scsi_lib.c revision 79ed24297236b7430d6ce0a1511ff70cf5b6015a
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/bitops.h>
12#include <linux/blkdev.h>
13#include <linux/completion.h>
14#include <linux/kernel.h>
15#include <linux/mempool.h>
16#include <linux/slab.h>
17#include <linux/init.h>
18#include <linux/pci.h>
19#include <linux/delay.h>
20#include <linux/hardirq.h>
21#include <linux/scatterlist.h>
22
23#include <scsi/scsi.h>
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_dbg.h>
26#include <scsi/scsi_device.h>
27#include <scsi/scsi_driver.h>
28#include <scsi/scsi_eh.h>
29#include <scsi/scsi_host.h>
30
31#include "scsi_priv.h"
32#include "scsi_logging.h"
33
34
35#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36#define SG_MEMPOOL_SIZE		2
37
38struct scsi_host_sg_pool {
39	size_t		size;
40	char		*name;
41	struct kmem_cache	*slab;
42	mempool_t	*pool;
43};
44
45#define SP(x) { x, "sgpool-" __stringify(x) }
46#if (SCSI_MAX_SG_SEGMENTS < 32)
47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48#endif
49static struct scsi_host_sg_pool scsi_sg_pools[] = {
50	SP(8),
51	SP(16),
52#if (SCSI_MAX_SG_SEGMENTS > 32)
53	SP(32),
54#if (SCSI_MAX_SG_SEGMENTS > 64)
55	SP(64),
56#if (SCSI_MAX_SG_SEGMENTS > 128)
57	SP(128),
58#if (SCSI_MAX_SG_SEGMENTS > 256)
59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60#endif
61#endif
62#endif
63#endif
64	SP(SCSI_MAX_SG_SEGMENTS)
65};
66#undef SP
67
68struct kmem_cache *scsi_sdb_cache;
69
70static void scsi_run_queue(struct request_queue *q);
71
72/*
73 * Function:	scsi_unprep_request()
74 *
75 * Purpose:	Remove all preparation done for a request, including its
76 *		associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments:	req	- request to unprepare
79 *
80 * Lock status:	Assumed that no locks are held upon entry.
81 *
82 * Returns:	Nothing.
83 */
84static void scsi_unprep_request(struct request *req)
85{
86	struct scsi_cmnd *cmd = req->special;
87
88	req->cmd_flags &= ~REQ_DONTPREP;
89	req->special = NULL;
90
91	scsi_put_command(cmd);
92}
93
94/**
95 * __scsi_queue_insert - private queue insertion
96 * @cmd: The SCSI command being requeued
97 * @reason:  The reason for the requeue
98 * @unbusy: Whether the queue should be unbusied
99 *
100 * This is a private queue insertion.  The public interface
101 * scsi_queue_insert() always assumes the queue should be unbusied
102 * because it's always called before the completion.  This function is
103 * for a requeue after completion, which should only occur in this
104 * file.
105 */
106static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107{
108	struct Scsi_Host *host = cmd->device->host;
109	struct scsi_device *device = cmd->device;
110	struct scsi_target *starget = scsi_target(device);
111	struct request_queue *q = device->request_queue;
112	unsigned long flags;
113
114	SCSI_LOG_MLQUEUE(1,
115		 printk("Inserting command %p into mlqueue\n", cmd));
116
117	/*
118	 * Set the appropriate busy bit for the device/host.
119	 *
120	 * If the host/device isn't busy, assume that something actually
121	 * completed, and that we should be able to queue a command now.
122	 *
123	 * Note that the prior mid-layer assumption that any host could
124	 * always queue at least one command is now broken.  The mid-layer
125	 * will implement a user specifiable stall (see
126	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127	 * if a command is requeued with no other commands outstanding
128	 * either for the device or for the host.
129	 */
130	switch (reason) {
131	case SCSI_MLQUEUE_HOST_BUSY:
132		host->host_blocked = host->max_host_blocked;
133		break;
134	case SCSI_MLQUEUE_DEVICE_BUSY:
135		device->device_blocked = device->max_device_blocked;
136		break;
137	case SCSI_MLQUEUE_TARGET_BUSY:
138		starget->target_blocked = starget->max_target_blocked;
139		break;
140	}
141
142	/*
143	 * Decrement the counters, since these commands are no longer
144	 * active on the host/device.
145	 */
146	if (unbusy)
147		scsi_device_unbusy(device);
148
149	/*
150	 * Requeue this command.  It will go before all other commands
151	 * that are already in the queue.
152	 *
153	 * NOTE: there is magic here about the way the queue is plugged if
154	 * we have no outstanding commands.
155	 *
156	 * Although we *don't* plug the queue, we call the request
157	 * function.  The SCSI request function detects the blocked condition
158	 * and plugs the queue appropriately.
159         */
160	spin_lock_irqsave(q->queue_lock, flags);
161	blk_requeue_request(q, cmd->request);
162	spin_unlock_irqrestore(q->queue_lock, flags);
163
164	scsi_run_queue(q);
165
166	return 0;
167}
168
169/*
170 * Function:    scsi_queue_insert()
171 *
172 * Purpose:     Insert a command in the midlevel queue.
173 *
174 * Arguments:   cmd    - command that we are adding to queue.
175 *              reason - why we are inserting command to queue.
176 *
177 * Lock status: Assumed that lock is not held upon entry.
178 *
179 * Returns:     Nothing.
180 *
181 * Notes:       We do this for one of two cases.  Either the host is busy
182 *              and it cannot accept any more commands for the time being,
183 *              or the device returned QUEUE_FULL and can accept no more
184 *              commands.
185 * Notes:       This could be called either from an interrupt context or a
186 *              normal process context.
187 */
188int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189{
190	return __scsi_queue_insert(cmd, reason, 1);
191}
192/**
193 * scsi_execute - insert request and wait for the result
194 * @sdev:	scsi device
195 * @cmd:	scsi command
196 * @data_direction: data direction
197 * @buffer:	data buffer
198 * @bufflen:	len of buffer
199 * @sense:	optional sense buffer
200 * @timeout:	request timeout in seconds
201 * @retries:	number of times to retry request
202 * @flags:	or into request flags;
203 * @resid:	optional residual length
204 *
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
207 */
208int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209		 int data_direction, void *buffer, unsigned bufflen,
210		 unsigned char *sense, int timeout, int retries, int flags,
211		 int *resid)
212{
213	struct request *req;
214	int write = (data_direction == DMA_TO_DEVICE);
215	int ret = DRIVER_ERROR << 24;
216
217	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218
219	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
220					buffer, bufflen, __GFP_WAIT))
221		goto out;
222
223	req->cmd_len = COMMAND_SIZE(cmd[0]);
224	memcpy(req->cmd, cmd, req->cmd_len);
225	req->sense = sense;
226	req->sense_len = 0;
227	req->retries = retries;
228	req->timeout = timeout;
229	req->cmd_type = REQ_TYPE_BLOCK_PC;
230	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231
232	/*
233	 * head injection *required* here otherwise quiesce won't work
234	 */
235	blk_execute_rq(req->q, NULL, req, 1);
236
237	/*
238	 * Some devices (USB mass-storage in particular) may transfer
239	 * garbage data together with a residue indicating that the data
240	 * is invalid.  Prevent the garbage from being misinterpreted
241	 * and prevent security leaks by zeroing out the excess data.
242	 */
243	if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
244		memset(buffer + (bufflen - req->data_len), 0, req->data_len);
245
246	if (resid)
247		*resid = req->data_len;
248	ret = req->errors;
249 out:
250	blk_put_request(req);
251
252	return ret;
253}
254EXPORT_SYMBOL(scsi_execute);
255
256
257int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258		     int data_direction, void *buffer, unsigned bufflen,
259		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260		     int *resid)
261{
262	char *sense = NULL;
263	int result;
264
265	if (sshdr) {
266		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267		if (!sense)
268			return DRIVER_ERROR << 24;
269	}
270	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271			      sense, timeout, retries, 0, resid);
272	if (sshdr)
273		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274
275	kfree(sense);
276	return result;
277}
278EXPORT_SYMBOL(scsi_execute_req);
279
280struct scsi_io_context {
281	void *data;
282	void (*done)(void *data, char *sense, int result, int resid);
283	char sense[SCSI_SENSE_BUFFERSIZE];
284};
285
286static struct kmem_cache *scsi_io_context_cache;
287
288static void scsi_end_async(struct request *req, int uptodate)
289{
290	struct scsi_io_context *sioc = req->end_io_data;
291
292	if (sioc->done)
293		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
294
295	kmem_cache_free(scsi_io_context_cache, sioc);
296	__blk_put_request(req->q, req);
297}
298
299static int scsi_merge_bio(struct request *rq, struct bio *bio)
300{
301	struct request_queue *q = rq->q;
302
303	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
304	if (rq_data_dir(rq) == WRITE)
305		bio->bi_rw |= (1 << BIO_RW);
306	blk_queue_bounce(q, &bio);
307
308	return blk_rq_append_bio(q, rq, bio);
309}
310
311static void scsi_bi_endio(struct bio *bio, int error)
312{
313	bio_put(bio);
314}
315
316/**
317 * scsi_req_map_sg - map a scatterlist into a request
318 * @rq:		request to fill
319 * @sgl:	scatterlist
320 * @nsegs:	number of elements
321 * @bufflen:	len of buffer
322 * @gfp:	memory allocation flags
323 *
324 * scsi_req_map_sg maps a scatterlist into a request so that the
325 * request can be sent to the block layer. We do not trust the scatterlist
326 * sent to use, as some ULDs use that struct to only organize the pages.
