scsi_lib.c revision 99c84dbdc73d158a1ab955a4a5f74c18074796a3
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/bitops.h>
12#include <linux/blkdev.h>
13#include <linux/completion.h>
14#include <linux/kernel.h>
15#include <linux/mempool.h>
16#include <linux/slab.h>
17#include <linux/init.h>
18#include <linux/pci.h>
19#include <linux/delay.h>
20#include <linux/hardirq.h>
21#include <linux/scatterlist.h>
22
23#include <scsi/scsi.h>
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_dbg.h>
26#include <scsi/scsi_device.h>
27#include <scsi/scsi_driver.h>
28#include <scsi/scsi_eh.h>
29#include <scsi/scsi_host.h>
30
31#include "scsi_priv.h"
32#include "scsi_logging.h"
33
34
35#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36#define SG_MEMPOOL_SIZE		2
37
38struct scsi_host_sg_pool {
39	size_t		size;
40	char		*name;
41	struct kmem_cache	*slab;
42	mempool_t	*pool;
43};
44
45#define SP(x) { x, "sgpool-" __stringify(x) }
46#if (SCSI_MAX_SG_SEGMENTS < 32)
47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48#endif
49static struct scsi_host_sg_pool scsi_sg_pools[] = {
50	SP(8),
51	SP(16),
52#if (SCSI_MAX_SG_SEGMENTS > 32)
53	SP(32),
54#if (SCSI_MAX_SG_SEGMENTS > 64)
55	SP(64),
56#if (SCSI_MAX_SG_SEGMENTS > 128)
57	SP(128),
58#if (SCSI_MAX_SG_SEGMENTS > 256)
59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60#endif
61#endif
62#endif
63#endif
64	SP(SCSI_MAX_SG_SEGMENTS)
65};
66#undef SP
67
68static struct kmem_cache *scsi_bidi_sdb_cache;
69
70static void scsi_run_queue(struct request_queue *q);
71
72/*
73 * Function:	scsi_unprep_request()
74 *
75 * Purpose:	Remove all preparation done for a request, including its
76 *		associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments:	req	- request to unprepare
79 *
80 * Lock status:	Assumed that no locks are held upon entry.
81 *
82 * Returns:	Nothing.
83 */
84static void scsi_unprep_request(struct request *req)
85{
86	struct scsi_cmnd *cmd = req->special;
87
88	req->cmd_flags &= ~REQ_DONTPREP;
89	req->special = NULL;
90
91	scsi_put_command(cmd);
92}
93
94/*
95 * Function:    scsi_queue_insert()
96 *
97 * Purpose:     Insert a command in the midlevel queue.
98 *
99 * Arguments:   cmd    - command that we are adding to queue.
100 *              reason - why we are inserting command to queue.
101 *
102 * Lock status: Assumed that lock is not held upon entry.
103 *
104 * Returns:     Nothing.
105 *
106 * Notes:       We do this for one of two cases.  Either the host is busy
107 *              and it cannot accept any more commands for the time being,
108 *              or the device returned QUEUE_FULL and can accept no more
109 *              commands.
110 * Notes:       This could be called either from an interrupt context or a
111 *              normal process context.
112 */
113int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114{
115	struct Scsi_Host *host = cmd->device->host;
116	struct scsi_device *device = cmd->device;
117	struct request_queue *q = device->request_queue;
118	unsigned long flags;
119
120	SCSI_LOG_MLQUEUE(1,
121		 printk("Inserting command %p into mlqueue\n", cmd));
122
123	/*
124	 * Set the appropriate busy bit for the device/host.
125	 *
126	 * If the host/device isn't busy, assume that something actually
127	 * completed, and that we should be able to queue a command now.
128	 *
129	 * Note that the prior mid-layer assumption that any host could
130	 * always queue at least one command is now broken.  The mid-layer
131	 * will implement a user specifiable stall (see
132	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133	 * if a command is requeued with no other commands outstanding
134	 * either for the device or for the host.
135	 */
136	if (reason == SCSI_MLQUEUE_HOST_BUSY)
137		host->host_blocked = host->max_host_blocked;
138	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
139		device->device_blocked = device->max_device_blocked;
140
141	/*
142	 * Decrement the counters, since these commands are no longer
143	 * active on the host/device.
144	 */
145	scsi_device_unbusy(device);
146
147	/*
148	 * Requeue this command.  It will go before all other commands
149	 * that are already in the queue.
150	 *
151	 * NOTE: there is magic here about the way the queue is plugged if
152	 * we have no outstanding commands.
153	 *
154	 * Although we *don't* plug the queue, we call the request
155	 * function.  The SCSI request function detects the blocked condition
156	 * and plugs the queue appropriately.
157         */
158	spin_lock_irqsave(q->queue_lock, flags);
159	blk_requeue_request(q, cmd->request);
160	spin_unlock_irqrestore(q->queue_lock, flags);
161
162	scsi_run_queue(q);
163
164	return 0;
165}
166
167/**
168 * scsi_execute - insert request and wait for the result
169 * @sdev:	scsi device
170 * @cmd:	scsi command
171 * @data_direction: data direction
172 * @buffer:	data buffer
173 * @bufflen:	len of buffer
174 * @sense:	optional sense buffer
175 * @timeout:	request timeout in seconds
176 * @retries:	number of times to retry request
177 * @flags:	or into request flags;
178 *
179 * returns the req->errors value which is the scsi_cmnd result
180 * field.
181 */
182int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183		 int data_direction, void *buffer, unsigned bufflen,
184		 unsigned char *sense, int timeout, int retries, int flags)
185{
186	struct request *req;
187	int write = (data_direction == DMA_TO_DEVICE);
188	int ret = DRIVER_ERROR << 24;
189
190	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
191
192	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
193					buffer, bufflen, __GFP_WAIT))
194		goto out;
195
196	req->cmd_len = COMMAND_SIZE(cmd[0]);
197	memcpy(req->cmd, cmd, req->cmd_len);
198	req->sense = sense;
199	req->sense_len = 0;
200	req->retries = retries;
201	req->timeout = timeout;
202	req->cmd_type = REQ_TYPE_BLOCK_PC;
203	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
204
205	/*
206	 * head injection *required* here otherwise quiesce won't work
207	 */
208	blk_execute_rq(req->q, NULL, req, 1);
209
210	ret = req->errors;
211 out:
212	blk_put_request(req);
213
214	return ret;
215}
216EXPORT_SYMBOL(scsi_execute);
217
218
219int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
220		     int data_direction, void *buffer, unsigned bufflen,
221		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
222{
223	char *sense = NULL;
224	int result;
225
226	if (sshdr) {
227		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
228		if (!sense)
229			return DRIVER_ERROR << 24;
230	}
231	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
232			      sense, timeout, retries, 0);
233	if (sshdr)
234		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
235
236	kfree(sense);
237	return result;
238}
239EXPORT_SYMBOL(scsi_execute_req);
240
241struct scsi_io_context {
242	void *data;
243	void (*done)(void *data, char *sense, int result, int resid);
244	char sense[SCSI_SENSE_BUFFERSIZE];
245};
246
247static struct kmem_cache *scsi_io_context_cache;
248
249static void scsi_end_async(struct request *req, int uptodate)
250{
251	struct scsi_io_context *sioc = req->end_io_data;
252
253	if (sioc->done)
254		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
255
256	kmem_cache_free(scsi_io_context_cache, sioc);
257	__blk_put_request(req->q, req);
258}
259
260static int scsi_merge_bio(struct request *rq, struct bio *bio)
261{
262	struct request_queue *q = rq->q;
263
264	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
265	if (rq_data_dir(rq) == WRITE)
266		bio->bi_rw |= (1 << BIO_RW);
267	blk_queue_bounce(q, &bio);
268
269	return blk_rq_append_bio(q, rq, bio);
270}
271
272static void scsi_bi_endio(struct bio *bio, int error)
273{
274	bio_put(bio);
275}
276
277/**
278 * scsi_req_map_sg - map a scatterlist into a request
279 * @rq:		request to fill
280 * @sgl:	scatterlist
281 * @nsegs:	number of elements
282 * @bufflen:	len of buffer
283 * @gfp:	memory allocation flags
284 *
285 * scsi_req_map_sg maps a scatterlist into a request so that the
286 * request can be sent to the block layer. We do not trust the scatterlist
287 * sent to use, as some ULDs use that struct to only organize the pages.
