rtn = scsi_dispatch_cmd(cmd);
1489		spin_lock_irq(q->queue_lock);
1490		if(rtn) {
1491			/* we're refusing the command; because of
1492			 * the way locks get dropped, we need to
1493			 * check here if plugging is required */
1494			if(sdev->device_busy == 0)
1495				blk_plug_device(q);
1496
1497			break;
1498		}
1499	}
1500
1501	goto out;
1502
1503 not_ready:
1504	spin_unlock_irq(shost->host_lock);
1505
1506	/*
1507	 * lock q, handle tag, requeue req, and decrement device_busy. We
1508	 * must return with queue_lock held.
1509	 *
1510	 * Decrementing device_busy without checking it is OK, as all such
1511	 * cases (host limits or settings) should run the queue at some
1512	 * later time.
1513	 */
1514	spin_lock_irq(q->queue_lock);
1515	blk_requeue_request(q, req);
1516	sdev->device_busy--;
1517	if(sdev->device_busy == 0)
1518		blk_plug_device(q);
1519 out:
1520	/* must be careful here...if we trigger the ->remove() function
1521	 * we cannot be holding the q lock */
1522	spin_unlock_irq(q->queue_lock);
1523	put_device(&sdev->sdev_gendev);
1524	spin_lock_irq(q->queue_lock);
1525}
1526
1527u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1528{
1529	struct device *host_dev;
1530	u64 bounce_limit = 0xffffffff;
1531
1532	if (shost->unchecked_isa_dma)
1533		return BLK_BOUNCE_ISA;
1534	/*
1535	 * Platforms with virtual-DMA translation
1536	 * hardware have no practical limit.
1537	 */
1538	if (!PCI_DMA_BUS_IS_PHYS)
1539		return BLK_BOUNCE_ANY;
1540
1541	host_dev = scsi_get_device(shost);
1542	if (host_dev && host_dev->dma_mask)
1543		bounce_limit = *host_dev->dma_mask;
1544
1545	return bounce_limit;
1546}
1547EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1548
1549struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1550{
1551	struct Scsi_Host *shost = sdev->host;
1552	struct request_queue *q;
1553
1554	q = blk_init_queue(scsi_request_fn, NULL);
1555	if (!q)
1556		return NULL;
1557
1558	blk_queue_prep_rq(q, scsi_prep_fn);
1559
1560	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1561	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1562	blk_queue_max_sectors(q, shost->max_sectors);
1563	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1564	blk_queue_segment_boundary(q, shost->dma_boundary);
1565	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1566	blk_queue_softirq_done(q, scsi_softirq_done);
1567
1568	if (!shost->use_clustering)
1569		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1570	return q;
1571}
1572
1573void scsi_free_queue(struct request_queue *q)
1574{
1575	blk_cleanup_queue(q);
1576}
1577
1578/*
1579 * Function:    scsi_block_requests()
1580 *
1581 * Purpose:     Utility function used by low-level drivers to prevent further
1582 *		commands from being queued to the device.
1583 *
1584 * Arguments:   shost       - Host in question
1585 *
1586 * Returns:     Nothing
1587 *
1588 * Lock status: No locks are assumed held.
1589 *
1590 * Notes:       There is no timer nor any other means by which the requests
1591 *		get unblocked other than the low-level driver calling
1592 *		scsi_unblock_requests().
1593 */
1594void scsi_block_requests(struct Scsi_Host *shost)
1595{
1596	shost->host_self_blocked = 1;
1597}
1598EXPORT_SYMBOL(scsi_block_requests);
1599
1600/*
1601 * Function:    scsi_unblock_requests()
1602 *
1603 * Purpose:     Utility function used by low-level drivers to allow further
1604 *		commands from being queued to the device.
1605 *
1606 * Arguments:   shost       - Host in question
1607 *
1608 * Returns:     Nothing
1609 *
1610 * Lock status: No locks are assumed held.
1611 *
1612 * Notes:       There is no timer nor any other means by which the requests
1613 *		get unblocked other than the low-level driver calling
1614 *		scsi_unblock_requests().