327 */
328static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
329			   int nsegs, unsigned bufflen, gfp_t gfp)
330{
331	struct request_queue *q = rq->q;
332	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
333	unsigned int data_len = bufflen, len, bytes, off;
334	struct scatterlist *sg;
335	struct page *page;
336	struct bio *bio = NULL;
337	int i, err, nr_vecs = 0;
338
339	for_each_sg(sgl, sg, nsegs, i) {
340		page = sg_page(sg);
341		off = sg->offset;
342		len = sg->length;
343
344		while (len > 0 && data_len > 0) {
345			/*
346			 * sg sends a scatterlist that is larger than
347			 * the data_len it wants transferred for certain
348			 * IO sizes
349			 */
350			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
351			bytes = min(bytes, data_len);
352
353			if (!bio) {
354				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
355				nr_pages -= nr_vecs;
356
357				bio = bio_alloc(gfp, nr_vecs);
358				if (!bio) {
359					err = -ENOMEM;
360					goto free_bios;
361				}
362				bio->bi_end_io = scsi_bi_endio;
363			}
364
365			if (bio_add_pc_page(q, bio, page, bytes, off) !=
366			    bytes) {
367				bio_put(bio);
368				err = -EINVAL;
369				goto free_bios;
370			}
371
372			if (bio->bi_vcnt >= nr_vecs) {
373				err = scsi_merge_bio(rq, bio);
374				if (err) {
375					bio_endio(bio, 0);
376					goto free_bios;
377				}
378				bio = NULL;
379			}
380
381			page++;
382			len -= bytes;
383			data_len -=bytes;
384			off = 0;
385		}
386	}
387
388	rq->buffer = rq->data = NULL;
389	rq->data_len = bufflen;
390	return 0;
391
392free_bios:
393	while ((bio = rq->bio) != NULL) {
394		rq->bio = bio->bi_next;
395		/*
396		 * call endio instead of bio_put incase it was bounced
397		 */
398		bio_endio(bio, 0);
399	}
400
401	return err;
402}
403
404/**
405 * scsi_execute_async - insert request
406 * @sdev:	scsi device
407 * @cmd:	scsi command
408 * @cmd_len:	length of scsi cdb
409 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
410 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
411 * @bufflen:	len of buffer
412 * @use_sg:	if buffer is a scatterlist this is the number of elements
413 * @timeout:	request timeout in seconds
414 * @retries:	number of times to retry request
415 * @privdata:	data passed to done()
416 * @done:	callback function when done
417 * @gfp:	memory allocation flags
418 */
419int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
420		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
421		       int use_sg, int timeout, int retries, void *privdata,
422		       void (*done)(void *, char *, int, int), gfp_t gfp)
423{
424	struct request *req;
425	struct scsi_io_context *sioc;
426	int err = 0;
427	int write = (data_direction == DMA_TO_DEVICE);
428
429	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
430	if (!sioc)
431		return DRIVER_ERROR << 24;
432
433	req = blk_get_request(sdev->request_queue, write, gfp);
434	if (!req)
435		goto free_sense;
436	req->cmd_type = REQ_TYPE_BLOCK_PC;
437	req->cmd_flags |= REQ_QUIET;
438
439	if (use_sg)
440		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
441	else if (bufflen)
442		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
443
444	if (err)
445		goto free_req;
446
447	req->cmd_len = cmd_len;
448	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
449	memcpy(req->cmd, cmd, req->cmd_len);
450	req->sense = sioc->sense;
451	req->sense_len = 0;
452	req->timeout = timeout;
453	req->retries = retries;
454	req->end_io_data = sioc;
455
456	sioc->data = privdata;
457	sioc->done = done;
458
459	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
460	return 0;
461
462free_req:
463	blk_put_request(req);
464free_sense:
465	kmem_cache_free(scsi_io_context_cache, sioc);
466	return DRIVER_ERROR << 24;
467}
468EXPORT_SYMBOL_GPL(scsi_execute_async);
469
470/*
471 * Function:    scsi_init_cmd_errh()
472 *
473 * Purpose:     Initialize cmd fields related to error handling.
474 *
475 * Arguments:   cmd	- command that is ready to be queued.
476 *
477 * Notes:       This function has the job of initializing a number of
478 *              fields related to error handling.   Typically this will
479 *              be called once for each command, as required.
480 */
481static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
482{
483	cmd->serial_number = 0;
484	scsi_set_resid(cmd, 0);
485	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
486	if (cmd->cmd_len == 0)
487		cmd->cmd_len = scsi_command_size(cmd->cmnd);
488}
489
490void scsi_device_unbusy(struct scsi_device *sdev)
491{
492	struct Scsi_Host *shost = sdev->host;
493	struct scsi_target *starget = scsi_target(sdev);
494	unsigned long flags;
495
496	spin_lock_irqsave(shost->host_lock, flags);
497	shost->host_busy--;
498	starget->target_busy--;
499	if (unlikely(scsi_host_in_recovery(shost) &&
500		     (shost->host_failed || shost->host_eh_scheduled)))
501		scsi_eh_wakeup(shost);
502	spin_unlock(shost->host_lock);
503	spin_lock(sdev->request_queue->queue_lock);
504	sdev->device_busy--;
505	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
506}
507
508/*
509 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
510 * and call blk_run_queue for all the scsi_devices on the target -
511 * including current_sdev first.
512 *
513 * Called with *no* scsi locks held.
514 */
515static void scsi_single_lun_run(struct scsi_device *current_sdev)
516{
517	struct Scsi_Host *shost = current_sdev->host;
518	struct scsi_device *sdev, *tmp;
519	struct scsi_target *starget = scsi_target(current_sdev);
520	unsigned long flags;
521
522	spin_lock_irqsave(shost->host_lock, flags);
523	starget->starget_sdev_user = NULL;
524	spin_unlock_irqrestore(shost->host_lock, flags);
525
526	/*
527	 * Call blk_run_queue for all LUNs on the target, starting with
528	 * current_sdev. We race with others (to set starget_sdev_user),
529	 * but in most cases, we will be first. Ideally, each LU on the
530	 * target would get some limited time or requests on the target.
531	 */
532	blk_run_queue(current_sdev->request_queue);
533
534	spin_lock_irqsave(shost->host_lock, flags);
535	if (starget->starget_sdev_user)
536		goto out;
537	list_for_each_entry_safe(sdev, tmp, &starget->devices,
538			same_target_siblings) {
539		if (sdev == current_sdev)
540			continue;
541		if (scsi_device_get(sdev))
542			continue;
543
544		spin_unlock_irqrestore(shost->host_lock, flags);
545		blk_run_queue(sdev->request_queue);
546		spin_lock_irqsave(shost->host_lock, flags);
547
548		scsi_device_put(sdev);
549	}
550 out:
551	spin_unlock_irqrestore(shost->host_lock, flags);
552}
553
554static inline int scsi_device_is_busy(struct scsi_device *sdev)
555{
556	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
557		return 1;
558
559	return 0;
560}
561
562static inline int scsi_target_is_busy(struct scsi_target *starget)
563{
564	return ((starget->can_queue > 0 &&
565		 starget->target_busy >= starget->can_queue) ||
566		 starget->target_blocked);
567}
568
569static inline int scsi_host_is_busy(struct Scsi_Host *shost)
570{
571	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
572	    shost->host_blocked || shost->host_self_blocked)
573		return 1;
574
575	return 0;
576}
577
578/*
579 * Function:	scsi_run_queue()
580 *
581 * Purpose:	Select a proper request queue to serve next
582 *
583 * Arguments:	q	- last request's queue
584 *
585 * Returns:     Nothing
586 *
587 * Notes:	The previous command was completely finished, start
588 *		a new one if possible.
589 */
590static void scsi_run_queue(struct request_queue *q)
591{
592	struct scsi_device *sdev = q->queuedata;
593	struct Scsi_Host *shost = sdev->host;
594	LIST_HEAD(starved_list);
595	unsigned long flags;
596
597	if (scsi_target(sdev)->single_lun)
598		scsi_single_lun_run(sdev);
599
600	spin_lock_irqsave(shost->host_lock, flags);
601	list_splice_init(&shost->starved_list, &starved_list);
602
603	while (!list_empty(&starved_list)) {
604		int flagset;
605
606		/*
607		 * As long as shost is accepting commands and we have
608		 * starved queues, call blk_run_queue. scsi_request_fn
609		 * drops the queue_lock and can add us back to the
610		 * starved_list.
611		 *
612		 * host_lock protects the starved_list and starved_entry.
613		 * scsi_request_fn must get the host_lock before checking
614		 * or modifying starved_list or starved_entry.
615		 */
616		if (scsi_host_is_busy(shost))
617			break;
618
619		sdev = list_entry(starved_list.next,
620				  struct scsi_device, starved_entry);
621		list_del_init(&sdev->starved_entry);
622		if (scsi_target_is_busy(scsi_target(sdev))) {
623			list_move_tail(&sdev->starved_entry,
624				       &shost->starved_list);
625			continue;
626		}
627
628		spin_unlock(shost->host_lock);
629
630		spin_lock(sdev->request_queue->queue_lock);
631		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
632				!test_bit(QUEUE_FLAG_REENTER,
633					&sdev->request_queue->queue_flags);
634		if (flagset)
635			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
636		__blk_run_queue(sdev->request_queue);
637		if (flagset)
638			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
639		spin_unlock(sdev->request_queue->queue_lock);
640
641		spin_lock(shost->host_lock);
642	}
643	/* put any unprocessed entries back */
644	list_splice(&starved_list, &shost->starved_list);
645	spin_unlock_irqrestore(shost->host_lock, flags);
646
647	blk_run_queue(q);
648}
649
650/*
651 * Function:	scsi_requeue_command()
652 *
653 * Purpose:	Handle post-processing of completed commands.
654 *
655 * Arguments:	q	- queue to operate on
656 *		cmd	- command that may need to be requeued.
657 *
658 * Returns:	Nothing
659 *
660 * Notes:	After command completion, there may be blocks left
661 *		over which weren't finished by the previous command
662 *		this can be for a number of reasons - the main one is
663 *		I/O errors in the middle of the request, in which case
664 *		we need to request the blocks that come after the bad
665 *		sector.
666 * Notes:	Upon return, cmd is a stale pointer.
667 */
668static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
669{
670	struct request *req = cmd->request;
671	unsigned long flags;
672
673	spin_lock_irqsave(q->queue_lock, flags);
674	scsi_unprep_request(req);
675	blk_requeue_request(q, req);
676	spin_unlock_irqrestore(q->queue_lock, flags);
677
678	scsi_run_queue(q);
679}
680
681void scsi_next_command(struct scsi_cmnd *cmd)
682{
683	struct scsi_device *sdev = cmd->device;
684	struct request_queue *q = sdev->request_queue;
685
686	/* need to hold a reference on the device before we let go of the cmd */
687	get_device(&sdev->sdev_gendev);
688
689	scsi_put_command(cmd);
690	scsi_run_queue(q);
691
692	/* ok to remove device now */
693	put_device(&sdev->sdev_gendev);
694}
695
696void scsi_run_host_queues(struct Scsi_Host *shost)
697{
698	struct scsi_device *sdev;
699
700	shost_for_each_device(sdev, shost)
701		scsi_run_queue(sdev->request_queue);
702}
703
704static void __scsi_release_buffers(struct scsi_cmnd *, int);
705
706/*
707 * Function:    scsi_end_request()
708 *
709 * Purpose:     Post-processing of completed commands (usually invoked at end
710 *		of upper level post-processing and scsi_io_completion).