288 */
289static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
290			   int nsegs, unsigned bufflen, gfp_t gfp)
291{
292	struct request_queue *q = rq->q;
293	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
294	unsigned int data_len = bufflen, len, bytes, off;
295	struct scatterlist *sg;
296	struct page *page;
297	struct bio *bio = NULL;
298	int i, err, nr_vecs = 0;
299
300	for_each_sg(sgl, sg, nsegs, i) {
301		page = sg_page(sg);
302		off = sg->offset;
303		len = sg->length;
304 		data_len += len;
305
306		while (len > 0 && data_len > 0) {
307			/*
308			 * sg sends a scatterlist that is larger than
309			 * the data_len it wants transferred for certain
310			 * IO sizes
311			 */
312			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
313			bytes = min(bytes, data_len);
314
315			if (!bio) {
316				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
317				nr_pages -= nr_vecs;
318
319				bio = bio_alloc(gfp, nr_vecs);
320				if (!bio) {
321					err = -ENOMEM;
322					goto free_bios;
323				}
324				bio->bi_end_io = scsi_bi_endio;
325			}
326
327			if (bio_add_pc_page(q, bio, page, bytes, off) !=
328			    bytes) {
329				bio_put(bio);
330				err = -EINVAL;
331				goto free_bios;
332			}
333
334			if (bio->bi_vcnt >= nr_vecs) {
335				err = scsi_merge_bio(rq, bio);
336				if (err) {
337					bio_endio(bio, 0);
338					goto free_bios;
339				}
340				bio = NULL;
341			}
342
343			page++;
344			len -= bytes;
345			data_len -=bytes;
346			off = 0;
347		}
348	}
349
350	rq->buffer = rq->data = NULL;
351	rq->data_len = bufflen;
352	return 0;
353
354free_bios:
355	while ((bio = rq->bio) != NULL) {
356		rq->bio = bio->bi_next;
357		/*
358		 * call endio instead of bio_put incase it was bounced
359		 */
360		bio_endio(bio, 0);
361	}
362
363	return err;
364}
365
366/**
367 * scsi_execute_async - insert request
368 * @sdev:	scsi device
369 * @cmd:	scsi command
370 * @cmd_len:	length of scsi cdb
371 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
372 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
373 * @bufflen:	len of buffer
374 * @use_sg:	if buffer is a scatterlist this is the number of elements
375 * @timeout:	request timeout in seconds
376 * @retries:	number of times to retry request
377 * @privdata:	data passed to done()
378 * @done:	callback function when done
379 * @gfp:	memory allocation flags
380 */
381int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
382		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
383		       int use_sg, int timeout, int retries, void *privdata,
384		       void (*done)(void *, char *, int, int), gfp_t gfp)
385{
386	struct request *req;
387	struct scsi_io_context *sioc;
388	int err = 0;
389	int write = (data_direction == DMA_TO_DEVICE);
390
391	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
392	if (!sioc)
393		return DRIVER_ERROR << 24;
394
395	req = blk_get_request(sdev->request_queue, write, gfp);
396	if (!req)
397		goto free_sense;
398	req->cmd_type = REQ_TYPE_BLOCK_PC;
399	req->cmd_flags |= REQ_QUIET;
400
401	if (use_sg)
402		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
403	else if (bufflen)
404		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
405
406	if (err)
407		goto free_req;
408
409	req->cmd_len = cmd_len;
410	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
411	memcpy(req->cmd, cmd, req->cmd_len);
412	req->sense = sioc->sense;
413	req->sense_len = 0;
414	req->timeout = timeout;
415	req->retries = retries;
416	req->end_io_data = sioc;
417
418	sioc->data = privdata;
419	sioc->done = done;
420
421	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
422	return 0;
423
424free_req:
425	blk_put_request(req);
426free_sense:
427	kmem_cache_free(scsi_io_context_cache, sioc);
428	return DRIVER_ERROR << 24;
429}
430EXPORT_SYMBOL_GPL(scsi_execute_async);
431
432/*
433 * Function:    scsi_init_cmd_errh()
434 *
435 * Purpose:     Initialize cmd fields related to error handling.
436 *
437 * Arguments:   cmd	- command that is ready to be queued.
438 *
439 * Notes:       This function has the job of initializing a number of
440 *              fields related to error handling.   Typically this will
441 *              be called once for each command, as required.
442 */
443static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
444{
445	cmd->serial_number = 0;
446	scsi_set_resid(cmd, 0);
447	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
448	if (cmd->cmd_len == 0)
449		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
450}
451
452void scsi_device_unbusy(struct scsi_device *sdev)
453{
454	struct Scsi_Host *shost = sdev->host;
455	unsigned long flags;
456
457	spin_lock_irqsave(shost->host_lock, flags);
458	shost->host_busy--;
459	if (unlikely(scsi_host_in_recovery(shost) &&
460		     (shost->host_failed || shost->host_eh_scheduled)))
461		scsi_eh_wakeup(shost);
462	spin_unlock(shost->host_lock);
463	spin_lock(sdev->request_queue->queue_lock);
464	sdev->device_busy--;
465	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
466}
467
468/*
469 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
470 * and call blk_run_queue for all the scsi_devices on the target -
471 * including current_sdev first.
472 *
473 * Called with *no* scsi locks held.
474 */
475static void scsi_single_lun_run(struct scsi_device *current_sdev)
476{
477	struct Scsi_Host *shost = current_sdev->host;
478	struct scsi_device *sdev, *tmp;
479	struct scsi_target *starget = scsi_target(current_sdev);
480	unsigned long flags;
481
482	spin_lock_irqsave(shost->host_lock, flags);
483	starget->starget_sdev_user = NULL;
484	spin_unlock_irqrestore(shost->host_lock, flags);
485
486	/*
487	 * Call blk_run_queue for all LUNs on the target, starting with
488	 * current_sdev. We race with others (to set starget_sdev_user),
489	 * but in most cases, we will be first. Ideally, each LU on the
490	 * target would get some limited time or requests on the target.
491	 */
492	blk_run_queue(current_sdev->request_queue);
493
494	spin_lock_irqsave(shost->host_lock, flags);
495	if (starget->starget_sdev_user)
496		goto out;
497	list_for_each_entry_safe(sdev, tmp, &starget->devices,
498			same_target_siblings) {
499		if (sdev == current_sdev)
500			continue;
501		if (scsi_device_get(sdev))
502			continue;
503
504		spin_unlock_irqrestore(shost->host_lock, flags);
505		blk_run_queue(sdev->request_queue);
506		spin_lock_irqsave(shost->host_lock, flags);
507
508		scsi_device_put(sdev);
509	}
510 out:
511	spin_unlock_irqrestore(shost->host_lock, flags);
512}
513
514/*
515 * Function:	scsi_run_queue()
516 *
517 * Purpose:	Select a proper request queue to serve next
518 *
519 * Arguments:	q	- last request's queue
520 *
521 * Returns:     Nothing
522 *
523 * Notes:	The previous command was completely finished, start
524 *		a new one if possible.
525 */
526static void scsi_run_queue(struct request_queue *q)
527{
528	struct scsi_device *sdev = q->queuedata;
529	struct Scsi_Host *shost = sdev->host;
530	unsigned long flags;
531
532	if (scsi_target(sdev)->single_lun)
533		scsi_single_lun_run(sdev);
534
535	spin_lock_irqsave(shost->host_lock, flags);
536	while (!list_empty(&shost->starved_list) &&
537	       !shost->host_blocked && !shost->host_self_blocked &&
538		!((shost->can_queue > 0) &&
539		  (shost->host_busy >= shost->can_queue))) {
540		/*
541		 * As long as shost is accepting commands and we have
542		 * starved queues, call blk_run_queue. scsi_request_fn
543		 * drops the queue_lock and can add us back to the
544		 * starved_list.
545		 *
546		 * host_lock protects the starved_list and starved_entry.
547		 * scsi_request_fn must get the host_lock before checking
548		 * or modifying starved_list or starved_entry.
549		 */
550		sdev = list_entry(shost->starved_list.next,
551					  struct scsi_device, starved_entry);
552		list_del_init(&sdev->starved_entry);
553		spin_unlock_irqrestore(shost->host_lock, flags);
554
555
556		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
557		    !test_and_set_bit(QUEUE_FLAG_REENTER,
558				      &sdev->request_queue->queue_flags)) {
559			blk_run_queue(sdev->request_queue);
560			clear_bit(QUEUE_FLAG_REENTER,
561				  &sdev->request_queue->queue_flags);
562		} else
563			blk_run_queue(sdev->request_queue);
564
565		spin_lock_irqsave(shost->host_lock, flags);
566		if (unlikely(!list_empty(&sdev->starved_entry)))
567			/*
568			 * sdev lost a race, and was put back on the
569			 * starved list. This is unlikely but without this
570			 * in theory we could loop forever.
571			 */
572			break;
573	}
574	spin_unlock_irqrestore(shost->host_lock, flags);
575
576	blk_run_queue(q);
577}
578
579/*
580 * Function:	scsi_requeue_command()
581 *
582 * Purpose:	Handle post-processing of completed commands.
583 *
584 * Arguments:	q	- queue to operate on
585 *		cmd	- command that may need to be requeued.
586 *
587 * Returns:	Nothing
588 *
589 * Notes:	After command completion, there may be blocks left
590 *		over which weren't finished by the previous command
591 *		this can be for a number of reasons - the main one is
592 *		I/O errors in the middle of the request, in which case
593 *		we need to request the blocks that come after the bad
594 *		sector.
595 * Notes:	Upon return, cmd is a stale pointer.
596 */
597static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
598{
599	struct request *req = cmd->request;
600	unsigned long flags;
601
602	scsi_unprep_request(req);
603	spin_lock_irqsave(q->queue_lock, flags);
604	blk_requeue_request(q, req);
605	spin_unlock_irqrestore(q->queue_lock, flags);
606
607	scsi_run_queue(q);
608}
609
610void scsi_next_command(struct scsi_cmnd *cmd)
611{
612	struct scsi_device *sdev = cmd->device;
613	struct request_queue *q = sdev->request_queue;
614
615	/* need to hold a reference on the device before we let go of the cmd */
616	get_device(&sdev->sdev_gendev);
617
618	scsi_put_command(cmd);
619	scsi_run_queue(q);
620
621	/* ok to remove device now */
622	put_device(&sdev->sdev_gendev);
623}
624
625void scsi_run_host_queues(struct Scsi_Host *shost)
626{
627	struct scsi_device *sdev;
628
629	shost_for_each_device(sdev, shost)
630		scsi_run_queue(sdev->request_queue);
631}
632
633/*
634 * Function:    scsi_end_request()
635 *
636 * Purpose:     Post-processing of completed commands (usually invoked at end
637 *		of upper level post-processing and scsi_io_completion).
