scsi_lib.c revision 8d115f845a0bd59cd263e791f739964f42b7b0e8
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19
20#include <scsi/scsi.h>
21#include <scsi/scsi_dbg.h>
22#include <scsi/scsi_device.h>
23#include <scsi/scsi_driver.h>
24#include <scsi/scsi_eh.h>
25#include <scsi/scsi_host.h>
26#include <scsi/scsi_request.h>
27
28#include "scsi_priv.h"
29#include "scsi_logging.h"
30
31
32#define SG_MEMPOOL_NR		(sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33#define SG_MEMPOOL_SIZE		32
34
35struct scsi_host_sg_pool {
36	size_t		size;
37	char		*name;
38	kmem_cache_t	*slab;
39	mempool_t	*pool;
40};
41
42#if (SCSI_MAX_PHYS_SEGMENTS < 32)
43#error SCSI_MAX_PHYS_SEGMENTS is too small
44#endif
45
46#define SP(x) { x, "sgpool-" #x }
47static struct scsi_host_sg_pool scsi_sg_pools[] = {
48	SP(8),
49	SP(16),
50	SP(32),
51#if (SCSI_MAX_PHYS_SEGMENTS > 32)
52	SP(64),
53#if (SCSI_MAX_PHYS_SEGMENTS > 64)
54	SP(128),
55#if (SCSI_MAX_PHYS_SEGMENTS > 128)
56	SP(256),
57#if (SCSI_MAX_PHYS_SEGMENTS > 256)
58#error SCSI_MAX_PHYS_SEGMENTS is too large
59#endif
60#endif
61#endif
62#endif
63};
64#undef SP
65
66
67/*
68 * Function:    scsi_insert_special_req()
69 *
70 * Purpose:     Insert pre-formed request into request queue.
71 *
72 * Arguments:   sreq	- request that is ready to be queued.
73 *              at_head	- boolean.  True if we should insert at head
74 *                        of queue, false if we should insert at tail.
75 *
76 * Lock status: Assumed that lock is not held upon entry.
77 *
78 * Returns:     Nothing
79 *
80 * Notes:       This function is called from character device and from
81 *              ioctl types of functions where the caller knows exactly
82 *              what SCSI command needs to be issued.   The idea is that
83 *              we merely inject the command into the queue (at the head
84 *              for now), and then call the queue request function to actually
85 *              process it.
86 */
87int scsi_insert_special_req(struct scsi_request *sreq, int at_head)
88{
89	/*
90	 * Because users of this function are apt to reuse requests with no
91	 * modification, we have to sanitise the request flags here
92	 */
93	sreq->sr_request->flags &= ~REQ_DONTPREP;
94	blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
95		       	   at_head, sreq);
96	return 0;
97}
98
99static void scsi_run_queue(struct request_queue *q);
100
101/*
102 * Function:    scsi_queue_insert()
103 *
104 * Purpose:     Insert a command in the midlevel queue.
105 *
106 * Arguments:   cmd    - command that we are adding to queue.
107 *              reason - why we are inserting command to queue.
108 *
109 * Lock status: Assumed that lock is not held upon entry.
110 *
111 * Returns:     Nothing.
112 *
113 * Notes:       We do this for one of two cases.  Either the host is busy
114 *              and it cannot accept any more commands for the time being,
115 *              or the device returned QUEUE_FULL and can accept no more
116 *              commands.
117 * Notes:       This could be called either from an interrupt context or a
118 *              normal process context.
119 */
120int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
121{
122	struct Scsi_Host *host = cmd->device->host;
123	struct scsi_device *device = cmd->device;
124	struct request_queue *q = device->request_queue;
125	unsigned long flags;
126
127	SCSI_LOG_MLQUEUE(1,
128		 printk("Inserting command %p into mlqueue\n", cmd));
129
130	/*
131	 * Set the appropriate busy bit for the device/host.
132	 *
133	 * If the host/device isn't busy, assume that something actually
134	 * completed, and that we should be able to queue a command now.
135	 *
136	 * Note that the prior mid-layer assumption that any host could
137	 * always queue at least one command is now broken.  The mid-layer
138	 * will implement a user specifiable stall (see
139	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
140	 * if a command is requeued with no other commands outstanding
141	 * either for the device or for the host.
142	 */
143	if (reason == SCSI_MLQUEUE_HOST_BUSY)
144		host->host_blocked = host->max_host_blocked;
145	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
146		device->device_blocked = device->max_device_blocked;
147
148	/*
149	 * Decrement the counters, since these commands are no longer
150	 * active on the host/device.
151	 */
152	scsi_device_unbusy(device);
153
154	/*
155	 * Requeue this command.  It will go before all other commands
156	 * that are already in the queue.
157	 *
158	 * NOTE: there is magic here about the way the queue is plugged if
159	 * we have no outstanding commands.
160	 *
161	 * Although we *don't* plug the queue, we call the request
162	 * function.  The SCSI request function detects the blocked condition
163	 * and plugs the queue appropriately.
164         */
165	spin_lock_irqsave(q->queue_lock, flags);
166	blk_requeue_request(q, cmd->request);
167	spin_unlock_irqrestore(q->queue_lock, flags);
168
169	scsi_run_queue(q);
170
171	return 0;
172}
173
174/*
175 * Function:    scsi_do_req
176 *
177 * Purpose:     Queue a SCSI request
178 *
179 * Arguments:   sreq	  - command descriptor.
180 *              cmnd      - actual SCSI command to be performed.
181 *              buffer    - data buffer.
182 *              bufflen   - size of data buffer.
183 *              done      - completion function to be run.
184 *              timeout   - how long to let it run before timeout.
185 *              retries   - number of retries we allow.
186 *
187 * Lock status: No locks held upon entry.
188 *
189 * Returns:     Nothing.
190 *
191 * Notes:	This function is only used for queueing requests for things
192 *		like ioctls and character device requests - this is because
193 *		we essentially just inject a request into the queue for the
194 *		device.
195 *
196 *		In order to support the scsi_device_quiesce function, we
197 *		now inject requests on the *head* of the device queue
198 *		rather than the tail.
199 */
200void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
201		 void *buffer, unsigned bufflen,
202		 void (*done)(struct scsi_cmnd *),
203		 int timeout, int retries)
204{
205	/*
206	 * If the upper level driver is reusing these things, then
207	 * we should release the low-level block now.  Another one will
208	 * be allocated later when this request is getting queued.
209	 */
210	__scsi_release_request(sreq);
211
212	/*
213	 * Our own function scsi_done (which marks the host as not busy,
214	 * disables the timeout counter, etc) will be called by us or by the
215	 * scsi_hosts[host].queuecommand() function needs to also call
216	 * the completion function for the high level driver.
217	 */
218	memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
219	sreq->sr_bufflen = bufflen;
220	sreq->sr_buffer = buffer;
221	sreq->sr_allowed = retries;
222	sreq->sr_done = done;
223	sreq->sr_timeout_per_command = timeout;
224
225	if (sreq->sr_cmd_len == 0)
226		sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
227
228	/*
229	 * head injection *required* here otherwise quiesce won't work
230	 */
231	scsi_insert_special_req(sreq, 1);
232}
233EXPORT_SYMBOL(scsi_do_req);
234
235static void scsi_wait_done(struct scsi_cmnd *cmd)
236{
237	struct request *req = cmd->request;
238	struct request_queue *q = cmd->device->request_queue;
239	unsigned long flags;
240
241	req->rq_status = RQ_SCSI_DONE;	/* Busy, but indicate request done */
242
243	spin_lock_irqsave(q->queue_lock, flags);
244	if (blk_rq_tagged(req))
245		blk_queue_end_tag(q, req);
246	spin_unlock_irqrestore(q->queue_lock, flags);
247
248	if (req->waiting)
249		complete(req->waiting);
250}
251
252/* This is the end routine we get to if a command was never attached
253 * to the request.  Simply complete the request without changing
254 * rq_status; this will cause a DRIVER_ERROR. */
255static void scsi_wait_req_end_io(struct request *req)
256{
257	BUG_ON(!req->waiting);
258
259	complete(req->waiting);
260}
261
262void scsi_wait_req(struct scsi_request *sreq, const void *cmnd, void *buffer,
263		   unsigned bufflen, int timeout, int retries)
264{
265	DECLARE_COMPLETION(wait);
266
267	sreq->sr_request->waiting = &wait;
268	sreq->sr_request->rq_status = RQ_SCSI_BUSY;
269	sreq->sr_request->end_io = scsi_wait_req_end_io;
270	scsi_do_req(sreq, cmnd, buffer, bufflen, scsi_wait_done,
271			timeout, retries);
272	wait_for_completion(&wait);
273	sreq->sr_request->waiting = NULL;
274	if (sreq->sr_request->rq_status != RQ_SCSI_DONE)
275		sreq->sr_result |= (DRIVER_ERROR << 24);
276
277	__scsi_release_request(sreq);
278}
279EXPORT_SYMBOL(scsi_wait_req);
280
281/*
282 * Function:    scsi_init_cmd_errh()
283 *
284 * Purpose:     Initialize cmd fields related to error handling.
