scsi_lib.c revision 7b3d9545f9ac8b31528dd2d6d8ec8d19922917b8
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19#include <linux/hardirq.h>
20#include <linux/scatterlist.h>
21
22#include <scsi/scsi.h>
23#include <scsi/scsi_cmnd.h>
24#include <scsi/scsi_dbg.h>
25#include <scsi/scsi_device.h>
26#include <scsi/scsi_driver.h>
27#include <scsi/scsi_eh.h>
28#include <scsi/scsi_host.h>
29
30#include "scsi_priv.h"
31#include "scsi_logging.h"
32
33
34#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
35#define SG_MEMPOOL_SIZE		2
36
37/*
38 * The maximum number of SG segments that we will put inside a scatterlist
39 * (unless chaining is used). Should ideally fit inside a single page, to
40 * avoid a higher order allocation.
41 */
42#define SCSI_MAX_SG_SEGMENTS	128
43
44struct scsi_host_sg_pool {
45	size_t		size;
46	char		*name;
47	struct kmem_cache	*slab;
48	mempool_t	*pool;
49};
50
51#define SP(x) { x, "sgpool-" #x }
52static struct scsi_host_sg_pool scsi_sg_pools[] = {
53	SP(8),
54	SP(16),
55#if (SCSI_MAX_SG_SEGMENTS > 16)
56	SP(32),
57#if (SCSI_MAX_SG_SEGMENTS > 32)
58	SP(64),
59#if (SCSI_MAX_SG_SEGMENTS > 64)
60	SP(128),
61#endif
62#endif
63#endif
64};
65#undef SP
66
67static void scsi_run_queue(struct request_queue *q);
68
69/*
70 * Function:	scsi_unprep_request()
71 *
72 * Purpose:	Remove all preparation done for a request, including its
73 *		associated scsi_cmnd, so that it can be requeued.
74 *
75 * Arguments:	req	- request to unprepare
76 *
77 * Lock status:	Assumed that no locks are held upon entry.
78 *
79 * Returns:	Nothing.
80 */
81static void scsi_unprep_request(struct request *req)
82{
83	struct scsi_cmnd *cmd = req->special;
84
85	req->cmd_flags &= ~REQ_DONTPREP;
86	req->special = NULL;
87
88	scsi_put_command(cmd);
89}
90
91/*
92 * Function:    scsi_queue_insert()
93 *
94 * Purpose:     Insert a command in the midlevel queue.
95 *
96 * Arguments:   cmd    - command that we are adding to queue.
97 *              reason - why we are inserting command to queue.
98 *
99 * Lock status: Assumed that lock is not held upon entry.
100 *
101 * Returns:     Nothing.
102 *
103 * Notes:       We do this for one of two cases.  Either the host is busy
104 *              and it cannot accept any more commands for the time being,
105 *              or the device returned QUEUE_FULL and can accept no more
106 *              commands.
107 * Notes:       This could be called either from an interrupt context or a
108 *              normal process context.
109 */
110int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111{
112	struct Scsi_Host *host = cmd->device->host;
113	struct scsi_device *device = cmd->device;
114	struct request_queue *q = device->request_queue;
115	unsigned long flags;
116
117	SCSI_LOG_MLQUEUE(1,
118		 printk("Inserting command %p into mlqueue\n", cmd));
119
120	/*
121	 * Set the appropriate busy bit for the device/host.
122	 *
123	 * If the host/device isn't busy, assume that something actually
124	 * completed, and that we should be able to queue a command now.
125	 *
126	 * Note that the prior mid-layer assumption that any host could
127	 * always queue at least one command is now broken.  The mid-layer
128	 * will implement a user specifiable stall (see
129	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130	 * if a command is requeued with no other commands outstanding
131	 * either for the device or for the host.
132	 */
133	if (reason == SCSI_MLQUEUE_HOST_BUSY)
134		host->host_blocked = host->max_host_blocked;
135	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136		device->device_blocked = device->max_device_blocked;
137
138	/*
139	 * Decrement the counters, since these commands are no longer
140	 * active on the host/device.
141	 */
142	scsi_device_unbusy(device);
143
144	/*
145	 * Requeue this command.  It will go before all other commands
146	 * that are already in the queue.
147	 *
148	 * NOTE: there is magic here about the way the queue is plugged if
149	 * we have no outstanding commands.
150	 *
151	 * Although we *don't* plug the queue, we call the request
152	 * function.  The SCSI request function detects the blocked condition
153	 * and plugs the queue appropriately.
154         */
155	spin_lock_irqsave(q->queue_lock, flags);
156	blk_requeue_request(q, cmd->request);
157	spin_unlock_irqrestore(q->queue_lock, flags);
158
159	scsi_run_queue(q);
160
161	return 0;
162}
163
164/**
165 * scsi_execute - insert request and wait for the result
166 * @sdev:	scsi device
167 * @cmd:	scsi command
168 * @data_direction: data direction
169 * @buffer:	data buffer
170 * @bufflen:	len of buffer
171 * @sense:	optional sense buffer
172 * @timeout:	request timeout in seconds
173 * @retries:	number of times to retry request
174 * @flags:	or into request flags;
175 *
176 * returns the req->errors value which is the scsi_cmnd result
177 * field.
178 **/
179int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180		 int data_direction, void *buffer, unsigned bufflen,
181		 unsigned char *sense, int timeout, int retries, int flags)
182{
183	struct request *req;
184	int write = (data_direction == DMA_TO_DEVICE);
185	int ret = DRIVER_ERROR << 24;
186
187	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
190					buffer, bufflen, __GFP_WAIT))
191		goto out;
192
193	req->cmd_len = COMMAND_SIZE(cmd[0]);
194	memcpy(req->cmd, cmd, req->cmd_len);
195	req->sense = sense;
196	req->sense_len = 0;
197	req->retries = retries;
198	req->timeout = timeout;
199	req->cmd_type = REQ_TYPE_BLOCK_PC;
200	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202	/*
203	 * head injection *required* here otherwise quiesce won't work
204	 */
205	blk_execute_rq(req->q, NULL, req, 1);
206
207	ret = req->errors;
208 out:
209	blk_put_request(req);
210
211	return ret;
212}
213EXPORT_SYMBOL(scsi_execute);
214
215
216int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217		     int data_direction, void *buffer, unsigned bufflen,
218		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
219{
220	char *sense = NULL;
221	int result;
222
223	if (sshdr) {
224		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225		if (!sense)
226			return DRIVER_ERROR << 24;
227	}
228	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229			      sense, timeout, retries, 0);
230	if (sshdr)
231		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233	kfree(sense);
234	return result;
235}
236EXPORT_SYMBOL(scsi_execute_req);
237
238struct scsi_io_context {
239	void *data;
240	void (*done)(void *data, char *sense, int result, int resid);
241	char sense[SCSI_SENSE_BUFFERSIZE];
242};
243
244static struct kmem_cache *scsi_io_context_cache;
245
246static void scsi_end_async(struct request *req, int uptodate)
247{
248	struct scsi_io_context *sioc = req->end_io_data;
249
250	if (sioc->done)
251		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253	kmem_cache_free(scsi_io_context_cache, sioc);
254	__blk_put_request(req->q, req);
255}
256
257static int scsi_merge_bio(struct request *rq, struct bio *bio)
258{
259	struct request_queue *q = rq->q;
260
261	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262	if (rq_data_dir(rq) == WRITE)
263		bio->bi_rw |= (1 << BIO_RW);
264	blk_queue_bounce(q, &bio);
265
266	return blk_rq_append_bio(q, rq, bio);
267}
268
269static void scsi_bi_endio(struct bio *bio, int error)
270{
271	bio_put(bio);
272}
273
274/**
275 * scsi_req_map_sg - map a scatterlist into a request
276 * @rq:		request to fill
277 * @sg:		scatterlist
278 * @nsegs:	number of elements
279 * @bufflen:	len of buffer
280 * @gfp:	memory allocation flags
281 *
282 * scsi_req_map_sg maps a scatterlist into a request so that the
283 * request can be sent to the block layer. We do not trust the scatterlist
284 * sent to use, as some ULDs use that struct to only organize the pages.