638 *
639 * Arguments:   cmd	 - command that is complete.
640 *              error    - 0 if I/O indicates success, < 0 for I/O error.
641 *              bytes    - number of bytes of completed I/O
642 *		requeue  - indicates whether we should requeue leftovers.
643 *
644 * Lock status: Assumed that lock is not held upon entry.
645 *
646 * Returns:     cmd if requeue required, NULL otherwise.
647 *
648 * Notes:       This is called for block device requests in order to
649 *              mark some number of sectors as complete.
650 *
651 *		We are guaranteeing that the request queue will be goosed
652 *		at some point during this call.
653 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
654 */
655static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
656					  int bytes, int requeue)
657{
658	struct request_queue *q = cmd->device->request_queue;
659	struct request *req = cmd->request;
660
661	/*
662	 * If there are blocks left over at the end, set up the command
663	 * to queue the remainder of them.
664	 */
665	if (blk_end_request(req, error, bytes)) {
666		int leftover = (req->hard_nr_sectors << 9);
667
668		if (blk_pc_request(req))
669			leftover = req->data_len;
670
671		/* kill remainder if no retrys */
672		if (error && blk_noretry_request(req))
673			blk_end_request(req, error, leftover);
674		else {
675			if (requeue) {
676				/*
677				 * Bleah.  Leftovers again.  Stick the
678				 * leftovers in the front of the
679				 * queue, and goose the queue again.
680				 */
681				scsi_requeue_command(q, cmd);
682				cmd = NULL;
683			}
684			return cmd;
685		}
686	}
687
688	/*
689	 * This will goose the queue request function at the end, so we don't
690	 * need to worry about launching another command.
691	 */
692	scsi_next_command(cmd);
693	return NULL;
694}
695
696static inline unsigned int scsi_sgtable_index(unsigned short nents)
697{
698	unsigned int index;
699
700	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
701
702	if (nents <= 8)
703		index = 0;
704	else
705		index = get_count_order(nents) - 3;
706
707	return index;
708}
709
710static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
711{
712	struct scsi_host_sg_pool *sgp;
713
714	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
715	mempool_free(sgl, sgp->pool);
716}
717
718static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
719{
720	struct scsi_host_sg_pool *sgp;
721
722	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
723	return mempool_alloc(sgp->pool, gfp_mask);
724}
725
726static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
727			      gfp_t gfp_mask)
728{
729	int ret;
730
731	BUG_ON(!nents);
732
733	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
734			       gfp_mask, scsi_sg_alloc);
735	if (unlikely(ret))
736		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
737				scsi_sg_free);
738
739	return ret;
740}
741
742static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
743{
744	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
745}
746
747/*
748 * Function:    scsi_release_buffers()
749 *
750 * Purpose:     Completion processing for block device I/O requests.
751 *
752 * Arguments:   cmd	- command that we are bailing.
753 *
754 * Lock status: Assumed that no lock is held upon entry.
755 *
756 * Returns:     Nothing
757 *
758 * Notes:       In the event that an upper level driver rejects a
759 *		command, we must release resources allocated during
760 *		the __init_io() function.  Primarily this would involve
761 *		the scatter-gather table, and potentially any bounce
762 *		buffers.
763 */
764void scsi_release_buffers(struct scsi_cmnd *cmd)
765{
766	if (cmd->sdb.table.nents)
767		scsi_free_sgtable(&cmd->sdb);
768
769	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
770
771	if (scsi_bidi_cmnd(cmd)) {
772		struct scsi_data_buffer *bidi_sdb =
773			cmd->request->next_rq->special;
774		scsi_free_sgtable(bidi_sdb);
775		kmem_cache_free(scsi_bidi_sdb_cache, bidi_sdb);
776		cmd->request->next_rq->special = NULL;
777	}
778}
779EXPORT_SYMBOL(scsi_release_buffers);
780
781/*
782 * Bidi commands Must be complete as a whole, both sides at once.
783 * If part of the bytes were written and lld returned
784 * scsi_in()->resid and/or scsi_out()->resid this information will be left
785 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
786 * decide what to do with this information.
787 */
788void scsi_end_bidi_request(struct scsi_cmnd *cmd)
789{
790	struct request *req = cmd->request;
791	unsigned int dlen = req->data_len;
792	unsigned int next_dlen = req->next_rq->data_len;
793
794	req->data_len = scsi_out(cmd)->resid;
795	req->next_rq->data_len = scsi_in(cmd)->resid;
796
797	/* The req and req->next_rq have not been completed */
798	BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
799
800	scsi_release_buffers(cmd);
801
802	/*
803	 * This will goose the queue request function at the end, so we don't
804	 * need to worry about launching another command.
805	 */
806	scsi_next_command(cmd);
807}
808
809/*
810 * Function:    scsi_io_completion()
811 *
812 * Purpose:     Completion processing for block device I/O requests.
813 *
814 * Arguments:   cmd   - command that is finished.
815 *
816 * Lock status: Assumed that no lock is held upon entry.
817 *
818 * Returns:     Nothing
819 *
820 * Notes:       This function is matched in terms of capabilities to
821 *              the function that created the scatter-gather list.
822 *              In other words, if there are no bounce buffers
823 *              (the normal case for most drivers), we don't need
824 *              the logic to deal with cleaning up afterwards.
825 *
826 *		We must do one of several things here:
827 *
828 *		a) Call scsi_end_request.  This will finish off the
829 *		   specified number of sectors.  If we are done, the
830 *		   command block will be released, and the queue
831 *		   function will be goosed.  If we are not done, then
832 *		   scsi_end_request will directly goose the queue.
833 *
834 *		b) We can just use scsi_requeue_command() here.  This would
835 *		   be used if we just wanted to retry, for example.
836 */
837void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
838{
839	int result = cmd->result;
840	int this_count = scsi_bufflen(cmd);
841	struct request_queue *q = cmd->device->request_queue;
842	struct request *req = cmd->request;
843	int clear_errors = 1;
844	struct scsi_sense_hdr sshdr;
845	int sense_valid = 0;
846	int sense_deferred = 0;
847
848	if (result) {
849		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
850		if (sense_valid)
851			sense_deferred = scsi_sense_is_deferred(&sshdr);
852	}
853
854	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
855		req->errors = result;
856		if (result) {
857			clear_errors = 0;
858			if (sense_valid && req->sense) {
859				/*
860				 * SG_IO wants current and deferred errors
861				 */
862				int len = 8 + cmd->sense_buffer[7];
863
864				if (len > SCSI_SENSE_BUFFERSIZE)
865					len = SCSI_SENSE_BUFFERSIZE;
866				memcpy(req->sense, cmd->sense_buffer,  len);
867				req->sense_len = len;
868			}
869		}
870		if (scsi_bidi_cmnd(cmd)) {
871			/* will also release_buffers */
872			scsi_end_bidi_request(cmd);
873			return;
874		}
875		req->data_len = scsi_get_resid(cmd);
876	}
877
878	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
879	scsi_release_buffers(cmd);
880
881	/*
882	 * Next deal with any sectors which we were able to correctly
883	 * handle.
884	 */
885	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
886				      "%d bytes done.\n",
887				      req->nr_sectors, good_bytes));
888
889	if (clear_errors)
890		req->errors = 0;
891
892	/* A number of bytes were successfully read.  If there
893	 * are leftovers and there is some kind of error
894	 * (result != 0), retry the rest.
895	 */
896	if (scsi_end_request(cmd, 0, good_bytes, result == 0) == NULL)
897		return;
898
899	/* good_bytes = 0, or (inclusive) there were leftovers and
900	 * result = 0, so scsi_end_request couldn't retry.
901	 */
902	if (sense_valid && !sense_deferred) {
903		switch (sshdr.sense_key) {
904		case UNIT_ATTENTION:
905			if (cmd->device->removable) {
906				/* Detected disc change.  Set a bit
907				 * and quietly refuse further access.
908				 */
909				cmd->device->changed = 1;
910				scsi_end_request(cmd, -EIO, this_count, 1);
911				return;
912			} else {
913				/* Must have been a power glitch, or a
914				 * bus reset.  Could not have been a
915				 * media change, so we just retry the
916				 * request and see what happens.
917				 */
918				scsi_requeue_command(q, cmd);
919				return;
920			}
921			break;
922		case ILLEGAL_REQUEST:
923			/* If we had an ILLEGAL REQUEST returned, then
924			 * we may have performed an unsupported
925			 * command.  The only thing this should be
926			 * would be a ten byte read where only a six
927			 * byte read was supported.  Also, on a system
928			 * where READ CAPACITY failed, we may have
929			 * read past the end of the disk.
930			 */
931			if ((cmd->device->use_10_for_rw &&
932			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
933			    (cmd->cmnd[0] == READ_10 ||
934			     cmd->cmnd[0] == WRITE_10)) {
935				cmd->device->use_10_for_rw = 0;
936				/* This will cause a retry with a
937				 * 6-byte command.
938				 */
939				scsi_requeue_command(q, cmd);
940				return;
941			} else {
942				scsi_end_request(cmd, -EIO, this_count, 1);
943				return;
944			}
945			break;
946		case NOT_READY:
947			/* If the device is in the process of becoming
948			 * ready, or has a temporary blockage, retry.
