scsi_lib.c revision a2b9c1f6208126e6df6c02428c501f8853685812
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/bitops.h>
12#include <linux/blkdev.h>
13#include <linux/completion.h>
14#include <linux/kernel.h>
15#include <linux/mempool.h>
16#include <linux/slab.h>
17#include <linux/init.h>
18#include <linux/pci.h>
19#include <linux/delay.h>
20#include <linux/hardirq.h>
21#include <linux/scatterlist.h>
22
23#include <scsi/scsi.h>
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_dbg.h>
26#include <scsi/scsi_device.h>
27#include <scsi/scsi_driver.h>
28#include <scsi/scsi_eh.h>
29#include <scsi/scsi_host.h>
30
31#include "scsi_priv.h"
32#include "scsi_logging.h"
33
34
35#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36#define SG_MEMPOOL_SIZE		2
37
38struct scsi_host_sg_pool {
39	size_t		size;
40	char		*name;
41	struct kmem_cache	*slab;
42	mempool_t	*pool;
43};
44
45#define SP(x) { x, "sgpool-" __stringify(x) }
46#if (SCSI_MAX_SG_SEGMENTS < 32)
47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48#endif
49static struct scsi_host_sg_pool scsi_sg_pools[] = {
50	SP(8),
51	SP(16),
52#if (SCSI_MAX_SG_SEGMENTS > 32)
53	SP(32),
54#if (SCSI_MAX_SG_SEGMENTS > 64)
55	SP(64),
56#if (SCSI_MAX_SG_SEGMENTS > 128)
57	SP(128),
58#if (SCSI_MAX_SG_SEGMENTS > 256)
59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60#endif
61#endif
62#endif
63#endif
64	SP(SCSI_MAX_SG_SEGMENTS)
65};
66#undef SP
67
68struct kmem_cache *scsi_sdb_cache;
69
70/*
71 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
72 * not change behaviour from the previous unplug mechanism, experimentation
73 * may prove this needs changing.
74 */
75#define SCSI_QUEUE_DELAY	3
76
77/*
78 * Function:	scsi_unprep_request()
79 *
80 * Purpose:	Remove all preparation done for a request, including its
81 *		associated scsi_cmnd, so that it can be requeued.
82 *
83 * Arguments:	req	- request to unprepare
84 *
85 * Lock status:	Assumed that no locks are held upon entry.
86 *
87 * Returns:	Nothing.
88 */
89static void scsi_unprep_request(struct request *req)
90{
91	struct scsi_cmnd *cmd = req->special;
92
93	blk_unprep_request(req);
94	req->special = NULL;
95
96	scsi_put_command(cmd);
97}
98
99/**
100 * __scsi_queue_insert - private queue insertion
101 * @cmd: The SCSI command being requeued
102 * @reason:  The reason for the requeue
103 * @unbusy: Whether the queue should be unbusied
104 *
105 * This is a private queue insertion.  The public interface
106 * scsi_queue_insert() always assumes the queue should be unbusied
107 * because it's always called before the completion.  This function is
108 * for a requeue after completion, which should only occur in this
109 * file.
110 */
111static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
112{
113	struct Scsi_Host *host = cmd->device->host;
114	struct scsi_device *device = cmd->device;
115	struct scsi_target *starget = scsi_target(device);
116	struct request_queue *q = device->request_queue;
117	unsigned long flags;
118
119	SCSI_LOG_MLQUEUE(1,
120		 printk("Inserting command %p into mlqueue\n", cmd));
121
122	/*
123	 * Set the appropriate busy bit for the device/host.
124	 *
125	 * If the host/device isn't busy, assume that something actually
126	 * completed, and that we should be able to queue a command now.
127	 *
128	 * Note that the prior mid-layer assumption that any host could
129	 * always queue at least one command is now broken.  The mid-layer
130	 * will implement a user specifiable stall (see
131	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
132	 * if a command is requeued with no other commands outstanding
133	 * either for the device or for the host.
134	 */
135	switch (reason) {
136	case SCSI_MLQUEUE_HOST_BUSY:
137		host->host_blocked = host->max_host_blocked;
138		break;
139	case SCSI_MLQUEUE_DEVICE_BUSY:
140		device->device_blocked = device->max_device_blocked;
141		break;
142	case SCSI_MLQUEUE_TARGET_BUSY:
143		starget->target_blocked = starget->max_target_blocked;
144		break;
145	}
146
147	/*
148	 * Decrement the counters, since these commands are no longer
149	 * active on the host/device.
150	 */
151	if (unbusy)
152		scsi_device_unbusy(device);
153
154	/*
155	 * Requeue this command.  It will go before all other commands
156	 * that are already in the queue.
157	 */
158	spin_lock_irqsave(q->queue_lock, flags);
159	blk_requeue_request(q, cmd->request);
160	spin_unlock_irqrestore(q->queue_lock, flags);
161
162	kblockd_schedule_work(q, &device->requeue_work);
163
164	return 0;
165}
166
167/*
168 * Function:    scsi_queue_insert()
169 *
170 * Purpose:     Insert a command in the midlevel queue.
171 *
172 * Arguments:   cmd    - command that we are adding to queue.
173 *              reason - why we are inserting command to queue.
174 *
175 * Lock status: Assumed that lock is not held upon entry.
176 *
177 * Returns:     Nothing.
178 *
179 * Notes:       We do this for one of two cases.  Either the host is busy
180 *              and it cannot accept any more commands for the time being,
181 *              or the device returned QUEUE_FULL and can accept no more
182 *              commands.
183 * Notes:       This could be called either from an interrupt context or a
184 *              normal process context.
185 */
186int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
187{
188	return __scsi_queue_insert(cmd, reason, 1);
189}
190/**
191 * scsi_execute - insert request and wait for the result
192 * @sdev:	scsi device
193 * @cmd:	scsi command
194 * @data_direction: data direction
195 * @buffer:	data buffer
196 * @bufflen:	len of buffer
197 * @sense:	optional sense buffer
198 * @timeout:	request timeout in seconds
199 * @retries:	number of times to retry request
200 * @flags:	or into request flags;
201 * @resid:	optional residual length
202 *
203 * returns the req->errors value which is the scsi_cmnd result
204 * field.
205 */
206int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
207		 int data_direction, void *buffer, unsigned bufflen,
208		 unsigned char *sense, int timeout, int retries, int flags,
209		 int *resid)
210{
211	struct request *req;
212	int write = (data_direction == DMA_TO_DEVICE);
213	int ret = DRIVER_ERROR << 24;
214
215	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
216
217	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
218					buffer, bufflen, __GFP_WAIT))
219		goto out;
220
221	req->cmd_len = COMMAND_SIZE(cmd[0]);
222	memcpy(req->cmd, cmd, req->cmd_len);
223	req->sense = sense;
224	req->sense_len = 0;
225	req->retries = retries;
226	req->timeout = timeout;
227	req->cmd_type = REQ_TYPE_BLOCK_PC;
228	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
229
230	/*
231	 * head injection *required* here otherwise quiesce won't work
232	 */
233	blk_execute_rq(req->q, NULL, req, 1);
234
235	/*
236	 * Some devices (USB mass-storage in particular) may transfer
237	 * garbage data together with a residue indicating that the data
238	 * is invalid.  Prevent the garbage from being misinterpreted
239	 * and prevent security leaks by zeroing out the excess data.
240	 */
241	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
242		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
243
244	if (resid)
245		*resid = req->resid_len;
246	ret = req->errors;
247 out:
248	blk_put_request(req);
249
250	return ret;
251}
252EXPORT_SYMBOL(scsi_execute);
253
254
255int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
256		     int data_direction, void *buffer, unsigned bufflen,
257		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
258		     int *resid)
259{
260	char *sense = NULL;
261	int result;
262
263	if (sshdr) {
264		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
265		if (!sense)
266			return DRIVER_ERROR << 24;
267	}
268	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
269			      sense, timeout, retries, 0, resid);
270	if (sshdr)
271		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
272
273	kfree(sense);
274	return result;
275}
276EXPORT_SYMBOL(scsi_execute_req);
277
278/*
279 * Function:    scsi_init_cmd_errh()
280 *
281 * Purpose:     Initialize cmd fields related to error handling.
282 *
283 * Arguments:   cmd	- command that is ready to be queued.
284 *
285 * Notes:       This function has the job of initializing a number of
286 *              fields related to error handling.   Typically this will
287 *              be called once for each command, as required.
288 */
289static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
290{
291	cmd->serial_number = 0;
292	scsi_set_resid(cmd, 0);
293	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
294	if (cmd->cmd_len == 0)
295		cmd->cmd_len = scsi_command_size(cmd->cmnd);
296}
297
298void scsi_device_unbusy(struct scsi_device *sdev)
299{
300	struct Scsi_Host *shost = sdev->host;
301	struct scsi_target *starget = scsi_target(sdev);
302	unsigned long flags;
303
304	spin_lock_irqsave(shost->host_lock, flags);
305	shost->host_busy--;
306	starget->target_busy--;
307	if (unlikely(scsi_host_in_recovery(shost) &&
308		     (shost->host_failed || shost->host_eh_scheduled)))
309		scsi_eh_wakeup(shost);
310	spin_unlock(shost->host_lock);
311	spin_lock(sdev->request_queue->queue_lock);
312	sdev->device_busy--;
313	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
314}
315
316/*
317 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
318 * and call blk_run_queue for all the scsi_devices on the target -
319 * including current_sdev first.
320 *
321 * Called with *no* scsi locks held.