285 */
286static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287			   int nsegs, unsigned bufflen, gfp_t gfp)
288{
289	struct request_queue *q = rq->q;
290	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
291	unsigned int data_len = bufflen, len, bytes, off;
292	struct scatterlist *sg;
293	struct page *page;
294	struct bio *bio = NULL;
295	int i, err, nr_vecs = 0;
296
297	for_each_sg(sgl, sg, nsegs, i) {
298		page = sg_page(sg);
299		off = sg->offset;
300		len = sg->length;
301 		data_len += len;
302
303		while (len > 0 && data_len > 0) {
304			/*
305			 * sg sends a scatterlist that is larger than
306			 * the data_len it wants transferred for certain
307			 * IO sizes
308			 */
309			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
310			bytes = min(bytes, data_len);
311
312			if (!bio) {
313				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
314				nr_pages -= nr_vecs;
315
316				bio = bio_alloc(gfp, nr_vecs);
317				if (!bio) {
318					err = -ENOMEM;
319					goto free_bios;
320				}
321				bio->bi_end_io = scsi_bi_endio;
322			}
323
324			if (bio_add_pc_page(q, bio, page, bytes, off) !=
325			    bytes) {
326				bio_put(bio);
327				err = -EINVAL;
328				goto free_bios;
329			}
330
331			if (bio->bi_vcnt >= nr_vecs) {
332				err = scsi_merge_bio(rq, bio);
333				if (err) {
334					bio_endio(bio, 0);
335					goto free_bios;
336				}
337				bio = NULL;
338			}
339
340			page++;
341			len -= bytes;
342			data_len -=bytes;
343			off = 0;
344		}
345	}
346
347	rq->buffer = rq->data = NULL;
348	rq->data_len = bufflen;
349	return 0;
350
351free_bios:
352	while ((bio = rq->bio) != NULL) {
353		rq->bio = bio->bi_next;
354		/*
355		 * call endio instead of bio_put incase it was bounced
356		 */
357		bio_endio(bio, 0);
358	}
359
360	return err;
361}
362
363/**
364 * scsi_execute_async - insert request
365 * @sdev:	scsi device
366 * @cmd:	scsi command
367 * @cmd_len:	length of scsi cdb
368 * @data_direction: data direction
369 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
370 * @bufflen:	len of buffer
371 * @use_sg:	if buffer is a scatterlist this is the number of elements
372 * @timeout:	request timeout in seconds
373 * @retries:	number of times to retry request
374 * @flags:	or into request flags
375 **/
376int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
377		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
378		       int use_sg, int timeout, int retries, void *privdata,
379		       void (*done)(void *, char *, int, int), gfp_t gfp)
380{
381	struct request *req;
382	struct scsi_io_context *sioc;
383	int err = 0;
384	int write = (data_direction == DMA_TO_DEVICE);
385
386	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
387	if (!sioc)
388		return DRIVER_ERROR << 24;
389
390	req = blk_get_request(sdev->request_queue, write, gfp);
391	if (!req)
392		goto free_sense;
393	req->cmd_type = REQ_TYPE_BLOCK_PC;
394	req->cmd_flags |= REQ_QUIET;
395
396	if (use_sg)
397		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
398	else if (bufflen)
399		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
400
401	if (err)
402		goto free_req;
403
404	req->cmd_len = cmd_len;
405	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
406	memcpy(req->cmd, cmd, req->cmd_len);
407	req->sense = sioc->sense;
408	req->sense_len = 0;
409	req->timeout = timeout;
410	req->retries = retries;
411	req->end_io_data = sioc;
412
413	sioc->data = privdata;
414	sioc->done = done;
415
416	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
417	return 0;
418
419free_req:
420	blk_put_request(req);
421free_sense:
422	kmem_cache_free(scsi_io_context_cache, sioc);
423	return DRIVER_ERROR << 24;
424}
425EXPORT_SYMBOL_GPL(scsi_execute_async);
426
427/*
428 * Function:    scsi_init_cmd_errh()
429 *
430 * Purpose:     Initialize cmd fields related to error handling.
431 *
432 * Arguments:   cmd	- command that is ready to be queued.
433 *
434 * Notes:       This function has the job of initializing a number of
435 *              fields related to error handling.   Typically this will
436 *              be called once for each command, as required.
437 */
438static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
439{
440	cmd->serial_number = 0;
441	cmd->resid = 0;
442	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
443	if (cmd->cmd_len == 0)
444		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
445}
446
447void scsi_device_unbusy(struct scsi_device *sdev)
448{
449	struct Scsi_Host *shost = sdev->host;
450	unsigned long flags;
451
452	spin_lock_irqsave(shost->host_lock, flags);
453	shost->host_busy--;
454	if (unlikely(scsi_host_in_recovery(shost) &&
455		     (shost->host_failed || shost->host_eh_scheduled)))
456		scsi_eh_wakeup(shost);
457	spin_unlock(shost->host_lock);
458	spin_lock(sdev->request_queue->queue_lock);
459	sdev->device_busy--;
460	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
461}
462
463/*
464 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
465 * and call blk_run_queue for all the scsi_devices on the target -
466 * including current_sdev first.
467 *
468 * Called with *no* scsi locks held.
469 */
470static void scsi_single_lun_run(struct scsi_device *current_sdev)
471{
472	struct Scsi_Host *shost = current_sdev->host;
473	struct scsi_device *sdev, *tmp;
474	struct scsi_target *starget = scsi_target(current_sdev);
475	unsigned long flags;
476
477	spin_lock_irqsave(shost->host_lock, flags);
478	starget->starget_sdev_user = NULL;
479	spin_unlock_irqrestore(shost->host_lock, flags);
480
481	/*
482	 * Call blk_run_queue for all LUNs on the target, starting with
483	 * current_sdev. We race with others (to set starget_sdev_user),
484	 * but in most cases, we will be first. Ideally, each LU on the
485	 * target would get some limited time or requests on the target.
486	 */
487	blk_run_queue(current_sdev->request_queue);
488
489	spin_lock_irqsave(shost->host_lock, flags);
490	if (starget->starget_sdev_user)
491		goto out;
492	list_for_each_entry_safe(sdev, tmp, &starget->devices,
493			same_target_siblings) {
494		if (sdev == current_sdev)
495			continue;
496		if (scsi_device_get(sdev))
497			continue;
498
499		spin_unlock_irqrestore(shost->host_lock, flags);
500		blk_run_queue(sdev->request_queue);
501		spin_lock_irqsave(shost->host_lock, flags);
502
503		scsi_device_put(sdev);
504	}
505 out:
506	spin_unlock_irqrestore(shost->host_lock, flags);
507}
508
509/*
510 * Function:	scsi_run_queue()
511 *
512 * Purpose:	Select a proper request queue to serve next
513 *
514 * Arguments:	q	- last request's queue
515 *
516 * Returns:     Nothing
517 *
518 * Notes:	The previous command was completely finished, start
519 *		a new one if possible.
520 */
521static void scsi_run_queue(struct request_queue *q)
522{
523	struct scsi_device *sdev = q->queuedata;
524	struct Scsi_Host *shost = sdev->host;
525	unsigned long flags;
526
527	if (sdev->single_lun)
528		scsi_single_lun_run(sdev);
529
530	spin_lock_irqsave(shost->host_lock, flags);
531	while (!list_empty(&shost->starved_list) &&
532	       !shost->host_blocked && !shost->host_self_blocked &&
533		!((shost->can_queue > 0) &&
534		  (shost->host_busy >= shost->can_queue))) {
535		/*
536		 * As long as shost is accepting commands and we have
537		 * starved queues, call blk_run_queue. scsi_request_fn
538		 * drops the queue_lock and can add us back to the
539		 * starved_list.
540		 *
541		 * host_lock protects the starved_list and starved_entry.
542		 * scsi_request_fn must get the host_lock before checking
543		 * or modifying starved_list or starved_entry.
544		 */
545		sdev = list_entry(shost->starved_list.next,
546					  struct scsi_device, starved_entry);
547		list_del_init(&sdev->starved_entry);
548		spin_unlock_irqrestore(shost->host_lock, flags);
549
550
551		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
552		    !test_and_set_bit(QUEUE_FLAG_REENTER,
553				      &sdev->request_queue->queue_flags)) {
554			blk_run_queue(sdev->request_queue);
555			clear_bit(QUEUE_FLAG_REENTER,
556				  &sdev->request_queue->queue_flags);
557		} else
558			blk_run_queue(sdev->request_queue);
559
560		spin_lock_irqsave(shost->host_lock, flags);
561		if (unlikely(!list_empty(&sdev->starved_entry)))
562			/*
563			 * sdev lost a race, and was put back on the
564			 * starved list. This is unlikely but without this
565			 * in theory we could loop forever.
566			 */
567			break;
568	}
569	spin_unlock_irqrestore(shost->host_lock, flags);
570
571	blk_run_queue(q);
572}
573
574/*
575 * Function:	scsi_requeue_command()
576 *
577 * Purpose:	Handle post-processing of completed commands.
578 *
579 * Arguments:	q	- queue to operate on
580 *		cmd	- command that may need to be requeued.
581 *
582 * Returns:	Nothing
583 *
584 * Notes:	After command completion, there may be blocks left
585 *		over which weren't finished by the previous command
586 *		this can be for a number of reasons - the main one is
587 *		I/O errors in the middle of the request, in which case
588 *		we need to request the blocks that come after the bad
589 *		sector.
590 * Notes:	Upon return, cmd is a stale pointer.
591 */
592static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
593{
594	struct request *req = cmd->request;
595	unsigned long flags;
596
597	scsi_unprep_request(req);
598	spin_lock_irqsave(q->queue_lock, flags);
599	blk_requeue_request(q, req);
600	spin_unlock_irqrestore(q->queue_lock, flags);
601
602	scsi_run_queue(q);
603}
604
605void scsi_next_command(struct scsi_cmnd *cmd)
606{
607	struct scsi_device *sdev = cmd->device;
608	struct request_queue *q = sdev->request_queue;
609
610	/* need to hold a reference on the device before we let go of the cmd */
611	get_device(&sdev->sdev_gendev);
612
613	scsi_put_command(cmd);
614	scsi_run_queue(q);
615
616	/* ok to remove device now */
617	put_device(&sdev->sdev_gendev);
618}
619
620void scsi_run_host_queues(struct Scsi_Host *shost)
621{
622	struct scsi_device *sdev;
623
624	shost_for_each_device(sdev, shost)
625		scsi_run_queue(sdev->request_queue);
626}
627
628/*
629 * Function:    scsi_end_request()
630 *
631 * Purpose:     Post-processing of completed commands (usually invoked at end
632 *		of upper level post-processing and scsi_io_completion).
633 *
634 * Arguments:   cmd	 - command that is complete.
635 *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
636 *              bytes    - number of bytes of completed I/O
637 *		requeue  - indicates whether we should requeue leftovers.
638 *
639 * Lock status: Assumed that lock is not held upon entry.
640 *
641 * Returns:     cmd if requeue required, NULL otherwise.