949			 */
950			if (sshdr.asc == 0x04) {
951				switch (sshdr.ascq) {
952				case 0x01: /* becoming ready */
953				case 0x04: /* format in progress */
954				case 0x05: /* rebuild in progress */
955				case 0x06: /* recalculation in progress */
956				case 0x07: /* operation in progress */
957				case 0x08: /* Long write in progress */
958				case 0x09: /* self test in progress */
959					scsi_requeue_command(q, cmd);
960					return;
961				default:
962					break;
963				}
964			}
965			if (!(req->cmd_flags & REQ_QUIET))
966				scsi_cmd_print_sense_hdr(cmd,
967							 "Device not ready",
968							 &sshdr);
969
970			scsi_end_request(cmd, -EIO, this_count, 1);
971			return;
972		case VOLUME_OVERFLOW:
973			if (!(req->cmd_flags & REQ_QUIET)) {
974				scmd_printk(KERN_INFO, cmd,
975					    "Volume overflow, CDB: ");
976				__scsi_print_command(cmd->cmnd);
977				scsi_print_sense("", cmd);
978			}
979			/* See SSC3rXX or current. */
980			scsi_end_request(cmd, -EIO, this_count, 1);
981			return;
982		default:
983			break;
984		}
985	}
986	if (host_byte(result) == DID_RESET) {
987		/* Third party bus reset or reset for error recovery
988		 * reasons.  Just retry the request and see what
989		 * happens.
990		 */
991		scsi_requeue_command(q, cmd);
992		return;
993	}
994	if (result) {
995		if (!(req->cmd_flags & REQ_QUIET)) {
996			scsi_print_result(cmd);
997			if (driver_byte(result) & DRIVER_SENSE)
998				scsi_print_sense("", cmd);
999		}
1000	}
1001	scsi_end_request(cmd, -EIO, this_count, !result);
1002}
1003
1004static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1005			     gfp_t gfp_mask)
1006{
1007	int count;
1008
1009	/*
1010	 * If sg table allocation fails, requeue request later.
1011	 */
1012	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1013					gfp_mask))) {
1014		return BLKPREP_DEFER;
1015	}
1016
1017	req->buffer = NULL;
1018	if (blk_pc_request(req))
1019		sdb->length = req->data_len;
1020	else
1021		sdb->length = req->nr_sectors << 9;
1022
1023	/*
1024	 * Next, walk the list, and fill in the addresses and sizes of
1025	 * each segment.
1026	 */
1027	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1028	BUG_ON(count > sdb->table.nents);
1029	sdb->table.nents = count;
1030	return BLKPREP_OK;
1031}
1032
1033/*
1034 * Function:    scsi_init_io()
1035 *
1036 * Purpose:     SCSI I/O initialize function.
1037 *
1038 * Arguments:   cmd   - Command descriptor we wish to initialize
1039 *
1040 * Returns:     0 on success
1041 *		BLKPREP_DEFER if the failure is retryable
1042 *		BLKPREP_KILL if the failure is fatal
1043 */
1044int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1045{
1046	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1047	if (error)
1048		goto err_exit;
1049
1050	if (blk_bidi_rq(cmd->request)) {
1051		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1052			scsi_bidi_sdb_cache, GFP_ATOMIC);
1053		if (!bidi_sdb) {
1054			error = BLKPREP_DEFER;
1055			goto err_exit;
1056		}
1057
1058		cmd->request->next_rq->special = bidi_sdb;
1059		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1060								    GFP_ATOMIC);
1061		if (error)
1062			goto err_exit;
1063	}
1064
1065	return BLKPREP_OK ;
1066
1067err_exit:
1068	scsi_release_buffers(cmd);
1069	if (error == BLKPREP_KILL)
1070		scsi_put_command(cmd);
1071	else /* BLKPREP_DEFER */
1072		scsi_unprep_request(cmd->request);
1073
1074	return error;
1075}
1076EXPORT_SYMBOL(scsi_init_io);
1077
1078static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1079		struct request *req)
1080{
1081	struct scsi_cmnd *cmd;
1082
1083	if (!req->special) {
1084		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1085		if (unlikely(!cmd))
1086			return NULL;
1087		req->special = cmd;
1088	} else {
1089		cmd = req->special;
1090	}
1091
1092	/* pull a tag out of the request if we have one */
1093	cmd->tag = req->tag;
1094	cmd->request = req;
1095
1096	return cmd;
1097}
1098
1099int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1100{
1101	struct scsi_cmnd *cmd;
1102	int ret = scsi_prep_state_check(sdev, req);
1103
1104	if (ret != BLKPREP_OK)
1105		return ret;
1106
1107	cmd = scsi_get_cmd_from_req(sdev, req);
1108	if (unlikely(!cmd))
1109		return BLKPREP_DEFER;
1110
1111	/*
1112	 * BLOCK_PC requests may transfer data, in which case they must
1113	 * a bio attached to them.  Or they might contain a SCSI command
1114	 * that does not transfer data, in which case they may optionally
1115	 * submit a request without an attached bio.
1116	 */
1117	if (req->bio) {
1118		int ret;
1119
1120		BUG_ON(!req->nr_phys_segments);
1121
1122		ret = scsi_init_io(cmd, GFP_ATOMIC);
1123		if (unlikely(ret))
1124			return ret;
1125	} else {
1126		BUG_ON(req->data_len);
1127		BUG_ON(req->data);
1128
1129		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1130		req->buffer = NULL;
1131	}
1132
1133	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1134	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1135	cmd->cmd_len = req->cmd_len;
1136	if (!req->data_len)
1137		cmd->sc_data_direction = DMA_NONE;
1138	else if (rq_data_dir(req) == WRITE)
1139		cmd->sc_data_direction = DMA_TO_DEVICE;
1140	else
1141		cmd->sc_data_direction = DMA_FROM_DEVICE;
1142
1143	cmd->transfersize = req->data_len;
1144	cmd->allowed = req->retries;
1145	cmd->timeout_per_command = req->timeout;
1146	return BLKPREP_OK;
1147}
1148EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1149
1150/*
1151 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1152 * from filesystems that still need to be translated to SCSI CDBs from
1153 * the ULD.
1154 */
1155int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1156{
1157	struct scsi_cmnd *cmd;
1158	int ret = scsi_prep_state_check(sdev, req);
1159
1160	if (ret != BLKPREP_OK)
1161		return ret;
1162	/*
1163	 * Filesystem requests must transfer data.
1164	 */
1165	BUG_ON(!req->nr_phys_segments);
1166
1167	cmd = scsi_get_cmd_from_req(sdev, req);
1168	if (unlikely(!cmd))
1169		return BLKPREP_DEFER;
1170
1171	return scsi_init_io(cmd, GFP_ATOMIC);
1172}
1173EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1174
1175int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1176{
1177	int ret = BLKPREP_OK;
1178
1179	/*
1180	 * If the device is not in running state we will reject some
1181	 * or all commands.
1182	 */
1183	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1184		switch (sdev->sdev_state) {
1185		case SDEV_OFFLINE:
1186			/*
1187			 * If the device is offline we refuse to process any
1188			 * commands.  The device must be brought online
1189			 * before trying any recovery commands.
1190			 */
1191			sdev_printk(KERN_ERR, sdev,
1192				    "rejecting I/O to offline device\n");
1193			ret = BLKPREP_KILL;
1194			break;
1195		case SDEV_DEL:
1196			/*
1197			 * If the device is fully deleted, we refuse to
1198			 * process any commands as well.
1199			 */
1200			sdev_printk(KERN_ERR, sdev,
1201				    "rejecting I/O to dead device\n");
1202			ret = BLKPREP_KILL;
1203			break;
1204		case SDEV_QUIESCE:
1205		case SDEV_BLOCK:
1206			/*
1207			 * If the devices is blocked we defer normal commands.
1208			 */
1209			if (!(req->cmd_flags & REQ_PREEMPT))
1210				ret = BLKPREP_DEFER;
1211			break;
1212		default:
1213			/*
1214			 * For any other not fully online state we only allow
1215			 * special commands.  In particular any user initiated
1216			 * command is not allowed.
1217			 */
1218			if (!(req->cmd_flags & REQ_PREEMPT))
1219				ret = BLKPREP_KILL;
1220			break;
1221		}
1222	}
1223	return ret;
1224}
1225EXPORT_SYMBOL(scsi_prep_state_check);
1226
1227int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1228{
1229	struct scsi_device *sdev = q->queuedata;
1230
1231	switch (ret) {
1232	case BLKPREP_KILL:
1233		req->errors = DID_NO_CONNECT << 16;
1234		/* release the command and kill it */
1235		if (req->special) {
1236			struct scsi_cmnd *cmd = req->special;
1237			scsi_release_buffers(cmd);
1238			scsi_put_command(cmd);
1239			req->special = NULL;
1240		}
1241		break;
1242	case BLKPREP_DEFER:
1243		/*
1244		 * If we defer, the elv_next_request() returns NULL, but the
1245		 * queue must be restarted, so we plug here if no returning
1246		 * command will automatically do that.
1247		 */
1248		if (sdev->device_busy == 0)
1249			blk_plug_device(q);
1250		break;
1251	default:
1252		req->cmd_flags |= REQ_DONTPREP;
1253	}
1254
1255	return ret;
1256}
1257EXPORT_SYMBOL(scsi_prep_return);
1258
1259int scsi_prep_fn(struct request_queue *q, struct request *req)
1260{
1261	struct scsi_device *sdev = q->queuedata;
1262	int ret = BLKPREP_KILL;
1263
1264	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1265		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1266	return scsi_prep_return(q, req, ret);
1267}
1268
1269/*
1270 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1271 * return 0.