285 *
286 * Arguments:   cmd	- command that is ready to be queued.
287 *
288 * Returns:     Nothing
289 *
290 * Notes:       This function has the job of initializing a number of
291 *              fields related to error handling.   Typically this will
292 *              be called once for each command, as required.
293 */
294static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
295{
296	cmd->serial_number = 0;
297
298	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
299
300	if (cmd->cmd_len == 0)
301		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
302
303	/*
304	 * We need saved copies of a number of fields - this is because
305	 * error handling may need to overwrite these with different values
306	 * to run different commands, and once error handling is complete,
307	 * we will need to restore these values prior to running the actual
308	 * command.
309	 */
310	cmd->old_use_sg = cmd->use_sg;
311	cmd->old_cmd_len = cmd->cmd_len;
312	cmd->sc_old_data_direction = cmd->sc_data_direction;
313	cmd->old_underflow = cmd->underflow;
314	memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
315	cmd->buffer = cmd->request_buffer;
316	cmd->bufflen = cmd->request_bufflen;
317
318	return 1;
319}
320
321/*
322 * Function:   scsi_setup_cmd_retry()
323 *
324 * Purpose:    Restore the command state for a retry
325 *
326 * Arguments:  cmd	- command to be restored
327 *
328 * Returns:    Nothing
329 *
330 * Notes:      Immediately prior to retrying a command, we need
331 *             to restore certain fields that we saved above.
332 */
333void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
334{
335	memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
336	cmd->request_buffer = cmd->buffer;
337	cmd->request_bufflen = cmd->bufflen;
338	cmd->use_sg = cmd->old_use_sg;
339	cmd->cmd_len = cmd->old_cmd_len;
340	cmd->sc_data_direction = cmd->sc_old_data_direction;
341	cmd->underflow = cmd->old_underflow;
342}
343
344void scsi_device_unbusy(struct scsi_device *sdev)
345{
346	struct Scsi_Host *shost = sdev->host;
347	unsigned long flags;
348
349	spin_lock_irqsave(shost->host_lock, flags);
350	shost->host_busy--;
351	if (unlikely(test_bit(SHOST_RECOVERY, &shost->shost_state) &&
352		     shost->host_failed))
353		scsi_eh_wakeup(shost);
354	spin_unlock(shost->host_lock);
355	spin_lock(sdev->request_queue->queue_lock);
356	sdev->device_busy--;
357	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
358}
359
360/*
361 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
362 * and call blk_run_queue for all the scsi_devices on the target -
363 * including current_sdev first.
364 *
365 * Called with *no* scsi locks held.
366 */
367static void scsi_single_lun_run(struct scsi_device *current_sdev)
368{
369	struct Scsi_Host *shost = current_sdev->host;
370	struct scsi_device *sdev, *tmp;
371	struct scsi_target *starget = scsi_target(current_sdev);
372	unsigned long flags;
373
374	spin_lock_irqsave(shost->host_lock, flags);
375	starget->starget_sdev_user = NULL;
376	spin_unlock_irqrestore(shost->host_lock, flags);
377
378	/*
379	 * Call blk_run_queue for all LUNs on the target, starting with
380	 * current_sdev. We race with others (to set starget_sdev_user),
381	 * but in most cases, we will be first. Ideally, each LU on the
382	 * target would get some limited time or requests on the target.
383	 */
384	blk_run_queue(current_sdev->request_queue);
385
386	spin_lock_irqsave(shost->host_lock, flags);
387	if (starget->starget_sdev_user)
388		goto out;
389	list_for_each_entry_safe(sdev, tmp, &starget->devices,
390			same_target_siblings) {
391		if (sdev == current_sdev)
392			continue;
393		if (scsi_device_get(sdev))
394			continue;
395
396		spin_unlock_irqrestore(shost->host_lock, flags);
397		blk_run_queue(sdev->request_queue);
398		spin_lock_irqsave(shost->host_lock, flags);
399
400		scsi_device_put(sdev);
401	}
402 out:
403	spin_unlock_irqrestore(shost->host_lock, flags);
404}
405
406/*
407 * Function:	scsi_run_queue()
408 *
409 * Purpose:	Select a proper request queue to serve next
410 *
411 * Arguments:	q	- last request's queue
412 *
413 * Returns:     Nothing
414 *
415 * Notes:	The previous command was completely finished, start
416 *		a new one if possible.
417 */
418static void scsi_run_queue(struct request_queue *q)
419{
420	struct scsi_device *sdev = q->queuedata;
421	struct Scsi_Host *shost = sdev->host;
422	unsigned long flags;
423
424	if (sdev->single_lun)
425		scsi_single_lun_run(sdev);
426
427	spin_lock_irqsave(shost->host_lock, flags);
428	while (!list_empty(&shost->starved_list) &&
429	       !shost->host_blocked && !shost->host_self_blocked &&
430		!((shost->can_queue > 0) &&
431		  (shost->host_busy >= shost->can_queue))) {
432		/*
433		 * As long as shost is accepting commands and we have
434		 * starved queues, call blk_run_queue. scsi_request_fn
435		 * drops the queue_lock and can add us back to the
436		 * starved_list.
437		 *
438		 * host_lock protects the starved_list and starved_entry.
439		 * scsi_request_fn must get the host_lock before checking
440		 * or modifying starved_list or starved_entry.
441		 */
442		sdev = list_entry(shost->starved_list.next,
443					  struct scsi_device, starved_entry);
444		list_del_init(&sdev->starved_entry);
445		spin_unlock_irqrestore(shost->host_lock, flags);
446
447		blk_run_queue(sdev->request_queue);
448
449		spin_lock_irqsave(shost->host_lock, flags);
450		if (unlikely(!list_empty(&sdev->starved_entry)))
451			/*
452			 * sdev lost a race, and was put back on the
453			 * starved list. This is unlikely but without this
454			 * in theory we could loop forever.
455			 */
456			break;
457	}
458	spin_unlock_irqrestore(shost->host_lock, flags);
459
460	blk_run_queue(q);
461}
462
463/*
464 * Function:	scsi_requeue_command()
465 *
466 * Purpose:	Handle post-processing of completed commands.
467 *
468 * Arguments:	q	- queue to operate on
469 *		cmd	- command that may need to be requeued.
470 *
471 * Returns:	Nothing
472 *
473 * Notes:	After command completion, there may be blocks left
474 *		over which weren't finished by the previous command
475 *		this can be for a number of reasons - the main one is
476 *		I/O errors in the middle of the request, in which case
477 *		we need to request the blocks that come after the bad
478 *		sector.
479 */
480static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
481{
482	unsigned long flags;
483
484	cmd->request->flags &= ~REQ_DONTPREP;
485
486	spin_lock_irqsave(q->queue_lock, flags);
487	blk_requeue_request(q, cmd->request);
488	spin_unlock_irqrestore(q->queue_lock, flags);
489
490	scsi_run_queue(q);
491}
492
493void scsi_next_command(struct scsi_cmnd *cmd)
494{
495	struct request_queue *q = cmd->device->request_queue;
496
497	scsi_put_command(cmd);
498	scsi_run_queue(q);
499}
500
501void scsi_run_host_queues(struct Scsi_Host *shost)
502{
503	struct scsi_device *sdev;
504
505	shost_for_each_device(sdev, shost)
506		scsi_run_queue(sdev->request_queue);
507}
508
509/*
510 * Function:    scsi_end_request()
511 *
512 * Purpose:     Post-processing of completed commands (usually invoked at end
513 *		of upper level post-processing and scsi_io_completion).