1615 *
1616 *		This is done as an API function so that changes to the
1617 *		internals of the scsi mid-layer won't require wholesale
1618 *		changes to drivers that use this feature.
1619 */
1620void scsi_unblock_requests(struct Scsi_Host *shost)
1621{
1622	shost->host_self_blocked = 0;
1623	scsi_run_host_queues(shost);
1624}
1625EXPORT_SYMBOL(scsi_unblock_requests);
1626
1627int __init scsi_init_queue(void)
1628{
1629	int i;
1630
1631	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1632					sizeof(struct scsi_io_context),
1633					0, 0, NULL, NULL);
1634	if (!scsi_io_context_cache) {
1635		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1636		return -ENOMEM;
1637	}
1638
1639	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1640		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1641		int size = sgp->size * sizeof(struct scatterlist);
1642
1643		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1644				SLAB_HWCACHE_ALIGN, NULL, NULL);
1645		if (!sgp->slab) {
1646			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1647					sgp->name);
1648		}
1649
1650		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1651						     sgp->slab);
1652		if (!sgp->pool) {
1653			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1654					sgp->name);
1655		}
1656	}
1657
1658	return 0;
1659}
1660
1661void scsi_exit_queue(void)
1662{
1663	int i;
1664
1665	kmem_cache_destroy(scsi_io_context_cache);
1666
1667	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1668		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1669		mempool_destroy(sgp->pool);
1670		kmem_cache_destroy(sgp->slab);
1671	}
1672}
1673
1674/**
1675 *	scsi_mode_select - issue a mode select
1676 *	@sdev:	SCSI device to be queried
1677 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1678 *	@sp:	Save page bit (0 == don't save, 1 == save)
1679 *	@modepage: mode page being requested
1680 *	@buffer: request buffer (may not be smaller than eight bytes)
1681 *	@len:	length of request buffer.
1682 *	@timeout: command timeout
1683 *	@retries: number of retries before failing
1684 *	@data: returns a structure abstracting the mode header data
1685 *	@sense: place to put sense data (or NULL if no sense to be collected).
1686 *		must be SCSI_SENSE_BUFFERSIZE big.
1687 *
1688 *	Returns zero if successful; negative error number or scsi
1689 *	status on error
1690 *
1691 */
1692int
1693scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1694		 unsigned char *buffer, int len, int timeout, int retries,
1695		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1696{
1697	unsigned char cmd[10];
1698	unsigned char *real_buffer;
1699	int ret;
1700
1701	memset(cmd, 0, sizeof(cmd));
1702	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1703
1704	if (sdev->use_10_for_ms) {
1705		if (len > 65535)
1706			return -EINVAL;
1707		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1708		if (!real_buffer)
1709			return -ENOMEM;
1710		memcpy(real_buffer + 8, buffer, len);
1711		len += 8;
1712		real_buffer[0] = 0;
1713		real_buffer[1] = 0;
1714		real_buffer[2] = data->medium_type;
1715		real_buffer[3] = data->device_specific;
1716		real_buffer[4] = data->longlba ? 0x01 : 0;
1717		real_buffer[5] = 0;
1718		real_buffer[6] = data->block_descriptor_length >> 8;
1719		real_buffer[7] = data->block_descriptor_length;
1720
1721		cmd[0] = MODE_SELECT_10;
1722		cmd[7] = len >> 8;
1723		cmd[8] = len;
1724	} else {
1725		if (len > 255 || data->block_descriptor_length > 255 ||
1726		    data->longlba)
1727			return -EINVAL;
1728
1729		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1730		if (!real_buffer)
1731			return -ENOMEM;
1732		memcpy(real_buffer + 4, buffer, len);
1733		len += 4;
1734		real_buffer[0] = 0;
1735		real_buffer[1] = data->medium_type;
1736		real_buffer[2] = data->device_specific;
1737		real_buffer[3] = data->block_descriptor_length;
1738
1739
1740		cmd[0] = MODE_SELECT;
1741		cmd[4] = len;
1742	}
1743
1744	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1745			       sshdr, timeout, retries);
1746	kfree(real_buffer);
1747	return ret;
1748}
1749EXPORT_SYMBOL_GPL(scsi_mode_select);
1750
1751/**
1752 *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1753 *		six bytes if necessary.