711 *
712 * Arguments:   cmd	 - command that is complete.
713 *              error    - 0 if I/O indicates success, < 0 for I/O error.
714 *              bytes    - number of bytes of completed I/O
715 *		requeue  - indicates whether we should requeue leftovers.
716 *
717 * Lock status: Assumed that lock is not held upon entry.
718 *
719 * Returns:     cmd if requeue required, NULL otherwise.
720 *
721 * Notes:       This is called for block device requests in order to
722 *              mark some number of sectors as complete.
723 *
724 *		We are guaranteeing that the request queue will be goosed
725 *		at some point during this call.
726 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
727 */
728static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
729					  int bytes, int requeue)
730{
731	struct request_queue *q = cmd->device->request_queue;
732	struct request *req = cmd->request;
733
734	/*
735	 * If there are blocks left over at the end, set up the command
736	 * to queue the remainder of them.
737	 */
738	if (blk_end_request(req, error, bytes)) {
739		int leftover = (req->hard_nr_sectors << 9);
740
741		if (blk_pc_request(req))
742			leftover = req->data_len;
743
744		/* kill remainder if no retrys */
745		if (error && scsi_noretry_cmd(cmd))
746			blk_end_request(req, error, leftover);
747		else {
748			if (requeue) {
749				/*
750				 * Bleah.  Leftovers again.  Stick the
751				 * leftovers in the front of the
752				 * queue, and goose the queue again.
753				 */
754				scsi_release_buffers(cmd);
755				scsi_requeue_command(q, cmd);
756				cmd = NULL;
757			}
758			return cmd;
759		}
760	}
761
762	/*
763	 * This will goose the queue request function at the end, so we don't
764	 * need to worry about launching another command.
765	 */
766	__scsi_release_buffers(cmd, 0);
767	scsi_next_command(cmd);
768	return NULL;
769}
770
771static inline unsigned int scsi_sgtable_index(unsigned short nents)
772{
773	unsigned int index;
774
775	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
776
777	if (nents <= 8)
778		index = 0;
779	else
780		index = get_count_order(nents) - 3;
781
782	return index;
783}
784
785static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
786{
787	struct scsi_host_sg_pool *sgp;
788
789	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
790	mempool_free(sgl, sgp->pool);
791}
792
793static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
794{
795	struct scsi_host_sg_pool *sgp;
796
797	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
798	return mempool_alloc(sgp->pool, gfp_mask);
799}
800
801static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
802			      gfp_t gfp_mask)
803{
804	int ret;
805
806	BUG_ON(!nents);
807
808	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
809			       gfp_mask, scsi_sg_alloc);
810	if (unlikely(ret))
811		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
812				scsi_sg_free);
813
814	return ret;
815}
816
817static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
818{
819	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
820}
821
822static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
823{
824
825	if (cmd->sdb.table.nents)
826		scsi_free_sgtable(&cmd->sdb);
827
828	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
829
830	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
831		struct scsi_data_buffer *bidi_sdb =
832			cmd->request->next_rq->special;
833		scsi_free_sgtable(bidi_sdb);
834		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
835		cmd->request->next_rq->special = NULL;
836	}
837
838	if (scsi_prot_sg_count(cmd))
839		scsi_free_sgtable(cmd->prot_sdb);
840}
841
842/*
843 * Function:    scsi_release_buffers()
844 *
845 * Purpose:     Completion processing for block device I/O requests.
846 *
847 * Arguments:   cmd	- command that we are bailing.
848 *
849 * Lock status: Assumed that no lock is held upon entry.
850 *
851 * Returns:     Nothing
852 *
853 * Notes:       In the event that an upper level driver rejects a
854 *		command, we must release resources allocated during
855 *		the __init_io() function.  Primarily this would involve
856 *		the scatter-gather table, and potentially any bounce
857 *		buffers.
858 */
859void scsi_release_buffers(struct scsi_cmnd *cmd)
860{
861	__scsi_release_buffers(cmd, 1);
862}
863EXPORT_SYMBOL(scsi_release_buffers);
864
865/*
866 * Bidi commands Must be complete as a whole, both sides at once.
867 * If part of the bytes were written and lld returned
868 * scsi_in()->resid and/or scsi_out()->resid this information will be left
869 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
870 * decide what to do with this information.
871 */
872static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
873{
874	struct request *req = cmd->request;
875	unsigned int dlen = req->data_len;
876	unsigned int next_dlen = req->next_rq->data_len;
877
878	req->data_len = scsi_out(cmd)->resid;
879	req->next_rq->data_len = scsi_in(cmd)->resid;
880
881	/* The req and req->next_rq have not been completed */
882	BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
883
884	scsi_release_buffers(cmd);
885
886	/*
887	 * This will goose the queue request function at the end, so we don't
888	 * need to worry about launching another command.
889	 */
890	scsi_next_command(cmd);
891}
892
893/*
894 * Function:    scsi_io_completion()
895 *
896 * Purpose:     Completion processing for block device I/O requests.
897 *
898 * Arguments:   cmd   - command that is finished.
899 *
900 * Lock status: Assumed that no lock is held upon entry.
901 *
902 * Returns:     Nothing
903 *
904 * Notes:       This function is matched in terms of capabilities to
905 *              the function that created the scatter-gather list.
906 *              In other words, if there are no bounce buffers
907 *              (the normal case for most drivers), we don't need
908 *              the logic to deal with cleaning up afterwards.
909 *
910 *		We must call scsi_end_request().  This will finish off
911 *		the specified number of sectors.  If we are done, the
912 *		command block will be released and the queue function
913 *		will be goosed.  If we are not done then we have to
914 *		figure out what to do next:
915 *
916 *		a) We can call scsi_requeue_command().  The request
917 *		   will be unprepared and put back on the queue.  Then
918 *		   a new command will be created for it.  This should
919 *		   be used if we made forward progress, or if we want
920 *		   to switch from READ(10) to READ(6) for example.
921 *
922 *		b) We can call scsi_queue_insert().  The request will
923 *		   be put back on the queue and retried using the same
924 *		   command as before, possibly after a delay.
925 *
926 *		c) We can call blk_end_request() with -EIO to fail
927 *		   the remainder of the request.
928 */
929void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
930{
931	int result = cmd->result;
932	int this_count;
933	struct request_queue *q = cmd->device->request_queue;
934	struct request *req = cmd->request;
935	int error = 0;
936	struct scsi_sense_hdr sshdr;
937	int sense_valid = 0;
938	int sense_deferred = 0;
939	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
940	      ACTION_DELAYED_RETRY} action;
941	char *description = NULL;
942
943	if (result) {
944		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
945		if (sense_valid)
946			sense_deferred = scsi_sense_is_deferred(&sshdr);
947	}
948
949	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
950		req->errors = result;
951		if (result) {
952			if (sense_valid && req->sense) {
953				/*
954				 * SG_IO wants current and deferred errors
955				 */
956				int len = 8 + cmd->sense_buffer[7];
957
958				if (len > SCSI_SENSE_BUFFERSIZE)
959					len = SCSI_SENSE_BUFFERSIZE;
960				memcpy(req->sense, cmd->sense_buffer,  len);
961				req->sense_len = len;
962			}
963			if (!sense_deferred)
964				error = -EIO;
965		}
966		if (scsi_bidi_cmnd(cmd)) {
967			/* will also release_buffers */
968			scsi_end_bidi_request(cmd);
969			return;
970		}
971		req->data_len = scsi_get_resid(cmd);
972	}
973
974	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
975
976	/*
977	 * Next deal with any sectors which we were able to correctly
978	 * handle.
979	 */
980	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
981				      "%d bytes done.\n",
982				      req->nr_sectors, good_bytes));
983
984	/* A number of bytes were successfully read.  If there
985	 * are leftovers and there is some kind of error
986	 * (result != 0), retry the rest.
987	 */
988	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
989		return;
990	this_count = blk_rq_bytes(req);
991
992	error = -EIO;
993
994	if (host_byte(result) == DID_RESET) {
995		/* Third party bus reset or reset for error recovery
996		 * reasons.  Just retry the command and see what
997		 * happens.
998		 */
999		action = ACTION_RETRY;
1000	} else if (sense_valid && !sense_deferred) {
1001		switch (sshdr.sense_key) {
1002		case UNIT_ATTENTION:
1003			if (cmd->device->removable) {
1004				/* Detected disc change.  Set a bit
1005				 * and quietly refuse further access.
1006				 */
1007				cmd->device->changed = 1;
1008				description = "Media Changed";
1009				action = ACTION_FAIL;
1010			} else {
1011				/* Must have been a power glitch, or a
1012				 * bus reset.  Could not have been a
1013				 * media change, so we just retry the
1014				 * command and see what happens.
1015				 */
1016				action = ACTION_RETRY;
1017			}
1018			break;
1019		case ILLEGAL_REQUEST:
1020			/* If we had an ILLEGAL REQUEST returned, then
1021			 * we may have performed an unsupported
1022			 * command.  The only thing this should be
1023			 * would be a ten byte read where only a six
1024			 * byte read was supported.  Also, on a system
1025			 * where READ CAPACITY failed, we may have
1026			 * read past the end of the disk.
1027			 */
1028			if ((cmd->device->use_10_for_rw &&
1029			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1030			    (cmd->cmnd[0] == READ_10 ||
1031			     cmd->cmnd[0] == WRITE_10)) {
1032				/* This will issue a new 6-byte command. */
1033				cmd->device->use_10_for_rw = 0;
1034				action = ACTION_REPREP;
1035			} else if (sshdr.asc == 0x10) /* DIX */ {
1036				description = "Host Data Integrity Failure";
1037				action = ACTION_FAIL;
1038				error = -EILSEQ;
1039			} else
1040				action = ACTION_FAIL;
1041			break;
1042		case ABORTED_COMMAND:
1043			if (sshdr.asc == 0x10) { /* DIF */
1044				description = "Target Data Integrity Failure";
1045				action = ACTION_FAIL;
1046				error = -EILSEQ;
1047			} else
1048				action = ACTION_RETRY;
1049			break;
1050		case NOT_READY:
1051			/* If the device is in the process of becoming
1052			 * ready, or has a temporary blockage, retry.