1272 *
1273 * Called with the queue_lock held.
1274 */
1275static inline int scsi_dev_queue_ready(struct request_queue *q,
1276				  struct scsi_device *sdev)
1277{
1278	if (sdev->device_busy >= sdev->queue_depth)
1279		return 0;
1280	if (sdev->device_busy == 0 && sdev->device_blocked) {
1281		/*
1282		 * unblock after device_blocked iterates to zero
1283		 */
1284		if (--sdev->device_blocked == 0) {
1285			SCSI_LOG_MLQUEUE(3,
1286				   sdev_printk(KERN_INFO, sdev,
1287				   "unblocking device at zero depth\n"));
1288		} else {
1289			blk_plug_device(q);
1290			return 0;
1291		}
1292	}
1293	if (sdev->device_blocked)
1294		return 0;
1295
1296	return 1;
1297}
1298
1299/*
1300 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1301 * return 0. We must end up running the queue again whenever 0 is
1302 * returned, else IO can hang.
1303 *
1304 * Called with host_lock held.
1305 */
1306static inline int scsi_host_queue_ready(struct request_queue *q,
1307				   struct Scsi_Host *shost,
1308				   struct scsi_device *sdev)
1309{
1310	if (scsi_host_in_recovery(shost))
1311		return 0;
1312	if (shost->host_busy == 0 && shost->host_blocked) {
1313		/*
1314		 * unblock after host_blocked iterates to zero
1315		 */
1316		if (--shost->host_blocked == 0) {
1317			SCSI_LOG_MLQUEUE(3,
1318				printk("scsi%d unblocking host at zero depth\n",
1319					shost->host_no));
1320		} else {
1321			blk_plug_device(q);
1322			return 0;
1323		}
1324	}
1325	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1326	    shost->host_blocked || shost->host_self_blocked) {
1327		if (list_empty(&sdev->starved_entry))
1328			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1329		return 0;
1330	}
1331
1332	/* We're OK to process the command, so we can't be starved */
1333	if (!list_empty(&sdev->starved_entry))
1334		list_del_init(&sdev->starved_entry);
1335
1336	return 1;
1337}
1338
1339/*
1340 * Kill a request for a dead device
1341 */
1342static void scsi_kill_request(struct request *req, struct request_queue *q)
1343{
1344	struct scsi_cmnd *cmd = req->special;
1345	struct scsi_device *sdev = cmd->device;
1346	struct Scsi_Host *shost = sdev->host;
1347
1348	blkdev_dequeue_request(req);
1349
1350	if (unlikely(cmd == NULL)) {
1351		printk(KERN_CRIT "impossible request in %s.\n",
1352				 __FUNCTION__);
1353		BUG();
1354	}
1355
1356	scsi_init_cmd_errh(cmd);
1357	cmd->result = DID_NO_CONNECT << 16;
1358	atomic_inc(&cmd->device->iorequest_cnt);
1359
1360	/*
1361	 * SCSI request completion path will do scsi_device_unbusy(),
1362	 * bump busy counts.  To bump the counters, we need to dance
1363	 * with the locks as normal issue path does.
1364	 */
1365	sdev->device_busy++;
1366	spin_unlock(sdev->request_queue->queue_lock);
1367	spin_lock(shost->host_lock);
1368	shost->host_busy++;
1369	spin_unlock(shost->host_lock);
1370	spin_lock(sdev->request_queue->queue_lock);
1371
1372	__scsi_done(cmd);
1373}
1374
1375static void scsi_softirq_done(struct request *rq)
1376{
1377	struct scsi_cmnd *cmd = rq->completion_data;
1378	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1379	int disposition;
1380
1381	INIT_LIST_HEAD(&cmd->eh_entry);
1382
1383	disposition = scsi_decide_disposition(cmd);
1384	if (disposition != SUCCESS &&
1385	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1386		sdev_printk(KERN_ERR, cmd->device,
1387			    "timing out command, waited %lus\n",
1388			    wait_for/HZ);
1389		disposition = SUCCESS;
1390	}
1391
1392	scsi_log_completion(cmd, disposition);
1393
1394	switch (disposition) {
1395		case SUCCESS:
1396			scsi_finish_command(cmd);
1397			break;
1398		case NEEDS_RETRY:
1399			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1400			break;
1401		case ADD_TO_MLQUEUE:
1402			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1403			break;
1404		default:
1405			if (!scsi_eh_scmd_add(cmd, 0))
1406				scsi_finish_command(cmd);
1407	}
1408}
1409
1410/*
1411 * Function:    scsi_request_fn()
1412 *
1413 * Purpose:     Main strategy routine for SCSI.
1414 *
1415 * Arguments:   q       - Pointer to actual queue.
1416 *
1417 * Returns:     Nothing
1418 *
1419 * Lock status: IO request lock assumed to be held when called.
1420 */
1421static void scsi_request_fn(struct request_queue *q)
1422{
1423	struct scsi_device *sdev = q->queuedata;
1424	struct Scsi_Host *shost;
1425	struct scsi_cmnd *cmd;
1426	struct request *req;
1427
1428	if (!sdev) {
1429		printk("scsi: killing requests for dead queue\n");
1430		while ((req = elv_next_request(q)) != NULL)
1431			scsi_kill_request(req, q);
1432		return;
1433	}
1434
1435	if(!get_device(&sdev->sdev_gendev))
1436		/* We must be tearing the block queue down already */
1437		return;
1438
1439	/*
1440	 * To start with, we keep looping until the queue is empty, or until
1441	 * the host is no longer able to accept any more requests.
1442	 */
1443	shost = sdev->host;
1444	while (!blk_queue_plugged(q)) {
1445		int rtn;
1446		/*
1447		 * get next queueable request.  We do this early to make sure
1448		 * that the request is fully prepared even if we cannot
1449		 * accept it.
1450		 */
1451		req = elv_next_request(q);
1452		if (!req || !scsi_dev_queue_ready(q, sdev))
1453			break;
1454
1455		if (unlikely(!scsi_device_online(sdev))) {
1456			sdev_printk(KERN_ERR, sdev,
1457				    "rejecting I/O to offline device\n");
1458			scsi_kill_request(req, q);
1459			continue;
1460		}
1461
1462
1463		/*
1464		 * Remove the request from the request list.
1465		 */
1466		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1467			blkdev_dequeue_request(req);
1468		sdev->device_busy++;
1469
1470		spin_unlock(q->queue_lock);
1471		cmd = req->special;
1472		if (unlikely(cmd == NULL)) {
1473			printk(KERN_CRIT "impossible request in %s.\n"
1474					 "please mail a stack trace to "
1475					 "linux-scsi@vger.kernel.org\n",
1476					 __FUNCTION__);
1477			blk_dump_rq_flags(req, "foo");
1478			BUG();
1479		}
1480		spin_lock(shost->host_lock);
1481
1482		if (!scsi_host_queue_ready(q, shost, sdev))
1483			goto not_ready;
1484		if (scsi_target(sdev)->single_lun) {
1485			if (scsi_target(sdev)->starget_sdev_user &&
1486			    scsi_target(sdev)->starget_sdev_user != sdev)
1487				goto not_ready;
1488			scsi_target(sdev)->starget_sdev_user = sdev;
1489		}
1490		shost->host_busy++;
1491
1492		/*
1493		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1494		 *		take the lock again.
1495		 */
1496		spin_unlock_irq(shost->host_lock);
1497
1498		/*
1499		 * Finally, initialize any error handling parameters, and set up
1500		 * the timers for timeouts.
1501		 */
1502		scsi_init_cmd_errh(cmd);
1503
1504		/*
1505		 * Dispatch the command to the low-level driver.
1506		 */
1507		rtn = scsi_dispatch_cmd(cmd);
1508		spin_lock_irq(q->queue_lock);
1509		if(rtn) {
1510			/* we're refusing the command; because of
1511			 * the way locks get dropped, we need to
1512			 * check here if plugging is required */
1513			if(sdev->device_busy == 0)
1514				blk_plug_device(q);
1515
1516			break;
1517		}
1518	}
1519
1520	goto out;
1521
1522 not_ready:
1523	spin_unlock_irq(shost->host_lock);
1524
1525	/*
1526	 * lock q, handle tag, requeue req, and decrement device_busy. We
1527	 * must return with queue_lock held.
1528	 *
1529	 * Decrementing device_busy without checking it is OK, as all such
1530	 * cases (host limits or settings) should run the queue at some
1531	 * later time.
1532	 */
1533	spin_lock_irq(q->queue_lock);
1534	blk_requeue_request(q, req);
1535	sdev->device_busy--;
1536	if(sdev->device_busy == 0)
1537		blk_plug_device(q);
1538 out:
1539	/* must be careful here...if we trigger the ->remove() function
1540	 * we cannot be holding the q lock */
1541	spin_unlock_irq(q->queue_lock);
1542	put_device(&sdev->sdev_gendev);
1543	spin_lock_irq(q->queue_lock);
1544}
1545
1546u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1547{
1548	struct device *host_dev;
1549	u64 bounce_limit = 0xffffffff;
1550
1551	if (shost->unchecked_isa_dma)
1552		return BLK_BOUNCE_ISA;
1553	/*
1554	 * Platforms with virtual-DMA translation
1555	 * hardware have no practical limit.