642 *
643 * Notes:       This is called for block device requests in order to
644 *              mark some number of sectors as complete.
645 *
646 *		We are guaranteeing that the request queue will be goosed
647 *		at some point during this call.
648 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
649 */
650static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
651					  int bytes, int requeue)
652{
653	struct request_queue *q = cmd->device->request_queue;
654	struct request *req = cmd->request;
655	unsigned long flags;
656
657	/*
658	 * If there are blocks left over at the end, set up the command
659	 * to queue the remainder of them.
660	 */
661	if (end_that_request_chunk(req, uptodate, bytes)) {
662		int leftover = (req->hard_nr_sectors << 9);
663
664		if (blk_pc_request(req))
665			leftover = req->data_len;
666
667		/* kill remainder if no retrys */
668		if (!uptodate && blk_noretry_request(req))
669			end_that_request_chunk(req, 0, leftover);
670		else {
671			if (requeue) {
672				/*
673				 * Bleah.  Leftovers again.  Stick the
674				 * leftovers in the front of the
675				 * queue, and goose the queue again.
676				 */
677				scsi_requeue_command(q, cmd);
678				cmd = NULL;
679			}
680			return cmd;
681		}
682	}
683
684	add_disk_randomness(req->rq_disk);
685
686	spin_lock_irqsave(q->queue_lock, flags);
687	if (blk_rq_tagged(req))
688		blk_queue_end_tag(q, req);
689	end_that_request_last(req, uptodate);
690	spin_unlock_irqrestore(q->queue_lock, flags);
691
692	/*
693	 * This will goose the queue request function at the end, so we don't
694	 * need to worry about launching another command.
695	 */
696	scsi_next_command(cmd);
697	return NULL;
698}
699
700/*
701 * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
702 * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
703 */
704#define SCSI_MAX_SG_CHAIN_SEGMENTS	2048
705
706static inline unsigned int scsi_sgtable_index(unsigned short nents)
707{
708	unsigned int index;
709
710	switch (nents) {
711	case 1 ... 8:
712		index = 0;
713		break;
714	case 9 ... 16:
715		index = 1;
716		break;
717#if (SCSI_MAX_SG_SEGMENTS > 16)
718	case 17 ... 32:
719		index = 2;
720		break;
721#if (SCSI_MAX_SG_SEGMENTS > 32)
722	case 33 ... 64:
723		index = 3;
724		break;
725#if (SCSI_MAX_SG_SEGMENTS > 64)
726	case 65 ... 128:
727		index = 4;
728		break;
729#endif
730#endif
731#endif
732	default:
733		printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
734		BUG();
735	}
736
737	return index;
738}
739
740struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
741{
742	struct scsi_host_sg_pool *sgp;
743	struct scatterlist *sgl, *prev, *ret;
744	unsigned int index;
745	int this, left;
746
747	BUG_ON(!cmd->use_sg);
748
749	left = cmd->use_sg;
750	ret = prev = NULL;
751	do {
752		this = left;
753		if (this > SCSI_MAX_SG_SEGMENTS) {
754			this = SCSI_MAX_SG_SEGMENTS - 1;
755			index = SG_MEMPOOL_NR - 1;
756		} else
757			index = scsi_sgtable_index(this);
758
759		left -= this;
760
761		sgp = scsi_sg_pools + index;
762
763		sgl = mempool_alloc(sgp->pool, gfp_mask);
764		if (unlikely(!sgl))
765			goto enomem;
766
767		sg_init_table(sgl, sgp->size);
768
769		/*
770		 * first loop through, set initial index and return value
771		 */
772		if (!ret)
773			ret = sgl;
774
775		/*
776		 * chain previous sglist, if any. we know the previous
777		 * sglist must be the biggest one, or we would not have
778		 * ended up doing another loop.
779		 */
780		if (prev)
781			sg_chain(prev, SCSI_MAX_SG_SEGMENTS, sgl);
782
783		/*
784		 * if we have nothing left, mark the last segment as
785		 * end-of-list
786		 */
787		if (!left)
788			sg_mark_end(&sgl[this - 1]);
789
790		/*
791		 * don't allow subsequent mempool allocs to sleep, it would
792		 * violate the mempool principle.
793		 */
794		gfp_mask &= ~__GFP_WAIT;
795		gfp_mask |= __GFP_HIGH;
796		prev = sgl;
797	} while (left);
798
799	/*
800	 * ->use_sg may get modified after dma mapping has potentially
801	 * shrunk the number of segments, so keep a copy of it for free.
802	 */
803	cmd->__use_sg = cmd->use_sg;
804	return ret;
805enomem:
806	if (ret) {
807		/*
808		 * Free entries chained off ret. Since we were trying to
809		 * allocate another sglist, we know that all entries are of
810		 * the max size.
811		 */
812		sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
813		prev = ret;
814		ret = &ret[SCSI_MAX_SG_SEGMENTS - 1];
815
816		while ((sgl = sg_chain_ptr(ret)) != NULL) {
817			ret = &sgl[SCSI_MAX_SG_SEGMENTS - 1];
818			mempool_free(sgl, sgp->pool);
819		}
820
821		mempool_free(prev, sgp->pool);
822	}
823	return NULL;
824}
825
826EXPORT_SYMBOL(scsi_alloc_sgtable);
827
828void scsi_free_sgtable(struct scsi_cmnd *cmd)
829{
830	struct scatterlist *sgl = cmd->request_buffer;
831	struct scsi_host_sg_pool *sgp;
832
833	/*
834	 * if this is the biggest size sglist, check if we have
835	 * chained parts we need to free
836	 */
837	if (cmd->__use_sg > SCSI_MAX_SG_SEGMENTS) {
838		unsigned short this, left;
839		struct scatterlist *next;
840		unsigned int index;
841
842		left = cmd->__use_sg - (SCSI_MAX_SG_SEGMENTS - 1);
843		next = sg_chain_ptr(&sgl[SCSI_MAX_SG_SEGMENTS - 1]);
844		while (left && next) {
845			sgl = next;
846			this = left;
847			if (this > SCSI_MAX_SG_SEGMENTS) {
848				this = SCSI_MAX_SG_SEGMENTS - 1;
849				index = SG_MEMPOOL_NR - 1;
850			} else
851				index = scsi_sgtable_index(this);
852
853			left -= this;
854
855			sgp = scsi_sg_pools + index;
856
857			if (left)
858				next = sg_chain_ptr(&sgl[sgp->size - 1]);
859
860			mempool_free(sgl, sgp->pool);
861		}
862
863		/*
864		 * Restore original, will be freed below
865		 */
866		sgl = cmd->request_buffer;
867		sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
868	} else
869		sgp = scsi_sg_pools + scsi_sgtable_index(cmd->__use_sg);
870
871	mempool_free(sgl, sgp->pool);
872}
873
874EXPORT_SYMBOL(scsi_free_sgtable);
875
876/*
877 * Function:    scsi_release_buffers()
878 *
879 * Purpose:     Completion processing for block device I/O requests.
880 *
881 * Arguments:   cmd	- command that we are bailing.
882 *
883 * Lock status: Assumed that no lock is held upon entry.
884 *
885 * Returns:     Nothing
886 *
887 * Notes:       In the event that an upper level driver rejects a
888 *		command, we must release resources allocated during
889 *		the __init_io() function.  Primarily this would involve
890 *		the scatter-gather table, and potentially any bounce
891 *		buffers.
892 */
893static void scsi_release_buffers(struct scsi_cmnd *cmd)
894{
895	if (cmd->use_sg)
896		scsi_free_sgtable(cmd);
897
898	/*
899	 * Zero these out.  They now point to freed memory, and it is
900	 * dangerous to hang onto the pointers.
901	 */
902	cmd->request_buffer = NULL;
903	cmd->request_bufflen = 0;
904}
905
906/*
907 * Function:    scsi_io_completion()
908 *
909 * Purpose:     Completion processing for block device I/O requests.
910 *
911 * Arguments:   cmd   - command that is finished.
912 *
913 * Lock status: Assumed that no lock is held upon entry.
914 *
915 * Returns:     Nothing
916 *
917 * Notes:       This function is matched in terms of capabilities to
918 *              the function that created the scatter-gather list.
919 *              In other words, if there are no bounce buffers
920 *              (the normal case for most drivers), we don't need
921 *              the logic to deal with cleaning up afterwards.
922 *
923 *		We must do one of several things here:
924 *
925 *		a) Call scsi_end_request.  This will finish off the
926 *		   specified number of sectors.  If we are done, the
927 *		   command block will be released, and the queue
928 *		   function will be goosed.  If we are not done, then
929 *		   scsi_end_request will directly goose the queue.
930 *
931 *		b) We can just use scsi_requeue_command() here.  This would
932 *		   be used if we just wanted to retry, for example.
933 */
934void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
935{
936	int result = cmd->result;
937	int this_count = cmd->request_bufflen;
938	struct request_queue *q = cmd->device->request_queue;
939	struct request *req = cmd->request;
940	int clear_errors = 1;
941	struct scsi_sense_hdr sshdr;
942	int sense_valid = 0;
943	int sense_deferred = 0;
944
945	scsi_release_buffers(cmd);
946
947	if (result) {
948		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
949		if (sense_valid)
950			sense_deferred = scsi_sense_is_deferred(&sshdr);
951	}
952
953	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
954		req->errors = result;
955		if (result) {
956			clear_errors = 0;
957			if (sense_valid && req->sense) {
958				/*
959				 * SG_IO wants current and deferred errors
960				 */
961				int len = 8 + cmd->sense_buffer[7];
962
963				if (len > SCSI_SENSE_BUFFERSIZE)
964					len = SCSI_SENSE_BUFFERSIZE;
965				memcpy(req->sense, cmd->sense_buffer,  len);
966				req->sense_len = len;
967			}
968		}
969		req->data_len = cmd->resid;
970	}
971
972	/*
973	 * Next deal with any sectors which we were able to correctly
974	 * handle.