1053			 */
1054			if (sshdr.asc == 0x04) {
1055				switch (sshdr.ascq) {
1056				case 0x01: /* becoming ready */
1057				case 0x04: /* format in progress */
1058				case 0x05: /* rebuild in progress */
1059				case 0x06: /* recalculation in progress */
1060				case 0x07: /* operation in progress */
1061				case 0x08: /* Long write in progress */
1062				case 0x09: /* self test in progress */
1063					action = ACTION_DELAYED_RETRY;
1064					break;
1065				default:
1066					description = "Device not ready";
1067					action = ACTION_FAIL;
1068					break;
1069				}
1070			} else {
1071				description = "Device not ready";
1072				action = ACTION_FAIL;
1073			}
1074			break;
1075		case VOLUME_OVERFLOW:
1076			/* See SSC3rXX or current. */
1077			action = ACTION_FAIL;
1078			break;
1079		default:
1080			description = "Unhandled sense code";
1081			action = ACTION_FAIL;
1082			break;
1083		}
1084	} else {
1085		description = "Unhandled error code";
1086		action = ACTION_FAIL;
1087	}
1088
1089	switch (action) {
1090	case ACTION_FAIL:
1091		/* Give up and fail the remainder of the request */
1092		scsi_release_buffers(cmd);
1093		if (!(req->cmd_flags & REQ_QUIET)) {
1094			if (description)
1095				scmd_printk(KERN_INFO, cmd, "%s\n",
1096					    description);
1097			scsi_print_result(cmd);
1098			if (driver_byte(result) & DRIVER_SENSE)
1099				scsi_print_sense("", cmd);
1100		}
1101		blk_end_request(req, -EIO, blk_rq_bytes(req));
1102		scsi_next_command(cmd);
1103		break;
1104	case ACTION_REPREP:
1105		/* Unprep the request and put it back at the head of the queue.
1106		 * A new command will be prepared and issued.
1107		 */
1108		scsi_release_buffers(cmd);
1109		scsi_requeue_command(q, cmd);
1110		break;
1111	case ACTION_RETRY:
1112		/* Retry the same command immediately */
1113		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1114		break;
1115	case ACTION_DELAYED_RETRY:
1116		/* Retry the same command after a delay */
1117		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1118		break;
1119	}
1120}
1121
1122static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1123			     gfp_t gfp_mask)
1124{
1125	int count;
1126
1127	/*
1128	 * If sg table allocation fails, requeue request later.
1129	 */
1130	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1131					gfp_mask))) {
1132		return BLKPREP_DEFER;
1133	}
1134
1135	req->buffer = NULL;
1136
1137	/*
1138	 * Next, walk the list, and fill in the addresses and sizes of
1139	 * each segment.
1140	 */
1141	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1142	BUG_ON(count > sdb->table.nents);
1143	sdb->table.nents = count;
1144	if (blk_pc_request(req))
1145		sdb->length = req->data_len;
1146	else
1147		sdb->length = req->nr_sectors << 9;
1148	return BLKPREP_OK;
1149}
1150
1151/*
1152 * Function:    scsi_init_io()
1153 *
1154 * Purpose:     SCSI I/O initialize function.
1155 *
1156 * Arguments:   cmd   - Command descriptor we wish to initialize
1157 *
1158 * Returns:     0 on success
1159 *		BLKPREP_DEFER if the failure is retryable
1160 *		BLKPREP_KILL if the failure is fatal
1161 */
1162int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1163{
1164	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1165	if (error)
1166		goto err_exit;
1167
1168	if (blk_bidi_rq(cmd->request)) {
1169		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1170			scsi_sdb_cache, GFP_ATOMIC);
1171		if (!bidi_sdb) {
1172			error = BLKPREP_DEFER;
1173			goto err_exit;
1174		}
1175
1176		cmd->request->next_rq->special = bidi_sdb;
1177		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1178								    GFP_ATOMIC);
1179		if (error)
1180			goto err_exit;
1181	}
1182
1183	if (blk_integrity_rq(cmd->request)) {
1184		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1185		int ivecs, count;
1186
1187		BUG_ON(prot_sdb == NULL);
1188		ivecs = blk_rq_count_integrity_sg(cmd->request);
1189
1190		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1191			error = BLKPREP_DEFER;
1192			goto err_exit;
1193		}
1194
1195		count = blk_rq_map_integrity_sg(cmd->request,
1196						prot_sdb->table.sgl);
1197		BUG_ON(unlikely(count > ivecs));
1198
1199		cmd->prot_sdb = prot_sdb;
1200		cmd->prot_sdb->table.nents = count;
1201	}
1202
1203	return BLKPREP_OK ;
1204
1205err_exit:
1206	scsi_release_buffers(cmd);
1207	if (error == BLKPREP_KILL)
1208		scsi_put_command(cmd);
1209	else /* BLKPREP_DEFER */
1210		scsi_unprep_request(cmd->request);
1211
1212	return error;
1213}
1214EXPORT_SYMBOL(scsi_init_io);
1215
1216static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1217		struct request *req)
1218{
1219	struct scsi_cmnd *cmd;
1220
1221	if (!req->special) {
1222		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1223		if (unlikely(!cmd))
1224			return NULL;
1225		req->special = cmd;
1226	} else {
1227		cmd = req->special;
1228	}
1229
1230	/* pull a tag out of the request if we have one */
1231	cmd->tag = req->tag;
1232	cmd->request = req;
1233
1234	cmd->cmnd = req->cmd;
1235
1236	return cmd;
1237}
1238
1239int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1240{
1241	struct scsi_cmnd *cmd;
1242	int ret = scsi_prep_state_check(sdev, req);
1243
1244	if (ret != BLKPREP_OK)
1245		return ret;
1246
1247	cmd = scsi_get_cmd_from_req(sdev, req);
1248	if (unlikely(!cmd))
1249		return BLKPREP_DEFER;
1250
1251	/*
1252	 * BLOCK_PC requests may transfer data, in which case they must
1253	 * a bio attached to them.  Or they might contain a SCSI command
1254	 * that does not transfer data, in which case they may optionally
1255	 * submit a request without an attached bio.
1256	 */
1257	if (req->bio) {
1258		int ret;
1259
1260		BUG_ON(!req->nr_phys_segments);
1261
1262		ret = scsi_init_io(cmd, GFP_ATOMIC);
1263		if (unlikely(ret))
1264			return ret;
1265	} else {
1266		BUG_ON(req->data_len);
1267		BUG_ON(req->data);
1268
1269		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1270		req->buffer = NULL;
1271	}
1272
1273	cmd->cmd_len = req->cmd_len;
1274	if (!req->data_len)
1275		cmd->sc_data_direction = DMA_NONE;
1276	else if (rq_data_dir(req) == WRITE)
1277		cmd->sc_data_direction = DMA_TO_DEVICE;
1278	else
1279		cmd->sc_data_direction = DMA_FROM_DEVICE;
1280
1281	cmd->transfersize = req->data_len;
1282	cmd->allowed = req->retries;
1283	return BLKPREP_OK;
1284}
1285EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1286
1287/*
1288 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1289 * from filesystems that still need to be translated to SCSI CDBs from
1290 * the ULD.
1291 */
1292int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1293{
1294	struct scsi_cmnd *cmd;
1295	int ret = scsi_prep_state_check(sdev, req);
1296
1297	if (ret != BLKPREP_OK)
1298		return ret;
1299
1300	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1301			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1302		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1303		if (ret != BLKPREP_OK)
1304			return ret;
1305	}
1306
1307	/*
1308	 * Filesystem requests must transfer data.
1309	 */
1310	BUG_ON(!req->nr_phys_segments);
1311
1312	cmd = scsi_get_cmd_from_req(sdev, req);
1313	if (unlikely(!cmd))
1314		return BLKPREP_DEFER;
1315
1316	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1317	return scsi_init_io(cmd, GFP_ATOMIC);
1318}
1319EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1320
1321int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1322{
1323	int ret = BLKPREP_OK;
1324
1325	/*
1326	 * If the device is not in running state we will reject some
1327	 * or all commands.
1328	 */
1329	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1330		switch (sdev->sdev_state) {
1331		case SDEV_OFFLINE:
1332			/*
1333			 * If the device is offline we refuse to process any
1334			 * commands.  The device must be brought online
1335			 * before trying any recovery commands.
1336			 */
1337			sdev_printk(KERN_ERR, sdev,
1338				    "rejecting I/O to offline device\n");
1339			ret = BLKPREP_KILL;
1340			break;
1341		case SDEV_DEL:
1342			/*
1343			 * If the device is fully deleted, we refuse to
1344			 * process any commands as well.
1345			 */
1346			sdev_printk(KERN_ERR, sdev,
1347				    "rejecting I/O to dead device\n");
1348			ret = BLKPREP_KILL;
1349			break;
1350		case SDEV_QUIESCE:
1351		case SDEV_BLOCK:
1352		case SDEV_CREATED_BLOCK:
1353			/*
1354			 * If the devices is blocked we defer normal commands.
1355			 */
1356			if (!(req->cmd_flags & REQ_PREEMPT))
1357				ret = BLKPREP_DEFER;
1358			break;
1359		default:
1360			/*
1361			 * For any other not fully online state we only allow
1362			 * special commands.  In particular any user initiated
1363			 * command is not allowed.
1364			 */
1365			if (!(req->cmd_flags & REQ_PREEMPT))
1366				ret = BLKPREP_KILL;
1367			break;
1368		}
1369	}
1370	return ret;
1371}
1372EXPORT_SYMBOL(scsi_prep_state_check);
1373
1374int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1375{
1376	struct scsi_device *sdev = q->queuedata;
1377
1378	switch (ret) {
1379	case BLKPREP_KILL:
1380		req->errors = DID_NO_CONNECT << 16;
1381		/* release the command and kill it */
1382		if (req->special) {
1383			struct scsi_cmnd *cmd = req->special;
1384			scsi_release_buffers(cmd);
1385			scsi_put_command(cmd);
1386			req->special = NULL;
1387		}
1388		break;
1389	case BLKPREP_DEFER:
1390		/*
1391		 * If we defer, the elv_next_request() returns NULL, but the
1392		 * queue must be restarted, so we plug here if no returning
1393		 * command will automatically do that.