514 *
515 * Arguments:   cmd	 - command that is complete.
516 *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
517 *              bytes    - number of bytes of completed I/O
518 *		requeue  - indicates whether we should requeue leftovers.
519 *
520 * Lock status: Assumed that lock is not held upon entry.
521 *
522 * Returns:     cmd if requeue done or required, NULL otherwise
523 *
524 * Notes:       This is called for block device requests in order to
525 *              mark some number of sectors as complete.
526 *
527 *		We are guaranteeing that the request queue will be goosed
528 *		at some point during this call.
529 */
530static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
531					  int bytes, int requeue)
532{
533	request_queue_t *q = cmd->device->request_queue;
534	struct request *req = cmd->request;
535	unsigned long flags;
536
537	/*
538	 * If there are blocks left over at the end, set up the command
539	 * to queue the remainder of them.
540	 */
541	if (end_that_request_chunk(req, uptodate, bytes)) {
542		int leftover = (req->hard_nr_sectors << 9);
543
544		if (blk_pc_request(req))
545			leftover = req->data_len;
546
547		/* kill remainder if no retrys */
548		if (!uptodate && blk_noretry_request(req))
549			end_that_request_chunk(req, 0, leftover);
550		else {
551			if (requeue)
552				/*
553				 * Bleah.  Leftovers again.  Stick the
554				 * leftovers in the front of the
555				 * queue, and goose the queue again.
556				 */
557				scsi_requeue_command(q, cmd);
558
559			return cmd;
560		}
561	}
562
563	add_disk_randomness(req->rq_disk);
564
565	spin_lock_irqsave(q->queue_lock, flags);
566	if (blk_rq_tagged(req))
567		blk_queue_end_tag(q, req);
568	end_that_request_last(req);
569	spin_unlock_irqrestore(q->queue_lock, flags);
570
571	/*
572	 * This will goose the queue request function at the end, so we don't
573	 * need to worry about launching another command.
574	 */
575	scsi_next_command(cmd);
576	return NULL;
577}
578
579static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, int gfp_mask)
580{
581	struct scsi_host_sg_pool *sgp;
582	struct scatterlist *sgl;
583
584	BUG_ON(!cmd->use_sg);
585
586	switch (cmd->use_sg) {
587	case 1 ... 8:
588		cmd->sglist_len = 0;
589		break;
590	case 9 ... 16:
591		cmd->sglist_len = 1;
592		break;
593	case 17 ... 32:
594		cmd->sglist_len = 2;
595		break;
596#if (SCSI_MAX_PHYS_SEGMENTS > 32)
597	case 33 ... 64:
598		cmd->sglist_len = 3;
599		break;
600#if (SCSI_MAX_PHYS_SEGMENTS > 64)
601	case 65 ... 128:
602		cmd->sglist_len = 4;
603		break;
604#if (SCSI_MAX_PHYS_SEGMENTS  > 128)
605	case 129 ... 256:
606		cmd->sglist_len = 5;
607		break;
608#endif
609#endif
610#endif
611	default:
612		return NULL;
613	}
614
615	sgp = scsi_sg_pools + cmd->sglist_len;
616	sgl = mempool_alloc(sgp->pool, gfp_mask);
617	if (sgl)
618		memset(sgl, 0, sgp->size);
619	return sgl;
620}
621
622static void scsi_free_sgtable(struct scatterlist *sgl, int index)
623{
624	struct scsi_host_sg_pool *sgp;
625
626	BUG_ON(index > SG_MEMPOOL_NR);
627
628	sgp = scsi_sg_pools + index;
629	mempool_free(sgl, sgp->pool);
630}
631
632/*
633 * Function:    scsi_release_buffers()
634 *
635 * Purpose:     Completion processing for block device I/O requests.
636 *
637 * Arguments:   cmd	- command that we are bailing.
638 *
639 * Lock status: Assumed that no lock is held upon entry.
640 *
641 * Returns:     Nothing
642 *
643 * Notes:       In the event that an upper level driver rejects a
644 *		command, we must release resources allocated during
645 *		the __init_io() function.  Primarily this would involve
646 *		the scatter-gather table, and potentially any bounce
647 *		buffers.
648 */
649static void scsi_release_buffers(struct scsi_cmnd *cmd)
650{
651	struct request *req = cmd->request;
652
653	/*
654	 * Free up any indirection buffers we allocated for DMA purposes.
655	 */
656	if (cmd->use_sg)
657		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
658	else if (cmd->request_buffer != req->buffer)
659		kfree(cmd->request_buffer);
660
661	/*
662	 * Zero these out.  They now point to freed memory, and it is
663	 * dangerous to hang onto the pointers.
664	 */
665	cmd->buffer  = NULL;
666	cmd->bufflen = 0;
667	cmd->request_buffer = NULL;
668	cmd->request_bufflen = 0;
669}
670
671/*
672 * Function:    scsi_io_completion()
673 *
674 * Purpose:     Completion processing for block device I/O requests.
675 *
676 * Arguments:   cmd   - command that is finished.
677 *
678 * Lock status: Assumed that no lock is held upon entry.
679 *
680 * Returns:     Nothing
681 *
682 * Notes:       This function is matched in terms of capabilities to
683 *              the function that created the scatter-gather list.
684 *              In other words, if there are no bounce buffers
685 *              (the normal case for most drivers), we don't need
686 *              the logic to deal with cleaning up afterwards.
687 *
688 *		We must do one of several things here:
689 *
690 *		a) Call scsi_end_request.  This will finish off the
691 *		   specified number of sectors.  If we are done, the
692 *		   command block will be released, and the queue
693 *		   function will be goosed.  If we are not done, then
694 *		   scsi_end_request will directly goose the queue.
695 *
696 *		b) We can just use scsi_requeue_command() here.  This would
697 *		   be used if we just wanted to retry, for example.
698 */
699void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
700			unsigned int block_bytes)
701{
702	int result = cmd->result;
703	int this_count = cmd->bufflen;
704	request_queue_t *q = cmd->device->request_queue;
705	struct request *req = cmd->request;
706	int clear_errors = 1;
707	struct scsi_sense_hdr sshdr;
708	int sense_valid = 0;
709	int sense_deferred = 0;
710
711	if (blk_complete_barrier_rq(q, req, good_bytes >> 9))
712		return;
713
714	/*
715	 * Free up any indirection buffers we allocated for DMA purposes.
716	 * For the case of a READ, we need to copy the data out of the
717	 * bounce buffer and into the real buffer.
718	 */
719	if (cmd->use_sg)
720		scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
721	else if (cmd->buffer != req->buffer) {
722		if (rq_data_dir(req) == READ) {
723			unsigned long flags;
724			char *to = bio_kmap_irq(req->bio, &flags);
725			memcpy(to, cmd->buffer, cmd->bufflen);
726			bio_kunmap_irq(to, &flags);
727		}
728		kfree(cmd->buffer);
729	}
730
731	if (result) {
732		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
733		if (sense_valid)
734			sense_deferred = scsi_sense_is_deferred(&sshdr);
735	}
736	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
737		req->errors = result;
738		if (result) {
739			clear_errors = 0;
740			if (sense_valid && req->sense) {
741				/*
742				 * SG_IO wants current and deferred errors
743				 */
744				int len = 8 + cmd->sense_buffer[7];
745
746				if (len > SCSI_SENSE_BUFFERSIZE)
747					len = SCSI_SENSE_BUFFERSIZE;
748				memcpy(req->sense, cmd->sense_buffer,  len);
749				req->sense_len = len;
750			}
751		} else
752			req->data_len = cmd->resid;
753	}
754
755	/*
756	 * Zero these out.  They now point to freed memory, and it is
757	 * dangerous to hang onto the pointers.