975	 */
976	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
977				      "%d bytes done.\n",
978				      req->nr_sectors, good_bytes));
979	SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
980
981	if (clear_errors)
982		req->errors = 0;
983
984	/* A number of bytes were successfully read.  If there
985	 * are leftovers and there is some kind of error
986	 * (result != 0), retry the rest.
987	 */
988	if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
989		return;
990
991	/* good_bytes = 0, or (inclusive) there were leftovers and
992	 * result = 0, so scsi_end_request couldn't retry.
993	 */
994	if (sense_valid && !sense_deferred) {
995		switch (sshdr.sense_key) {
996		case UNIT_ATTENTION:
997			if (cmd->device->removable) {
998				/* Detected disc change.  Set a bit
999				 * and quietly refuse further access.
1000				 */
1001				cmd->device->changed = 1;
1002				scsi_end_request(cmd, 0, this_count, 1);
1003				return;
1004			} else {
1005				/* Must have been a power glitch, or a
1006				 * bus reset.  Could not have been a
1007				 * media change, so we just retry the
1008				 * request and see what happens.
1009				 */
1010				scsi_requeue_command(q, cmd);
1011				return;
1012			}
1013			break;
1014		case ILLEGAL_REQUEST:
1015			/* If we had an ILLEGAL REQUEST returned, then
1016			 * we may have performed an unsupported
1017			 * command.  The only thing this should be
1018			 * would be a ten byte read where only a six
1019			 * byte read was supported.  Also, on a system
1020			 * where READ CAPACITY failed, we may have
1021			 * read past the end of the disk.
1022			 */
1023			if ((cmd->device->use_10_for_rw &&
1024			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1025			    (cmd->cmnd[0] == READ_10 ||
1026			     cmd->cmnd[0] == WRITE_10)) {
1027				cmd->device->use_10_for_rw = 0;
1028				/* This will cause a retry with a
1029				 * 6-byte command.
1030				 */
1031				scsi_requeue_command(q, cmd);
1032				return;
1033			} else {
1034				scsi_end_request(cmd, 0, this_count, 1);
1035				return;
1036			}
1037			break;
1038		case NOT_READY:
1039			/* If the device is in the process of becoming
1040			 * ready, or has a temporary blockage, retry.
1041			 */
1042			if (sshdr.asc == 0x04) {
1043				switch (sshdr.ascq) {
1044				case 0x01: /* becoming ready */
1045				case 0x04: /* format in progress */
1046				case 0x05: /* rebuild in progress */
1047				case 0x06: /* recalculation in progress */
1048				case 0x07: /* operation in progress */
1049				case 0x08: /* Long write in progress */
1050				case 0x09: /* self test in progress */
1051					scsi_requeue_command(q, cmd);
1052					return;
1053				default:
1054					break;
1055				}
1056			}
1057			if (!(req->cmd_flags & REQ_QUIET))
1058				scsi_cmd_print_sense_hdr(cmd,
1059							 "Device not ready",
1060							 &sshdr);
1061
1062			scsi_end_request(cmd, 0, this_count, 1);
1063			return;
1064		case VOLUME_OVERFLOW:
1065			if (!(req->cmd_flags & REQ_QUIET)) {
1066				scmd_printk(KERN_INFO, cmd,
1067					    "Volume overflow, CDB: ");
1068				__scsi_print_command(cmd->cmnd);
1069				scsi_print_sense("", cmd);
1070			}
1071			/* See SSC3rXX or current. */
1072			scsi_end_request(cmd, 0, this_count, 1);
1073			return;
1074		default:
1075			break;
1076		}
1077	}
1078	if (host_byte(result) == DID_RESET) {
1079		/* Third party bus reset or reset for error recovery
1080		 * reasons.  Just retry the request and see what
1081		 * happens.
1082		 */
1083		scsi_requeue_command(q, cmd);
1084		return;
1085	}
1086	if (result) {
1087		if (!(req->cmd_flags & REQ_QUIET)) {
1088			scsi_print_result(cmd);
1089			if (driver_byte(result) & DRIVER_SENSE)
1090				scsi_print_sense("", cmd);
1091		}
1092	}
1093	scsi_end_request(cmd, 0, this_count, !result);
1094}
1095
1096/*
1097 * Function:    scsi_init_io()
1098 *
1099 * Purpose:     SCSI I/O initialize function.
1100 *
1101 * Arguments:   cmd   - Command descriptor we wish to initialize
1102 *
1103 * Returns:     0 on success
1104 *		BLKPREP_DEFER if the failure is retryable
1105 *		BLKPREP_KILL if the failure is fatal
1106 */
1107static int scsi_init_io(struct scsi_cmnd *cmd)
1108{
1109	struct request     *req = cmd->request;
1110	int		   count;
1111
1112	/*
1113	 * We used to not use scatter-gather for single segment request,
1114	 * but now we do (it makes highmem I/O easier to support without
1115	 * kmapping pages)
1116	 */
1117	cmd->use_sg = req->nr_phys_segments;
1118
1119	/*
1120	 * If sg table allocation fails, requeue request later.
1121	 */
1122	cmd->request_buffer = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1123	if (unlikely(!cmd->request_buffer)) {
1124		scsi_unprep_request(req);
1125		return BLKPREP_DEFER;
1126	}
1127
1128	req->buffer = NULL;
1129	if (blk_pc_request(req))
1130		cmd->request_bufflen = req->data_len;
1131	else
1132		cmd->request_bufflen = req->nr_sectors << 9;
1133
1134	/*
1135	 * Next, walk the list, and fill in the addresses and sizes of
1136	 * each segment.
1137	 */
1138	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1139	if (likely(count <= cmd->use_sg)) {
1140		cmd->use_sg = count;
1141		return BLKPREP_OK;
1142	}
1143
1144	printk(KERN_ERR "Incorrect number of segments after building list\n");
1145	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1146	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1147			req->current_nr_sectors);
1148
1149	return BLKPREP_KILL;
1150}
1151
1152static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1153		struct request *req)
1154{
1155	struct scsi_cmnd *cmd;
1156
1157	if (!req->special) {
1158		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1159		if (unlikely(!cmd))
1160			return NULL;
1161		req->special = cmd;
1162	} else {
1163		cmd = req->special;
1164	}
1165
1166	/* pull a tag out of the request if we have one */
1167	cmd->tag = req->tag;
1168	cmd->request = req;
1169
1170	return cmd;
1171}
1172
1173int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1174{
1175	struct scsi_cmnd *cmd;
1176	int ret = scsi_prep_state_check(sdev, req);
1177
1178	if (ret != BLKPREP_OK)
1179		return ret;
1180
1181	cmd = scsi_get_cmd_from_req(sdev, req);
1182	if (unlikely(!cmd))
1183		return BLKPREP_DEFER;
1184
1185	/*
1186	 * BLOCK_PC requests may transfer data, in which case they must
1187	 * a bio attached to them.  Or they might contain a SCSI command
1188	 * that does not transfer data, in which case they may optionally
1189	 * submit a request without an attached bio.
1190	 */
1191	if (req->bio) {
1192		int ret;
1193
1194		BUG_ON(!req->nr_phys_segments);
1195
1196		ret = scsi_init_io(cmd);
1197		if (unlikely(ret))
1198			return ret;
1199	} else {
1200		BUG_ON(req->data_len);
1201		BUG_ON(req->data);
1202
1203		cmd->request_bufflen = 0;
1204		cmd->request_buffer = NULL;
1205		cmd->use_sg = 0;
1206		req->buffer = NULL;
1207	}
1208
1209	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1210	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1211	cmd->cmd_len = req->cmd_len;
1212	if (!req->data_len)
1213		cmd->sc_data_direction = DMA_NONE;
1214	else if (rq_data_dir(req) == WRITE)
1215		cmd->sc_data_direction = DMA_TO_DEVICE;
1216	else
1217		cmd->sc_data_direction = DMA_FROM_DEVICE;
1218
1219	cmd->transfersize = req->data_len;
1220	cmd->allowed = req->retries;
1221	cmd->timeout_per_command = req->timeout;
1222	return BLKPREP_OK;
1223}
1224EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1225
1226/*
1227 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1228 * from filesystems that still need to be translated to SCSI CDBs from
1229 * the ULD.
1230 */
1231int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1232{
1233	struct scsi_cmnd *cmd;
1234	int ret = scsi_prep_state_check(sdev, req);
1235
1236	if (ret != BLKPREP_OK)
1237		return ret;
1238	/*
1239	 * Filesystem requests must transfer data.
1240	 */
1241	BUG_ON(!req->nr_phys_segments);
1242
1243	cmd = scsi_get_cmd_from_req(sdev, req);
1244	if (unlikely(!cmd))
1245		return BLKPREP_DEFER;
1246
1247	return scsi_init_io(cmd);
1248}
1249EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1250
1251int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1252{
1253	int ret = BLKPREP_OK;
1254
1255	/*
1256	 * If the device is not in running state we will reject some
1257	 * or all commands.
1258	 */
1259	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1260		switch (sdev->sdev_state) {
1261		case SDEV_OFFLINE:
1262			/*
1263			 * If the device is offline we refuse to process any
1264			 * commands.  The device must be brought online
1265			 * before trying any recovery commands.