1556	 */
1557	if (!PCI_DMA_BUS_IS_PHYS)
1558		return BLK_BOUNCE_ANY;
1559
1560	host_dev = scsi_get_device(shost);
1561	if (host_dev && host_dev->dma_mask)
1562		bounce_limit = *host_dev->dma_mask;
1563
1564	return bounce_limit;
1565}
1566EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1567
1568struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1569					 request_fn_proc *request_fn)
1570{
1571	struct request_queue *q;
1572	struct device *dev = shost->shost_gendev.parent;
1573
1574	q = blk_init_queue(request_fn, NULL);
1575	if (!q)
1576		return NULL;
1577
1578	/*
1579	 * this limit is imposed by hardware restrictions
1580	 */
1581	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1582	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1583
1584	blk_queue_max_sectors(q, shost->max_sectors);
1585	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1586	blk_queue_segment_boundary(q, shost->dma_boundary);
1587	dma_set_seg_boundary(dev, shost->dma_boundary);
1588
1589	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1590
1591	if (!shost->use_clustering)
1592		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1593
1594	/*
1595	 * set a reasonable default alignment on word boundaries: the
1596	 * host and device may alter it using
1597	 * blk_queue_update_dma_alignment() later.
1598	 */
1599	blk_queue_dma_alignment(q, 0x03);
1600
1601	return q;
1602}
1603EXPORT_SYMBOL(__scsi_alloc_queue);
1604
1605struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1606{
1607	struct request_queue *q;
1608
1609	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1610	if (!q)
1611		return NULL;
1612
1613	blk_queue_prep_rq(q, scsi_prep_fn);
1614	blk_queue_softirq_done(q, scsi_softirq_done);
1615	return q;
1616}
1617
1618void scsi_free_queue(struct request_queue *q)
1619{
1620	blk_cleanup_queue(q);
1621}
1622
1623/*
1624 * Function:    scsi_block_requests()
1625 *
1626 * Purpose:     Utility function used by low-level drivers to prevent further
1627 *		commands from being queued to the device.
1628 *
1629 * Arguments:   shost       - Host in question
1630 *
1631 * Returns:     Nothing
1632 *
1633 * Lock status: No locks are assumed held.
1634 *
1635 * Notes:       There is no timer nor any other means by which the requests
1636 *		get unblocked other than the low-level driver calling
1637 *		scsi_unblock_requests().
1638 */
1639void scsi_block_requests(struct Scsi_Host *shost)
1640{
1641	shost->host_self_blocked = 1;
1642}
1643EXPORT_SYMBOL(scsi_block_requests);
1644
1645/*
1646 * Function:    scsi_unblock_requests()
1647 *
1648 * Purpose:     Utility function used by low-level drivers to allow further
1649 *		commands from being queued to the device.
1650 *
1651 * Arguments:   shost       - Host in question
1652 *
1653 * Returns:     Nothing
1654 *
1655 * Lock status: No locks are assumed held.
1656 *
1657 * Notes:       There is no timer nor any other means by which the requests
1658 *		get unblocked other than the low-level driver calling
1659 *		scsi_unblock_requests().
1660 *
1661 *		This is done as an API function so that changes to the
1662 *		internals of the scsi mid-layer won't require wholesale
1663 *		changes to drivers that use this feature.
1664 */
1665void scsi_unblock_requests(struct Scsi_Host *shost)
1666{
1667	shost->host_self_blocked = 0;
1668	scsi_run_host_queues(shost);
1669}
1670EXPORT_SYMBOL(scsi_unblock_requests);
1671
1672int __init scsi_init_queue(void)
1673{
1674	int i;
1675
1676	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1677					sizeof(struct scsi_io_context),
1678					0, 0, NULL);
1679	if (!scsi_io_context_cache) {
1680		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1681		return -ENOMEM;
1682	}
1683
1684	scsi_bidi_sdb_cache = kmem_cache_create("scsi_bidi_sdb",
1685					sizeof(struct scsi_data_buffer),
1686					0, 0, NULL);
1687	if (!scsi_bidi_sdb_cache) {
1688		printk(KERN_ERR "SCSI: can't init scsi bidi sdb cache\n");
1689		goto cleanup_io_context;
1690	}
1691
1692	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1693		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1694		int size = sgp->size * sizeof(struct scatterlist);
1695
1696		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1697				SLAB_HWCACHE_ALIGN, NULL);
1698		if (!sgp->slab) {
1699			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1700					sgp->name);
1701			goto cleanup_bidi_sdb;
1702		}
1703
1704		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1705						     sgp->slab);
1706		if (!sgp->pool) {
1707			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1708					sgp->name);
1709			goto cleanup_bidi_sdb;
1710		}
1711	}
1712
1713	return 0;
1714
1715cleanup_bidi_sdb:
1716	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1717		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1718		if (sgp->pool)
1719			mempool_destroy(sgp->pool);
1720		if (sgp->slab)
1721			kmem_cache_destroy(sgp->slab);
1722	}
1723	kmem_cache_destroy(scsi_bidi_sdb_cache);
1724cleanup_io_context:
1725	kmem_cache_destroy(scsi_io_context_cache);
1726
1727	return -ENOMEM;
1728}
1729
1730void scsi_exit_queue(void)
1731{
1732	int i;
1733
1734	kmem_cache_destroy(scsi_io_context_cache);
1735	kmem_cache_destroy(scsi_bidi_sdb_cache);
1736
1737	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1738		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1739		mempool_destroy(sgp->pool);
1740		kmem_cache_destroy(sgp->slab);
1741	}
1742}
1743
1744/**
1745 *	scsi_mode_select - issue a mode select
1746 *	@sdev:	SCSI device to be queried
1747 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1748 *	@sp:	Save page bit (0 == don't save, 1 == save)
1749 *	@modepage: mode page being requested
1750 *	@buffer: request buffer (may not be smaller than eight bytes)
1751 *	@len:	length of request buffer.
1752 *	@timeout: command timeout
1753 *	@retries: number of retries before failing
1754 *	@data: returns a structure abstracting the mode header data
1755 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1756 *		must be SCSI_SENSE_BUFFERSIZE big.
1757 *
1758 *	Returns zero if successful; negative error number or scsi
1759 *	status on error
1760 *
1761 */
1762int
1763scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1764		 unsigned char *buffer, int len, int timeout, int retries,
1765		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1766{
1767	unsigned char cmd[10];
1768	unsigned char *real_buffer;
1769	int ret;
1770
1771	memset(cmd, 0, sizeof(cmd));
1772	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1773
1774	if (sdev->use_10_for_ms) {
1775		if (len > 65535)
1776			return -EINVAL;
1777		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1778		if (!real_buffer)
1779			return -ENOMEM;
1780		memcpy(real_buffer + 8, buffer, len);
1781		len += 8;
1782		real_buffer[0] = 0;
1783		real_buffer[1] = 0;
1784		real_buffer[2] = data->medium_type;
1785		real_buffer[3] = data->device_specific;
1786		real_buffer[4] = data->longlba ? 0x01 : 0;
1787		real_buffer[5] = 0;
1788		real_buffer[6] = data->block_descriptor_length >> 8;
1789		real_buffer[7] = data->block_descriptor_length;
1790
1791		cmd[0] = MODE_SELECT_10;
1792		cmd[7] = len >> 8;
1793		cmd[8] = len;
1794	} else {
1795		if (len > 255 || data->block_descriptor_length > 255 ||
1796		    data->longlba)
1797			return -EINVAL;
1798
1799		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1800		if (!real_buffer)
1801			return -ENOMEM;
1802		memcpy(real_buffer + 4, buffer, len);
1803		len += 4;
1804		real_buffer[0] = 0;
1805		real_buffer[1] = data->medium_type;
1806		real_buffer[2] = data->device_specific;
1807		real_buffer[3] = data->block_descriptor_length;
1808
1809
1810		cmd[0] = MODE_SELECT;
1811		cmd[4] = len;
1812	}
1813
1814	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1815			       sshdr, timeout, retries);
1816	kfree(real_buffer);
1817	return ret;
1818}
1819EXPORT_SYMBOL_GPL(scsi_mode_select);
1820
1821/**
1822 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1823 *	@sdev:	SCSI device to be queried
1824 *	@dbd:	set if mode sense will allow block descriptors to be returned
1825 *	@modepage: mode page being requested
1826 *	@buffer: request buffer (may not be smaller than eight bytes)
1827 *	@len:	length of request buffer.
1828 *	@timeout: command timeout
1829 *	@retries: number of retries before failing
1830 *	@data: returns a structure abstracting the mode header data
1831 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1832 *		must be SCSI_SENSE_BUFFERSIZE big.
1833 *
1834 *	Returns zero if unsuccessful, or the header offset (either 4
1835 *	or 8 depending on whether a six or ten byte command was
1836 *	issued) if successful.