322 */
323static void scsi_single_lun_run(struct scsi_device *current_sdev)
324{
325	struct Scsi_Host *shost = current_sdev->host;
326	struct scsi_device *sdev, *tmp;
327	struct scsi_target *starget = scsi_target(current_sdev);
328	unsigned long flags;
329
330	spin_lock_irqsave(shost->host_lock, flags);
331	starget->starget_sdev_user = NULL;
332	spin_unlock_irqrestore(shost->host_lock, flags);
333
334	/*
335	 * Call blk_run_queue for all LUNs on the target, starting with
336	 * current_sdev. We race with others (to set starget_sdev_user),
337	 * but in most cases, we will be first. Ideally, each LU on the
338	 * target would get some limited time or requests on the target.
339	 */
340	blk_run_queue(current_sdev->request_queue);
341
342	spin_lock_irqsave(shost->host_lock, flags);
343	if (starget->starget_sdev_user)
344		goto out;
345	list_for_each_entry_safe(sdev, tmp, &starget->devices,
346			same_target_siblings) {
347		if (sdev == current_sdev)
348			continue;
349		if (scsi_device_get(sdev))
350			continue;
351
352		spin_unlock_irqrestore(shost->host_lock, flags);
353		blk_run_queue(sdev->request_queue);
354		spin_lock_irqsave(shost->host_lock, flags);
355
356		scsi_device_put(sdev);
357	}
358 out:
359	spin_unlock_irqrestore(shost->host_lock, flags);
360}
361
362static inline int scsi_device_is_busy(struct scsi_device *sdev)
363{
364	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
365		return 1;
366
367	return 0;
368}
369
370static inline int scsi_target_is_busy(struct scsi_target *starget)
371{
372	return ((starget->can_queue > 0 &&
373		 starget->target_busy >= starget->can_queue) ||
374		 starget->target_blocked);
375}
376
377static inline int scsi_host_is_busy(struct Scsi_Host *shost)
378{
379	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
380	    shost->host_blocked || shost->host_self_blocked)
381		return 1;
382
383	return 0;
384}
385
386/*
387 * Function:	scsi_run_queue()
388 *
389 * Purpose:	Select a proper request queue to serve next
390 *
391 * Arguments:	q	- last request's queue
392 *
393 * Returns:     Nothing
394 *
395 * Notes:	The previous command was completely finished, start
396 *		a new one if possible.
397 */
398static void scsi_run_queue(struct request_queue *q)
399{
400	struct scsi_device *sdev = q->queuedata;
401	struct Scsi_Host *shost;
402	LIST_HEAD(starved_list);
403	unsigned long flags;
404
405	/* if the device is dead, sdev will be NULL, so no queue to run */
406	if (!sdev)
407		return;
408
409	shost = sdev->host;
410	if (scsi_target(sdev)->single_lun)
411		scsi_single_lun_run(sdev);
412
413	spin_lock_irqsave(shost->host_lock, flags);
414	list_splice_init(&shost->starved_list, &starved_list);
415
416	while (!list_empty(&starved_list)) {
417		/*
418		 * As long as shost is accepting commands and we have
419		 * starved queues, call blk_run_queue. scsi_request_fn
420		 * drops the queue_lock and can add us back to the
421		 * starved_list.
422		 *
423		 * host_lock protects the starved_list and starved_entry.
424		 * scsi_request_fn must get the host_lock before checking
425		 * or modifying starved_list or starved_entry.
426		 */
427		if (scsi_host_is_busy(shost))
428			break;
429
430		sdev = list_entry(starved_list.next,
431				  struct scsi_device, starved_entry);
432		list_del_init(&sdev->starved_entry);
433		if (scsi_target_is_busy(scsi_target(sdev))) {
434			list_move_tail(&sdev->starved_entry,
435				       &shost->starved_list);
436			continue;
437		}
438
439		spin_unlock(shost->host_lock);
440		spin_lock(sdev->request_queue->queue_lock);
441		__blk_run_queue(sdev->request_queue);
442		spin_unlock(sdev->request_queue->queue_lock);
443		spin_lock(shost->host_lock);
444	}
445	/* put any unprocessed entries back */
446	list_splice(&starved_list, &shost->starved_list);
447	spin_unlock_irqrestore(shost->host_lock, flags);
448
449	blk_run_queue(q);
450}
451
452void scsi_requeue_run_queue(struct work_struct *work)
453{
454	struct scsi_device *sdev;
455	struct request_queue *q;
456
457	sdev = container_of(work, struct scsi_device, requeue_work);
458	q = sdev->request_queue;
459	scsi_run_queue(q);
460}
461
462/*
463 * Function:	scsi_requeue_command()
464 *
465 * Purpose:	Handle post-processing of completed commands.
466 *
467 * Arguments:	q	- queue to operate on
468 *		cmd	- command that may need to be requeued.
469 *
470 * Returns:	Nothing
471 *
472 * Notes:	After command completion, there may be blocks left
473 *		over which weren't finished by the previous command
474 *		this can be for a number of reasons - the main one is
475 *		I/O errors in the middle of the request, in which case
476 *		we need to request the blocks that come after the bad
477 *		sector.
478 * Notes:	Upon return, cmd is a stale pointer.
479 */
480static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
481{
482	struct request *req = cmd->request;
483	unsigned long flags;
484
485	spin_lock_irqsave(q->queue_lock, flags);
486	scsi_unprep_request(req);
487	blk_requeue_request(q, req);
488	spin_unlock_irqrestore(q->queue_lock, flags);
489
490	scsi_run_queue(q);
491}
492
493void scsi_next_command(struct scsi_cmnd *cmd)
494{
495	struct scsi_device *sdev = cmd->device;
496	struct request_queue *q = sdev->request_queue;
497
498	/* need to hold a reference on the device before we let go of the cmd */
499	get_device(&sdev->sdev_gendev);
500
501	scsi_put_command(cmd);
502	scsi_run_queue(q);
503
504	/* ok to remove device now */
505	put_device(&sdev->sdev_gendev);
506}
507
508void scsi_run_host_queues(struct Scsi_Host *shost)
509{
510	struct scsi_device *sdev;
511
512	shost_for_each_device(sdev, shost)
513		scsi_run_queue(sdev->request_queue);
514}
515
516static void __scsi_release_buffers(struct scsi_cmnd *, int);
517
518/*
519 * Function:    scsi_end_request()
520 *
521 * Purpose:     Post-processing of completed commands (usually invoked at end
522 *		of upper level post-processing and scsi_io_completion).
523 *
524 * Arguments:   cmd	 - command that is complete.
525 *              error    - 0 if I/O indicates success, < 0 for I/O error.
526 *              bytes    - number of bytes of completed I/O
527 *		requeue  - indicates whether we should requeue leftovers.
528 *
529 * Lock status: Assumed that lock is not held upon entry.
530 *
531 * Returns:     cmd if requeue required, NULL otherwise.
532 *
533 * Notes:       This is called for block device requests in order to
534 *              mark some number of sectors as complete.
535 *
536 *		We are guaranteeing that the request queue will be goosed
537 *		at some point during this call.
538 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
539 */
540static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
541					  int bytes, int requeue)
542{
543	struct request_queue *q = cmd->device->request_queue;
544	struct request *req = cmd->request;
545
546	/*
547	 * If there are blocks left over at the end, set up the command
548	 * to queue the remainder of them.
549	 */
550	if (blk_end_request(req, error, bytes)) {
551		/* kill remainder if no retrys */
552		if (error && scsi_noretry_cmd(cmd))
553			blk_end_request_all(req, error);
554		else {
555			if (requeue) {
556				/*
557				 * Bleah.  Leftovers again.  Stick the
558				 * leftovers in the front of the
559				 * queue, and goose the queue again.
560				 */
561				scsi_release_buffers(cmd);
562				scsi_requeue_command(q, cmd);
563				cmd = NULL;
564			}
565			return cmd;
566		}
567	}
568
569	/*
570	 * This will goose the queue request function at the end, so we don't
571	 * need to worry about launching another command.
572	 */
573	__scsi_release_buffers(cmd, 0);
574	scsi_next_command(cmd);
575	return NULL;
576}
577
578static inline unsigned int scsi_sgtable_index(unsigned short nents)
579{
580	unsigned int index;
581
582	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
583
584	if (nents <= 8)
585		index = 0;
586	else
587		index = get_count_order(nents) - 3;
588
589	return index;
590}
591
592static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
593{
594	struct scsi_host_sg_pool *sgp;
595
596	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
597	mempool_free(sgl, sgp->pool);
598}
599
600static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
601{
602	struct scsi_host_sg_pool *sgp;
603
604	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
605	return mempool_alloc(sgp->pool, gfp_mask);
606}
607
608static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
609			      gfp_t gfp_mask)
610{
611	int ret;
612
613	BUG_ON(!nents);
614
615	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
616			       gfp_mask, scsi_sg_alloc);
617	if (unlikely(ret))
618		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
619				scsi_sg_free);
620
621	return ret;
622}
623
624static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
625{
626	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
627}
628
629static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
630{
631
632	if (cmd->sdb.table.nents)
633		scsi_free_sgtable(&cmd->sdb);
634
635	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
636
637	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
638		struct scsi_data_buffer *bidi_sdb =
639			cmd->request->next_rq->special;
640		scsi_free_sgtable(bidi_sdb);
641		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
642		cmd->request->next_rq->special = NULL;
643	}
644
645	if (scsi_prot_sg_count(cmd))
646		scsi_free_sgtable(cmd->prot_sdb);
647}
648
649/*
650 * Function:    scsi_release_buffers()
651 *
652 * Purpose:     Completion processing for block device I/O requests.
653 *
654 * Arguments:   cmd	- command that we are bailing.
655 *
656 * Lock status: Assumed that no lock is held upon entry.