1394		 */
1395		if (sdev->device_busy == 0)
1396			blk_plug_device(q);
1397		break;
1398	default:
1399		req->cmd_flags |= REQ_DONTPREP;
1400	}
1401
1402	return ret;
1403}
1404EXPORT_SYMBOL(scsi_prep_return);
1405
1406int scsi_prep_fn(struct request_queue *q, struct request *req)
1407{
1408	struct scsi_device *sdev = q->queuedata;
1409	int ret = BLKPREP_KILL;
1410
1411	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1412		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1413	return scsi_prep_return(q, req, ret);
1414}
1415
1416/*
1417 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1418 * return 0.
1419 *
1420 * Called with the queue_lock held.
1421 */
1422static inline int scsi_dev_queue_ready(struct request_queue *q,
1423				  struct scsi_device *sdev)
1424{
1425	if (sdev->device_busy == 0 && sdev->device_blocked) {
1426		/*
1427		 * unblock after device_blocked iterates to zero
1428		 */
1429		if (--sdev->device_blocked == 0) {
1430			SCSI_LOG_MLQUEUE(3,
1431				   sdev_printk(KERN_INFO, sdev,
1432				   "unblocking device at zero depth\n"));
1433		} else {
1434			blk_plug_device(q);
1435			return 0;
1436		}
1437	}
1438	if (scsi_device_is_busy(sdev))
1439		return 0;
1440
1441	return 1;
1442}
1443
1444
1445/*
1446 * scsi_target_queue_ready: checks if there we can send commands to target
1447 * @sdev: scsi device on starget to check.
1448 *
1449 * Called with the host lock held.
1450 */
1451static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1452					   struct scsi_device *sdev)
1453{
1454	struct scsi_target *starget = scsi_target(sdev);
1455
1456	if (starget->single_lun) {
1457		if (starget->starget_sdev_user &&
1458		    starget->starget_sdev_user != sdev)
1459			return 0;
1460		starget->starget_sdev_user = sdev;
1461	}
1462
1463	if (starget->target_busy == 0 && starget->target_blocked) {
1464		/*
1465		 * unblock after target_blocked iterates to zero
1466		 */
1467		if (--starget->target_blocked == 0) {
1468			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1469					 "unblocking target at zero depth\n"));
1470		} else {
1471			blk_plug_device(sdev->request_queue);
1472			return 0;
1473		}
1474	}
1475
1476	if (scsi_target_is_busy(starget)) {
1477		if (list_empty(&sdev->starved_entry)) {
1478			list_add_tail(&sdev->starved_entry,
1479				      &shost->starved_list);
1480			return 0;
1481		}
1482	}
1483
1484	/* We're OK to process the command, so we can't be starved */
1485	if (!list_empty(&sdev->starved_entry))
1486		list_del_init(&sdev->starved_entry);
1487	return 1;
1488}
1489
1490/*
1491 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1492 * return 0. We must end up running the queue again whenever 0 is
1493 * returned, else IO can hang.
1494 *
1495 * Called with host_lock held.
1496 */
1497static inline int scsi_host_queue_ready(struct request_queue *q,
1498				   struct Scsi_Host *shost,
1499				   struct scsi_device *sdev)
1500{
1501	if (scsi_host_in_recovery(shost))
1502		return 0;
1503	if (shost->host_busy == 0 && shost->host_blocked) {
1504		/*
1505		 * unblock after host_blocked iterates to zero
1506		 */
1507		if (--shost->host_blocked == 0) {
1508			SCSI_LOG_MLQUEUE(3,
1509				printk("scsi%d unblocking host at zero depth\n",
1510					shost->host_no));
1511		} else {
1512			return 0;
1513		}
1514	}
1515	if (scsi_host_is_busy(shost)) {
1516		if (list_empty(&sdev->starved_entry))
1517			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1518		return 0;
1519	}
1520
1521	/* We're OK to process the command, so we can't be starved */
1522	if (!list_empty(&sdev->starved_entry))
1523		list_del_init(&sdev->starved_entry);
1524
1525	return 1;
1526}
1527
1528/*
1529 * Busy state exporting function for request stacking drivers.
1530 *
1531 * For efficiency, no lock is taken to check the busy state of
1532 * shost/starget/sdev, since the returned value is not guaranteed and
1533 * may be changed after request stacking drivers call the function,
1534 * regardless of taking lock or not.
1535 *
1536 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1537 * (e.g. !sdev), scsi needs to return 'not busy'.
1538 * Otherwise, request stacking drivers may hold requests forever.
1539 */
1540static int scsi_lld_busy(struct request_queue *q)
1541{
1542	struct scsi_device *sdev = q->queuedata;
1543	struct Scsi_Host *shost;
1544	struct scsi_target *starget;
1545
1546	if (!sdev)
1547		return 0;
1548
1549	shost = sdev->host;
1550	starget = scsi_target(sdev);
1551
1552	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1553	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1554		return 1;
1555
1556	return 0;
1557}
1558
1559/*
1560 * Kill a request for a dead device
1561 */
1562static void scsi_kill_request(struct request *req, struct request_queue *q)
1563{
1564	struct scsi_cmnd *cmd = req->special;
1565	struct scsi_device *sdev = cmd->device;
1566	struct scsi_target *starget = scsi_target(sdev);
1567	struct Scsi_Host *shost = sdev->host;
1568
1569	blkdev_dequeue_request(req);
1570
1571	if (unlikely(cmd == NULL)) {
1572		printk(KERN_CRIT "impossible request in %s.\n",
1573				 __func__);
1574		BUG();
1575	}
1576
1577	scsi_init_cmd_errh(cmd);
1578	cmd->result = DID_NO_CONNECT << 16;
1579	atomic_inc(&cmd->device->iorequest_cnt);
1580
1581	/*
1582	 * SCSI request completion path will do scsi_device_unbusy(),
1583	 * bump busy counts.  To bump the counters, we need to dance
1584	 * with the locks as normal issue path does.
1585	 */
1586	sdev->device_busy++;
1587	spin_unlock(sdev->request_queue->queue_lock);
1588	spin_lock(shost->host_lock);
1589	shost->host_busy++;
1590	starget->target_busy++;
1591	spin_unlock(shost->host_lock);
1592	spin_lock(sdev->request_queue->queue_lock);
1593
1594	blk_complete_request(req);
1595}
1596
1597static void scsi_softirq_done(struct request *rq)
1598{
1599	struct scsi_cmnd *cmd = rq->special;
1600	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1601	int disposition;
1602
1603	INIT_LIST_HEAD(&cmd->eh_entry);
1604
1605	/*
1606	 * Set the serial numbers back to zero
1607	 */
1608	cmd->serial_number = 0;
1609
1610	atomic_inc(&cmd->device->iodone_cnt);
1611	if (cmd->result)
1612		atomic_inc(&cmd->device->ioerr_cnt);
1613
1614	disposition = scsi_decide_disposition(cmd);
1615	if (disposition != SUCCESS &&
1616	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1617		sdev_printk(KERN_ERR, cmd->device,
1618			    "timing out command, waited %lus\n",
1619			    wait_for/HZ);
1620		disposition = SUCCESS;
1621	}
1622
1623	scsi_log_completion(cmd, disposition);
1624
1625	switch (disposition) {
1626		case SUCCESS:
1627			scsi_finish_command(cmd);
1628			break;
1629		case NEEDS_RETRY:
1630			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1631			break;
1632		case ADD_TO_MLQUEUE:
1633			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1634			break;
1635		default:
1636			if (!scsi_eh_scmd_add(cmd, 0))
1637				scsi_finish_command(cmd);
1638	}
1639}
1640
1641/*
1642 * Function:    scsi_request_fn()
1643 *
1644 * Purpose:     Main strategy routine for SCSI.
1645 *
1646 * Arguments:   q       - Pointer to actual queue.
1647 *
1648 * Returns:     Nothing
1649 *
1650 * Lock status: IO request lock assumed to be held when called.
1651 */
1652static void scsi_request_fn(struct request_queue *q)
1653{
1654	struct scsi_device *sdev = q->queuedata;
1655	struct Scsi_Host *shost;
1656	struct scsi_cmnd *cmd;
1657	struct request *req;
1658
1659	if (!sdev) {
1660		printk("scsi: killing requests for dead queue\n");
1661		while ((req = elv_next_request(q)) != NULL)
1662			scsi_kill_request(req, q);
1663		return;
1664	}
1665
1666	if(!get_device(&sdev->sdev_gendev))
1667		/* We must be tearing the block queue down already */
1668		return;
1669
1670	/*
1671	 * To start with, we keep looping until the queue is empty, or until
1672	 * the host is no longer able to accept any more requests.
1673	 */
1674	shost = sdev->host;
1675	while (!blk_queue_plugged(q)) {
1676		int rtn;
1677		/*
1678		 * get next queueable request.  We do this early to make sure
1679		 * that the request is fully prepared even if we cannot
1680		 * accept it.
1681		 */
1682		req = elv_next_request(q);
1683		if (!req || !scsi_dev_queue_ready(q, sdev))
1684			break;
1685
1686		if (unlikely(!scsi_device_online(sdev))) {
1687			sdev_printk(KERN_ERR, sdev,
1688				    "rejecting I/O to offline device\n");
1689			scsi_kill_request(req, q);
1690			continue;
1691		}
1692
1693
1694		/*
1695		 * Remove the request from the request list.
1696		 */
1697		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1698			blkdev_dequeue_request(req);
1699		sdev->device_busy++;
1700
1701		spin_unlock(q->queue_lock);
1702		cmd = req->special;
1703		if (unlikely(cmd == NULL)) {
1704			printk(KERN_CRIT "impossible request in %s.\n"
1705					 "please mail a stack trace to "
1706					 "linux-scsi@vger.kernel.org\n",
1707					 __func__);
1708			blk_dump_rq_flags(req, "foo");
1709			BUG();
1710		}
1711		spin_lock(shost->host_lock);
1712
1713		/*
1714		 * We hit this when the driver is using a host wide
1715		 * tag map. For device level tag maps the queue_depth check
1716		 * in the device ready fn would prevent us from trying
1717		 * to allocate a tag. Since the map is a shared host resource
1718		 * we add the dev to the starved list so it eventually gets
1719		 * a run when a tag is freed.
1720		 */
1721		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1722			if (list_empty(&sdev->starved_entry))
1723				list_add_tail(&sdev->starved_entry,
1724					      &shost->starved_list);
1725			goto not_ready;
1726		}
1727
1728		if (!scsi_target_queue_ready(shost, sdev))
1729			goto not_ready;
1730
1731		if (!scsi_host_queue_ready(q, shost, sdev))
1732			goto not_ready;
1733
1734		scsi_target(sdev)->target_busy++;
1735		shost->host_busy++;
1736
1737		/*
1738		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1739		 *		take the lock again.