758	 */
759	cmd->buffer  = NULL;
760	cmd->bufflen = 0;
761	cmd->request_buffer = NULL;
762	cmd->request_bufflen = 0;
763
764	/*
765	 * Next deal with any sectors which we were able to correctly
766	 * handle.
767	 */
768	if (good_bytes >= 0) {
769		SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
770					      req->nr_sectors, good_bytes));
771		SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
772
773		if (clear_errors)
774			req->errors = 0;
775		/*
776		 * If multiple sectors are requested in one buffer, then
777		 * they will have been finished off by the first command.
778		 * If not, then we have a multi-buffer command.
779		 *
780		 * If block_bytes != 0, it means we had a medium error
781		 * of some sort, and that we want to mark some number of
782		 * sectors as not uptodate.  Thus we want to inhibit
783		 * requeueing right here - we will requeue down below
784		 * when we handle the bad sectors.
785		 */
786		cmd = scsi_end_request(cmd, 1, good_bytes, result == 0);
787
788		/*
789		 * If the command completed without error, then either finish off the
790		 * rest of the command, or start a new one.
791		 */
792		if (result == 0 || cmd == NULL ) {
793			return;
794		}
795	}
796	/*
797	 * Now, if we were good little boys and girls, Santa left us a request
798	 * sense buffer.  We can extract information from this, so we
799	 * can choose a block to remap, etc.
800	 */
801	if (sense_valid && !sense_deferred) {
802		switch (sshdr.sense_key) {
803		case UNIT_ATTENTION:
804			if (cmd->device->removable) {
805				/* detected disc change.  set a bit
806				 * and quietly refuse further access.
807				 */
808				cmd->device->changed = 1;
809				cmd = scsi_end_request(cmd, 0,
810						this_count, 1);
811				return;
812			} else {
813				/*
814				* Must have been a power glitch, or a
815				* bus reset.  Could not have been a
816				* media change, so we just retry the
817				* request and see what happens.
818				*/
819				scsi_requeue_command(q, cmd);
820				return;
821			}
822			break;
823		case ILLEGAL_REQUEST:
824			/*
825		 	* If we had an ILLEGAL REQUEST returned, then we may
826		 	* have performed an unsupported command.  The only
827		 	* thing this should be would be a ten byte read where
828			* only a six byte read was supported.  Also, on a
829			* system where READ CAPACITY failed, we may have read
830			* past the end of the disk.
831		 	*/
832			if (cmd->device->use_10_for_rw &&
833			    (cmd->cmnd[0] == READ_10 ||
834			     cmd->cmnd[0] == WRITE_10)) {
835				cmd->device->use_10_for_rw = 0;
836				/*
837				 * This will cause a retry with a 6-byte
838				 * command.
839				 */
840				scsi_requeue_command(q, cmd);
841				result = 0;
842			} else {
843				cmd = scsi_end_request(cmd, 0, this_count, 1);
844				return;
845			}
846			break;
847		case NOT_READY:
848			/*
849			 * If the device is in the process of becoming ready,
850			 * retry.
851			 */
852			if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
853				scsi_requeue_command(q, cmd);
854				return;
855			}
856			printk(KERN_INFO "Device %s not ready.\n",
857			       req->rq_disk ? req->rq_disk->disk_name : "");
858			cmd = scsi_end_request(cmd, 0, this_count, 1);
859			return;
860		case VOLUME_OVERFLOW:
861			printk(KERN_INFO "Volume overflow <%d %d %d %d> CDB: ",
862			       cmd->device->host->host_no,
863			       (int)cmd->device->channel,
864			       (int)cmd->device->id, (int)cmd->device->lun);
865			__scsi_print_command(cmd->data_cmnd);
866			scsi_print_sense("", cmd);
867			cmd = scsi_end_request(cmd, 0, block_bytes, 1);
868			return;
869		default:
870			break;
871		}
872	}			/* driver byte != 0 */
873	if (host_byte(result) == DID_RESET) {
874		/*
875		 * Third party bus reset or reset for error
876		 * recovery reasons.  Just retry the request
877		 * and see what happens.
878		 */
879		scsi_requeue_command(q, cmd);
880		return;
881	}
882	if (result) {
883		printk(KERN_INFO "SCSI error : <%d %d %d %d> return code "
884		       "= 0x%x\n", cmd->device->host->host_no,
885		       cmd->device->channel,
886		       cmd->device->id,
887		       cmd->device->lun, result);
888
889		if (driver_byte(result) & DRIVER_SENSE)
890			scsi_print_sense("", cmd);
891		/*
892		 * Mark a single buffer as not uptodate.  Queue the remainder.
893		 * We sometimes get this cruft in the event that a medium error
894		 * isn't properly reported.
895		 */
896		block_bytes = req->hard_cur_sectors << 9;
897		if (!block_bytes)
898			block_bytes = req->data_len;
899		cmd = scsi_end_request(cmd, 0, block_bytes, 1);
900	}
901}
902EXPORT_SYMBOL(scsi_io_completion);
903
904/*
905 * Function:    scsi_init_io()
906 *
907 * Purpose:     SCSI I/O initialize function.
908 *
909 * Arguments:   cmd   - Command descriptor we wish to initialize
910 *
911 * Returns:     0 on success
912 *		BLKPREP_DEFER if the failure is retryable
913 *		BLKPREP_KILL if the failure is fatal
914 */
915static int scsi_init_io(struct scsi_cmnd *cmd)
916{
917	struct request     *req = cmd->request;
918	struct scatterlist *sgpnt;
919	int		   count;
920
921	/*
922	 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
923	 */
924	if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
925		cmd->request_bufflen = req->data_len;
926		cmd->request_buffer = req->data;
927		req->buffer = req->data;
928		cmd->use_sg = 0;
929		return 0;
930	}
931
932	/*
933	 * we used to not use scatter-gather for single segment request,
934	 * but now we do (it makes highmem I/O easier to support without
935	 * kmapping pages)
936	 */
937	cmd->use_sg = req->nr_phys_segments;
938
939	/*
940	 * if sg table allocation fails, requeue request later.
941	 */
942	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
943	if (unlikely(!sgpnt))
944		return BLKPREP_DEFER;
945
946	cmd->request_buffer = (char *) sgpnt;
947	cmd->request_bufflen = req->nr_sectors << 9;
948	if (blk_pc_request(req))
949		cmd->request_bufflen = req->data_len;
950	req->buffer = NULL;
951
952	/*
953	 * Next, walk the list, and fill in the addresses and sizes of
954	 * each segment.
955	 */
956	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
957
958	/*
959	 * mapped well, send it off
960	 */
961	if (likely(count <= cmd->use_sg)) {
962		cmd->use_sg = count;
963		return 0;
964	}
965
966	printk(KERN_ERR "Incorrect number of segments after building list\n");
967	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
968	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
969			req->current_nr_sectors);
970
971	/* release the command and kill it */
972	scsi_release_buffers(cmd);
973	scsi_put_command(cmd);
974	return BLKPREP_KILL;
975}
976
977static int scsi_prepare_flush_fn(request_queue_t *q, struct request *rq)
978{
979	struct scsi_device *sdev = q->queuedata;
980	struct scsi_driver *drv;
981
982	if (sdev->sdev_state == SDEV_RUNNING) {
983		drv = *(struct scsi_driver **) rq->rq_disk->private_data;
984
985		if (drv->prepare_flush)
986			return drv->prepare_flush(q, rq);
987	}
988
989	return 0;
990}
991
992static void scsi_end_flush_fn(request_queue_t *q, struct request *rq)
993{
994	struct scsi_device *sdev = q->queuedata;
995	struct request *flush_rq = rq->end_io_data;
996	struct scsi_driver *drv;
997
998	if (flush_rq->errors) {
999		printk("scsi: barrier error, disabling flush support\n");
1000		blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1001	}
1002
1003	if (sdev->sdev_state == SDEV_RUNNING) {
1004		drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1005		drv->end_flush(q, rq);
1006	}
1007}
1008
1009static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1010			       sector_t *error_sector)
1011{
1012	struct scsi_device *sdev = q->queuedata;
1013	struct scsi_driver *drv;
1014
1015	if (sdev->sdev_state != SDEV_RUNNING)
1016		return -ENXIO;
1017
1018	drv = *(struct scsi_driver **) disk->private_data;
1019	if (drv->issue_flush)
1020		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1021
1022	return -EOPNOTSUPP;
1023}
1024
1025static int scsi_prep_fn(struct request_queue *q, struct request *req)
1026{
1027	struct scsi_device *sdev = q->queuedata;
1028	struct scsi_cmnd *cmd;
1029	int specials_only = 0;
1030
1031	/*
1032	 * Just check to see if the device is online.  If it isn't, we
1033	 * refuse to process any commands.  The device must be brought
1034	 * online before trying any recovery commands
1035	 */
1036	if (unlikely(!scsi_device_online(sdev))) {
1037		printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1038		       sdev->host->host_no, sdev->id, sdev->lun);
1039		return BLKPREP_KILL;
1040	}
1041	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1042		/* OK, we're not in a running state don't prep
1043		 * user commands */
1044		if (sdev->sdev_state == SDEV_DEL) {
1045			/* Device is fully deleted, no commands
1046			 * at all allowed down */
1047			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to dead device\n",
1048			       sdev->host->host_no, sdev->id, sdev->lun);
1049			return BLKPREP_KILL;
1050		}
1051		/* OK, we only allow special commands (i.e. not
1052		 * user initiated ones */
1053		specials_only = sdev->sdev_state;
1054	}
1055
1056	/*
1057	 * Find the actual device driver associated with this command.