657 *
658 * Returns:     Nothing
659 *
660 * Notes:       In the event that an upper level driver rejects a
661 *		command, we must release resources allocated during
662 *		the __init_io() function.  Primarily this would involve
663 *		the scatter-gather table, and potentially any bounce
664 *		buffers.
665 */
666void scsi_release_buffers(struct scsi_cmnd *cmd)
667{
668	__scsi_release_buffers(cmd, 1);
669}
670EXPORT_SYMBOL(scsi_release_buffers);
671
672static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
673{
674	int error = 0;
675
676	switch(host_byte(result)) {
677	case DID_TRANSPORT_FAILFAST:
678		error = -ENOLINK;
679		break;
680	case DID_TARGET_FAILURE:
681		cmd->result |= (DID_OK << 16);
682		error = -EREMOTEIO;
683		break;
684	case DID_NEXUS_FAILURE:
685		cmd->result |= (DID_OK << 16);
686		error = -EBADE;
687		break;
688	default:
689		error = -EIO;
690		break;
691	}
692
693	return error;
694}
695
696/*
697 * Function:    scsi_io_completion()
698 *
699 * Purpose:     Completion processing for block device I/O requests.
700 *
701 * Arguments:   cmd   - command that is finished.
702 *
703 * Lock status: Assumed that no lock is held upon entry.
704 *
705 * Returns:     Nothing
706 *
707 * Notes:       This function is matched in terms of capabilities to
708 *              the function that created the scatter-gather list.
709 *              In other words, if there are no bounce buffers
710 *              (the normal case for most drivers), we don't need
711 *              the logic to deal with cleaning up afterwards.
712 *
713 *		We must call scsi_end_request().  This will finish off
714 *		the specified number of sectors.  If we are done, the
715 *		command block will be released and the queue function
716 *		will be goosed.  If we are not done then we have to
717 *		figure out what to do next:
718 *
719 *		a) We can call scsi_requeue_command().  The request
720 *		   will be unprepared and put back on the queue.  Then
721 *		   a new command will be created for it.  This should
722 *		   be used if we made forward progress, or if we want
723 *		   to switch from READ(10) to READ(6) for example.
724 *
725 *		b) We can call scsi_queue_insert().  The request will
726 *		   be put back on the queue and retried using the same
727 *		   command as before, possibly after a delay.
728 *
729 *		c) We can call blk_end_request() with -EIO to fail
730 *		   the remainder of the request.
731 */
732void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
733{
734	int result = cmd->result;
735	struct request_queue *q = cmd->device->request_queue;
736	struct request *req = cmd->request;
737	int error = 0;
738	struct scsi_sense_hdr sshdr;
739	int sense_valid = 0;
740	int sense_deferred = 0;
741	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
742	      ACTION_DELAYED_RETRY} action;
743	char *description = NULL;
744
745	if (result) {
746		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
747		if (sense_valid)
748			sense_deferred = scsi_sense_is_deferred(&sshdr);
749	}
750
751	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
752		req->errors = result;
753		if (result) {
754			if (sense_valid && req->sense) {
755				/*
756				 * SG_IO wants current and deferred errors
757				 */
758				int len = 8 + cmd->sense_buffer[7];
759
760				if (len > SCSI_SENSE_BUFFERSIZE)
761					len = SCSI_SENSE_BUFFERSIZE;
762				memcpy(req->sense, cmd->sense_buffer,  len);
763				req->sense_len = len;
764			}
765			if (!sense_deferred)
766				error = __scsi_error_from_host_byte(cmd, result);
767		}
768
769		req->resid_len = scsi_get_resid(cmd);
770
771		if (scsi_bidi_cmnd(cmd)) {
772			/*
773			 * Bidi commands Must be complete as a whole,
774			 * both sides at once.
775			 */
776			req->next_rq->resid_len = scsi_in(cmd)->resid;
777
778			scsi_release_buffers(cmd);
779			blk_end_request_all(req, 0);
780
781			scsi_next_command(cmd);
782			return;
783		}
784	}
785
786	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
787	BUG_ON(blk_bidi_rq(req));
788
789	/*
790	 * Next deal with any sectors which we were able to correctly
791	 * handle.
792	 */
793	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
794				      "%d bytes done.\n",
795				      blk_rq_sectors(req), good_bytes));
796
797	/*
798	 * Recovered errors need reporting, but they're always treated
799	 * as success, so fiddle the result code here.  For BLOCK_PC
800	 * we already took a copy of the original into rq->errors which
801	 * is what gets returned to the user
802	 */
803	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
804		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
805		 * print since caller wants ATA registers. Only occurs on
806		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
807		 */
808		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
809			;
810		else if (!(req->cmd_flags & REQ_QUIET))
811			scsi_print_sense("", cmd);
812		result = 0;
813		/* BLOCK_PC may have set error */
814		error = 0;
815	}
816
817	/*
818	 * A number of bytes were successfully read.  If there
819	 * are leftovers and there is some kind of error
820	 * (result != 0), retry the rest.
821	 */
822	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
823		return;
824
825	error = __scsi_error_from_host_byte(cmd, result);
826
827	if (host_byte(result) == DID_RESET) {
828		/* Third party bus reset or reset for error recovery
829		 * reasons.  Just retry the command and see what
830		 * happens.
831		 */
832		action = ACTION_RETRY;
833	} else if (sense_valid && !sense_deferred) {
834		switch (sshdr.sense_key) {
835		case UNIT_ATTENTION:
836			if (cmd->device->removable) {
837				/* Detected disc change.  Set a bit
838				 * and quietly refuse further access.
839				 */
840				cmd->device->changed = 1;
841				description = "Media Changed";
842				action = ACTION_FAIL;
843			} else {
844				/* Must have been a power glitch, or a
845				 * bus reset.  Could not have been a
846				 * media change, so we just retry the
847				 * command and see what happens.
848				 */
849				action = ACTION_RETRY;
850			}
851			break;
852		case ILLEGAL_REQUEST:
853			/* If we had an ILLEGAL REQUEST returned, then
854			 * we may have performed an unsupported
855			 * command.  The only thing this should be
856			 * would be a ten byte read where only a six
857			 * byte read was supported.  Also, on a system
858			 * where READ CAPACITY failed, we may have
859			 * read past the end of the disk.
860			 */
861			if ((cmd->device->use_10_for_rw &&
862			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
863			    (cmd->cmnd[0] == READ_10 ||
864			     cmd->cmnd[0] == WRITE_10)) {
865				/* This will issue a new 6-byte command. */
866				cmd->device->use_10_for_rw = 0;
867				action = ACTION_REPREP;
868			} else if (sshdr.asc == 0x10) /* DIX */ {
869				description = "Host Data Integrity Failure";
870				action = ACTION_FAIL;
871				error = -EILSEQ;
872			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
873			} else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
874				   (cmd->cmnd[0] == UNMAP ||
875				    cmd->cmnd[0] == WRITE_SAME_16 ||
876				    cmd->cmnd[0] == WRITE_SAME)) {
877				description = "Discard failure";
878				action = ACTION_FAIL;
879			} else
880				action = ACTION_FAIL;
881			break;
882		case ABORTED_COMMAND:
883			action = ACTION_FAIL;
884			if (sshdr.asc == 0x10) { /* DIF */
885				description = "Target Data Integrity Failure";
886				error = -EILSEQ;
887			}
888			break;
889		case NOT_READY:
890			/* If the device is in the process of becoming
891			 * ready, or has a temporary blockage, retry.
892			 */
893			if (sshdr.asc == 0x04) {
894				switch (sshdr.ascq) {
895				case 0x01: /* becoming ready */
896				case 0x04: /* format in progress */
897				case 0x05: /* rebuild in progress */
898				case 0x06: /* recalculation in progress */
899				case 0x07: /* operation in progress */
900				case 0x08: /* Long write in progress */
901				case 0x09: /* self test in progress */
902				case 0x14: /* space allocation in progress */
903					action = ACTION_DELAYED_RETRY;
904					break;
905				default:
906					description = "Device not ready";
907					action = ACTION_FAIL;
908					break;
909				}
910			} else {
911				description = "Device not ready";
912				action = ACTION_FAIL;
913			}
914			break;
915		case VOLUME_OVERFLOW:
916			/* See SSC3rXX or current. */
917			action = ACTION_FAIL;
918			break;
919		default:
920			description = "Unhandled sense code";
921			action = ACTION_FAIL;
922			break;
923		}
924	} else {
925		description = "Unhandled error code";
926		action = ACTION_FAIL;
927	}
928
929	switch (action) {
930	case ACTION_FAIL:
931		/* Give up and fail the remainder of the request */
932		scsi_release_buffers(cmd);
933		if (!(req->cmd_flags & REQ_QUIET)) {
934			if (description)
935				scmd_printk(KERN_INFO, cmd, "%s\n",
936					    description);
937			scsi_print_result(cmd);
938			if (driver_byte(result) & DRIVER_SENSE)
939				scsi_print_sense("", cmd);
940			scsi_print_command(cmd);
941		}
942		if (blk_end_request_err(req, error))
943			scsi_requeue_command(q, cmd);
944		else
945			scsi_next_command(cmd);
946		break;
947	case ACTION_REPREP:
948		/* Unprep the request and put it back at the head of the queue.
949		 * A new command will be prepared and issued.
950		 */
951		scsi_release_buffers(cmd);
952		scsi_requeue_command(q, cmd);
953		break;
954	case ACTION_RETRY:
955		/* Retry the same command immediately */
956		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
957		break;
958	case ACTION_DELAYED_RETRY:
959		/* Retry the same command after a delay */
960		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
961		break;
962	}
963}
964
965static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
966			     gfp_t gfp_mask)
967{
968	int count;
969
970	/*
971	 * If sg table allocation fails, requeue request later.