1740		 */
1741		spin_unlock_irq(shost->host_lock);
1742
1743		/*
1744		 * Finally, initialize any error handling parameters, and set up
1745		 * the timers for timeouts.
1746		 */
1747		scsi_init_cmd_errh(cmd);
1748
1749		/*
1750		 * Dispatch the command to the low-level driver.
1751		 */
1752		rtn = scsi_dispatch_cmd(cmd);
1753		spin_lock_irq(q->queue_lock);
1754		if(rtn) {
1755			/* we're refusing the command; because of
1756			 * the way locks get dropped, we need to
1757			 * check here if plugging is required */
1758			if(sdev->device_busy == 0)
1759				blk_plug_device(q);
1760
1761			break;
1762		}
1763	}
1764
1765	goto out;
1766
1767 not_ready:
1768	spin_unlock_irq(shost->host_lock);
1769
1770	/*
1771	 * lock q, handle tag, requeue req, and decrement device_busy. We
1772	 * must return with queue_lock held.
1773	 *
1774	 * Decrementing device_busy without checking it is OK, as all such
1775	 * cases (host limits or settings) should run the queue at some
1776	 * later time.
1777	 */
1778	spin_lock_irq(q->queue_lock);
1779	blk_requeue_request(q, req);
1780	sdev->device_busy--;
1781	if(sdev->device_busy == 0)
1782		blk_plug_device(q);
1783 out:
1784	/* must be careful here...if we trigger the ->remove() function
1785	 * we cannot be holding the q lock */
1786	spin_unlock_irq(q->queue_lock);
1787	put_device(&sdev->sdev_gendev);
1788	spin_lock_irq(q->queue_lock);
1789}
1790
1791u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1792{
1793	struct device *host_dev;
1794	u64 bounce_limit = 0xffffffff;
1795
1796	if (shost->unchecked_isa_dma)
1797		return BLK_BOUNCE_ISA;
1798	/*
1799	 * Platforms with virtual-DMA translation
1800	 * hardware have no practical limit.
1801	 */
1802	if (!PCI_DMA_BUS_IS_PHYS)
1803		return BLK_BOUNCE_ANY;
1804
1805	host_dev = scsi_get_device(shost);
1806	if (host_dev && host_dev->dma_mask)
1807		bounce_limit = *host_dev->dma_mask;
1808
1809	return bounce_limit;
1810}
1811EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1812
1813struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1814					 request_fn_proc *request_fn)
1815{
1816	struct request_queue *q;
1817	struct device *dev = shost->shost_gendev.parent;
1818
1819	q = blk_init_queue(request_fn, NULL);
1820	if (!q)
1821		return NULL;
1822
1823	/*
1824	 * this limit is imposed by hardware restrictions
1825	 */
1826	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1827	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1828
1829	blk_queue_max_sectors(q, shost->max_sectors);
1830	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1831	blk_queue_segment_boundary(q, shost->dma_boundary);
1832	dma_set_seg_boundary(dev, shost->dma_boundary);
1833
1834	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1835
1836	/* New queue, no concurrency on queue_flags */
1837	if (!shost->use_clustering)
1838		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1839
1840	/*
1841	 * set a reasonable default alignment on word boundaries: the
1842	 * host and device may alter it using
1843	 * blk_queue_update_dma_alignment() later.
1844	 */
1845	blk_queue_dma_alignment(q, 0x03);
1846
1847	return q;
1848}
1849EXPORT_SYMBOL(__scsi_alloc_queue);
1850
1851struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1852{
1853	struct request_queue *q;
1854
1855	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1856	if (!q)
1857		return NULL;
1858
1859	blk_queue_prep_rq(q, scsi_prep_fn);
1860	blk_queue_softirq_done(q, scsi_softirq_done);
1861	blk_queue_rq_timed_out(q, scsi_times_out);
1862	blk_queue_lld_busy(q, scsi_lld_busy);
1863	return q;
1864}
1865
1866void scsi_free_queue(struct request_queue *q)
1867{
1868	blk_cleanup_queue(q);
1869}
1870
1871/*
1872 * Function:    scsi_block_requests()
1873 *
1874 * Purpose:     Utility function used by low-level drivers to prevent further
1875 *		commands from being queued to the device.
1876 *
1877 * Arguments:   shost       - Host in question
1878 *
1879 * Returns:     Nothing
1880 *
1881 * Lock status: No locks are assumed held.
1882 *
1883 * Notes:       There is no timer nor any other means by which the requests
1884 *		get unblocked other than the low-level driver calling
1885 *		scsi_unblock_requests().
1886 */
1887void scsi_block_requests(struct Scsi_Host *shost)
1888{
1889	shost->host_self_blocked = 1;
1890}
1891EXPORT_SYMBOL(scsi_block_requests);
1892
1893/*
1894 * Function:    scsi_unblock_requests()
1895 *
1896 * Purpose:     Utility function used by low-level drivers to allow further
1897 *		commands from being queued to the device.
1898 *
1899 * Arguments:   shost       - Host in question
1900 *
1901 * Returns:     Nothing
1902 *
1903 * Lock status: No locks are assumed held.
1904 *
1905 * Notes:       There is no timer nor any other means by which the requests
1906 *		get unblocked other than the low-level driver calling
1907 *		scsi_unblock_requests().
1908 *
1909 *		This is done as an API function so that changes to the
1910 *		internals of the scsi mid-layer won't require wholesale
1911 *		changes to drivers that use this feature.
1912 */
1913void scsi_unblock_requests(struct Scsi_Host *shost)
1914{
1915	shost->host_self_blocked = 0;
1916	scsi_run_host_queues(shost);
1917}
1918EXPORT_SYMBOL(scsi_unblock_requests);
1919
1920int __init scsi_init_queue(void)
1921{
1922	int i;
1923
1924	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1925					sizeof(struct scsi_io_context),
1926					0, 0, NULL);
1927	if (!scsi_io_context_cache) {
1928		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1929		return -ENOMEM;
1930	}
1931
1932	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1933					   sizeof(struct scsi_data_buffer),
1934					   0, 0, NULL);
1935	if (!scsi_sdb_cache) {
1936		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1937		goto cleanup_io_context;
1938	}
1939
1940	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1941		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1942		int size = sgp->size * sizeof(struct scatterlist);
1943
1944		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1945				SLAB_HWCACHE_ALIGN, NULL);
1946		if (!sgp->slab) {
1947			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1948					sgp->name);
1949			goto cleanup_sdb;
1950		}
1951
1952		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1953						     sgp->slab);
1954		if (!sgp->pool) {
1955			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1956					sgp->name);
1957			goto cleanup_sdb;
1958		}
1959	}
1960
1961	return 0;
1962
1963cleanup_sdb:
1964	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1965		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1966		if (sgp->pool)
1967			mempool_destroy(sgp->pool);
1968		if (sgp->slab)
1969			kmem_cache_destroy(sgp->slab);
1970	}
1971	kmem_cache_destroy(scsi_sdb_cache);
1972cleanup_io_context:
1973	kmem_cache_destroy(scsi_io_context_cache);
1974
1975	return -ENOMEM;
1976}
1977
1978void scsi_exit_queue(void)
1979{
1980	int i;
1981
1982	kmem_cache_destroy(scsi_io_context_cache);
1983	kmem_cache_destroy(scsi_sdb_cache);
1984
1985	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1986		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1987		mempool_destroy(sgp->pool);
1988		kmem_cache_destroy(sgp->slab);
1989	}
1990}
1991
1992/**
1993 *	scsi_mode_select - issue a mode select
1994 *	@sdev:	SCSI device to be queried
1995 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1996 *	@sp:	Save page bit (0 == don't save, 1 == save)
1997 *	@modepage: mode page being requested
1998 *	@buffer: request buffer (may not be smaller than eight bytes)
1999 *	@len:	length of request buffer.
2000 *	@timeout: command timeout
2001 *	@retries: number of retries before failing
2002 *	@data: returns a structure abstracting the mode header data
2003 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2004 *		must be SCSI_SENSE_BUFFERSIZE big.
2005 *
2006 *	Returns zero if successful; negative error number or scsi
2007 *	status on error
2008 *
2009 */
2010int
2011scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2012		 unsigned char *buffer, int len, int timeout, int retries,
2013		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2014{
2015	unsigned char cmd[10];
2016	unsigned char *real_buffer;
2017	int ret;
2018
2019	memset(cmd, 0, sizeof(cmd));
2020	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2021
2022	if (sdev->use_10_for_ms) {
2023		if (len > 65535)
2024			return -EINVAL;
2025		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2026		if (!real_buffer)
2027			return -ENOMEM;
2028		memcpy(real_buffer + 8, buffer, len);
2029		len += 8;
2030		real_buffer[0] = 0;
2031		real_buffer[1] = 0;
2032		real_buffer[2] = data->medium_type;
2033		real_buffer[3] = data->device_specific;
2034		real_buffer[4] = data->longlba ? 0x01 : 0;
2035		real_buffer[5] = 0;
2036		real_buffer[6] = data->block_descriptor_length >> 8;
2037		real_buffer[7] = data->block_descriptor_length;
2038
2039		cmd[0] = MODE_SELECT_10;
2040		cmd[7] = len >> 8;
2041		cmd[8] = len;
2042	} else {
2043		if (len > 255 || data->block_descriptor_length > 255 ||
2044		    data->longlba)
2045			return -EINVAL;
2046
2047		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2048		if (!real_buffer)
2049			return -ENOMEM;
2050		memcpy(real_buffer + 4, buffer, len);
2051		len += 4;
2052		real_buffer[0] = 0;
2053		real_buffer[1] = data->medium_type;
2054		real_buffer[2] = data->device_specific;
2055		real_buffer[3] = data->block_descriptor_length;
2056
2057
2058		cmd[0] = MODE_SELECT;
2059		cmd[4] = len;
2060	}
2061
2062	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2063			       sshdr, timeout, retries, NULL);
2064	kfree(real_buffer);
2065	return ret;
2066}
2067EXPORT_SYMBOL_GPL(scsi_mode_select);
2068
2069/**
2070 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2071 *	@sdev:	SCSI device to be queried
2072 *	@dbd:	set if mode sense will allow block descriptors to be returned
2073 *	@modepage: mode page being requested
2074 *	@buffer: request buffer (may not be smaller than eight bytes)
2075 *	@len:	length of request buffer.