1058	 * The SPECIAL requests are things like character device or
1059	 * ioctls, which did not originate from ll_rw_blk.  Note that
1060	 * the special field is also used to indicate the cmd for
1061	 * the remainder of a partially fulfilled request that can
1062	 * come up when there is a medium error.  We have to treat
1063	 * these two cases differently.  We differentiate by looking
1064	 * at request->cmd, as this tells us the real story.
1065	 */
1066	if (req->flags & REQ_SPECIAL) {
1067		struct scsi_request *sreq = req->special;
1068
1069		if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1070			cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1071			if (unlikely(!cmd))
1072				goto defer;
1073			scsi_init_cmd_from_req(cmd, sreq);
1074		} else
1075			cmd = req->special;
1076	} else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1077
1078		if(unlikely(specials_only)) {
1079			if(specials_only == SDEV_QUIESCE ||
1080					specials_only == SDEV_BLOCK)
1081				return BLKPREP_DEFER;
1082
1083			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to device being removed\n",
1084			       sdev->host->host_no, sdev->id, sdev->lun);
1085			return BLKPREP_KILL;
1086		}
1087
1088
1089		/*
1090		 * Now try and find a command block that we can use.
1091		 */
1092		if (!req->special) {
1093			cmd = scsi_get_command(sdev, GFP_ATOMIC);
1094			if (unlikely(!cmd))
1095				goto defer;
1096		} else
1097			cmd = req->special;
1098
1099		/* pull a tag out of the request if we have one */
1100		cmd->tag = req->tag;
1101	} else {
1102		blk_dump_rq_flags(req, "SCSI bad req");
1103		return BLKPREP_KILL;
1104	}
1105
1106	/* note the overloading of req->special.  When the tag
1107	 * is active it always means cmd.  If the tag goes
1108	 * back for re-queueing, it may be reset */
1109	req->special = cmd;
1110	cmd->request = req;
1111
1112	/*
1113	 * FIXME: drop the lock here because the functions below
1114	 * expect to be called without the queue lock held.  Also,
1115	 * previously, we dequeued the request before dropping the
1116	 * lock.  We hope REQ_STARTED prevents anything untoward from
1117	 * happening now.
1118	 */
1119	if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1120		struct scsi_driver *drv;
1121		int ret;
1122
1123		/*
1124		 * This will do a couple of things:
1125		 *  1) Fill in the actual SCSI command.
1126		 *  2) Fill in any other upper-level specific fields
1127		 * (timeout).
1128		 *
1129		 * If this returns 0, it means that the request failed
1130		 * (reading past end of disk, reading offline device,
1131		 * etc).   This won't actually talk to the device, but
1132		 * some kinds of consistency checking may cause the
1133		 * request to be rejected immediately.
1134		 */
1135
1136		/*
1137		 * This sets up the scatter-gather table (allocating if
1138		 * required).
1139		 */
1140		ret = scsi_init_io(cmd);
1141		if (ret)	/* BLKPREP_KILL return also releases the command */
1142			return ret;
1143
1144		/*
1145		 * Initialize the actual SCSI command for this request.
1146		 */
1147		drv = *(struct scsi_driver **)req->rq_disk->private_data;
1148		if (unlikely(!drv->init_command(cmd))) {
1149			scsi_release_buffers(cmd);
1150			scsi_put_command(cmd);
1151			return BLKPREP_KILL;
1152		}
1153	}
1154
1155	/*
1156	 * The request is now prepped, no need to come back here
1157	 */
1158	req->flags |= REQ_DONTPREP;
1159	return BLKPREP_OK;
1160
1161 defer:
1162	/* If we defer, the elv_next_request() returns NULL, but the
1163	 * queue must be restarted, so we plug here if no returning
1164	 * command will automatically do that. */
1165	if (sdev->device_busy == 0)
1166		blk_plug_device(q);
1167	return BLKPREP_DEFER;
1168}
1169
1170/*
1171 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1172 * return 0.
1173 *
1174 * Called with the queue_lock held.
1175 */
1176static inline int scsi_dev_queue_ready(struct request_queue *q,
1177				  struct scsi_device *sdev)
1178{
1179	if (sdev->device_busy >= sdev->queue_depth)
1180		return 0;
1181	if (sdev->device_busy == 0 && sdev->device_blocked) {
1182		/*
1183		 * unblock after device_blocked iterates to zero
1184		 */
1185		if (--sdev->device_blocked == 0) {
1186			SCSI_LOG_MLQUEUE(3,
1187				printk("scsi%d (%d:%d) unblocking device at"
1188				       " zero depth\n", sdev->host->host_no,
1189				       sdev->id, sdev->lun));
1190		} else {
1191			blk_plug_device(q);
1192			return 0;
1193		}
1194	}
1195	if (sdev->device_blocked)
1196		return 0;
1197
1198	return 1;
1199}
1200
1201/*
1202 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1203 * return 0. We must end up running the queue again whenever 0 is
1204 * returned, else IO can hang.
1205 *
1206 * Called with host_lock held.
1207 */
1208static inline int scsi_host_queue_ready(struct request_queue *q,
1209				   struct Scsi_Host *shost,
1210				   struct scsi_device *sdev)
1211{
1212	if (test_bit(SHOST_RECOVERY, &shost->shost_state))
1213		return 0;
1214	if (shost->host_busy == 0 && shost->host_blocked) {
1215		/*
1216		 * unblock after host_blocked iterates to zero
1217		 */
1218		if (--shost->host_blocked == 0) {
1219			SCSI_LOG_MLQUEUE(3,
1220				printk("scsi%d unblocking host at zero depth\n",
1221					shost->host_no));
1222		} else {
1223			blk_plug_device(q);
1224			return 0;
1225		}
1226	}
1227	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1228	    shost->host_blocked || shost->host_self_blocked) {
1229		if (list_empty(&sdev->starved_entry))
1230			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1231		return 0;
1232	}
1233
1234	/* We're OK to process the command, so we can't be starved */
1235	if (!list_empty(&sdev->starved_entry))
1236		list_del_init(&sdev->starved_entry);
1237
1238	return 1;
1239}
1240
1241/*
1242 * Kill requests for a dead device
1243 */
1244static void scsi_kill_requests(request_queue_t *q)
1245{
1246	struct request *req;
1247
1248	while ((req = elv_next_request(q)) != NULL) {
1249		blkdev_dequeue_request(req);
1250		req->flags |= REQ_QUIET;
1251		while (end_that_request_first(req, 0, req->nr_sectors))
1252			;
1253		end_that_request_last(req);
1254	}
1255}
1256
1257/*
1258 * Function:    scsi_request_fn()
1259 *
1260 * Purpose:     Main strategy routine for SCSI.