972	 */
973	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
974					gfp_mask))) {
975		return BLKPREP_DEFER;
976	}
977
978	req->buffer = NULL;
979
980	/*
981	 * Next, walk the list, and fill in the addresses and sizes of
982	 * each segment.
983	 */
984	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
985	BUG_ON(count > sdb->table.nents);
986	sdb->table.nents = count;
987	sdb->length = blk_rq_bytes(req);
988	return BLKPREP_OK;
989}
990
991/*
992 * Function:    scsi_init_io()
993 *
994 * Purpose:     SCSI I/O initialize function.
995 *
996 * Arguments:   cmd   - Command descriptor we wish to initialize
997 *
998 * Returns:     0 on success
999 *		BLKPREP_DEFER if the failure is retryable
1000 *		BLKPREP_KILL if the failure is fatal
1001 */
1002int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1003{
1004	struct request *rq = cmd->request;
1005
1006	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1007	if (error)
1008		goto err_exit;
1009
1010	if (blk_bidi_rq(rq)) {
1011		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1012			scsi_sdb_cache, GFP_ATOMIC);
1013		if (!bidi_sdb) {
1014			error = BLKPREP_DEFER;
1015			goto err_exit;
1016		}
1017
1018		rq->next_rq->special = bidi_sdb;
1019		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1020		if (error)
1021			goto err_exit;
1022	}
1023
1024	if (blk_integrity_rq(rq)) {
1025		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1026		int ivecs, count;
1027
1028		BUG_ON(prot_sdb == NULL);
1029		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1030
1031		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1032			error = BLKPREP_DEFER;
1033			goto err_exit;
1034		}
1035
1036		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1037						prot_sdb->table.sgl);
1038		BUG_ON(unlikely(count > ivecs));
1039		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1040
1041		cmd->prot_sdb = prot_sdb;
1042		cmd->prot_sdb->table.nents = count;
1043	}
1044
1045	return BLKPREP_OK ;
1046
1047err_exit:
1048	scsi_release_buffers(cmd);
1049	cmd->request->special = NULL;
1050	scsi_put_command(cmd);
1051	return error;
1052}
1053EXPORT_SYMBOL(scsi_init_io);
1054
1055static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1056		struct request *req)
1057{
1058	struct scsi_cmnd *cmd;
1059
1060	if (!req->special) {
1061		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1062		if (unlikely(!cmd))
1063			return NULL;
1064		req->special = cmd;
1065	} else {
1066		cmd = req->special;
1067	}
1068
1069	/* pull a tag out of the request if we have one */
1070	cmd->tag = req->tag;
1071	cmd->request = req;
1072
1073	cmd->cmnd = req->cmd;
1074	cmd->prot_op = SCSI_PROT_NORMAL;
1075
1076	return cmd;
1077}
1078
1079int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1080{
1081	struct scsi_cmnd *cmd;
1082	int ret = scsi_prep_state_check(sdev, req);
1083
1084	if (ret != BLKPREP_OK)
1085		return ret;
1086
1087	cmd = scsi_get_cmd_from_req(sdev, req);
1088	if (unlikely(!cmd))
1089		return BLKPREP_DEFER;
1090
1091	/*
1092	 * BLOCK_PC requests may transfer data, in which case they must
1093	 * a bio attached to them.  Or they might contain a SCSI command
1094	 * that does not transfer data, in which case they may optionally
1095	 * submit a request without an attached bio.
1096	 */
1097	if (req->bio) {
1098		int ret;
1099
1100		BUG_ON(!req->nr_phys_segments);
1101
1102		ret = scsi_init_io(cmd, GFP_ATOMIC);
1103		if (unlikely(ret))
1104			return ret;
1105	} else {
1106		BUG_ON(blk_rq_bytes(req));
1107
1108		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1109		req->buffer = NULL;
1110	}
1111
1112	cmd->cmd_len = req->cmd_len;
1113	if (!blk_rq_bytes(req))
1114		cmd->sc_data_direction = DMA_NONE;
1115	else if (rq_data_dir(req) == WRITE)
1116		cmd->sc_data_direction = DMA_TO_DEVICE;
1117	else
1118		cmd->sc_data_direction = DMA_FROM_DEVICE;
1119
1120	cmd->transfersize = blk_rq_bytes(req);
1121	cmd->allowed = req->retries;
1122	return BLKPREP_OK;
1123}
1124EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1125
1126/*
1127 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1128 * from filesystems that still need to be translated to SCSI CDBs from
1129 * the ULD.
1130 */
1131int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1132{
1133	struct scsi_cmnd *cmd;
1134	int ret = scsi_prep_state_check(sdev, req);
1135
1136	if (ret != BLKPREP_OK)
1137		return ret;
1138
1139	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1140			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1141		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1142		if (ret != BLKPREP_OK)
1143			return ret;
1144	}
1145
1146	/*
1147	 * Filesystem requests must transfer data.
1148	 */
1149	BUG_ON(!req->nr_phys_segments);
1150
1151	cmd = scsi_get_cmd_from_req(sdev, req);
1152	if (unlikely(!cmd))
1153		return BLKPREP_DEFER;
1154
1155	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1156	return scsi_init_io(cmd, GFP_ATOMIC);
1157}
1158EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1159
1160int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1161{
1162	int ret = BLKPREP_OK;
1163
1164	/*
1165	 * If the device is not in running state we will reject some
1166	 * or all commands.
1167	 */
1168	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1169		switch (sdev->sdev_state) {
1170		case SDEV_OFFLINE:
1171			/*
1172			 * If the device is offline we refuse to process any
1173			 * commands.  The device must be brought online
1174			 * before trying any recovery commands.
1175			 */
1176			sdev_printk(KERN_ERR, sdev,
1177				    "rejecting I/O to offline device\n");
1178			ret = BLKPREP_KILL;
1179			break;
1180		case SDEV_DEL:
1181			/*
1182			 * If the device is fully deleted, we refuse to
1183			 * process any commands as well.
1184			 */
1185			sdev_printk(KERN_ERR, sdev,
1186				    "rejecting I/O to dead device\n");
1187			ret = BLKPREP_KILL;
1188			break;
1189		case SDEV_QUIESCE:
1190		case SDEV_BLOCK:
1191		case SDEV_CREATED_BLOCK:
1192			/*
1193			 * If the devices is blocked we defer normal commands.
1194			 */
1195			if (!(req->cmd_flags & REQ_PREEMPT))
1196				ret = BLKPREP_DEFER;
1197			break;
1198		default:
1199			/*
1200			 * For any other not fully online state we only allow
1201			 * special commands.  In particular any user initiated
1202			 * command is not allowed.
1203			 */
1204			if (!(req->cmd_flags & REQ_PREEMPT))
1205				ret = BLKPREP_KILL;
1206			break;
1207		}
1208	}
1209	return ret;
1210}
1211EXPORT_SYMBOL(scsi_prep_state_check);
1212
1213int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1214{
1215	struct scsi_device *sdev = q->queuedata;
1216
1217	switch (ret) {
1218	case BLKPREP_KILL:
1219		req->errors = DID_NO_CONNECT << 16;
1220		/* release the command and kill it */
1221		if (req->special) {
1222			struct scsi_cmnd *cmd = req->special;
1223			scsi_release_buffers(cmd);
1224			scsi_put_command(cmd);
1225			req->special = NULL;
1226		}
1227		break;
1228	case BLKPREP_DEFER:
1229		/*
1230		 * If we defer, the blk_peek_request() returns NULL, but the
1231		 * queue must be restarted, so we schedule a callback to happen
1232		 * shortly.
1233		 */
1234		if (sdev->device_busy == 0)
1235			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1236		break;
1237	default:
1238		req->cmd_flags |= REQ_DONTPREP;
1239	}
1240
1241	return ret;
1242}
1243EXPORT_SYMBOL(scsi_prep_return);
1244
1245int scsi_prep_fn(struct request_queue *q, struct request *req)
1246{
1247	struct scsi_device *sdev = q->queuedata;
1248	int ret = BLKPREP_KILL;
1249
1250	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1251		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1252	return scsi_prep_return(q, req, ret);
1253}
1254EXPORT_SYMBOL(scsi_prep_fn);
1255
1256/*
1257 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1258 * return 0.
1259 *
1260 * Called with the queue_lock held.
1261 */
1262static inline int scsi_dev_queue_ready(struct request_queue *q,
1263				  struct scsi_device *sdev)
1264{
1265	if (sdev->device_busy == 0 && sdev->device_blocked) {
1266		/*
1267		 * unblock after device_blocked iterates to zero
1268		 */
1269		if (--sdev->device_blocked == 0) {
1270			SCSI_LOG_MLQUEUE(3,
1271				   sdev_printk(KERN_INFO, sdev,
1272				   "unblocking device at zero depth\n"));
1273		} else {
1274			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1275			return 0;
1276		}
1277	}
1278	if (scsi_device_is_busy(sdev))
1279		return 0;
1280
1281	return 1;
1282}
1283
1284
1285/*
1286 * scsi_target_queue_ready: checks if there we can send commands to target
1287 * @sdev: scsi device on starget to check.
1288 *
1289 * Called with the host lock held.