2076 *	@timeout: command timeout
2077 *	@retries: number of retries before failing
2078 *	@data: returns a structure abstracting the mode header data
2079 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2080 *		must be SCSI_SENSE_BUFFERSIZE big.
2081 *
2082 *	Returns zero if unsuccessful, or the header offset (either 4
2083 *	or 8 depending on whether a six or ten byte command was
2084 *	issued) if successful.
2085 */
2086int
2087scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2088		  unsigned char *buffer, int len, int timeout, int retries,
2089		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2090{
2091	unsigned char cmd[12];
2092	int use_10_for_ms;
2093	int header_length;
2094	int result;
2095	struct scsi_sense_hdr my_sshdr;
2096
2097	memset(data, 0, sizeof(*data));
2098	memset(&cmd[0], 0, 12);
2099	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2100	cmd[2] = modepage;
2101
2102	/* caller might not be interested in sense, but we need it */
2103	if (!sshdr)
2104		sshdr = &my_sshdr;
2105
2106 retry:
2107	use_10_for_ms = sdev->use_10_for_ms;
2108
2109	if (use_10_for_ms) {
2110		if (len < 8)
2111			len = 8;
2112
2113		cmd[0] = MODE_SENSE_10;
2114		cmd[8] = len;
2115		header_length = 8;
2116	} else {
2117		if (len < 4)
2118			len = 4;
2119
2120		cmd[0] = MODE_SENSE;
2121		cmd[4] = len;
2122		header_length = 4;
2123	}
2124
2125	memset(buffer, 0, len);
2126
2127	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2128				  sshdr, timeout, retries, NULL);
2129
2130	/* This code looks awful: what it's doing is making sure an
2131	 * ILLEGAL REQUEST sense return identifies the actual command
2132	 * byte as the problem.  MODE_SENSE commands can return
2133	 * ILLEGAL REQUEST if the code page isn't supported */
2134
2135	if (use_10_for_ms && !scsi_status_is_good(result) &&
2136	    (driver_byte(result) & DRIVER_SENSE)) {
2137		if (scsi_sense_valid(sshdr)) {
2138			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2139			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2140				/*
2141				 * Invalid command operation code
2142				 */
2143				sdev->use_10_for_ms = 0;
2144				goto retry;
2145			}
2146		}
2147	}
2148
2149	if(scsi_status_is_good(result)) {
2150		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2151			     (modepage == 6 || modepage == 8))) {
2152			/* Initio breakage? */
2153			header_length = 0;
2154			data->length = 13;
2155			data->medium_type = 0;
2156			data->device_specific = 0;
2157			data->longlba = 0;
2158			data->block_descriptor_length = 0;
2159		} else if(use_10_for_ms) {
2160			data->length = buffer[0]*256 + buffer[1] + 2;
2161			data->medium_type = buffer[2];
2162			data->device_specific = buffer[3];
2163			data->longlba = buffer[4] & 0x01;
2164			data->block_descriptor_length = buffer[6]*256
2165				+ buffer[7];
2166		} else {
2167			data->length = buffer[0] + 1;
2168			data->medium_type = buffer[1];
2169			data->device_specific = buffer[2];
2170			data->block_descriptor_length = buffer[3];
2171		}
2172		data->header_length = header_length;
2173	}
2174
2175	return result;
2176}
2177EXPORT_SYMBOL(scsi_mode_sense);
2178
2179/**
2180 *	scsi_test_unit_ready - test if unit is ready
2181 *	@sdev:	scsi device to change the state of.
2182 *	@timeout: command timeout
2183 *	@retries: number of retries before failing
2184 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2185 *		returning sense. Make sure that this is cleared before passing
2186 *		in.
2187 *
2188 *	Returns zero if unsuccessful or an error if TUR failed.  For
2189 *	removable media, a return of NOT_READY or UNIT_ATTENTION is
2190 *	translated to success, with the ->changed flag updated.
2191 **/
2192int
2193scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2194		     struct scsi_sense_hdr *sshdr_external)
2195{
2196	char cmd[] = {
2197		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2198	};
2199	struct scsi_sense_hdr *sshdr;
2200	int result;
2201
2202	if (!sshdr_external)
2203		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2204	else
2205		sshdr = sshdr_external;
2206
2207	/* try to eat the UNIT_ATTENTION if there are enough retries */
2208	do {
2209		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2210					  timeout, retries, NULL);
2211		if (sdev->removable && scsi_sense_valid(sshdr) &&
2212		    sshdr->sense_key == UNIT_ATTENTION)
2213			sdev->changed = 1;
2214	} while (scsi_sense_valid(sshdr) &&
2215		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2216
2217	if (!sshdr)
2218		/* could not allocate sense buffer, so can't process it */
2219		return result;
2220
2221	if (sdev->removable && scsi_sense_valid(sshdr) &&
2222	    (sshdr->sense_key == UNIT_ATTENTION ||
2223	     sshdr->sense_key == NOT_READY)) {
2224		sdev->changed = 1;
2225		result = 0;
2226	}
2227	if (!sshdr_external)
2228		kfree(sshdr);
2229	return result;
2230}
2231EXPORT_SYMBOL(scsi_test_unit_ready);
2232
2233/**
2234 *	scsi_device_set_state - Take the given device through the device state model.
2235 *	@sdev:	scsi device to change the state of.
2236 *	@state:	state to change to.
2237 *
2238 *	Returns zero if unsuccessful or an error if the requested
2239 *	transition is illegal.
2240 */
2241int
2242scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2243{
2244	enum scsi_device_state oldstate = sdev->sdev_state;
2245
2246	if (state == oldstate)
2247		return 0;
2248
2249	switch (state) {
2250	case SDEV_CREATED:
2251		switch (oldstate) {
2252		case SDEV_CREATED_BLOCK:
2253			break;
2254		default:
2255			goto illegal;
2256		}
2257		break;
2258
2259	case SDEV_RUNNING:
2260		switch (oldstate) {
2261		case SDEV_CREATED:
2262		case SDEV_OFFLINE:
2263		case SDEV_QUIESCE:
2264		case SDEV_BLOCK:
2265			break;
2266		default:
2267			goto illegal;
2268		}
2269		break;
2270
2271	case SDEV_QUIESCE:
2272		switch (oldstate) {
2273		case SDEV_RUNNING:
2274		case SDEV_OFFLINE:
2275			break;
2276		default:
2277			goto illegal;
2278		}
2279		break;
2280
2281	case SDEV_OFFLINE:
2282		switch (oldstate) {
2283		case SDEV_CREATED:
2284		case SDEV_RUNNING:
2285		case SDEV_QUIESCE:
2286		case SDEV_BLOCK:
2287			break;
2288		default:
2289			goto illegal;
2290		}
2291		break;
2292
2293	case SDEV_BLOCK:
2294		switch (oldstate) {
2295		case SDEV_RUNNING:
2296		case SDEV_CREATED_BLOCK:
2297			break;
2298		default:
2299			goto illegal;
2300		}
2301		break;
2302
2303	case SDEV_CREATED_BLOCK:
2304		switch (oldstate) {
2305		case SDEV_CREATED:
2306			break;
2307		default:
2308			goto illegal;
2309		}
2310		break;
2311
2312	case SDEV_CANCEL:
2313		switch (oldstate) {
2314		case SDEV_CREATED:
2315		case SDEV_RUNNING:
2316		case SDEV_QUIESCE:
2317		case SDEV_OFFLINE:
2318		case SDEV_BLOCK:
2319			break;
2320		default:
2321			goto illegal;
2322		}
2323		break;
2324
2325	case SDEV_DEL:
2326		switch (oldstate) {
2327		case SDEV_CREATED:
2328		case SDEV_RUNNING:
2329		case SDEV_OFFLINE:
2330		case SDEV_CANCEL:
2331			break;
2332		default:
2333			goto illegal;
2334		}
2335		break;
2336
2337	}
2338	sdev->sdev_state = state;
2339	return 0;
2340
2341 illegal:
2342	SCSI_LOG_ERROR_RECOVERY(1,
2343				sdev_printk(KERN_ERR, sdev,
2344					    "Illegal state transition %s->%s\n",
2345					    scsi_device_state_name(oldstate),
2346					    scsi_device_state_name(state))
2347				);
2348	return -EINVAL;
2349}
2350EXPORT_SYMBOL(scsi_device_set_state);
2351
2352/**
2353 * 	sdev_evt_emit - emit a single SCSI device uevent
2354 *	@sdev: associated SCSI device
2355 *	@evt: event to emit
2356 *
2357 *	Send a single uevent (scsi_event) to the associated scsi_device.
2358 */
2359static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2360{
2361	int idx = 0;
2362	char *envp[3];
2363
2364	switch (evt->evt_type) {
2365	case SDEV_EVT_MEDIA_CHANGE:
2366		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2367		break;
2368
2369	default:
2370		/* do nothing */
2371		break;
2372	}
2373
2374	envp[idx++] = NULL;
2375
2376	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2377}
2378
2379/**
2380 * 	sdev_evt_thread - send a uevent for each scsi event
2381 *	@work: work struct for scsi_device
2382 *
2383 *	Dispatch queued events to their associated scsi_device kobjects
2384 *	as uevents.
2385 */
2386void scsi_evt_thread(struct work_struct *work)
2387{
2388	struct scsi_device *sdev;
2389	LIST_HEAD(event_list);
2390
2391	sdev = container_of(work, struct scsi_device, event_work);
2392
2393	while (1) {
2394		struct scsi_event *evt;
2395		struct list_head *this, *tmp;
2396		unsigned long flags;
2397
2398		spin_lock_irqsave(&sdev->list_lock, flags);
2399		list_splice_init(&sdev->event_list, &event_list);
2400		spin_unlock_irqrestore(&sdev->list_lock, flags);
2401
2402		if (list_empty(&event_list))
2403			break;
2404
2405		list_for_each_safe(this, tmp, &event_list) {
2406			evt = list_entry(this, struct scsi_event, node);
2407			list_del(&evt->node);
2408			scsi_evt_emit(sdev, evt);
2409			kfree(evt);
2410		}
2411	}
2412}
2413
2414/**
2415 * 	sdev_evt_send - send asserted event to uevent thread
2416 *	@sdev: scsi_device event occurred on
2417 *	@evt: event to send
2418 *
2419 *	Assert scsi device event asynchronously.