1837 */
1838int
1839scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1840		  unsigned char *buffer, int len, int timeout, int retries,
1841		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1842{
1843	unsigned char cmd[12];
1844	int use_10_for_ms;
1845	int header_length;
1846	int result;
1847	struct scsi_sense_hdr my_sshdr;
1848
1849	memset(data, 0, sizeof(*data));
1850	memset(&cmd[0], 0, 12);
1851	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1852	cmd[2] = modepage;
1853
1854	/* caller might not be interested in sense, but we need it */
1855	if (!sshdr)
1856		sshdr = &my_sshdr;
1857
1858 retry:
1859	use_10_for_ms = sdev->use_10_for_ms;
1860
1861	if (use_10_for_ms) {
1862		if (len < 8)
1863			len = 8;
1864
1865		cmd[0] = MODE_SENSE_10;
1866		cmd[8] = len;
1867		header_length = 8;
1868	} else {
1869		if (len < 4)
1870			len = 4;
1871
1872		cmd[0] = MODE_SENSE;
1873		cmd[4] = len;
1874		header_length = 4;
1875	}
1876
1877	memset(buffer, 0, len);
1878
1879	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1880				  sshdr, timeout, retries);
1881
1882	/* This code looks awful: what it's doing is making sure an
1883	 * ILLEGAL REQUEST sense return identifies the actual command
1884	 * byte as the problem.  MODE_SENSE commands can return
1885	 * ILLEGAL REQUEST if the code page isn't supported */
1886
1887	if (use_10_for_ms && !scsi_status_is_good(result) &&
1888	    (driver_byte(result) & DRIVER_SENSE)) {
1889		if (scsi_sense_valid(sshdr)) {
1890			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1891			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1892				/*
1893				 * Invalid command operation code
1894				 */
1895				sdev->use_10_for_ms = 0;
1896				goto retry;
1897			}
1898		}
1899	}
1900
1901	if(scsi_status_is_good(result)) {
1902		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1903			     (modepage == 6 || modepage == 8))) {
1904			/* Initio breakage? */
1905			header_length = 0;
1906			data->length = 13;
1907			data->medium_type = 0;
1908			data->device_specific = 0;
1909			data->longlba = 0;
1910			data->block_descriptor_length = 0;
1911		} else if(use_10_for_ms) {
1912			data->length = buffer[0]*256 + buffer[1] + 2;
1913			data->medium_type = buffer[2];
1914			data->device_specific = buffer[3];
1915			data->longlba = buffer[4] & 0x01;
1916			data->block_descriptor_length = buffer[6]*256
1917				+ buffer[7];
1918		} else {
1919			data->length = buffer[0] + 1;
1920			data->medium_type = buffer[1];
1921			data->device_specific = buffer[2];
1922			data->block_descriptor_length = buffer[3];
1923		}
1924		data->header_length = header_length;
1925	}
1926
1927	return result;
1928}
1929EXPORT_SYMBOL(scsi_mode_sense);
1930
1931/**
1932 *	scsi_test_unit_ready - test if unit is ready
1933 *	@sdev:	scsi device to change the state of.
1934 *	@timeout: command timeout
1935 *	@retries: number of retries before failing
1936 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1937 *		returning sense. Make sure that this is cleared before passing
1938 *		in.
1939 *
1940 *	Returns zero if unsuccessful or an error if TUR failed.  For
1941 *	removable media, a return of NOT_READY or UNIT_ATTENTION is
1942 *	translated to success, with the ->changed flag updated.
1943 **/
1944int
1945scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1946		     struct scsi_sense_hdr *sshdr_external)
1947{
1948	char cmd[] = {
1949		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1950	};
1951	struct scsi_sense_hdr *sshdr;
1952	int result;
1953
1954	if (!sshdr_external)
1955		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1956	else
1957		sshdr = sshdr_external;
1958
1959	/* try to eat the UNIT_ATTENTION if there are enough retries */
1960	do {
1961		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1962					  timeout, retries);
1963	} while ((driver_byte(result) & DRIVER_SENSE) &&
1964		 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
1965		 --retries);
1966
1967	if (!sshdr)
1968		/* could not allocate sense buffer, so can't process it */
1969		return result;
1970
1971	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1972
1973		if ((scsi_sense_valid(sshdr)) &&
1974		    ((sshdr->sense_key == UNIT_ATTENTION) ||
1975		     (sshdr->sense_key == NOT_READY))) {
1976			sdev->changed = 1;
1977			result = 0;
1978		}
1979	}
1980	if (!sshdr_external)
1981		kfree(sshdr);
1982	return result;
1983}
1984EXPORT_SYMBOL(scsi_test_unit_ready);
1985
1986/**
1987 *	scsi_device_set_state - Take the given device through the device state model.
1988 *	@sdev:	scsi device to change the state of.
1989 *	@state:	state to change to.
1990 *
1991 *	Returns zero if unsuccessful or an error if the requested
1992 *	transition is illegal.
1993 */
1994int
1995scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1996{
1997	enum scsi_device_state oldstate = sdev->sdev_state;
1998
1999	if (state == oldstate)
2000		return 0;
2001
2002	switch (state) {
2003	case SDEV_CREATED:
2004		/* There are no legal states that come back to
2005		 * created.  This is the manually initialised start
2006		 * state */
2007		goto illegal;
2008
2009	case SDEV_RUNNING:
2010		switch (oldstate) {
2011		case SDEV_CREATED:
2012		case SDEV_OFFLINE:
2013		case SDEV_QUIESCE:
2014		case SDEV_BLOCK:
2015			break;
2016		default:
2017			goto illegal;
2018		}
2019		break;
2020
2021	case SDEV_QUIESCE:
2022		switch (oldstate) {
2023		case SDEV_RUNNING:
2024		case SDEV_OFFLINE:
2025			break;
2026		default:
2027			goto illegal;
2028		}
2029		break;
2030
2031	case SDEV_OFFLINE:
2032		switch (oldstate) {
2033		case SDEV_CREATED:
2034		case SDEV_RUNNING:
2035		case SDEV_QUIESCE:
2036		case SDEV_BLOCK:
2037			break;
2038		default:
2039			goto illegal;
2040		}
2041		break;
2042
2043	case SDEV_BLOCK:
2044		switch (oldstate) {
2045		case SDEV_CREATED:
2046		case SDEV_RUNNING:
2047			break;
2048		default:
2049			goto illegal;
2050		}
2051		break;
2052
2053	case SDEV_CANCEL:
2054		switch (oldstate) {
2055		case SDEV_CREATED:
2056		case SDEV_RUNNING:
2057		case SDEV_QUIESCE:
2058		case SDEV_OFFLINE:
2059		case SDEV_BLOCK:
2060			break;
2061		default:
2062			goto illegal;
2063		}
2064		break;
2065
2066	case SDEV_DEL:
2067		switch (oldstate) {
2068		case SDEV_CREATED:
2069		case SDEV_RUNNING:
2070		case SDEV_OFFLINE:
2071		case SDEV_CANCEL:
2072			break;
2073		default:
2074			goto illegal;
2075		}
2076		break;
2077
2078	}
2079	sdev->sdev_state = state;
2080	return 0;
2081
2082 illegal:
2083	SCSI_LOG_ERROR_RECOVERY(1,
2084				sdev_printk(KERN_ERR, sdev,
2085					    "Illegal state transition %s->%s\n",
2086					    scsi_device_state_name(oldstate),
2087					    scsi_device_state_name(state))
2088				);
2089	return -EINVAL;
2090}
2091EXPORT_SYMBOL(scsi_device_set_state);
2092
2093/**
2094 * 	sdev_evt_emit - emit a single SCSI device uevent
2095 *	@sdev: associated SCSI device
2096 *	@evt: event to emit
2097 *
2098 *	Send a single uevent (scsi_event) to the associated scsi_device.
2099 */
2100static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2101{
2102	int idx = 0;
2103	char *envp[3];
2104
2105	switch (evt->evt_type) {
2106	case SDEV_EVT_MEDIA_CHANGE:
2107		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2108		break;
2109
2110	default:
2111		/* do nothing */
2112		break;
2113	}
2114
2115	envp[idx++] = NULL;
2116
2117	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2118}
2119
2120/**
2121 * 	sdev_evt_thread - send a uevent for each scsi event
2122 *	@work: work struct for scsi_device
2123 *
2124 *	Dispatch queued events to their associated scsi_device kobjects
2125 *	as uevents.
2126 */
2127void scsi_evt_thread(struct work_struct *work)
2128{
2129	struct scsi_device *sdev;
2130	LIST_HEAD(event_list);
2131
2132	sdev = container_of(work, struct scsi_device, event_work);
2133
2134	while (1) {
2135		struct scsi_event *evt;
2136		struct list_head *this, *tmp;
2137		unsigned long flags;
2138
2139		spin_lock_irqsave(&sdev->list_lock, flags);
2140		list_splice_init(&sdev->event_list, &event_list);
2141		spin_unlock_irqrestore(&sdev->list_lock, flags);
2142
2143		if (list_empty(&event_list))
2144			break;
2145
2146		list_for_each_safe(this, tmp, &event_list) {
2147			evt = list_entry(this, struct scsi_event, node);
2148			list_del(&evt->node);
2149			scsi_evt_emit(sdev, evt);
2150			kfree(evt);
2151		}
2152	}
2153}
2154
2155/**
2156 * 	sdev_evt_send - send asserted event to uevent thread
2157 *	@sdev: scsi_device event occurred on
2158 *	@evt: event to send
2159 *
2160 *	Assert scsi device event asynchronously.
2161 */
2162void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2163{
2164	unsigned long flags;
2165
2166	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2167		kfree(evt);
2168		return;
2169	}
2170
2171	spin_lock_irqsave(&sdev->list_lock, flags);
2172	list_add_tail(&evt->node, &sdev->event_list);
2173	schedule_work(&sdev->event_work);
2174	spin_unlock_irqrestore(&sdev->list_lock, flags);
2175}
2176EXPORT_SYMBOL_GPL(sdev_evt_send);
2177
2178/**
2179 * 	sdev_evt_alloc - allocate a new scsi event
2180 *	@evt_type: type of event to allocate
2181 *	@gfpflags: GFP flags for allocation
2182 *
2183 *	Allocates and returns a new scsi_event.