1290 */
1291static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1292					   struct scsi_device *sdev)
1293{
1294	struct scsi_target *starget = scsi_target(sdev);
1295
1296	if (starget->single_lun) {
1297		if (starget->starget_sdev_user &&
1298		    starget->starget_sdev_user != sdev)
1299			return 0;
1300		starget->starget_sdev_user = sdev;
1301	}
1302
1303	if (starget->target_busy == 0 && starget->target_blocked) {
1304		/*
1305		 * unblock after target_blocked iterates to zero
1306		 */
1307		if (--starget->target_blocked == 0) {
1308			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1309					 "unblocking target at zero depth\n"));
1310		} else
1311			return 0;
1312	}
1313
1314	if (scsi_target_is_busy(starget)) {
1315		if (list_empty(&sdev->starved_entry))
1316			list_add_tail(&sdev->starved_entry,
1317				      &shost->starved_list);
1318		return 0;
1319	}
1320
1321	/* We're OK to process the command, so we can't be starved */
1322	if (!list_empty(&sdev->starved_entry))
1323		list_del_init(&sdev->starved_entry);
1324	return 1;
1325}
1326
1327/*
1328 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1329 * return 0. We must end up running the queue again whenever 0 is
1330 * returned, else IO can hang.
1331 *
1332 * Called with host_lock held.
1333 */
1334static inline int scsi_host_queue_ready(struct request_queue *q,
1335				   struct Scsi_Host *shost,
1336				   struct scsi_device *sdev)
1337{
1338	if (scsi_host_in_recovery(shost))
1339		return 0;
1340	if (shost->host_busy == 0 && shost->host_blocked) {
1341		/*
1342		 * unblock after host_blocked iterates to zero
1343		 */
1344		if (--shost->host_blocked == 0) {
1345			SCSI_LOG_MLQUEUE(3,
1346				printk("scsi%d unblocking host at zero depth\n",
1347					shost->host_no));
1348		} else {
1349			return 0;
1350		}
1351	}
1352	if (scsi_host_is_busy(shost)) {
1353		if (list_empty(&sdev->starved_entry))
1354			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1355		return 0;
1356	}
1357
1358	/* We're OK to process the command, so we can't be starved */
1359	if (!list_empty(&sdev->starved_entry))
1360		list_del_init(&sdev->starved_entry);
1361
1362	return 1;
1363}
1364
1365/*
1366 * Busy state exporting function for request stacking drivers.
1367 *
1368 * For efficiency, no lock is taken to check the busy state of
1369 * shost/starget/sdev, since the returned value is not guaranteed and
1370 * may be changed after request stacking drivers call the function,
1371 * regardless of taking lock or not.
1372 *
1373 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1374 * (e.g. !sdev), scsi needs to return 'not busy'.
1375 * Otherwise, request stacking drivers may hold requests forever.
1376 */
1377static int scsi_lld_busy(struct request_queue *q)
1378{
1379	struct scsi_device *sdev = q->queuedata;
1380	struct Scsi_Host *shost;
1381	struct scsi_target *starget;
1382
1383	if (!sdev)
1384		return 0;
1385
1386	shost = sdev->host;
1387	starget = scsi_target(sdev);
1388
1389	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1390	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1391		return 1;
1392
1393	return 0;
1394}
1395
1396/*
1397 * Kill a request for a dead device
1398 */
1399static void scsi_kill_request(struct request *req, struct request_queue *q)
1400{
1401	struct scsi_cmnd *cmd = req->special;
1402	struct scsi_device *sdev;
1403	struct scsi_target *starget;
1404	struct Scsi_Host *shost;
1405
1406	blk_start_request(req);
1407
1408	sdev = cmd->device;
1409	starget = scsi_target(sdev);
1410	shost = sdev->host;
1411	scsi_init_cmd_errh(cmd);
1412	cmd->result = DID_NO_CONNECT << 16;
1413	atomic_inc(&cmd->device->iorequest_cnt);
1414
1415	/*
1416	 * SCSI request completion path will do scsi_device_unbusy(),
1417	 * bump busy counts.  To bump the counters, we need to dance
1418	 * with the locks as normal issue path does.
1419	 */
1420	sdev->device_busy++;
1421	spin_unlock(sdev->request_queue->queue_lock);
1422	spin_lock(shost->host_lock);
1423	shost->host_busy++;
1424	starget->target_busy++;
1425	spin_unlock(shost->host_lock);
1426	spin_lock(sdev->request_queue->queue_lock);
1427
1428	blk_complete_request(req);
1429}
1430
1431static void scsi_softirq_done(struct request *rq)
1432{
1433	struct scsi_cmnd *cmd = rq->special;
1434	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1435	int disposition;
1436
1437	INIT_LIST_HEAD(&cmd->eh_entry);
1438
1439	atomic_inc(&cmd->device->iodone_cnt);
1440	if (cmd->result)
1441		atomic_inc(&cmd->device->ioerr_cnt);
1442
1443	disposition = scsi_decide_disposition(cmd);
1444	if (disposition != SUCCESS &&
1445	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1446		sdev_printk(KERN_ERR, cmd->device,
1447			    "timing out command, waited %lus\n",
1448			    wait_for/HZ);
1449		disposition = SUCCESS;
1450	}
1451
1452	scsi_log_completion(cmd, disposition);
1453
1454	switch (disposition) {
1455		case SUCCESS:
1456			scsi_finish_command(cmd);
1457			break;
1458		case NEEDS_RETRY:
1459			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1460			break;
1461		case ADD_TO_MLQUEUE:
1462			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1463			break;
1464		default:
1465			if (!scsi_eh_scmd_add(cmd, 0))
1466				scsi_finish_command(cmd);
1467	}
1468}
1469
1470/*
1471 * Function:    scsi_request_fn()
1472 *
1473 * Purpose:     Main strategy routine for SCSI.
1474 *
1475 * Arguments:   q       - Pointer to actual queue.
1476 *
1477 * Returns:     Nothing
1478 *
1479 * Lock status: IO request lock assumed to be held when called.
1480 */
1481static void scsi_request_fn(struct request_queue *q)
1482{
1483	struct scsi_device *sdev = q->queuedata;
1484	struct Scsi_Host *shost;
1485	struct scsi_cmnd *cmd;
1486	struct request *req;
1487
1488	if (!sdev) {
1489		printk("scsi: killing requests for dead queue\n");
1490		while ((req = blk_peek_request(q)) != NULL)
1491			scsi_kill_request(req, q);
1492		return;
1493	}
1494
1495	if(!get_device(&sdev->sdev_gendev))
1496		/* We must be tearing the block queue down already */
1497		return;
1498
1499	/*
1500	 * To start with, we keep looping until the queue is empty, or until
1501	 * the host is no longer able to accept any more requests.
1502	 */
1503	shost = sdev->host;
1504	for (;;) {
1505		int rtn;
1506		/*
1507		 * get next queueable request.  We do this early to make sure
1508		 * that the request is fully prepared even if we cannot
1509		 * accept it.
1510		 */
1511		req = blk_peek_request(q);
1512		if (!req || !scsi_dev_queue_ready(q, sdev))
1513			break;
1514
1515		if (unlikely(!scsi_device_online(sdev))) {
1516			sdev_printk(KERN_ERR, sdev,
1517				    "rejecting I/O to offline device\n");
1518			scsi_kill_request(req, q);
1519			continue;
1520		}
1521
1522
1523		/*
1524		 * Remove the request from the request list.
1525		 */
1526		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1527			blk_start_request(req);
1528		sdev->device_busy++;
1529
1530		spin_unlock(q->queue_lock);
1531		cmd = req->special;
1532		if (unlikely(cmd == NULL)) {
1533			printk(KERN_CRIT "impossible request in %s.\n"
1534					 "please mail a stack trace to "
1535					 "linux-scsi@vger.kernel.org\n",
1536					 __func__);
1537			blk_dump_rq_flags(req, "foo");
1538			BUG();
1539		}
1540		spin_lock(shost->host_lock);
1541
1542		/*
1543		 * We hit this when the driver is using a host wide
1544		 * tag map. For device level tag maps the queue_depth check
1545		 * in the device ready fn would prevent us from trying
1546		 * to allocate a tag. Since the map is a shared host resource
1547		 * we add the dev to the starved list so it eventually gets
1548		 * a run when a tag is freed.
1549		 */
1550		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1551			if (list_empty(&sdev->starved_entry))
1552				list_add_tail(&sdev->starved_entry,
1553					      &shost->starved_list);
1554			goto not_ready;
1555		}
1556
1557		if (!scsi_target_queue_ready(shost, sdev))
1558			goto not_ready;
1559
1560		if (!scsi_host_queue_ready(q, shost, sdev))
1561			goto not_ready;
1562
1563		scsi_target(sdev)->target_busy++;
1564		shost->host_busy++;
1565
1566		/*
1567		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1568		 *		take the lock again.
1569		 */
1570		spin_unlock_irq(shost->host_lock);
1571
1572		/*
1573		 * Finally, initialize any error handling parameters, and set up
1574		 * the timers for timeouts.
1575		 */
1576		scsi_init_cmd_errh(cmd);
1577
1578		/*
1579		 * Dispatch the command to the low-level driver.
1580		 */
1581		rtn = scsi_dispatch_cmd(cmd);
1582		spin_lock_irq(q->queue_lock);
1583		if (rtn)
1584			goto out_delay;
1585	}
1586
1587	goto out;
1588
1589 not_ready:
1590	spin_unlock_irq(shost->host_lock);
1591
1592	/*
1593	 * lock q, handle tag, requeue req, and decrement device_busy. We
1594	 * must return with queue_lock held.
1595	 *
1596	 * Decrementing device_busy without checking it is OK, as all such
1597	 * cases (host limits or settings) should run the queue at some
1598	 * later time.
1599	 */
1600	spin_lock_irq(q->queue_lock);
1601	blk_requeue_request(q, req);
1602	sdev->device_busy--;
1603out_delay:
1604	if (sdev->device_busy == 0)
1605		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1606out:
1607	/* must be careful here...if we trigger the ->remove() function
1608	 * we cannot be holding the q lock */
1609	spin_unlock_irq(q->queue_lock);
1610	put_device(&sdev->sdev_gendev);
1611	spin_lock_irq(q->queue_lock);
1612}
1613
1614u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1615{
1616	struct device *host_dev;
1617	u64 bounce_limit = 0xffffffff;
1618
1619	if (shost->unchecked_isa_dma)
1620		return BLK_BOUNCE_ISA;
1621	/*
1622	 * Platforms with virtual-DMA translation
1623	 * hardware have no practical limit.