1754 *	@sdev:	SCSI device to be queried
1755 *	@dbd:	set if mode sense will allow block descriptors to be returned
1756 *	@modepage: mode page being requested
1757 *	@buffer: request buffer (may not be smaller than eight bytes)
1758 *	@len:	length of request buffer.
1759 *	@timeout: command timeout
1760 *	@retries: number of retries before failing
1761 *	@data: returns a structure abstracting the mode header data
1762 *	@sense: place to put sense data (or NULL if no sense to be collected).
1763 *		must be SCSI_SENSE_BUFFERSIZE big.
1764 *
1765 *	Returns zero if unsuccessful, or the header offset (either 4
1766 *	or 8 depending on whether a six or ten byte command was
1767 *	issued) if successful.
1768 **/
1769int
1770scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1771		  unsigned char *buffer, int len, int timeout, int retries,
1772		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1773{
1774	unsigned char cmd[12];
1775	int use_10_for_ms;
1776	int header_length;
1777	int result;
1778	struct scsi_sense_hdr my_sshdr;
1779
1780	memset(data, 0, sizeof(*data));
1781	memset(&cmd[0], 0, 12);
1782	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1783	cmd[2] = modepage;
1784
1785	/* caller might not be interested in sense, but we need it */
1786	if (!sshdr)
1787		sshdr = &my_sshdr;
1788
1789 retry:
1790	use_10_for_ms = sdev->use_10_for_ms;
1791
1792	if (use_10_for_ms) {
1793		if (len < 8)
1794			len = 8;
1795
1796		cmd[0] = MODE_SENSE_10;
1797		cmd[8] = len;
1798		header_length = 8;
1799	} else {
1800		if (len < 4)
1801			len = 4;
1802
1803		cmd[0] = MODE_SENSE;
1804		cmd[4] = len;
1805		header_length = 4;
1806	}
1807
1808	memset(buffer, 0, len);
1809
1810	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1811				  sshdr, timeout, retries);
1812
1813	/* This code looks awful: what it's doing is making sure an
1814	 * ILLEGAL REQUEST sense return identifies the actual command
1815	 * byte as the problem.  MODE_SENSE commands can return
1816	 * ILLEGAL REQUEST if the code page isn't supported */
1817
1818	if (use_10_for_ms && !scsi_status_is_good(result) &&
1819	    (driver_byte(result) & DRIVER_SENSE)) {
1820		if (scsi_sense_valid(sshdr)) {
1821			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1822			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1823				/*
1824				 * Invalid command operation code
1825				 */
1826				sdev->use_10_for_ms = 0;
1827				goto retry;
1828			}
1829		}
1830	}
1831
1832	if(scsi_status_is_good(result)) {
1833		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1834			     (modepage == 6 || modepage == 8))) {
1835			/* Initio breakage? */
1836			header_length = 0;
1837			data->length = 13;
1838			data->medium_type = 0;
1839			data->device_specific = 0;
1840			data->longlba = 0;
1841			data->block_descriptor_length = 0;
1842		} else if(use_10_for_ms) {
1843			data->length = buffer[0]*256 + buffer[1] + 2;
1844			data->medium_type = buffer[2];
1845			data->device_specific = buffer[3];
1846			data->longlba = buffer[4] & 0x01;
1847			data->block_descriptor_length = buffer[6]*256
1848				+ buffer[7];
1849		} else {
1850			data->length = buffer[0] + 1;
1851			data->medium_type = buffer[1];
1852			data->device_specific = buffer[2];
1853			data->block_descriptor_length = buffer[3];
1854		}
1855		data->header_length = header_length;
1856	}
1857
1858	return result;
1859}
1860EXPORT_SYMBOL(scsi_mode_sense);
1861
1862int
1863scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1864{
1865	char cmd[] = {
1866		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1867	};
1868	struct scsi_sense_hdr sshdr;
1869	int result;
1870
1871	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1872				  timeout, retries);
1873
1874	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1875
1876		if ((scsi_sense_valid(&sshdr)) &&
1877		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1878		     (sshdr.sense_key == NOT_READY))) {
1879			sdev->changed = 1;
1880			result = 0;
1881		}
1882	}
1883	return result;
1884}
1885EXPORT_SYMBOL(scsi_test_unit_ready);
1886
1887/**
1888 *	scsi_device_set_state - Take the given device through the device
1889 *		state model.