1261 *
1262 * Arguments:   q       - Pointer to actual queue.
1263 *
1264 * Returns:     Nothing
1265 *
1266 * Lock status: IO request lock assumed to be held when called.
1267 */
1268static void scsi_request_fn(struct request_queue *q)
1269{
1270	struct scsi_device *sdev = q->queuedata;
1271	struct Scsi_Host *shost;
1272	struct scsi_cmnd *cmd;
1273	struct request *req;
1274
1275	if (!sdev) {
1276		printk("scsi: killing requests for dead queue\n");
1277		scsi_kill_requests(q);
1278		return;
1279	}
1280
1281	if(!get_device(&sdev->sdev_gendev))
1282		/* We must be tearing the block queue down already */
1283		return;
1284
1285	/*
1286	 * To start with, we keep looping until the queue is empty, or until
1287	 * the host is no longer able to accept any more requests.
1288	 */
1289	shost = sdev->host;
1290	while (!blk_queue_plugged(q)) {
1291		int rtn;
1292		/*
1293		 * get next queueable request.  We do this early to make sure
1294		 * that the request is fully prepared even if we cannot
1295		 * accept it.
1296		 */
1297		req = elv_next_request(q);
1298		if (!req || !scsi_dev_queue_ready(q, sdev))
1299			break;
1300
1301		if (unlikely(!scsi_device_online(sdev))) {
1302			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1303			       sdev->host->host_no, sdev->id, sdev->lun);
1304			blkdev_dequeue_request(req);
1305			req->flags |= REQ_QUIET;
1306			while (end_that_request_first(req, 0, req->nr_sectors))
1307				;
1308			end_that_request_last(req);
1309			continue;
1310		}
1311
1312
1313		/*
1314		 * Remove the request from the request list.
1315		 */
1316		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1317			blkdev_dequeue_request(req);
1318		sdev->device_busy++;
1319
1320		spin_unlock(q->queue_lock);
1321		spin_lock(shost->host_lock);
1322
1323		if (!scsi_host_queue_ready(q, shost, sdev))
1324			goto not_ready;
1325		if (sdev->single_lun) {
1326			if (scsi_target(sdev)->starget_sdev_user &&
1327			    scsi_target(sdev)->starget_sdev_user != sdev)
1328				goto not_ready;
1329			scsi_target(sdev)->starget_sdev_user = sdev;
1330		}
1331		shost->host_busy++;
1332
1333		/*
1334		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1335		 *		take the lock again.
1336		 */
1337		spin_unlock_irq(shost->host_lock);
1338
1339		cmd = req->special;
1340		if (unlikely(cmd == NULL)) {
1341			printk(KERN_CRIT "impossible request in %s.\n"
1342					 "please mail a stack trace to "
1343					 "linux-scsi@vger.kernel.org",
1344					 __FUNCTION__);
1345			BUG();
1346		}
1347
1348		/*
1349		 * Finally, initialize any error handling parameters, and set up
1350		 * the timers for timeouts.
1351		 */
1352		scsi_init_cmd_errh(cmd);
1353
1354		/*
1355		 * Dispatch the command to the low-level driver.
1356		 */
1357		rtn = scsi_dispatch_cmd(cmd);
1358		spin_lock_irq(q->queue_lock);
1359		if(rtn) {
1360			/* we're refusing the command; because of
1361			 * the way locks get dropped, we need to
1362			 * check here if plugging is required */
1363			if(sdev->device_busy == 0)
1364				blk_plug_device(q);
1365
1366			break;
1367		}
1368	}
1369
1370	goto out;
1371
1372 not_ready:
1373	spin_unlock_irq(shost->host_lock);
1374
1375	/*
1376	 * lock q, handle tag, requeue req, and decrement device_busy. We
1377	 * must return with queue_lock held.
1378	 *
1379	 * Decrementing device_busy without checking it is OK, as all such
1380	 * cases (host limits or settings) should run the queue at some
1381	 * later time.
1382	 */
1383	spin_lock_irq(q->queue_lock);
1384	blk_requeue_request(q, req);
1385	sdev->device_busy--;
1386	if(sdev->device_busy == 0)
1387		blk_plug_device(q);
1388 out:
1389	/* must be careful here...if we trigger the ->remove() function
1390	 * we cannot be holding the q lock */
1391	spin_unlock_irq(q->queue_lock);
1392	put_device(&sdev->sdev_gendev);
1393	spin_lock_irq(q->queue_lock);
1394}
1395
1396u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1397{
1398	struct device *host_dev;
1399	u64 bounce_limit = 0xffffffff;
1400
1401	if (shost->unchecked_isa_dma)
1402		return BLK_BOUNCE_ISA;
1403	/*
1404	 * Platforms with virtual-DMA translation
1405	 * hardware have no practical limit.
1406	 */
1407	if (!PCI_DMA_BUS_IS_PHYS)
1408		return BLK_BOUNCE_ANY;
1409
1410	host_dev = scsi_get_device(shost);
1411	if (host_dev && host_dev->dma_mask)
1412		bounce_limit = *host_dev->dma_mask;
1413
1414	return bounce_limit;
1415}
1416EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1417
1418struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1419{
1420	struct Scsi_Host *shost = sdev->host;
1421	struct request_queue *q;
1422
1423	q = blk_init_queue(scsi_request_fn, NULL);
1424	if (!q)
1425		return NULL;
1426
1427	blk_queue_prep_rq(q, scsi_prep_fn);
1428
1429	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1430	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1431	blk_queue_max_sectors(q, shost->max_sectors);
1432	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1433	blk_queue_segment_boundary(q, shost->dma_boundary);
1434	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1435
1436	/*
1437	 * ordered tags are superior to flush ordering
1438	 */
1439	if (shost->ordered_tag)
1440		blk_queue_ordered(q, QUEUE_ORDERED_TAG);
1441	else if (shost->ordered_flush) {
1442		blk_queue_ordered(q, QUEUE_ORDERED_FLUSH);
1443		q->prepare_flush_fn = scsi_prepare_flush_fn;
1444		q->end_flush_fn = scsi_end_flush_fn;
1445	}
1446
1447	if (!shost->use_clustering)
1448		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1449	return q;
1450}
1451
1452void scsi_free_queue(struct request_queue *q)
1453{
1454	blk_cleanup_queue(q);
1455}
1456
1457/*
1458 * Function:    scsi_block_requests()
1459 *
1460 * Purpose:     Utility function used by low-level drivers to prevent further
1461 *		commands from being queued to the device.
1462 *
1463 * Arguments:   shost       - Host in question
1464 *
1465 * Returns:     Nothing
1466 *
1467 * Lock status: No locks are assumed held.
1468 *
1469 * Notes:       There is no timer nor any other means by which the requests
1470 *		get unblocked other than the low-level driver calling
1471 *		scsi_unblock_requests().
1472 */
1473void scsi_block_requests(struct Scsi_Host *shost)
1474{
1475	shost->host_self_blocked = 1;
1476}
1477EXPORT_SYMBOL(scsi_block_requests);
1478
1479/*
1480 * Function:    scsi_unblock_requests()
1481 *
1482 * Purpose:     Utility function used by low-level drivers to allow further
1483 *		commands from being queued to the device.
1484 *
1485 * Arguments:   shost       - Host in question
1486 *
1487 * Returns:     Nothing
1488 *
1489 * Lock status: No locks are assumed held.
1490 *
1491 * Notes:       There is no timer nor any other means by which the requests
1492 *		get unblocked other than the low-level driver calling
1493 *		scsi_unblock_requests().
1494 *
1495 *		This is done as an API function so that changes to the
1496 *		internals of the scsi mid-layer won't require wholesale
1497 *		changes to drivers that use this feature.