1624	 */
1625	if (!PCI_DMA_BUS_IS_PHYS)
1626		return BLK_BOUNCE_ANY;
1627
1628	host_dev = scsi_get_device(shost);
1629	if (host_dev && host_dev->dma_mask)
1630		bounce_limit = *host_dev->dma_mask;
1631
1632	return bounce_limit;
1633}
1634EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1635
1636struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1637					 request_fn_proc *request_fn)
1638{
1639	struct request_queue *q;
1640	struct device *dev = shost->shost_gendev.parent;
1641
1642	q = blk_init_queue(request_fn, NULL);
1643	if (!q)
1644		return NULL;
1645
1646	/*
1647	 * this limit is imposed by hardware restrictions
1648	 */
1649	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1650					SCSI_MAX_SG_CHAIN_SEGMENTS));
1651
1652	if (scsi_host_prot_dma(shost)) {
1653		shost->sg_prot_tablesize =
1654			min_not_zero(shost->sg_prot_tablesize,
1655				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1656		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1657		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1658	}
1659
1660	blk_queue_max_hw_sectors(q, shost->max_sectors);
1661	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1662	blk_queue_segment_boundary(q, shost->dma_boundary);
1663	dma_set_seg_boundary(dev, shost->dma_boundary);
1664
1665	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1666
1667	if (!shost->use_clustering)
1668		q->limits.cluster = 0;
1669
1670	/*
1671	 * set a reasonable default alignment on word boundaries: the
1672	 * host and device may alter it using
1673	 * blk_queue_update_dma_alignment() later.
1674	 */
1675	blk_queue_dma_alignment(q, 0x03);
1676
1677	return q;
1678}
1679EXPORT_SYMBOL(__scsi_alloc_queue);
1680
1681struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1682{
1683	struct request_queue *q;
1684
1685	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1686	if (!q)
1687		return NULL;
1688
1689	blk_queue_prep_rq(q, scsi_prep_fn);
1690	blk_queue_softirq_done(q, scsi_softirq_done);
1691	blk_queue_rq_timed_out(q, scsi_times_out);
1692	blk_queue_lld_busy(q, scsi_lld_busy);
1693	return q;
1694}
1695
1696void scsi_free_queue(struct request_queue *q)
1697{
1698	blk_cleanup_queue(q);
1699}
1700
1701/*
1702 * Function:    scsi_block_requests()
1703 *
1704 * Purpose:     Utility function used by low-level drivers to prevent further
1705 *		commands from being queued to the device.
1706 *
1707 * Arguments:   shost       - Host in question
1708 *
1709 * Returns:     Nothing
1710 *
1711 * Lock status: No locks are assumed held.
1712 *
1713 * Notes:       There is no timer nor any other means by which the requests
1714 *		get unblocked other than the low-level driver calling
1715 *		scsi_unblock_requests().
1716 */
1717void scsi_block_requests(struct Scsi_Host *shost)
1718{
1719	shost->host_self_blocked = 1;
1720}
1721EXPORT_SYMBOL(scsi_block_requests);
1722
1723/*
1724 * Function:    scsi_unblock_requests()
1725 *
1726 * Purpose:     Utility function used by low-level drivers to allow further
1727 *		commands from being queued to the device.
1728 *
1729 * Arguments:   shost       - Host in question
1730 *
1731 * Returns:     Nothing
1732 *
1733 * Lock status: No locks are assumed held.
1734 *
1735 * Notes:       There is no timer nor any other means by which the requests
1736 *		get unblocked other than the low-level driver calling
1737 *		scsi_unblock_requests().
1738 *
1739 *		This is done as an API function so that changes to the
1740 *		internals of the scsi mid-layer won't require wholesale
1741 *		changes to drivers that use this feature.
1742 */
1743void scsi_unblock_requests(struct Scsi_Host *shost)
1744{
1745	shost->host_self_blocked = 0;
1746	scsi_run_host_queues(shost);
1747}
1748EXPORT_SYMBOL(scsi_unblock_requests);
1749
1750int __init scsi_init_queue(void)
1751{
1752	int i;
1753
1754	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1755					   sizeof(struct scsi_data_buffer),
1756					   0, 0, NULL);
1757	if (!scsi_sdb_cache) {
1758		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1759		return -ENOMEM;
1760	}
1761
1762	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1763		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1764		int size = sgp->size * sizeof(struct scatterlist);
1765
1766		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1767				SLAB_HWCACHE_ALIGN, NULL);
1768		if (!sgp->slab) {
1769			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1770					sgp->name);
1771			goto cleanup_sdb;
1772		}
1773
1774		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1775						     sgp->slab);
1776		if (!sgp->pool) {
1777			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1778					sgp->name);
1779			goto cleanup_sdb;
1780		}
1781	}
1782
1783	return 0;
1784
1785cleanup_sdb:
1786	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1787		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1788		if (sgp->pool)
1789			mempool_destroy(sgp->pool);
1790		if (sgp->slab)
1791			kmem_cache_destroy(sgp->slab);
1792	}
1793	kmem_cache_destroy(scsi_sdb_cache);
1794
1795	return -ENOMEM;
1796}
1797
1798void scsi_exit_queue(void)
1799{
1800	int i;
1801
1802	kmem_cache_destroy(scsi_sdb_cache);
1803
1804	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1805		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1806		mempool_destroy(sgp->pool);
1807		kmem_cache_destroy(sgp->slab);
1808	}
1809}
1810
1811/**
1812 *	scsi_mode_select - issue a mode select
1813 *	@sdev:	SCSI device to be queried
1814 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1815 *	@sp:	Save page bit (0 == don't save, 1 == save)
1816 *	@modepage: mode page being requested
1817 *	@buffer: request buffer (may not be smaller than eight bytes)
1818 *	@len:	length of request buffer.
1819 *	@timeout: command timeout
1820 *	@retries: number of retries before failing
1821 *	@data: returns a structure abstracting the mode header data
1822 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1823 *		must be SCSI_SENSE_BUFFERSIZE big.
1824 *
1825 *	Returns zero if successful; negative error number or scsi
1826 *	status on error
1827 *
1828 */
1829int
1830scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1831		 unsigned char *buffer, int len, int timeout, int retries,
1832		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1833{
1834	unsigned char cmd[10];
1835	unsigned char *real_buffer;
1836	int ret;
1837
1838	memset(cmd, 0, sizeof(cmd));
1839	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1840
1841	if (sdev->use_10_for_ms) {
1842		if (len > 65535)
1843			return -EINVAL;
1844		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1845		if (!real_buffer)
1846			return -ENOMEM;
1847		memcpy(real_buffer + 8, buffer, len);
1848		len += 8;
1849		real_buffer[0] = 0;
1850		real_buffer[1] = 0;
1851		real_buffer[2] = data->medium_type;
1852		real_buffer[3] = data->device_specific;
1853		real_buffer[4] = data->longlba ? 0x01 : 0;
1854		real_buffer[5] = 0;
1855		real_buffer[6] = data->block_descriptor_length >> 8;
1856		real_buffer[7] = data->block_descriptor_length;
1857
1858		cmd[0] = MODE_SELECT_10;
1859		cmd[7] = len >> 8;
1860		cmd[8] = len;
1861	} else {
1862		if (len > 255 || data->block_descriptor_length > 255 ||
1863		    data->longlba)
1864			return -EINVAL;
1865
1866		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1867		if (!real_buffer)
1868			return -ENOMEM;
1869		memcpy(real_buffer + 4, buffer, len);
1870		len += 4;
1871		real_buffer[0] = 0;
1872		real_buffer[1] = data->medium_type;
1873		real_buffer[2] = data->device_specific;
1874		real_buffer[3] = data->block_descriptor_length;
1875
1876
1877		cmd[0] = MODE_SELECT;
1878		cmd[4] = len;
1879	}
1880
1881	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1882			       sshdr, timeout, retries, NULL);
1883	kfree(real_buffer);
1884	return ret;
1885}
1886EXPORT_SYMBOL_GPL(scsi_mode_select);
1887
1888/**
1889 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1890 *	@sdev:	SCSI device to be queried
1891 *	@dbd:	set if mode sense will allow block descriptors to be returned
1892 *	@modepage: mode page being requested
1893 *	@buffer: request buffer (may not be smaller than eight bytes)
1894 *	@len:	length of request buffer.
1895 *	@timeout: command timeout
1896 *	@retries: number of retries before failing
1897 *	@data: returns a structure abstracting the mode header data
1898 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1899 *		must be SCSI_SENSE_BUFFERSIZE big.
1900 *
1901 *	Returns zero if unsuccessful, or the header offset (either 4
1902 *	or 8 depending on whether a six or ten byte command was
1903 *	issued) if successful.