1890 *	@sdev:	scsi device to change the state of.
1891 *	@state:	state to change to.
1892 *
1893 *	Returns zero if unsuccessful or an error if the requested
1894 *	transition is illegal.
1895 **/
1896int
1897scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1898{
1899	enum scsi_device_state oldstate = sdev->sdev_state;
1900
1901	if (state == oldstate)
1902		return 0;
1903
1904	switch (state) {
1905	case SDEV_CREATED:
1906		/* There are no legal states that come back to
1907		 * created.  This is the manually initialised start
1908		 * state */
1909		goto illegal;
1910
1911	case SDEV_RUNNING:
1912		switch (oldstate) {
1913		case SDEV_CREATED:
1914		case SDEV_OFFLINE:
1915		case SDEV_QUIESCE:
1916		case SDEV_BLOCK:
1917			break;
1918		default:
1919			goto illegal;
1920		}
1921		break;
1922
1923	case SDEV_QUIESCE:
1924		switch (oldstate) {
1925		case SDEV_RUNNING:
1926		case SDEV_OFFLINE:
1927			break;
1928		default:
1929			goto illegal;
1930		}
1931		break;
1932
1933	case SDEV_OFFLINE:
1934		switch (oldstate) {
1935		case SDEV_CREATED:
1936		case SDEV_RUNNING:
1937		case SDEV_QUIESCE:
1938		case SDEV_BLOCK:
1939			break;
1940		default:
1941			goto illegal;
1942		}
1943		break;
1944
1945	case SDEV_BLOCK:
1946		switch (oldstate) {
1947		case SDEV_CREATED:
1948		case SDEV_RUNNING:
1949			break;
1950		default:
1951			goto illegal;
1952		}
1953		break;
1954
1955	case SDEV_CANCEL:
1956		switch (oldstate) {
1957		case SDEV_CREATED:
1958		case SDEV_RUNNING:
1959		case SDEV_QUIESCE:
1960		case SDEV_OFFLINE:
1961		case SDEV_BLOCK:
1962			break;
1963		default:
1964			goto illegal;
1965		}
1966		break;
1967
1968	case SDEV_DEL:
1969		switch (oldstate) {
1970		case SDEV_CREATED:
1971		case SDEV_RUNNING:
1972		case SDEV_OFFLINE:
1973		case SDEV_CANCEL:
1974			break;
1975		default:
1976			goto illegal;
1977		}
1978		break;
1979
1980	}
1981	sdev->sdev_state = state;
1982	return 0;
1983
1984 illegal:
1985	SCSI_LOG_ERROR_RECOVERY(1,
1986				sdev_printk(KERN_ERR, sdev,
1987					    "Illegal state transition %s->%s\n",
1988					    scsi_device_state_name(oldstate),
1989					    scsi_device_state_name(state))
1990				);
1991	return -EINVAL;
1992}
1993EXPORT_SYMBOL(scsi_device_set_state);
1994
1995/**
1996 *	scsi_device_quiesce - Block user issued commands.
1997 *	@sdev:	scsi device to quiesce.
1998 *
1999 *	This works by trying to transition to the SDEV_QUIESCE state
2000 *	(which must be a legal transition).  When the device is in this
2001 *	state, only special requests will be accepted, all others will
2002 *	be deferred.  Since special requests may also be requeued requests,
2003 *	a successful return doesn't guarantee the device will be
2004 *	totally quiescent.