2420 */
2421void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2422{
2423	unsigned long flags;
2424
2425#if 0
2426	/* FIXME: currently this check eliminates all media change events
2427	 * for polled devices.  Need to update to discriminate between AN
2428	 * and polled events */
2429	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2430		kfree(evt);
2431		return;
2432	}
2433#endif
2434
2435	spin_lock_irqsave(&sdev->list_lock, flags);
2436	list_add_tail(&evt->node, &sdev->event_list);
2437	schedule_work(&sdev->event_work);
2438	spin_unlock_irqrestore(&sdev->list_lock, flags);
2439}
2440EXPORT_SYMBOL_GPL(sdev_evt_send);
2441
2442/**
2443 * 	sdev_evt_alloc - allocate a new scsi event
2444 *	@evt_type: type of event to allocate
2445 *	@gfpflags: GFP flags for allocation
2446 *
2447 *	Allocates and returns a new scsi_event.
2448 */
2449struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2450				  gfp_t gfpflags)
2451{
2452	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2453	if (!evt)
2454		return NULL;
2455
2456	evt->evt_type = evt_type;
2457	INIT_LIST_HEAD(&evt->node);
2458
2459	/* evt_type-specific initialization, if any */
2460	switch (evt_type) {
2461	case SDEV_EVT_MEDIA_CHANGE:
2462	default:
2463		/* do nothing */
2464		break;
2465	}
2466
2467	return evt;
2468}
2469EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2470
2471/**
2472 * 	sdev_evt_send_simple - send asserted event to uevent thread
2473 *	@sdev: scsi_device event occurred on
2474 *	@evt_type: type of event to send
2475 *	@gfpflags: GFP flags for allocation
2476 *
2477 *	Assert scsi device event asynchronously, given an event type.
2478 */
2479void sdev_evt_send_simple(struct scsi_device *sdev,
2480			  enum scsi_device_event evt_type, gfp_t gfpflags)
2481{
2482	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2483	if (!evt) {
2484		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2485			    evt_type);
2486		return;
2487	}
2488
2489	sdev_evt_send(sdev, evt);
2490}
2491EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2492
2493/**
2494 *	scsi_device_quiesce - Block user issued commands.
2495 *	@sdev:	scsi device to quiesce.
2496 *
2497 *	This works by trying to transition to the SDEV_QUIESCE state
2498 *	(which must be a legal transition).  When the device is in this
2499 *	state, only special requests will be accepted, all others will
2500 *	be deferred.  Since special requests may also be requeued requests,
2501 *	a successful return doesn't guarantee the device will be
2502 *	totally quiescent.
2503 *
2504 *	Must be called with user context, may sleep.
2505 *
2506 *	Returns zero if unsuccessful or an error if not.
2507 */
2508int
2509scsi_device_quiesce(struct scsi_device *sdev)
2510{
2511	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2512	if (err)
2513		return err;
2514
2515	scsi_run_queue(sdev->request_queue);
2516	while (sdev->device_busy) {
2517		msleep_interruptible(200);
2518		scsi_run_queue(sdev->request_queue);
2519	}
2520	return 0;
2521}
2522EXPORT_SYMBOL(scsi_device_quiesce);
2523
2524/**
2525 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2526 *	@sdev:	scsi device to resume.
2527 *
2528 *	Moves the device from quiesced back to running and restarts the
2529 *	queues.
2530 *
2531 *	Must be called with user context, may sleep.
2532 */
2533void
2534scsi_device_resume(struct scsi_device *sdev)
2535{
2536	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2537		return;
2538	scsi_run_queue(sdev->request_queue);
2539}
2540EXPORT_SYMBOL(scsi_device_resume);
2541
2542static void
2543device_quiesce_fn(struct scsi_device *sdev, void *data)
2544{
2545	scsi_device_quiesce(sdev);
2546}
2547
2548void
2549scsi_target_quiesce(struct scsi_target *starget)
2550{
2551	starget_for_each_device(starget, NULL, device_quiesce_fn);
2552}
2553EXPORT_SYMBOL(scsi_target_quiesce);
2554
2555static void
2556device_resume_fn(struct scsi_device *sdev, void *data)
2557{
2558	scsi_device_resume(sdev);
2559}
2560
2561void
2562scsi_target_resume(struct scsi_target *starget)
2563{
2564	starget_for_each_device(starget, NULL, device_resume_fn);
2565}
2566EXPORT_SYMBOL(scsi_target_resume);
2567
2568/**
2569 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2570 * @sdev:	device to block
2571 *
2572 * Block request made by scsi lld's to temporarily stop all
2573 * scsi commands on the specified device.  Called from interrupt
2574 * or normal process context.
2575 *
2576 * Returns zero if successful or error if not
2577 *
2578 * Notes:
2579 *	This routine transitions the device to the SDEV_BLOCK state
2580 *	(which must be a legal transition).  When the device is in this
2581 *	state, all commands are deferred until the scsi lld reenables
2582 *	the device with scsi_device_unblock or device_block_tmo fires.
2583 *	This routine assumes the host_lock is held on entry.
2584 */
2585int
2586scsi_internal_device_block(struct scsi_device *sdev)
2587{
2588	struct request_queue *q = sdev->request_queue;
2589	unsigned long flags;
2590	int err = 0;
2591
2592	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2593	if (err) {
2594		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2595
2596		if (err)
2597			return err;
2598	}
2599
2600	/*
2601	 * The device has transitioned to SDEV_BLOCK.  Stop the
2602	 * block layer from calling the midlayer with this device's
2603	 * request queue.
2604	 */
2605	spin_lock_irqsave(q->queue_lock, flags);
2606	blk_stop_queue(q);
2607	spin_unlock_irqrestore(q->queue_lock, flags);
2608
2609	return 0;
2610}
2611EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2612
2613/**
2614 * scsi_internal_device_unblock - resume a device after a block request
2615 * @sdev:	device to resume
2616 *
2617 * Called by scsi lld's or the midlayer to restart the device queue
2618 * for the previously suspended scsi device.  Called from interrupt or
2619 * normal process context.
2620 *
2621 * Returns zero if successful or error if not.
2622 *
2623 * Notes:
2624 *	This routine transitions the device to the SDEV_RUNNING state
2625 *	(which must be a legal transition) allowing the midlayer to
2626 *	goose the queue for this device.  This routine assumes the
2627 *	host_lock is held upon entry.
2628 */
2629int
2630scsi_internal_device_unblock(struct scsi_device *sdev)
2631{
2632	struct request_queue *q = sdev->request_queue;
2633	int err;
2634	unsigned long flags;
2635
2636	/*
2637	 * Try to transition the scsi device to SDEV_RUNNING
2638	 * and goose the device queue if successful.
2639	 */
2640	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2641	if (err) {
2642		err = scsi_device_set_state(sdev, SDEV_CREATED);
2643
2644		if (err)
2645			return err;
2646	}
2647
2648	spin_lock_irqsave(q->queue_lock, flags);
2649	blk_start_queue(q);
2650	spin_unlock_irqrestore(q->queue_lock, flags);
2651
2652	return 0;
2653}
2654EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2655
2656static void
2657device_block(struct scsi_device *sdev, void *data)
2658{
2659	scsi_internal_device_block(sdev);
2660}
2661
2662static int
2663target_block(struct device *dev, void *data)
2664{
2665	if (scsi_is_target_device(dev))
2666		starget_for_each_device(to_scsi_target(dev), NULL,
2667					device_block);
2668	return 0;
2669}
2670
2671void
2672scsi_target_block(struct device *dev)
2673{
2674	if (scsi_is_target_device(dev))
2675		starget_for_each_device(to_scsi_target(dev), NULL,
2676					device_block);
2677	else
2678		device_for_each_child(dev, NULL, target_block);
2679}
2680EXPORT_SYMBOL_GPL(scsi_target_block);
2681
2682static void
2683device_unblock(struct scsi_device *sdev, void *data)
2684{
2685	scsi_internal_device_unblock(sdev);
2686}
2687
2688static int
2689target_unblock(struct device *dev, void *data)
2690{
2691	if (scsi_is_target_device(dev))
2692		starget_for_each_device(to_scsi_target(dev), NULL,
2693					device_unblock);
2694	return 0;
2695}
2696
2697void
2698scsi_target_unblock(struct device *dev)
2699{
2700	if (scsi_is_target_device(dev))
2701		starget_for_each_device(to_scsi_target(dev), NULL,
2702					device_unblock);
2703	else
2704		device_for_each_child(dev, NULL, target_unblock);
2705}
2706EXPORT_SYMBOL_GPL(scsi_target_unblock);
2707
2708/**
2709 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2710 * @sgl:	scatter-gather list
2711 * @sg_count:	number of segments in sg
2712 * @offset:	offset in bytes into sg, on return offset into the mapped area
2713 * @len:	bytes to map, on return number of bytes mapped
2714 *
2715 * Returns virtual address of the start of the mapped page
2716 */
2717void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2718			  size_t *offset, size_t *len)
2719{
2720	int i;
2721	size_t sg_len = 0, len_complete = 0;
2722	struct scatterlist *sg;
2723	struct page *page;
2724
2725	WARN_ON(!irqs_disabled());
2726
2727	for_each_sg(sgl, sg, sg_count, i) {
2728		len_complete = sg_len; /* Complete sg-entries */
2729		sg_len += sg->length;
2730		if (sg_len > *offset)
2731			break;
2732	}
2733
2734	if (unlikely(i == sg_count)) {
2735		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2736			"elements %d\n",
2737		       __func__, sg_len, *offset, sg_count);
2738		WARN_ON(1);
2739		return NULL;
2740	}
2741
2742	/* Offset starting from the beginning of first page in this sg-entry */
2743	*offset = *offset - len_complete + sg->offset;
2744
2745	/* Assumption: contiguous pages can be accessed as "page + i" */
2746	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2747	*offset &= ~PAGE_MASK;
2748
2749	/* Bytes in this sg-entry from *offset to the end of the page */
2750	sg_len = PAGE_SIZE - *offset;
2751	if (*len > sg_len)
2752		*len = sg_len;
2753
2754	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2755}
2756EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2757
2758/**
2759 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2760 * @virt:	virtual address to be unmapped
2761 */
2762void scsi_kunmap_atomic_sg(void *virt)
2763{
2764	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2765}
2766EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2767