1904 */
1905int
1906scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1907		  unsigned char *buffer, int len, int timeout, int retries,
1908		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1909{
1910	unsigned char cmd[12];
1911	int use_10_for_ms;
1912	int header_length;
1913	int result;
1914	struct scsi_sense_hdr my_sshdr;
1915
1916	memset(data, 0, sizeof(*data));
1917	memset(&cmd[0], 0, 12);
1918	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1919	cmd[2] = modepage;
1920
1921	/* caller might not be interested in sense, but we need it */
1922	if (!sshdr)
1923		sshdr = &my_sshdr;
1924
1925 retry:
1926	use_10_for_ms = sdev->use_10_for_ms;
1927
1928	if (use_10_for_ms) {
1929		if (len < 8)
1930			len = 8;
1931
1932		cmd[0] = MODE_SENSE_10;
1933		cmd[8] = len;
1934		header_length = 8;
1935	} else {
1936		if (len < 4)
1937			len = 4;
1938
1939		cmd[0] = MODE_SENSE;
1940		cmd[4] = len;
1941		header_length = 4;
1942	}
1943
1944	memset(buffer, 0, len);
1945
1946	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1947				  sshdr, timeout, retries, NULL);
1948
1949	/* This code looks awful: what it's doing is making sure an
1950	 * ILLEGAL REQUEST sense return identifies the actual command
1951	 * byte as the problem.  MODE_SENSE commands can return
1952	 * ILLEGAL REQUEST if the code page isn't supported */
1953
1954	if (use_10_for_ms && !scsi_status_is_good(result) &&
1955	    (driver_byte(result) & DRIVER_SENSE)) {
1956		if (scsi_sense_valid(sshdr)) {
1957			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1958			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1959				/*
1960				 * Invalid command operation code
1961				 */
1962				sdev->use_10_for_ms = 0;
1963				goto retry;
1964			}
1965		}
1966	}
1967
1968	if(scsi_status_is_good(result)) {
1969		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1970			     (modepage == 6 || modepage == 8))) {
1971			/* Initio breakage? */
1972			header_length = 0;
1973			data->length = 13;
1974			data->medium_type = 0;
1975			data->device_specific = 0;
1976			data->longlba = 0;
1977			data->block_descriptor_length = 0;
1978		} else if(use_10_for_ms) {
1979			data->length = buffer[0]*256 + buffer[1] + 2;
1980			data->medium_type = buffer[2];
1981			data->device_specific = buffer[3];
1982			data->longlba = buffer[4] & 0x01;
1983			data->block_descriptor_length = buffer[6]*256
1984				+ buffer[7];
1985		} else {
1986			data->length = buffer[0] + 1;
1987			data->medium_type = buffer[1];
1988			data->device_specific = buffer[2];
1989			data->block_descriptor_length = buffer[3];
1990		}
1991		data->header_length = header_length;
1992	}
1993
1994	return result;
1995}
1996EXPORT_SYMBOL(scsi_mode_sense);
1997
1998/**
1999 *	scsi_test_unit_ready - test if unit is ready
2000 *	@sdev:	scsi device to change the state of.
2001 *	@timeout: command timeout
2002 *	@retries: number of retries before failing
2003 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2004 *		returning sense. Make sure that this is cleared before passing
2005 *		in.
2006 *
2007 *	Returns zero if unsuccessful or an error if TUR failed.  For
2008 *	removable media, UNIT_ATTENTION sets ->changed flag.
2009 **/
2010int
2011scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2012		     struct scsi_sense_hdr *sshdr_external)
2013{
2014	char cmd[] = {
2015		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2016	};
2017	struct scsi_sense_hdr *sshdr;
2018	int result;
2019
2020	if (!sshdr_external)
2021		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2022	else
2023		sshdr = sshdr_external;
2024
2025	/* try to eat the UNIT_ATTENTION if there are enough retries */
2026	do {
2027		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2028					  timeout, retries, NULL);
2029		if (sdev->removable && scsi_sense_valid(sshdr) &&
2030		    sshdr->sense_key == UNIT_ATTENTION)
2031			sdev->changed = 1;
2032	} while (scsi_sense_valid(sshdr) &&
2033		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2034
2035	if (!sshdr_external)
2036		kfree(sshdr);
2037	return result;
2038}
2039EXPORT_SYMBOL(scsi_test_unit_ready);
2040
2041/**
2042 *	scsi_device_set_state - Take the given device through the device state model.
2043 *	@sdev:	scsi device to change the state of.
2044 *	@state:	state to change to.
2045 *
2046 *	Returns zero if unsuccessful or an error if the requested
2047 *	transition is illegal.
2048 */
2049int
2050scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2051{
2052	enum scsi_device_state oldstate = sdev->sdev_state;
2053
2054	if (state == oldstate)
2055		return 0;
2056
2057	switch (state) {
2058	case SDEV_CREATED:
2059		switch (oldstate) {
2060		case SDEV_CREATED_BLOCK:
2061			break;
2062		default:
2063			goto illegal;
2064		}
2065		break;
2066
2067	case SDEV_RUNNING:
2068		switch (oldstate) {
2069		case SDEV_CREATED:
2070		case SDEV_OFFLINE:
2071		case SDEV_QUIESCE:
2072		case SDEV_BLOCK:
2073			break;
2074		default:
2075			goto illegal;
2076		}
2077		break;
2078
2079	case SDEV_QUIESCE:
2080		switch (oldstate) {
2081		case SDEV_RUNNING:
2082		case SDEV_OFFLINE:
2083			break;
2084		default:
2085			goto illegal;
2086		}
2087		break;
2088
2089	case SDEV_OFFLINE:
2090		switch (oldstate) {
2091		case SDEV_CREATED:
2092		case SDEV_RUNNING:
2093		case SDEV_QUIESCE:
2094		case SDEV_BLOCK:
2095			break;
2096		default:
2097			goto illegal;
2098		}
2099		break;
2100
2101	case SDEV_BLOCK:
2102		switch (oldstate) {
2103		case SDEV_RUNNING:
2104		case SDEV_CREATED_BLOCK:
2105			break;
2106		default:
2107			goto illegal;
2108		}
2109		break;
2110
2111	case SDEV_CREATED_BLOCK:
2112		switch (oldstate) {
2113		case SDEV_CREATED:
2114			break;
2115		default:
2116			goto illegal;
2117		}
2118		break;
2119
2120	case SDEV_CANCEL:
2121		switch (oldstate) {
2122		case SDEV_CREATED:
2123		case SDEV_RUNNING:
2124		case SDEV_QUIESCE:
2125		case SDEV_OFFLINE:
2126		case SDEV_BLOCK:
2127			break;
2128		default:
2129			goto illegal;
2130		}
2131		break;
2132
2133	case SDEV_DEL:
2134		switch (oldstate) {
2135		case SDEV_CREATED:
2136		case SDEV_RUNNING:
2137		case SDEV_OFFLINE:
2138		case SDEV_CANCEL:
2139			break;
2140		default:
2141			goto illegal;
2142		}
2143		break;
2144
2145	}
2146	sdev->sdev_state = state;
2147	return 0;
2148
2149 illegal:
2150	SCSI_LOG_ERROR_RECOVERY(1,
2151				sdev_printk(KERN_ERR, sdev,
2152					    "Illegal state transition %s->%s\n",
2153					    scsi_device_state_name(oldstate),
2154					    scsi_device_state_name(state))
2155				);
2156	return -EINVAL;
2157}
2158EXPORT_SYMBOL(scsi_device_set_state);
2159
2160/**
2161 * 	sdev_evt_emit - emit a single SCSI device uevent
2162 *	@sdev: associated SCSI device
2163 *	@evt: event to emit
2164 *
2165 *	Send a single uevent (scsi_event) to the associated scsi_device.
2166 */
2167static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2168{
2169	int idx = 0;
2170	char *envp[3];
2171
2172	switch (evt->evt_type) {
2173	case SDEV_EVT_MEDIA_CHANGE:
2174		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2175		break;
2176
2177	default:
2178		/* do nothing */
2179		break;
2180	}
2181
2182	envp[idx++] = NULL;
2183
2184	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2185}
2186
2187/**
2188 * 	sdev_evt_thread - send a uevent for each scsi event
2189 *	@work: work struct for scsi_device
2190 *
2191 *	Dispatch queued events to their associated scsi_device kobjects
2192 *	as uevents.
2193 */
2194void scsi_evt_thread(struct work_struct *work)
2195{
2196	struct scsi_device *sdev;
2197	LIST_HEAD(event_list);
2198
2199	sdev = container_of(work, struct scsi_device, event_work);
2200
2201	while (1) {
2202		struct scsi_event *evt;
2203		struct list_head *this, *tmp;
2204		unsigned long flags;
2205
2206		spin_lock_irqsave(&sdev->list_lock, flags);
2207		list_splice_init(&sdev->event_list, &event_list);
2208		spin_unlock_irqrestore(&sdev->list_lock, flags);
2209
2210		if (list_empty(&event_list))
2211			break;
2212
2213		list_for_each_safe(this, tmp, &event_list) {
2214			evt = list_entry(this, struct scsi_event, node);
2215			list_del(&evt->node);
2216			scsi_evt_emit(sdev, evt);
2217			kfree(evt);
2218		}
2219	}
2220}
2221
2222/**
2223 * 	sdev_evt_send - send asserted event to uevent thread
2224 *	@sdev: scsi_device event occurred on
2225 *	@evt: event to send
2226 *
2227 *	Assert scsi device event asynchronously.
2228 */
2229void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2230{
2231	unsigned long flags;
2232
2233#if 0
2234	/* FIXME: currently this check eliminates all media change events
2235	 * for polled devices.  Need to update to discriminate between AN
2236	 * and polled events */
2237	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2238		kfree(evt);
2239		return;
2240	}
2241#endif
2242
2243	spin_lock_irqsave(&sdev->list_lock, flags);
2244	list_add_tail(&evt->node, &sdev->event_list);
2245	schedule_work(&sdev->event_work);
2246	spin_unlock_irqrestore(&sdev->list_lock, flags);
2247}
2248EXPORT_SYMBOL_GPL(sdev_evt_send);
2249
2250/**
2251 * 	sdev_evt_alloc - allocate a new scsi event
2252 *	@evt_type: type of event to allocate
2253 *	@gfpflags: GFP flags for allocation
2254 *
2255 *	Allocates and returns a new scsi_event.