2005 *
2006 *	Must be called with user context, may sleep.
2007 *
2008 *	Returns zero if unsuccessful or an error if not.
2009 **/
2010int
2011scsi_device_quiesce(struct scsi_device *sdev)
2012{
2013	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2014	if (err)
2015		return err;
2016
2017	scsi_run_queue(sdev->request_queue);
2018	while (sdev->device_busy) {
2019		msleep_interruptible(200);
2020		scsi_run_queue(sdev->request_queue);
2021	}
2022	return 0;
2023}
2024EXPORT_SYMBOL(scsi_device_quiesce);
2025
2026/**
2027 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2028 *	@sdev:	scsi device to resume.
2029 *
2030 *	Moves the device from quiesced back to running and restarts the
2031 *	queues.
2032 *
2033 *	Must be called with user context, may sleep.
2034 **/
2035void
2036scsi_device_resume(struct scsi_device *sdev)
2037{
2038	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2039		return;
2040	scsi_run_queue(sdev->request_queue);
2041}
2042EXPORT_SYMBOL(scsi_device_resume);
2043
2044static void
2045device_quiesce_fn(struct scsi_device *sdev, void *data)
2046{
2047	scsi_device_quiesce(sdev);
2048}
2049
2050void
2051scsi_target_quiesce(struct scsi_target *starget)
2052{
2053	starget_for_each_device(starget, NULL, device_quiesce_fn);
2054}
2055EXPORT_SYMBOL(scsi_target_quiesce);
2056
2057static void
2058device_resume_fn(struct scsi_device *sdev, void *data)
2059{
2060	scsi_device_resume(sdev);
2061}
2062
2063void
2064scsi_target_resume(struct scsi_target *starget)
2065{
2066	starget_for_each_device(starget, NULL, device_resume_fn);
2067}
2068EXPORT_SYMBOL(scsi_target_resume);
2069
2070/**
2071 * scsi_internal_device_block - internal function to put a device
2072 *				temporarily into the SDEV_BLOCK state
2073 * @sdev:	device to block
2074 *
2075 * Block request made by scsi lld's to temporarily stop all
2076 * scsi commands on the specified device.  Called from interrupt
2077 * or normal process context.
2078 *
2079 * Returns zero if successful or error if not
2080 *
2081 * Notes:
2082 *	This routine transitions the device to the SDEV_BLOCK state
2083 *	(which must be a legal transition).  When the device is in this
2084 *	state, all commands are deferred until the scsi lld reenables
2085 *	the device with scsi_device_unblock or device_block_tmo fires.
2086 *	This routine assumes the host_lock is held on entry.
2087 **/
2088int
2089scsi_internal_device_block(struct scsi_device *sdev)
2090{
2091	request_queue_t *q = sdev->request_queue;
2092	unsigned long flags;
2093	int err = 0;
2094
2095	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2096	if (err)
2097		return err;
2098
2099	/*
2100	 * The device has transitioned to SDEV_BLOCK.  Stop the
2101	 * block layer from calling the midlayer with this device's
2102	 * request queue.
2103	 */
2104	spin_lock_irqsave(q->queue_lock, flags);
2105	blk_stop_queue(q);
2106	spin_unlock_irqrestore(q->queue_lock, flags);
2107
2108	return 0;
2109}
2110EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2111
2112/**
2113 * scsi_internal_device_unblock - resume a device after a block request
2114 * @sdev:	device to resume
2115 *
2116 * Called by scsi lld's or the midlayer to restart the device queue
2117 * for the previously suspended scsi device.  Called from interrupt or
2118 * normal process context.
2119 *
2120 * Returns zero if successful or error if not.
2121 *
2122 * Notes:
2123 *	This routine transitions the device to the SDEV_RUNNING state
2124 *	(which must be a legal transition) allowing the midlayer to
2125 *	goose the queue for this device.  This routine assumes the
2126 *	host_lock is held upon entry.