1266			 */
1267			sdev_printk(KERN_ERR, sdev,
1268				    "rejecting I/O to offline device\n");
1269			ret = BLKPREP_KILL;
1270			break;
1271		case SDEV_DEL:
1272			/*
1273			 * If the device is fully deleted, we refuse to
1274			 * process any commands as well.
1275			 */
1276			sdev_printk(KERN_ERR, sdev,
1277				    "rejecting I/O to dead device\n");
1278			ret = BLKPREP_KILL;
1279			break;
1280		case SDEV_QUIESCE:
1281		case SDEV_BLOCK:
1282			/*
1283			 * If the devices is blocked we defer normal commands.
1284			 */
1285			if (!(req->cmd_flags & REQ_PREEMPT))
1286				ret = BLKPREP_DEFER;
1287			break;
1288		default:
1289			/*
1290			 * For any other not fully online state we only allow
1291			 * special commands.  In particular any user initiated
1292			 * command is not allowed.
1293			 */
1294			if (!(req->cmd_flags & REQ_PREEMPT))
1295				ret = BLKPREP_KILL;
1296			break;
1297		}
1298	}
1299	return ret;
1300}
1301EXPORT_SYMBOL(scsi_prep_state_check);
1302
1303int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1304{
1305	struct scsi_device *sdev = q->queuedata;
1306
1307	switch (ret) {
1308	case BLKPREP_KILL:
1309		req->errors = DID_NO_CONNECT << 16;
1310		/* release the command and kill it */
1311		if (req->special) {
1312			struct scsi_cmnd *cmd = req->special;
1313			scsi_release_buffers(cmd);
1314			scsi_put_command(cmd);
1315			req->special = NULL;
1316		}
1317		break;
1318	case BLKPREP_DEFER:
1319		/*
1320		 * If we defer, the elv_next_request() returns NULL, but the
1321		 * queue must be restarted, so we plug here if no returning
1322		 * command will automatically do that.
1323		 */
1324		if (sdev->device_busy == 0)
1325			blk_plug_device(q);
1326		break;
1327	default:
1328		req->cmd_flags |= REQ_DONTPREP;
1329	}
1330
1331	return ret;
1332}
1333EXPORT_SYMBOL(scsi_prep_return);
1334
1335int scsi_prep_fn(struct request_queue *q, struct request *req)
1336{
1337	struct scsi_device *sdev = q->queuedata;
1338	int ret = BLKPREP_KILL;
1339
1340	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1341		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1342	return scsi_prep_return(q, req, ret);
1343}
1344
1345/*
1346 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1347 * return 0.
1348 *
1349 * Called with the queue_lock held.
1350 */
1351static inline int scsi_dev_queue_ready(struct request_queue *q,
1352				  struct scsi_device *sdev)
1353{
1354	if (sdev->device_busy >= sdev->queue_depth)
1355		return 0;
1356	if (sdev->device_busy == 0 && sdev->device_blocked) {
1357		/*
1358		 * unblock after device_blocked iterates to zero
1359		 */
1360		if (--sdev->device_blocked == 0) {
1361			SCSI_LOG_MLQUEUE(3,
1362				   sdev_printk(KERN_INFO, sdev,
1363				   "unblocking device at zero depth\n"));
1364		} else {
1365			blk_plug_device(q);
1366			return 0;
1367		}
1368	}
1369	if (sdev->device_blocked)
1370		return 0;
1371
1372	return 1;
1373}
1374
1375/*
1376 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1377 * return 0. We must end up running the queue again whenever 0 is
1378 * returned, else IO can hang.
1379 *
1380 * Called with host_lock held.
1381 */
1382static inline int scsi_host_queue_ready(struct request_queue *q,
1383				   struct Scsi_Host *shost,
1384				   struct scsi_device *sdev)
1385{
1386	if (scsi_host_in_recovery(shost))
1387		return 0;
1388	if (shost->host_busy == 0 && shost->host_blocked) {
1389		/*
1390		 * unblock after host_blocked iterates to zero
1391		 */
1392		if (--shost->host_blocked == 0) {
1393			SCSI_LOG_MLQUEUE(3,
1394				printk("scsi%d unblocking host at zero depth\n",
1395					shost->host_no));
1396		} else {
1397			blk_plug_device(q);
1398			return 0;
1399		}
1400	}
1401	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1402	    shost->host_blocked || shost->host_self_blocked) {
1403		if (list_empty(&sdev->starved_entry))
1404			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1405		return 0;
1406	}
1407
1408	/* We're OK to process the command, so we can't be starved */
1409	if (!list_empty(&sdev->starved_entry))
1410		list_del_init(&sdev->starved_entry);
1411
1412	return 1;
1413}
1414
1415/*
1416 * Kill a request for a dead device
1417 */
1418static void scsi_kill_request(struct request *req, struct request_queue *q)
1419{
1420	struct scsi_cmnd *cmd = req->special;
1421	struct scsi_device *sdev = cmd->device;
1422	struct Scsi_Host *shost = sdev->host;
1423
1424	blkdev_dequeue_request(req);
1425
1426	if (unlikely(cmd == NULL)) {
1427		printk(KERN_CRIT "impossible request in %s.\n",
1428				 __FUNCTION__);
1429		BUG();
1430	}
1431
1432	scsi_init_cmd_errh(cmd);
1433	cmd->result = DID_NO_CONNECT << 16;
1434	atomic_inc(&cmd->device->iorequest_cnt);
1435
1436	/*
1437	 * SCSI request completion path will do scsi_device_unbusy(),
1438	 * bump busy counts.  To bump the counters, we need to dance
1439	 * with the locks as normal issue path does.
1440	 */
1441	sdev->device_busy++;
1442	spin_unlock(sdev->request_queue->queue_lock);
1443	spin_lock(shost->host_lock);
1444	shost->host_busy++;
1445	spin_unlock(shost->host_lock);
1446	spin_lock(sdev->request_queue->queue_lock);
1447
1448	__scsi_done(cmd);
1449}
1450
1451static void scsi_softirq_done(struct request *rq)
1452{
1453	struct scsi_cmnd *cmd = rq->completion_data;
1454	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1455	int disposition;
1456
1457	INIT_LIST_HEAD(&cmd->eh_entry);
1458
1459	disposition = scsi_decide_disposition(cmd);
1460	if (disposition != SUCCESS &&
1461	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1462		sdev_printk(KERN_ERR, cmd->device,
1463			    "timing out command, waited %lus\n",
1464			    wait_for/HZ);
1465		disposition = SUCCESS;
1466	}
1467
1468	scsi_log_completion(cmd, disposition);
1469
1470	switch (disposition) {
1471		case SUCCESS:
1472			scsi_finish_command(cmd);
1473			break;
1474		case NEEDS_RETRY:
1475			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1476			break;
1477		case ADD_TO_MLQUEUE:
1478			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1479			break;
1480		default:
1481			if (!scsi_eh_scmd_add(cmd, 0))
1482				scsi_finish_command(cmd);
1483	}
1484}
1485
1486/*
1487 * Function:    scsi_request_fn()
1488 *
1489 * Purpose:     Main strategy routine for SCSI.
1490 *
1491 * Arguments:   q       - Pointer to actual queue.
1492 *
1493 * Returns:     Nothing
1494 *
1495 * Lock status: IO request lock assumed to be held when called.
1496 */
1497static void scsi_request_fn(struct request_queue *q)
1498{
1499	struct scsi_device *sdev = q->queuedata;
1500	struct Scsi_Host *shost;
1501	struct scsi_cmnd *cmd;
1502	struct request *req;
1503
1504	if (!sdev) {
1505		printk("scsi: killing requests for dead queue\n");
1506		while ((req = elv_next_request(q)) != NULL)
1507			scsi_kill_request(req, q);
1508		return;
1509	}
1510
1511	if(!get_device(&sdev->sdev_gendev))
1512		/* We must be tearing the block queue down already */
1513		return;
1514
1515	/*
1516	 * To start with, we keep looping until the queue is empty, or until
1517	 * the host is no longer able to accept any more requests.
1518	 */
1519	shost = sdev->host;
1520	while (!blk_queue_plugged(q)) {
1521		int rtn;
1522		/*
1523		 * get next queueable request.  We do this early to make sure
1524		 * that the request is fully prepared even if we cannot
1525		 * accept it.
1526		 */
1527		req = elv_next_request(q);
1528		if (!req || !scsi_dev_queue_ready(q, sdev))
1529			break;
1530
1531		if (unlikely(!scsi_device_online(sdev))) {
1532			sdev_printk(KERN_ERR, sdev,
1533				    "rejecting I/O to offline device\n");
1534			scsi_kill_request(req, q);
1535			continue;
1536		}
1537
1538
1539		/*
1540		 * Remove the request from the request list.
1541		 */
1542		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1543			blkdev_dequeue_request(req);
1544		sdev->device_busy++;
1545
1546		spin_unlock(q->queue_lock);
1547		cmd = req->special;
1548		if (unlikely(cmd == NULL)) {
1549			printk(KERN_CRIT "impossible request in %s.\n"
1550					 "please mail a stack trace to "
1551					 "linux-scsi@vger.kernel.org\n",
1552					 __FUNCTION__);
1553			blk_dump_rq_flags(req, "foo");
1554			BUG();
1555		}
1556		spin_lock(shost->host_lock);
1557
1558		if (!scsi_host_queue_ready(q, shost, sdev))
1559			goto not_ready;
1560		if (sdev->single_lun) {
1561			if (scsi_target(sdev)->starget_sdev_user &&
1562			    scsi_target(sdev)->starget_sdev_user != sdev)
1563				goto not_ready;
1564			scsi_target(sdev)->starget_sdev_user = sdev;
1565		}
1566		shost->host_busy++;
1567
1568		/*
1569		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1570		 *		take the lock again.