2256 */
2257struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2258				  gfp_t gfpflags)
2259{
2260	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2261	if (!evt)
2262		return NULL;
2263
2264	evt->evt_type = evt_type;
2265	INIT_LIST_HEAD(&evt->node);
2266
2267	/* evt_type-specific initialization, if any */
2268	switch (evt_type) {
2269	case SDEV_EVT_MEDIA_CHANGE:
2270	default:
2271		/* do nothing */
2272		break;
2273	}
2274
2275	return evt;
2276}
2277EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2278
2279/**
2280 * 	sdev_evt_send_simple - send asserted event to uevent thread
2281 *	@sdev: scsi_device event occurred on
2282 *	@evt_type: type of event to send
2283 *	@gfpflags: GFP flags for allocation
2284 *
2285 *	Assert scsi device event asynchronously, given an event type.
2286 */
2287void sdev_evt_send_simple(struct scsi_device *sdev,
2288			  enum scsi_device_event evt_type, gfp_t gfpflags)
2289{
2290	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2291	if (!evt) {
2292		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2293			    evt_type);
2294		return;
2295	}
2296
2297	sdev_evt_send(sdev, evt);
2298}
2299EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2300
2301/**
2302 *	scsi_device_quiesce - Block user issued commands.
2303 *	@sdev:	scsi device to quiesce.
2304 *
2305 *	This works by trying to transition to the SDEV_QUIESCE state
2306 *	(which must be a legal transition).  When the device is in this
2307 *	state, only special requests will be accepted, all others will
2308 *	be deferred.  Since special requests may also be requeued requests,
2309 *	a successful return doesn't guarantee the device will be
2310 *	totally quiescent.
2311 *
2312 *	Must be called with user context, may sleep.
2313 *
2314 *	Returns zero if unsuccessful or an error if not.
2315 */
2316int
2317scsi_device_quiesce(struct scsi_device *sdev)
2318{
2319	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2320	if (err)
2321		return err;
2322
2323	scsi_run_queue(sdev->request_queue);
2324	while (sdev->device_busy) {
2325		msleep_interruptible(200);
2326		scsi_run_queue(sdev->request_queue);
2327	}
2328	return 0;
2329}
2330EXPORT_SYMBOL(scsi_device_quiesce);
2331
2332/**
2333 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2334 *	@sdev:	scsi device to resume.
2335 *
2336 *	Moves the device from quiesced back to running and restarts the
2337 *	queues.
2338 *
2339 *	Must be called with user context, may sleep.
2340 */
2341void
2342scsi_device_resume(struct scsi_device *sdev)
2343{
2344	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2345		return;
2346	scsi_run_queue(sdev->request_queue);
2347}
2348EXPORT_SYMBOL(scsi_device_resume);
2349
2350static void
2351device_quiesce_fn(struct scsi_device *sdev, void *data)
2352{
2353	scsi_device_quiesce(sdev);
2354}
2355
2356void
2357scsi_target_quiesce(struct scsi_target *starget)
2358{
2359	starget_for_each_device(starget, NULL, device_quiesce_fn);
2360}
2361EXPORT_SYMBOL(scsi_target_quiesce);
2362
2363static void
2364device_resume_fn(struct scsi_device *sdev, void *data)
2365{
2366	scsi_device_resume(sdev);
2367}
2368
2369void
2370scsi_target_resume(struct scsi_target *starget)
2371{
2372	starget_for_each_device(starget, NULL, device_resume_fn);
2373}
2374EXPORT_SYMBOL(scsi_target_resume);
2375
2376/**
2377 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2378 * @sdev:	device to block
2379 *
2380 * Block request made by scsi lld's to temporarily stop all
2381 * scsi commands on the specified device.  Called from interrupt
2382 * or normal process context.
2383 *
2384 * Returns zero if successful or error if not
2385 *
2386 * Notes:
2387 *	This routine transitions the device to the SDEV_BLOCK state
2388 *	(which must be a legal transition).  When the device is in this
2389 *	state, all commands are deferred until the scsi lld reenables
2390 *	the device with scsi_device_unblock or device_block_tmo fires.
2391 *	This routine assumes the host_lock is held on entry.
2392 */
2393int
2394scsi_internal_device_block(struct scsi_device *sdev)
2395{
2396	struct request_queue *q = sdev->request_queue;
2397	unsigned long flags;
2398	int err = 0;
2399
2400	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2401	if (err) {
2402		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2403
2404		if (err)
2405			return err;
2406	}
2407
2408	/*
2409	 * The device has transitioned to SDEV_BLOCK.  Stop the
2410	 * block layer from calling the midlayer with this device's
2411	 * request queue.
2412	 */
2413	spin_lock_irqsave(q->queue_lock, flags);
2414	blk_stop_queue(q);
2415	spin_unlock_irqrestore(q->queue_lock, flags);
2416
2417	return 0;
2418}
2419EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2420
2421/**
2422 * scsi_internal_device_unblock - resume a device after a block request
2423 * @sdev:	device to resume
2424 *
2425 * Called by scsi lld's or the midlayer to restart the device queue
2426 * for the previously suspended scsi device.  Called from interrupt or
2427 * normal process context.
2428 *
2429 * Returns zero if successful or error if not.
2430 *
2431 * Notes:
2432 *	This routine transitions the device to the SDEV_RUNNING state
2433 *	(which must be a legal transition) allowing the midlayer to
2434 *	goose the queue for this device.  This routine assumes the
2435 *	host_lock is held upon entry.
2436 */
2437int
2438scsi_internal_device_unblock(struct scsi_device *sdev)
2439{
2440	struct request_queue *q = sdev->request_queue;
2441	unsigned long flags;
2442
2443	/*
2444	 * Try to transition the scsi device to SDEV_RUNNING
2445	 * and goose the device queue if successful.
2446	 */
2447	if (sdev->sdev_state == SDEV_BLOCK)
2448		sdev->sdev_state = SDEV_RUNNING;
2449	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2450		sdev->sdev_state = SDEV_CREATED;
2451	else if (sdev->sdev_state != SDEV_CANCEL &&
2452		 sdev->sdev_state != SDEV_OFFLINE)
2453		return -EINVAL;
2454
2455	spin_lock_irqsave(q->queue_lock, flags);
2456	blk_start_queue(q);
2457	spin_unlock_irqrestore(q->queue_lock, flags);
2458
2459	return 0;
2460}
2461EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2462
2463static void
2464device_block(struct scsi_device *sdev, void *data)
2465{
2466	scsi_internal_device_block(sdev);
2467}
2468
2469static int
2470target_block(struct device *dev, void *data)
2471{
2472	if (scsi_is_target_device(dev))
2473		starget_for_each_device(to_scsi_target(dev), NULL,
2474					device_block);
2475	return 0;
2476}
2477
2478void
2479scsi_target_block(struct device *dev)
2480{
2481	if (scsi_is_target_device(dev))
2482		starget_for_each_device(to_scsi_target(dev), NULL,
2483					device_block);
2484	else
2485		device_for_each_child(dev, NULL, target_block);
2486}
2487EXPORT_SYMBOL_GPL(scsi_target_block);
2488
2489static void
2490device_unblock(struct scsi_device *sdev, void *data)
2491{
2492	scsi_internal_device_unblock(sdev);
2493}
2494
2495static int
2496target_unblock(struct device *dev, void *data)
2497{
2498	if (scsi_is_target_device(dev))
2499		starget_for_each_device(to_scsi_target(dev), NULL,
2500					device_unblock);
2501	return 0;
2502}
2503
2504void
2505scsi_target_unblock(struct device *dev)
2506{
2507	if (scsi_is_target_device(dev))
2508		starget_for_each_device(to_scsi_target(dev), NULL,
2509					device_unblock);
2510	else
2511		device_for_each_child(dev, NULL, target_unblock);
2512}
2513EXPORT_SYMBOL_GPL(scsi_target_unblock);
2514
2515/**
2516 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2517 * @sgl:	scatter-gather list
2518 * @sg_count:	number of segments in sg
2519 * @offset:	offset in bytes into sg, on return offset into the mapped area
2520 * @len:	bytes to map, on return number of bytes mapped
2521 *
2522 * Returns virtual address of the start of the mapped page
2523 */
2524void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2525			  size_t *offset, size_t *len)
2526{
2527	int i;
2528	size_t sg_len = 0, len_complete = 0;
2529	struct scatterlist *sg;
2530	struct page *page;
2531
2532	WARN_ON(!irqs_disabled());
2533
2534	for_each_sg(sgl, sg, sg_count, i) {
2535		len_complete = sg_len; /* Complete sg-entries */
2536		sg_len += sg->length;
2537		if (sg_len > *offset)
2538			break;
2539	}
2540
2541	if (unlikely(i == sg_count)) {
2542		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2543			"elements %d\n",
2544		       __func__, sg_len, *offset, sg_count);
2545		WARN_ON(1);
2546		return NULL;
2547	}
2548
2549	/* Offset starting from the beginning of first page in this sg-entry */
2550	*offset = *offset - len_complete + sg->offset;
2551
2552	/* Assumption: contiguous pages can be accessed as "page + i" */
2553	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2554	*offset &= ~PAGE_MASK;
2555
2556	/* Bytes in this sg-entry from *offset to the end of the page */
2557	sg_len = PAGE_SIZE - *offset;
2558	if (*len > sg_len)
2559		*len = sg_len;
2560
2561	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2562}
2563EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2564
2565/**
2566 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2567 * @virt:	virtual address to be unmapped
2568 */
2569void scsi_kunmap_atomic_sg(void *virt)
2570{
2571	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2572}
2573EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2574