1498 */
1499void scsi_unblock_requests(struct Scsi_Host *shost)
1500{
1501	shost->host_self_blocked = 0;
1502	scsi_run_host_queues(shost);
1503}
1504EXPORT_SYMBOL(scsi_unblock_requests);
1505
1506int __init scsi_init_queue(void)
1507{
1508	int i;
1509
1510	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1511		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1512		int size = sgp->size * sizeof(struct scatterlist);
1513
1514		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1515				SLAB_HWCACHE_ALIGN, NULL, NULL);
1516		if (!sgp->slab) {
1517			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1518					sgp->name);
1519		}
1520
1521		sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1522				mempool_alloc_slab, mempool_free_slab,
1523				sgp->slab);
1524		if (!sgp->pool) {
1525			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1526					sgp->name);
1527		}
1528	}
1529
1530	return 0;
1531}
1532
1533void scsi_exit_queue(void)
1534{
1535	int i;
1536
1537	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1538		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1539		mempool_destroy(sgp->pool);
1540		kmem_cache_destroy(sgp->slab);
1541	}
1542}
1543/**
1544 *	__scsi_mode_sense - issue a mode sense, falling back from 10 to
1545 *		six bytes if necessary.
1546 *	@sreq:	SCSI request to fill in with the MODE_SENSE
1547 *	@dbd:	set if mode sense will allow block descriptors to be returned
1548 *	@modepage: mode page being requested
1549 *	@buffer: request buffer (may not be smaller than eight bytes)
1550 *	@len:	length of request buffer.
1551 *	@timeout: command timeout
1552 *	@retries: number of retries before failing
1553 *	@data: returns a structure abstracting the mode header data
1554 *
1555 *	Returns zero if unsuccessful, or the header offset (either 4
1556 *	or 8 depending on whether a six or ten byte command was
1557 *	issued) if successful.
1558 **/
1559int
1560__scsi_mode_sense(struct scsi_request *sreq, int dbd, int modepage,
1561		  unsigned char *buffer, int len, int timeout, int retries,
1562		  struct scsi_mode_data *data) {
1563	unsigned char cmd[12];
1564	int use_10_for_ms;
1565	int header_length;
1566
1567	memset(data, 0, sizeof(*data));
1568	memset(&cmd[0], 0, 12);
1569	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1570	cmd[2] = modepage;
1571
1572 retry:
1573	use_10_for_ms = sreq->sr_device->use_10_for_ms;
1574
1575	if (use_10_for_ms) {
1576		if (len < 8)
1577			len = 8;
1578
1579		cmd[0] = MODE_SENSE_10;
1580		cmd[8] = len;
1581		header_length = 8;
1582	} else {
1583		if (len < 4)
1584			len = 4;
1585
1586		cmd[0] = MODE_SENSE;
1587		cmd[4] = len;
1588		header_length = 4;
1589	}
1590
1591	sreq->sr_cmd_len = 0;
1592	memset(sreq->sr_sense_buffer, 0, sizeof(sreq->sr_sense_buffer));
1593	sreq->sr_data_direction = DMA_FROM_DEVICE;
1594
1595	memset(buffer, 0, len);
1596
1597	scsi_wait_req(sreq, cmd, buffer, len, timeout, retries);
1598
1599	/* This code looks awful: what it's doing is making sure an
1600	 * ILLEGAL REQUEST sense return identifies the actual command
1601	 * byte as the problem.  MODE_SENSE commands can return
1602	 * ILLEGAL REQUEST if the code page isn't supported */
1603
1604	if (use_10_for_ms && !scsi_status_is_good(sreq->sr_result) &&
1605	    (driver_byte(sreq->sr_result) & DRIVER_SENSE)) {
1606		struct scsi_sense_hdr sshdr;
1607
1608		if (scsi_request_normalize_sense(sreq, &sshdr)) {
1609			if ((sshdr.sense_key == ILLEGAL_REQUEST) &&
1610			    (sshdr.asc == 0x20) && (sshdr.ascq == 0)) {
1611				/*
1612				 * Invalid command operation code
1613				 */
1614				sreq->sr_device->use_10_for_ms = 0;
1615				goto retry;
1616			}
1617		}
1618	}
1619
1620	if(scsi_status_is_good(sreq->sr_result)) {
1621		data->header_length = header_length;
1622		if(use_10_for_ms) {
1623			data->length = buffer[0]*256 + buffer[1] + 2;
1624			data->medium_type = buffer[2];
1625			data->device_specific = buffer[3];
1626			data->longlba = buffer[4] & 0x01;
1627			data->block_descriptor_length = buffer[6]*256
1628				+ buffer[7];
1629		} else {
1630			data->length = buffer[0] + 1;
1631			data->medium_type = buffer[1];
1632			data->device_specific = buffer[2];
1633			data->block_descriptor_length = buffer[3];
1634		}
1635	}
1636
1637	return sreq->sr_result;
1638}
1639EXPORT_SYMBOL(__scsi_mode_sense);
1640
1641/**
1642 *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1643 *		six bytes if necessary.
1644 *	@sdev:	scsi device to send command to.
1645 *	@dbd:	set if mode sense will disable block descriptors in the return
1646 *	@modepage: mode page being requested
1647 *	@buffer: request buffer (may not be smaller than eight bytes)
1648 *	@len:	length of request buffer.
1649 *	@timeout: command timeout
1650 *	@retries: number of retries before failing
1651 *
1652 *	Returns zero if unsuccessful, or the header offset (either 4
1653 *	or 8 depending on whether a six or ten byte command was
1654 *	issued) if successful.
1655 **/
1656int
1657scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1658		unsigned char *buffer, int len, int timeout, int retries,
1659		struct scsi_mode_data *data)
1660{
1661	struct scsi_request *sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1662	int ret;
1663
1664	if (!sreq)
1665		return -1;
1666
1667	ret = __scsi_mode_sense(sreq, dbd, modepage, buffer, len,
1668				timeout, retries, data);
1669
1670	scsi_release_request(sreq);
1671
1672	return ret;
1673}
1674EXPORT_SYMBOL(scsi_mode_sense);
1675
1676int
1677scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1678{
1679	struct scsi_request *sreq;
1680	char cmd[] = {
1681		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1682	};
1683	int result;
1684
1685	sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1686	if (!sreq)
1687		return -ENOMEM;
1688
1689	sreq->sr_data_direction = DMA_NONE;
1690	scsi_wait_req(sreq, cmd, NULL, 0, timeout, retries);
1691
1692	if ((driver_byte(sreq->sr_result) & DRIVER_SENSE) && sdev->removable) {
1693		struct scsi_sense_hdr sshdr;
1694
1695		if ((scsi_request_normalize_sense(sreq, &sshdr)) &&
1696		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1697		     (sshdr.sense_key == NOT_READY))) {
1698			sdev->changed = 1;
1699			sreq->sr_result = 0;
1700		}
1701	}
1702	result = sreq->sr_result;
1703	scsi_release_request(sreq);
1704	return result;
1705}
1706EXPORT_SYMBOL(scsi_test_unit_ready);
1707
1708/**
1709 *	scsi_device_set_state - Take the given device through the device
1710 *		state model.
1711 *	@sdev:	scsi device to change the state of.
1712 *	@state:	state to change to.
1713 *
1714 *	Returns zero if unsuccessful or an error if the requested
1715 *	transition is illegal.