1571		 */
1572		spin_unlock_irq(shost->host_lock);
1573
1574		/*
1575		 * Finally, initialize any error handling parameters, and set up
1576		 * the timers for timeouts.
1577		 */
1578		scsi_init_cmd_errh(cmd);
1579
1580		/*
1581		 * Dispatch the command to the low-level driver.
1582		 */
1583		rtn = scsi_dispatch_cmd(cmd);
1584		spin_lock_irq(q->queue_lock);
1585		if(rtn) {
1586			/* we're refusing the command; because of
1587			 * the way locks get dropped, we need to
1588			 * check here if plugging is required */
1589			if(sdev->device_busy == 0)
1590				blk_plug_device(q);
1591
1592			break;
1593		}
1594	}
1595
1596	goto out;
1597
1598 not_ready:
1599	spin_unlock_irq(shost->host_lock);
1600
1601	/*
1602	 * lock q, handle tag, requeue req, and decrement device_busy. We
1603	 * must return with queue_lock held.
1604	 *
1605	 * Decrementing device_busy without checking it is OK, as all such
1606	 * cases (host limits or settings) should run the queue at some
1607	 * later time.
1608	 */
1609	spin_lock_irq(q->queue_lock);
1610	blk_requeue_request(q, req);
1611	sdev->device_busy--;
1612	if(sdev->device_busy == 0)
1613		blk_plug_device(q);
1614 out:
1615	/* must be careful here...if we trigger the ->remove() function
1616	 * we cannot be holding the q lock */
1617	spin_unlock_irq(q->queue_lock);
1618	put_device(&sdev->sdev_gendev);
1619	spin_lock_irq(q->queue_lock);
1620}
1621
1622u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1623{
1624	struct device *host_dev;
1625	u64 bounce_limit = 0xffffffff;
1626
1627	if (shost->unchecked_isa_dma)
1628		return BLK_BOUNCE_ISA;
1629	/*
1630	 * Platforms with virtual-DMA translation
1631	 * hardware have no practical limit.
1632	 */
1633	if (!PCI_DMA_BUS_IS_PHYS)
1634		return BLK_BOUNCE_ANY;
1635
1636	host_dev = scsi_get_device(shost);
1637	if (host_dev && host_dev->dma_mask)
1638		bounce_limit = *host_dev->dma_mask;
1639
1640	return bounce_limit;
1641}
1642EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1643
1644struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1645					 request_fn_proc *request_fn)
1646{
1647	struct request_queue *q;
1648
1649	q = blk_init_queue(request_fn, NULL);
1650	if (!q)
1651		return NULL;
1652
1653	/*
1654	 * this limit is imposed by hardware restrictions
1655	 */
1656	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1657
1658	/*
1659	 * In the future, sg chaining support will be mandatory and this
1660	 * ifdef can then go away. Right now we don't have all archs
1661	 * converted, so better keep it safe.
1662	 */
1663#ifdef ARCH_HAS_SG_CHAIN
1664	if (shost->use_sg_chaining)
1665		blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1666	else
1667		blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1668#else
1669	blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1670#endif
1671
1672	blk_queue_max_sectors(q, shost->max_sectors);
1673	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1674	blk_queue_segment_boundary(q, shost->dma_boundary);
1675
1676	if (!shost->use_clustering)
1677		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1678	return q;
1679}
1680EXPORT_SYMBOL(__scsi_alloc_queue);
1681
1682struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1683{
1684	struct request_queue *q;
1685
1686	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1687	if (!q)
1688		return NULL;
1689
1690	blk_queue_prep_rq(q, scsi_prep_fn);
1691	blk_queue_softirq_done(q, scsi_softirq_done);
1692	return q;
1693}
1694
1695void scsi_free_queue(struct request_queue *q)
1696{
1697	blk_cleanup_queue(q);
1698}
1699
1700/*
1701 * Function:    scsi_block_requests()
1702 *
1703 * Purpose:     Utility function used by low-level drivers to prevent further
1704 *		commands from being queued to the device.
1705 *
1706 * Arguments:   shost       - Host in question
1707 *
1708 * Returns:     Nothing
1709 *
1710 * Lock status: No locks are assumed held.
1711 *
1712 * Notes:       There is no timer nor any other means by which the requests
1713 *		get unblocked other than the low-level driver calling
1714 *		scsi_unblock_requests().
1715 */
1716void scsi_block_requests(struct Scsi_Host *shost)
1717{
1718	shost->host_self_blocked = 1;
1719}
1720EXPORT_SYMBOL(scsi_block_requests);
1721
1722/*
1723 * Function:    scsi_unblock_requests()
1724 *
1725 * Purpose:     Utility function used by low-level drivers to allow further
1726 *		commands from being queued to the device.
1727 *
1728 * Arguments:   shost       - Host in question
1729 *
1730 * Returns:     Nothing
1731 *
1732 * Lock status: No locks are assumed held.
1733 *
1734 * Notes:       There is no timer nor any other means by which the requests
1735 *		get unblocked other than the low-level driver calling
1736 *		scsi_unblock_requests().
1737 *
1738 *		This is done as an API function so that changes to the
1739 *		internals of the scsi mid-layer won't require wholesale
1740 *		changes to drivers that use this feature.
1741 */
1742void scsi_unblock_requests(struct Scsi_Host *shost)
1743{
1744	shost->host_self_blocked = 0;
1745	scsi_run_host_queues(shost);
1746}
1747EXPORT_SYMBOL(scsi_unblock_requests);
1748
1749int __init scsi_init_queue(void)
1750{
1751	int i;
1752
1753	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1754					sizeof(struct scsi_io_context),
1755					0, 0, NULL);
1756	if (!scsi_io_context_cache) {
1757		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1758		return -ENOMEM;
1759	}
1760
1761	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1762		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1763		int size = sgp->size * sizeof(struct scatterlist);
1764
1765		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1766				SLAB_HWCACHE_ALIGN, NULL);
1767		if (!sgp->slab) {
1768			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1769					sgp->name);
1770		}
1771
1772		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1773						     sgp->slab);
1774		if (!sgp->pool) {
1775			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1776					sgp->name);
1777		}
1778	}
1779
1780	return 0;
1781}
1782
1783void scsi_exit_queue(void)
1784{
1785	int i;
1786
1787	kmem_cache_destroy(scsi_io_context_cache);
1788
1789	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1790		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1791		mempool_destroy(sgp->pool);
1792		kmem_cache_destroy(sgp->slab);
1793	}
1794}
1795
1796/**
1797 *	scsi_mode_select - issue a mode select
1798 *	@sdev:	SCSI device to be queried
1799 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1800 *	@sp:	Save page bit (0 == don't save, 1 == save)
1801 *	@modepage: mode page being requested
1802 *	@buffer: request buffer (may not be smaller than eight bytes)
1803 *	@len:	length of request buffer.
1804 *	@timeout: command timeout
1805 *	@retries: number of retries before failing
1806 *	@data: returns a structure abstracting the mode header data
1807 *	@sense: place to put sense data (or NULL if no sense to be collected).
1808 *		must be SCSI_SENSE_BUFFERSIZE big.
1809 *
1810 *	Returns zero if successful; negative error number or scsi
1811 *	status on error
1812 *
1813 */
1814int
1815scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1816		 unsigned char *buffer, int len, int timeout, int retries,
1817		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1818{
1819	unsigned char cmd[10];
1820	unsigned char *real_buffer;
1821	int ret;
1822
1823	memset(cmd, 0, sizeof(cmd));
1824	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1825
1826	if (sdev->use_10_for_ms) {
1827		if (len > 65535)
1828			return -EINVAL;
1829		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1830		if (!real_buffer)
1831			return -ENOMEM;
1832		memcpy(real_buffer + 8, buffer, len);
1833		len += 8;
1834		real_buffer[0] = 0;
1835		real_buffer[1] = 0;
1836		real_buffer[2] = data->medium_type;
1837		real_buffer[3] = data->device_specific;
1838		real_buffer[4] = data->longlba ? 0x01 : 0;
1839		real_buffer[5] = 0;
1840		real_buffer[6] = data->block_descriptor_length >> 8;
1841		real_buffer[7] = data->block_descriptor_length;
1842
1843		cmd[0] = MODE_SELECT_10;
1844		cmd[7] = len >> 8;
1845		cmd[8] = len;
1846	} else {
1847		if (len > 255 || data->block_descriptor_length > 255 ||
1848		    data->longlba)
1849			return -EINVAL;
1850
1851		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1852		if (!real_buffer)
1853			return -ENOMEM;
1854		memcpy(real_buffer + 4, buffer, len);
1855		len += 4;
1856		real_buffer[0] = 0;
1857		real_buffer[1] = data->medium_type;
1858		real_buffer[2] = data->device_specific;
1859		real_buffer[3] = data->block_descriptor_length;
1860
1861
1862		cmd[0] = MODE_SELECT;
1863		cmd[4] = len;
1864	}
1865
1866	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1867			       sshdr, timeout, retries);
1868	kfree(real_buffer);
1869	return ret;
1870}
1871EXPORT_SYMBOL_GPL(scsi_mode_select);
1872
1873/**
1874 *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1875 *		six bytes if necessary.
1876 *	@sdev:	SCSI device to be queried
1877 *	@dbd:	set if mode sense will allow block descriptors to be returned
1878 *	@modepage: mode page being requested
1879 *	@buffer: request buffer (may not be smaller than eight bytes)
1880 *	@len:	length of request buffer.