2184 */
2185struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2186				  gfp_t gfpflags)
2187{
2188	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2189	if (!evt)
2190		return NULL;
2191
2192	evt->evt_type = evt_type;
2193	INIT_LIST_HEAD(&evt->node);
2194
2195	/* evt_type-specific initialization, if any */
2196	switch (evt_type) {
2197	case SDEV_EVT_MEDIA_CHANGE:
2198	default:
2199		/* do nothing */
2200		break;
2201	}
2202
2203	return evt;
2204}
2205EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2206
2207/**
2208 * 	sdev_evt_send_simple - send asserted event to uevent thread
2209 *	@sdev: scsi_device event occurred on
2210 *	@evt_type: type of event to send
2211 *	@gfpflags: GFP flags for allocation
2212 *
2213 *	Assert scsi device event asynchronously, given an event type.
2214 */
2215void sdev_evt_send_simple(struct scsi_device *sdev,
2216			  enum scsi_device_event evt_type, gfp_t gfpflags)
2217{
2218	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2219	if (!evt) {
2220		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2221			    evt_type);
2222		return;
2223	}
2224
2225	sdev_evt_send(sdev, evt);
2226}
2227EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2228
2229/**
2230 *	scsi_device_quiesce - Block user issued commands.
2231 *	@sdev:	scsi device to quiesce.
2232 *
2233 *	This works by trying to transition to the SDEV_QUIESCE state
2234 *	(which must be a legal transition).  When the device is in this
2235 *	state, only special requests will be accepted, all others will
2236 *	be deferred.  Since special requests may also be requeued requests,
2237 *	a successful return doesn't guarantee the device will be
2238 *	totally quiescent.
2239 *
2240 *	Must be called with user context, may sleep.
2241 *
2242 *	Returns zero if unsuccessful or an error if not.
2243 */
2244int
2245scsi_device_quiesce(struct scsi_device *sdev)
2246{
2247	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2248	if (err)
2249		return err;
2250
2251	scsi_run_queue(sdev->request_queue);
2252	while (sdev->device_busy) {
2253		msleep_interruptible(200);
2254		scsi_run_queue(sdev->request_queue);
2255	}
2256	return 0;
2257}
2258EXPORT_SYMBOL(scsi_device_quiesce);
2259
2260/**
2261 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2262 *	@sdev:	scsi device to resume.
2263 *
2264 *	Moves the device from quiesced back to running and restarts the
2265 *	queues.
2266 *
2267 *	Must be called with user context, may sleep.
2268 */
2269void
2270scsi_device_resume(struct scsi_device *sdev)
2271{
2272	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2273		return;
2274	scsi_run_queue(sdev->request_queue);
2275}
2276EXPORT_SYMBOL(scsi_device_resume);
2277
2278static void
2279device_quiesce_fn(struct scsi_device *sdev, void *data)
2280{
2281	scsi_device_quiesce(sdev);
2282}
2283
2284void
2285scsi_target_quiesce(struct scsi_target *starget)
2286{
2287	starget_for_each_device(starget, NULL, device_quiesce_fn);
2288}
2289EXPORT_SYMBOL(scsi_target_quiesce);
2290
2291static void
2292device_resume_fn(struct scsi_device *sdev, void *data)
2293{
2294	scsi_device_resume(sdev);
2295}
2296
2297void
2298scsi_target_resume(struct scsi_target *starget)
2299{
2300	starget_for_each_device(starget, NULL, device_resume_fn);
2301}
2302EXPORT_SYMBOL(scsi_target_resume);
2303
2304/**
2305 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2306 * @sdev:	device to block
2307 *
2308 * Block request made by scsi lld's to temporarily stop all
2309 * scsi commands on the specified device.  Called from interrupt
2310 * or normal process context.
2311 *
2312 * Returns zero if successful or error if not
2313 *
2314 * Notes:
2315 *	This routine transitions the device to the SDEV_BLOCK state
2316 *	(which must be a legal transition).  When the device is in this
2317 *	state, all commands are deferred until the scsi lld reenables
2318 *	the device with scsi_device_unblock or device_block_tmo fires.
2319 *	This routine assumes the host_lock is held on entry.
2320 */
2321int
2322scsi_internal_device_block(struct scsi_device *sdev)
2323{
2324	struct request_queue *q = sdev->request_queue;
2325	unsigned long flags;
2326	int err = 0;
2327
2328	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2329	if (err)
2330		return err;
2331
2332	/*
2333	 * The device has transitioned to SDEV_BLOCK.  Stop the
2334	 * block layer from calling the midlayer with this device's
2335	 * request queue.
2336	 */
2337	spin_lock_irqsave(q->queue_lock, flags);
2338	blk_stop_queue(q);
2339	spin_unlock_irqrestore(q->queue_lock, flags);
2340
2341	return 0;
2342}
2343EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2344
2345/**
2346 * scsi_internal_device_unblock - resume a device after a block request
2347 * @sdev:	device to resume
2348 *
2349 * Called by scsi lld's or the midlayer to restart the device queue
2350 * for the previously suspended scsi device.  Called from interrupt or
2351 * normal process context.
2352 *
2353 * Returns zero if successful or error if not.
2354 *
2355 * Notes:
2356 *	This routine transitions the device to the SDEV_RUNNING state
2357 *	(which must be a legal transition) allowing the midlayer to
2358 *	goose the queue for this device.  This routine assumes the
2359 *	host_lock is held upon entry.
2360 */
2361int
2362scsi_internal_device_unblock(struct scsi_device *sdev)
2363{
2364	struct request_queue *q = sdev->request_queue;
2365	int err;
2366	unsigned long flags;
2367
2368	/*
2369	 * Try to transition the scsi device to SDEV_RUNNING
2370	 * and goose the device queue if successful.
2371	 */
2372	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2373	if (err)
2374		return err;
2375
2376	spin_lock_irqsave(q->queue_lock, flags);
2377	blk_start_queue(q);
2378	spin_unlock_irqrestore(q->queue_lock, flags);
2379
2380	return 0;
2381}
2382EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2383
2384static void
2385device_block(struct scsi_device *sdev, void *data)
2386{
2387	scsi_internal_device_block(sdev);
2388}
2389
2390static int
2391target_block(struct device *dev, void *data)
2392{
2393	if (scsi_is_target_device(dev))
2394		starget_for_each_device(to_scsi_target(dev), NULL,
2395					device_block);
2396	return 0;
2397}
2398
2399void
2400scsi_target_block(struct device *dev)
2401{
2402	if (scsi_is_target_device(dev))
2403		starget_for_each_device(to_scsi_target(dev), NULL,
2404					device_block);
2405	else
2406		device_for_each_child(dev, NULL, target_block);
2407}
2408EXPORT_SYMBOL_GPL(scsi_target_block);
2409
2410static void
2411device_unblock(struct scsi_device *sdev, void *data)
2412{
2413	scsi_internal_device_unblock(sdev);
2414}
2415
2416static int
2417target_unblock(struct device *dev, void *data)
2418{
2419	if (scsi_is_target_device(dev))
2420		starget_for_each_device(to_scsi_target(dev), NULL,
2421					device_unblock);
2422	return 0;
2423}
2424
2425void
2426scsi_target_unblock(struct device *dev)
2427{
2428	if (scsi_is_target_device(dev))
2429		starget_for_each_device(to_scsi_target(dev), NULL,
2430					device_unblock);
2431	else
2432		device_for_each_child(dev, NULL, target_unblock);
2433}
2434EXPORT_SYMBOL_GPL(scsi_target_unblock);
2435
2436/**
2437 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2438 * @sgl:	scatter-gather list
2439 * @sg_count:	number of segments in sg
2440 * @offset:	offset in bytes into sg, on return offset into the mapped area
2441 * @len:	bytes to map, on return number of bytes mapped
2442 *
2443 * Returns virtual address of the start of the mapped page
2444 */
2445void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2446			  size_t *offset, size_t *len)
2447{
2448	int i;
2449	size_t sg_len = 0, len_complete = 0;
2450	struct scatterlist *sg;
2451	struct page *page;
2452
2453	WARN_ON(!irqs_disabled());
2454
2455	for_each_sg(sgl, sg, sg_count, i) {
2456		len_complete = sg_len; /* Complete sg-entries */
2457		sg_len += sg->length;
2458		if (sg_len > *offset)
2459			break;
2460	}
2461
2462	if (unlikely(i == sg_count)) {
2463		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2464			"elements %d\n",
2465		       __FUNCTION__, sg_len, *offset, sg_count);
2466		WARN_ON(1);
2467		return NULL;
2468	}
2469
2470	/* Offset starting from the beginning of first page in this sg-entry */
2471	*offset = *offset - len_complete + sg->offset;
2472
2473	/* Assumption: contiguous pages can be accessed as "page + i" */
2474	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2475	*offset &= ~PAGE_MASK;
2476
2477	/* Bytes in this sg-entry from *offset to the end of the page */
2478	sg_len = PAGE_SIZE - *offset;
2479	if (*len > sg_len)
2480		*len = sg_len;
2481
2482	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2483}
2484EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2485
2486/**
2487 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2488 * @virt:	virtual address to be unmapped
2489 */
2490void scsi_kunmap_atomic_sg(void *virt)
2491{
2492	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2493}
2494EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2495