1716 **/
1717int
1718scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1719{
1720	enum scsi_device_state oldstate = sdev->sdev_state;
1721
1722	if (state == oldstate)
1723		return 0;
1724
1725	switch (state) {
1726	case SDEV_CREATED:
1727		/* There are no legal states that come back to
1728		 * created.  This is the manually initialised start
1729		 * state */
1730		goto illegal;
1731
1732	case SDEV_RUNNING:
1733		switch (oldstate) {
1734		case SDEV_CREATED:
1735		case SDEV_OFFLINE:
1736		case SDEV_QUIESCE:
1737		case SDEV_BLOCK:
1738			break;
1739		default:
1740			goto illegal;
1741		}
1742		break;
1743
1744	case SDEV_QUIESCE:
1745		switch (oldstate) {
1746		case SDEV_RUNNING:
1747		case SDEV_OFFLINE:
1748			break;
1749		default:
1750			goto illegal;
1751		}
1752		break;
1753
1754	case SDEV_OFFLINE:
1755		switch (oldstate) {
1756		case SDEV_CREATED:
1757		case SDEV_RUNNING:
1758		case SDEV_QUIESCE:
1759		case SDEV_BLOCK:
1760			break;
1761		default:
1762			goto illegal;
1763		}
1764		break;
1765
1766	case SDEV_BLOCK:
1767		switch (oldstate) {
1768		case SDEV_CREATED:
1769		case SDEV_RUNNING:
1770			break;
1771		default:
1772			goto illegal;
1773		}
1774		break;
1775
1776	case SDEV_CANCEL:
1777		switch (oldstate) {
1778		case SDEV_CREATED:
1779		case SDEV_RUNNING:
1780		case SDEV_OFFLINE:
1781		case SDEV_BLOCK:
1782			break;
1783		default:
1784			goto illegal;
1785		}
1786		break;
1787
1788	case SDEV_DEL:
1789		switch (oldstate) {
1790		case SDEV_CANCEL:
1791			break;
1792		default:
1793			goto illegal;
1794		}
1795		break;
1796
1797	}
1798	sdev->sdev_state = state;
1799	return 0;
1800
1801 illegal:
1802	SCSI_LOG_ERROR_RECOVERY(1,
1803				dev_printk(KERN_ERR, &sdev->sdev_gendev,
1804					   "Illegal state transition %s->%s\n",
1805					   scsi_device_state_name(oldstate),
1806					   scsi_device_state_name(state))
1807				);
1808	return -EINVAL;
1809}
1810EXPORT_SYMBOL(scsi_device_set_state);
1811
1812/**
1813 *	scsi_device_quiesce - Block user issued commands.
1814 *	@sdev:	scsi device to quiesce.
1815 *
1816 *	This works by trying to transition to the SDEV_QUIESCE state
1817 *	(which must be a legal transition).  When the device is in this
1818 *	state, only special requests will be accepted, all others will
1819 *	be deferred.  Since special requests may also be requeued requests,
1820 *	a successful return doesn't guarantee the device will be
1821 *	totally quiescent.
1822 *
1823 *	Must be called with user context, may sleep.
1824 *
1825 *	Returns zero if unsuccessful or an error if not.
1826 **/
1827int
1828scsi_device_quiesce(struct scsi_device *sdev)
1829{
1830	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
1831	if (err)
1832		return err;
1833
1834	scsi_run_queue(sdev->request_queue);
1835	while (sdev->device_busy) {
1836		msleep_interruptible(200);
1837		scsi_run_queue(sdev->request_queue);
1838	}
1839	return 0;
1840}
1841EXPORT_SYMBOL(scsi_device_quiesce);
1842
1843/**
1844 *	scsi_device_resume - Restart user issued commands to a quiesced device.
1845 *	@sdev:	scsi device to resume.
1846 *
1847 *	Moves the device from quiesced back to running and restarts the
1848 *	queues.
1849 *
1850 *	Must be called with user context, may sleep.
1851 **/
1852void
1853scsi_device_resume(struct scsi_device *sdev)
1854{
1855	if(scsi_device_set_state(sdev, SDEV_RUNNING))
1856		return;
1857	scsi_run_queue(sdev->request_queue);
1858}
1859EXPORT_SYMBOL(scsi_device_resume);
1860
1861static void
1862device_quiesce_fn(struct scsi_device *sdev, void *data)
1863{
1864	scsi_device_quiesce(sdev);
1865}
1866
1867void
1868scsi_target_quiesce(struct scsi_target *starget)
1869{
1870	starget_for_each_device(starget, NULL, device_quiesce_fn);
1871}
1872EXPORT_SYMBOL(scsi_target_quiesce);
1873
1874static void
1875device_resume_fn(struct scsi_device *sdev, void *data)
1876{
1877	scsi_device_resume(sdev);
1878}
1879
1880void
1881scsi_target_resume(struct scsi_target *starget)
1882{
1883	starget_for_each_device(starget, NULL, device_resume_fn);
1884}
1885EXPORT_SYMBOL(scsi_target_resume);
1886
1887/**
1888 * scsi_internal_device_block - internal function to put a device
1889 *				temporarily into the SDEV_BLOCK state
1890 * @sdev:	device to block
1891 *
1892 * Block request made by scsi lld's to temporarily stop all
1893 * scsi commands on the specified device.  Called from interrupt
1894 * or normal process context.
1895 *
1896 * Returns zero if successful or error if not
1897 *
1898 * Notes:
1899 *	This routine transitions the device to the SDEV_BLOCK state
1900 *	(which must be a legal transition).  When the device is in this
1901 *	state, all commands are deferred until the scsi lld reenables
1902 *	the device with scsi_device_unblock or device_block_tmo fires.
1903 *	This routine assumes the host_lock is held on entry.
1904 **/
1905int
1906scsi_internal_device_block(struct scsi_device *sdev)
1907{
1908	request_queue_t *q = sdev->request_queue;
1909	unsigned long flags;
1910	int err = 0;
1911
1912	err = scsi_device_set_state(sdev, SDEV_BLOCK);
1913	if (err)
1914		return err;
1915
1916	/*
1917	 * The device has transitioned to SDEV_BLOCK.  Stop the
1918	 * block layer from calling the midlayer with this device's
1919	 * request queue.
1920	 */
1921	spin_lock_irqsave(q->queue_lock, flags);
1922	blk_stop_queue(q);
1923	spin_unlock_irqrestore(q->queue_lock, flags);
1924
1925	return 0;
1926}
1927EXPORT_SYMBOL_GPL(scsi_internal_device_block);
1928
1929/**
1930 * scsi_internal_device_unblock - resume a device after a block request
1931 * @sdev:	device to resume
1932 *
1933 * Called by scsi lld's or the midlayer to restart the device queue
1934 * for the previously suspended scsi device.  Called from interrupt or
1935 * normal process context.
1936 *
1937 * Returns zero if successful or error if not.
1938 *
1939 * Notes:
1940 *	This routine transitions the device to the SDEV_RUNNING state
1941 *	(which must be a legal transition) allowing the midlayer to
1942 *	goose the queue for this device.  This routine assumes the
1943 *	host_lock is held upon entry.
1944 **/
1945int
1946scsi_internal_device_unblock(struct scsi_device *sdev)
1947{
1948	request_queue_t *q = sdev->request_queue;
1949	int err;
1950	unsigned long flags;
1951
1952	/*
1953	 * Try to transition the scsi device to SDEV_RUNNING
1954	 * and goose the device queue if successful.
1955	 */
1956	err = scsi_device_set_state(sdev, SDEV_RUNNING);
1957	if (err)
1958		return err;
1959
1960	spin_lock_irqsave(q->queue_lock, flags);
1961	blk_start_queue(q);
1962	spin_unlock_irqrestore(q->queue_lock, flags);
1963
1964	return 0;
1965}
1966EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
1967
1968static void
1969device_block(struct scsi_device *sdev, void *data)
1970{
1971	scsi_internal_device_block(sdev);
1972}
1973
1974static int
1975target_block(struct device *dev, void *data)
1976{
1977	if (scsi_is_target_device(dev))
1978		starget_for_each_device(to_scsi_target(dev), NULL,
1979					device_block);
1980	return 0;
1981}
1982
1983void
1984scsi_target_block(struct device *dev)
1985{
1986	if (scsi_is_target_device(dev))
1987		starget_for_each_device(to_scsi_target(dev), NULL,
1988					device_block);
1989	else
1990		device_for_each_child(dev, NULL, target_block);
1991}
1992EXPORT_SYMBOL_GPL(scsi_target_block);
1993
1994static void
1995device_unblock(struct scsi_device *sdev, void *data)
1996{
1997	scsi_internal_device_unblock(sdev);
1998}
1999
2000static int
2001target_unblock(struct device *dev, void *data)
2002{
2003	if (scsi_is_target_device(dev))
2004		starget_for_each_device(to_scsi_target(dev), NULL,
2005					device_unblock);
2006	return 0;
2007}
2008
2009void
2010scsi_target_unblock(struct device *dev)
2011{
2012	if (scsi_is_target_device(dev))
2013		starget_for_each_device(to_scsi_target(dev), NULL,
2014					device_unblock);
2015	else
2016		device_for_each_child(dev, NULL, target_unblock);
2017}
2018EXPORT_SYMBOL_GPL(scsi_target_unblock);
2019