1881 *	@timeout: command timeout
1882 *	@retries: number of retries before failing
1883 *	@data: returns a structure abstracting the mode header data
1884 *	@sense: place to put sense data (or NULL if no sense to be collected).
1885 *		must be SCSI_SENSE_BUFFERSIZE big.
1886 *
1887 *	Returns zero if unsuccessful, or the header offset (either 4
1888 *	or 8 depending on whether a six or ten byte command was
1889 *	issued) if successful.
1890 **/
1891int
1892scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1893		  unsigned char *buffer, int len, int timeout, int retries,
1894		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1895{
1896	unsigned char cmd[12];
1897	int use_10_for_ms;
1898	int header_length;
1899	int result;
1900	struct scsi_sense_hdr my_sshdr;
1901
1902	memset(data, 0, sizeof(*data));
1903	memset(&cmd[0], 0, 12);
1904	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1905	cmd[2] = modepage;
1906
1907	/* caller might not be interested in sense, but we need it */
1908	if (!sshdr)
1909		sshdr = &my_sshdr;
1910
1911 retry:
1912	use_10_for_ms = sdev->use_10_for_ms;
1913
1914	if (use_10_for_ms) {
1915		if (len < 8)
1916			len = 8;
1917
1918		cmd[0] = MODE_SENSE_10;
1919		cmd[8] = len;
1920		header_length = 8;
1921	} else {
1922		if (len < 4)
1923			len = 4;
1924
1925		cmd[0] = MODE_SENSE;
1926		cmd[4] = len;
1927		header_length = 4;
1928	}
1929
1930	memset(buffer, 0, len);
1931
1932	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1933				  sshdr, timeout, retries);
1934
1935	/* This code looks awful: what it's doing is making sure an
1936	 * ILLEGAL REQUEST sense return identifies the actual command
1937	 * byte as the problem.  MODE_SENSE commands can return
1938	 * ILLEGAL REQUEST if the code page isn't supported */
1939
1940	if (use_10_for_ms && !scsi_status_is_good(result) &&
1941	    (driver_byte(result) & DRIVER_SENSE)) {
1942		if (scsi_sense_valid(sshdr)) {
1943			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1944			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1945				/*
1946				 * Invalid command operation code
1947				 */
1948				sdev->use_10_for_ms = 0;
1949				goto retry;
1950			}
1951		}
1952	}
1953
1954	if(scsi_status_is_good(result)) {
1955		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1956			     (modepage == 6 || modepage == 8))) {
1957			/* Initio breakage? */
1958			header_length = 0;
1959			data->length = 13;
1960			data->medium_type = 0;
1961			data->device_specific = 0;
1962			data->longlba = 0;
1963			data->block_descriptor_length = 0;
1964		} else if(use_10_for_ms) {
1965			data->length = buffer[0]*256 + buffer[1] + 2;
1966			data->medium_type = buffer[2];
1967			data->device_specific = buffer[3];
1968			data->longlba = buffer[4] & 0x01;
1969			data->block_descriptor_length = buffer[6]*256
1970				+ buffer[7];
1971		} else {
1972			data->length = buffer[0] + 1;
1973			data->medium_type = buffer[1];
1974			data->device_specific = buffer[2];
1975			data->block_descriptor_length = buffer[3];
1976		}
1977		data->header_length = header_length;
1978	}
1979
1980	return result;
1981}
1982EXPORT_SYMBOL(scsi_mode_sense);
1983
1984int
1985scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1986{
1987	char cmd[] = {
1988		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1989	};
1990	struct scsi_sense_hdr sshdr;
1991	int result;
1992
1993	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1994				  timeout, retries);
1995
1996	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1997
1998		if ((scsi_sense_valid(&sshdr)) &&
1999		    ((sshdr.sense_key == UNIT_ATTENTION) ||
2000		     (sshdr.sense_key == NOT_READY))) {
2001			sdev->changed = 1;
2002			result = 0;
2003		}
2004	}
2005	return result;
2006}
2007EXPORT_SYMBOL(scsi_test_unit_ready);
2008
2009/**
2010 *	scsi_device_set_state - Take the given device through the device
2011 *		state model.
2012 *	@sdev:	scsi device to change the state of.
2013 *	@state:	state to change to.
2014 *
2015 *	Returns zero if unsuccessful or an error if the requested
2016 *	transition is illegal.
2017 **/
2018int
2019scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2020{
2021	enum scsi_device_state oldstate = sdev->sdev_state;
2022
2023	if (state == oldstate)
2024		return 0;
2025
2026	switch (state) {
2027	case SDEV_CREATED:
2028		/* There are no legal states that come back to
2029		 * created.  This is the manually initialised start
2030		 * state */
2031		goto illegal;
2032
2033	case SDEV_RUNNING:
2034		switch (oldstate) {
2035		case SDEV_CREATED:
2036		case SDEV_OFFLINE:
2037		case SDEV_QUIESCE:
2038		case SDEV_BLOCK:
2039			break;
2040		default:
2041			goto illegal;
2042		}
2043		break;
2044
2045	case SDEV_QUIESCE:
2046		switch (oldstate) {
2047		case SDEV_RUNNING:
2048		case SDEV_OFFLINE:
2049			break;
2050		default:
2051			goto illegal;
2052		}
2053		break;
2054
2055	case SDEV_OFFLINE:
2056		switch (oldstate) {
2057		case SDEV_CREATED:
2058		case SDEV_RUNNING:
2059		case SDEV_QUIESCE:
2060		case SDEV_BLOCK:
2061			break;
2062		default:
2063			goto illegal;
2064		}
2065		break;
2066
2067	case SDEV_BLOCK:
2068		switch (oldstate) {
2069		case SDEV_CREATED:
2070		case SDEV_RUNNING:
2071			break;
2072		default:
2073			goto illegal;
2074		}
2075		break;
2076
2077	case SDEV_CANCEL:
2078		switch (oldstate) {
2079		case SDEV_CREATED:
2080		case SDEV_RUNNING:
2081		case SDEV_QUIESCE:
2082		case SDEV_OFFLINE:
2083		case SDEV_BLOCK:
2084			break;
2085		default:
2086			goto illegal;
2087		}
2088		break;
2089
2090	case SDEV_DEL:
2091		switch (oldstate) {
2092		case SDEV_CREATED:
2093		case SDEV_RUNNING:
2094		case SDEV_OFFLINE:
2095		case SDEV_CANCEL:
2096			break;
2097		default:
2098			goto illegal;
2099		}
2100		break;
2101
2102	}
2103	sdev->sdev_state = state;
2104	return 0;
2105
2106 illegal:
2107	SCSI_LOG_ERROR_RECOVERY(1,
2108				sdev_printk(KERN_ERR, sdev,
2109					    "Illegal state transition %s->%s\n",
2110					    scsi_device_state_name(oldstate),
2111					    scsi_device_state_name(state))
2112				);
2113	return -EINVAL;
2114}
2115EXPORT_SYMBOL(scsi_device_set_state);
2116
2117/**
2118 * 	sdev_evt_emit - emit a single SCSI device uevent
2119 *	@sdev: associated SCSI device
2120 *	@evt: event to emit
2121 *
2122 *	Send a single uevent (scsi_event) to the associated scsi_device.
2123 */
2124static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2125{
2126	int idx = 0;
2127	char *envp[3];
2128
2129	switch (evt->evt_type) {
2130	case SDEV_EVT_MEDIA_CHANGE:
2131		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2132		break;
2133
2134	default:
2135		/* do nothing */
2136		break;
2137	}
2138
2139	envp[idx++] = NULL;
2140
2141	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2142}
2143
2144/**
2145 * 	sdev_evt_thread - send a uevent for each scsi event
2146 *	@work: work struct for scsi_device
2147 *
2148 *	Dispatch queued events to their associated scsi_device kobjects
2149 *	as uevents.
2150 */
2151void scsi_evt_thread(struct work_struct *work)
2152{
2153	struct scsi_device *sdev;
2154	LIST_HEAD(event_list);
2155
2156	sdev = container_of(work, struct scsi_device, event_work);
2157
2158	while (1) {
2159		struct scsi_event *evt;
2160		struct list_head *this, *tmp;
2161		unsigned long flags;
2162
2163		spin_lock_irqsave(&sdev->list_lock, flags);
2164		list_splice_init(&sdev->event_list, &event_list);
2165		spin_unlock_irqrestore(&sdev->list_lock, flags);
2166
2167		if (list_empty(&event_list))
2168			break;
2169
2170		list_for_each_safe(this, tmp, &event_list) {
2171			evt = list_entry(this, struct scsi_event, node);
2172			list_del(&evt->node);
2173			scsi_evt_emit(sdev, evt);
2174			kfree(evt);
2175		}
2176	}
2177}
2178
2179/**
2180 * 	sdev_evt_send - send asserted event to uevent thread
2181 *	@sdev: scsi_device event occurred on
2182 *	@evt: event to send
2183 *
2184 *	Assert scsi device event asynchronously.
2185 */
2186void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2187{
2188	unsigned long flags;
2189
2190	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2191		kfree(evt);
2192		return;
2193	}
2194
2195	spin_lock_irqsave(&sdev->list_lock, flags);
2196	list_add_tail(&evt->node, &sdev->event_list);
2197	schedule_work(&sdev->event_work);
2198	spin_unlock_irqrestore(&sdev->list_lock, flags);
2199}
2200EXPORT_SYMBOL_GPL(sdev_evt_send);
2201
2202/**
2203 * 	sdev_evt_alloc - allocate a new scsi event
2204 *	@evt_type: type of event to allocate
2205 *	@gfpflags: GFP flags for allocation
2206 *
2207 *	Allocates and returns a new scsi_event.