2127 **/
2128int
2129scsi_internal_device_unblock(struct scsi_device *sdev)
2130{
2131	request_queue_t *q = sdev->request_queue;
2132	int err;
2133	unsigned long flags;
2134
2135	/*
2136	 * Try to transition the scsi device to SDEV_RUNNING
2137	 * and goose the device queue if successful.
2138	 */
2139	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2140	if (err)
2141		return err;
2142
2143	spin_lock_irqsave(q->queue_lock, flags);
2144	blk_start_queue(q);
2145	spin_unlock_irqrestore(q->queue_lock, flags);
2146
2147	return 0;
2148}
2149EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2150
2151static void
2152device_block(struct scsi_device *sdev, void *data)
2153{
2154	scsi_internal_device_block(sdev);
2155}
2156
2157static int
2158target_block(struct device *dev, void *data)
2159{
2160	if (scsi_is_target_device(dev))
2161		starget_for_each_device(to_scsi_target(dev), NULL,
2162					device_block);
2163	return 0;
2164}
2165
2166void
2167scsi_target_block(struct device *dev)
2168{
2169	if (scsi_is_target_device(dev))
2170		starget_for_each_device(to_scsi_target(dev), NULL,
2171					device_block);
2172	else
2173		device_for_each_child(dev, NULL, target_block);
2174}
2175EXPORT_SYMBOL_GPL(scsi_target_block);
2176
2177static void
2178device_unblock(struct scsi_device *sdev, void *data)
2179{
2180	scsi_internal_device_unblock(sdev);
2181}
2182
2183static int
2184target_unblock(struct device *dev, void *data)
2185{
2186	if (scsi_is_target_device(dev))
2187		starget_for_each_device(to_scsi_target(dev), NULL,
2188					device_unblock);
2189	return 0;
2190}
2191
2192void
2193scsi_target_unblock(struct device *dev)
2194{
2195	if (scsi_is_target_device(dev))
2196		starget_for_each_device(to_scsi_target(dev), NULL,
2197					device_unblock);
2198	else
2199		device_for_each_child(dev, NULL, target_unblock);
2200}
2201EXPORT_SYMBOL_GPL(scsi_target_unblock);
2202
2203/**
2204 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2205 * @sg:		scatter-gather list
2206 * @sg_count:	number of segments in sg
2207 * @offset:	offset in bytes into sg, on return offset into the mapped area
2208 * @len:	bytes to map, on return number of bytes mapped
2209 *
2210 * Returns virtual address of the start of the mapped page
2211 */
2212void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2213			  size_t *offset, size_t *len)
2214{
2215	int i;
2216	size_t sg_len = 0, len_complete = 0;
2217	struct page *page;
2218
2219	for (i = 0; i < sg_count; i++) {
2220		len_complete = sg_len; /* Complete sg-entries */
2221		sg_len += sg[i].length;
2222		if (sg_len > *offset)
2223			break;
2224	}
2225
2226	if (unlikely(i == sg_count)) {
2227		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2228			"elements %d\n",
2229		       __FUNCTION__, sg_len, *offset, sg_count);
2230		WARN_ON(1);
2231		return NULL;
2232	}
2233
2234	/* Offset starting from the beginning of first page in this sg-entry */
2235	*offset = *offset - len_complete + sg[i].offset;
2236
2237	/* Assumption: contiguous pages can be accessed as "page + i" */
2238	page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2239	*offset &= ~PAGE_MASK;
2240
2241	/* Bytes in this sg-entry from *offset to the end of the page */
2242	sg_len = PAGE_SIZE - *offset;
2243	if (*len > sg_len)
2244		*len = sg_len;
2245
2246	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2247}
2248EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2249
2250/**
2251 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2252 *			   mapped with scsi_kmap_atomic_sg
2253 * @virt:	virtual address to be unmapped
2254 */
2255void scsi_kunmap_atomic_sg(void *virt)
2256{
2257	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2258}
2259EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2260