2208 */
2209struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2210				  gfp_t gfpflags)
2211{
2212	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2213	if (!evt)
2214		return NULL;
2215
2216	evt->evt_type = evt_type;
2217	INIT_LIST_HEAD(&evt->node);
2218
2219	/* evt_type-specific initialization, if any */
2220	switch (evt_type) {
2221	case SDEV_EVT_MEDIA_CHANGE:
2222	default:
2223		/* do nothing */
2224		break;
2225	}
2226
2227	return evt;
2228}
2229EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2230
2231/**
2232 * 	sdev_evt_send_simple - send asserted event to uevent thread
2233 *	@sdev: scsi_device event occurred on
2234 *	@evt_type: type of event to send
2235 *	@gfpflags: GFP flags for allocation
2236 *
2237 *	Assert scsi device event asynchronously, given an event type.
2238 */
2239void sdev_evt_send_simple(struct scsi_device *sdev,
2240			  enum scsi_device_event evt_type, gfp_t gfpflags)
2241{
2242	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2243	if (!evt) {
2244		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2245			    evt_type);
2246		return;
2247	}
2248
2249	sdev_evt_send(sdev, evt);
2250}
2251EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2252
2253/**
2254 *	scsi_device_quiesce - Block user issued commands.
2255 *	@sdev:	scsi device to quiesce.
2256 *
2257 *	This works by trying to transition to the SDEV_QUIESCE state
2258 *	(which must be a legal transition).  When the device is in this
2259 *	state, only special requests will be accepted, all others will
2260 *	be deferred.  Since special requests may also be requeued requests,
2261 *	a successful return doesn't guarantee the device will be
2262 *	totally quiescent.
2263 *
2264 *	Must be called with user context, may sleep.
2265 *
2266 *	Returns zero if unsuccessful or an error if not.
2267 **/
2268int
2269scsi_device_quiesce(struct scsi_device *sdev)
2270{
2271	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2272	if (err)
2273		return err;
2274
2275	scsi_run_queue(sdev->request_queue);
2276	while (sdev->device_busy) {
2277		msleep_interruptible(200);
2278		scsi_run_queue(sdev->request_queue);
2279	}
2280	return 0;
2281}
2282EXPORT_SYMBOL(scsi_device_quiesce);
2283
2284/**
2285 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2286 *	@sdev:	scsi device to resume.
2287 *
2288 *	Moves the device from quiesced back to running and restarts the
2289 *	queues.
2290 *
2291 *	Must be called with user context, may sleep.
2292 **/
2293void
2294scsi_device_resume(struct scsi_device *sdev)
2295{
2296	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2297		return;
2298	scsi_run_queue(sdev->request_queue);
2299}
2300EXPORT_SYMBOL(scsi_device_resume);
2301
2302static void
2303device_quiesce_fn(struct scsi_device *sdev, void *data)
2304{
2305	scsi_device_quiesce(sdev);
2306}
2307
2308void
2309scsi_target_quiesce(struct scsi_target *starget)
2310{
2311	starget_for_each_device(starget, NULL, device_quiesce_fn);
2312}
2313EXPORT_SYMBOL(scsi_target_quiesce);
2314
2315static void
2316device_resume_fn(struct scsi_device *sdev, void *data)
2317{
2318	scsi_device_resume(sdev);
2319}
2320
2321void
2322scsi_target_resume(struct scsi_target *starget)
2323{
2324	starget_for_each_device(starget, NULL, device_resume_fn);
2325}
2326EXPORT_SYMBOL(scsi_target_resume);
2327
2328/**
2329 * scsi_internal_device_block - internal function to put a device
2330 *				temporarily into the SDEV_BLOCK state
2331 * @sdev:	device to block
2332 *
2333 * Block request made by scsi lld's to temporarily stop all
2334 * scsi commands on the specified device.  Called from interrupt
2335 * or normal process context.
2336 *
2337 * Returns zero if successful or error if not
2338 *
2339 * Notes:
2340 *	This routine transitions the device to the SDEV_BLOCK state
2341 *	(which must be a legal transition).  When the device is in this
2342 *	state, all commands are deferred until the scsi lld reenables
2343 *	the device with scsi_device_unblock or device_block_tmo fires.
2344 *	This routine assumes the host_lock is held on entry.
2345 **/
2346int
2347scsi_internal_device_block(struct scsi_device *sdev)
2348{
2349	struct request_queue *q = sdev->request_queue;
2350	unsigned long flags;
2351	int err = 0;
2352
2353	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2354	if (err)
2355		return err;
2356
2357	/*
2358	 * The device has transitioned to SDEV_BLOCK.  Stop the
2359	 * block layer from calling the midlayer with this device's
2360	 * request queue.
2361	 */
2362	spin_lock_irqsave(q->queue_lock, flags);
2363	blk_stop_queue(q);
2364	spin_unlock_irqrestore(q->queue_lock, flags);
2365
2366	return 0;
2367}
2368EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2369
2370/**
2371 * scsi_internal_device_unblock - resume a device after a block request
2372 * @sdev:	device to resume
2373 *
2374 * Called by scsi lld's or the midlayer to restart the device queue
2375 * for the previously suspended scsi device.  Called from interrupt or
2376 * normal process context.
2377 *
2378 * Returns zero if successful or error if not.
2379 *
2380 * Notes:
2381 *	This routine transitions the device to the SDEV_RUNNING state
2382 *	(which must be a legal transition) allowing the midlayer to
2383 *	goose the queue for this device.  This routine assumes the
2384 *	host_lock is held upon entry.
2385 **/
2386int
2387scsi_internal_device_unblock(struct scsi_device *sdev)
2388{
2389	struct request_queue *q = sdev->request_queue;
2390	int err;
2391	unsigned long flags;
2392
2393	/*
2394	 * Try to transition the scsi device to SDEV_RUNNING
2395	 * and goose the device queue if successful.
2396	 */
2397	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2398	if (err)
2399		return err;
2400
2401	spin_lock_irqsave(q->queue_lock, flags);
2402	blk_start_queue(q);
2403	spin_unlock_irqrestore(q->queue_lock, flags);
2404
2405	return 0;
2406}
2407EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2408
2409static void
2410device_block(struct scsi_device *sdev, void *data)
2411{
2412	scsi_internal_device_block(sdev);
2413}
2414
2415static int
2416target_block(struct device *dev, void *data)
2417{
2418	if (scsi_is_target_device(dev))
2419		starget_for_each_device(to_scsi_target(dev), NULL,
2420					device_block);
2421	return 0;
2422}
2423
2424void
2425scsi_target_block(struct device *dev)
2426{
2427	if (scsi_is_target_device(dev))
2428		starget_for_each_device(to_scsi_target(dev), NULL,
2429					device_block);
2430	else
2431		device_for_each_child(dev, NULL, target_block);
2432}
2433EXPORT_SYMBOL_GPL(scsi_target_block);
2434
2435static void
2436device_unblock(struct scsi_device *sdev, void *data)
2437{
2438	scsi_internal_device_unblock(sdev);
2439}
2440
2441static int
2442target_unblock(struct device *dev, void *data)
2443{
2444	if (scsi_is_target_device(dev))
2445		starget_for_each_device(to_scsi_target(dev), NULL,
2446					device_unblock);
2447	return 0;
2448}
2449
2450void
2451scsi_target_unblock(struct device *dev)
2452{
2453	if (scsi_is_target_device(dev))
2454		starget_for_each_device(to_scsi_target(dev), NULL,
2455					device_unblock);
2456	else
2457		device_for_each_child(dev, NULL, target_unblock);
2458}
2459EXPORT_SYMBOL_GPL(scsi_target_unblock);
2460
2461/**
2462 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2463 * @sg:		scatter-gather list
2464 * @sg_count:	number of segments in sg
2465 * @offset:	offset in bytes into sg, on return offset into the mapped area
2466 * @len:	bytes to map, on return number of bytes mapped
2467 *
2468 * Returns virtual address of the start of the mapped page
2469 */
2470void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2471			  size_t *offset, size_t *len)
2472{
2473	int i;
2474	size_t sg_len = 0, len_complete = 0;
2475	struct scatterlist *sg;
2476	struct page *page;
2477
2478	WARN_ON(!irqs_disabled());
2479
2480	for_each_sg(sgl, sg, sg_count, i) {
2481		len_complete = sg_len; /* Complete sg-entries */
2482		sg_len += sg->length;
2483		if (sg_len > *offset)
2484			break;
2485	}
2486
2487	if (unlikely(i == sg_count)) {
2488		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2489			"elements %d\n",
2490		       __FUNCTION__, sg_len, *offset, sg_count);
2491		WARN_ON(1);
2492		return NULL;
2493	}
2494
2495	/* Offset starting from the beginning of first page in this sg-entry */
2496	*offset = *offset - len_complete + sg->offset;
2497
2498	/* Assumption: contiguous pages can be accessed as "page + i" */
2499	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2500	*offset &= ~PAGE_MASK;
2501
2502	/* Bytes in this sg-entry from *offset to the end of the page */
2503	sg_len = PAGE_SIZE - *offset;
2504	if (*len > sg_len)
2505		*len = sg_len;
2506
2507	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2508}
2509EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2510
2511/**
2512 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2513 *			   mapped with scsi_kmap_atomic_sg
2514 * @virt:	virtual address to be unmapped
2515 */
2516void scsi_kunmap_atomic_sg(void *virt)
2517{
2518	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2519}
2520EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2521