scsi_lib.c revision a3bec5c5aea0da263111c4d8f8eabc1f8560d7bf
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19#include <linux/hardirq.h>
20#include <linux/scatterlist.h>
21
22#include <scsi/scsi.h>
23#include <scsi/scsi_cmnd.h>
24#include <scsi/scsi_dbg.h>
25#include <scsi/scsi_device.h>
26#include <scsi/scsi_driver.h>
27#include <scsi/scsi_eh.h>
28#include <scsi/scsi_host.h>
29
30#include "scsi_priv.h"
31#include "scsi_logging.h"
32
33
34#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
35#define SG_MEMPOOL_SIZE		2
36
37/*
38 * The maximum number of SG segments that we will put inside a scatterlist
39 * (unless chaining is used). Should ideally fit inside a single page, to
40 * avoid a higher order allocation.
41 */
42#define SCSI_MAX_SG_SEGMENTS	128
43
44struct scsi_host_sg_pool {
45	size_t		size;
46	char		*name;
47	struct kmem_cache	*slab;
48	mempool_t	*pool;
49};
50
51#define SP(x) { x, "sgpool-" #x }
52static struct scsi_host_sg_pool scsi_sg_pools[] = {
53	SP(8),
54	SP(16),
55#if (SCSI_MAX_SG_SEGMENTS > 16)
56	SP(32),
57#if (SCSI_MAX_SG_SEGMENTS > 32)
58	SP(64),
59#if (SCSI_MAX_SG_SEGMENTS > 64)
60	SP(128),
61#endif
62#endif
63#endif
64};
65#undef SP
66
67static void scsi_run_queue(struct request_queue *q);
68
69/*
70 * Function:	scsi_unprep_request()
71 *
72 * Purpose:	Remove all preparation done for a request, including its
73 *		associated scsi_cmnd, so that it can be requeued.
74 *
75 * Arguments:	req	- request to unprepare
76 *
77 * Lock status:	Assumed that no locks are held upon entry.
78 *
79 * Returns:	Nothing.
80 */
81static void scsi_unprep_request(struct request *req)
82{
83	struct scsi_cmnd *cmd = req->special;
84
85	req->cmd_flags &= ~REQ_DONTPREP;
86	req->special = NULL;
87
88	scsi_put_command(cmd);
89}
90
91/*
92 * Function:    scsi_queue_insert()
93 *
94 * Purpose:     Insert a command in the midlevel queue.
95 *
96 * Arguments:   cmd    - command that we are adding to queue.
97 *              reason - why we are inserting command to queue.
98 *
99 * Lock status: Assumed that lock is not held upon entry.
100 *
101 * Returns:     Nothing.
102 *
103 * Notes:       We do this for one of two cases.  Either the host is busy
104 *              and it cannot accept any more commands for the time being,
105 *              or the device returned QUEUE_FULL and can accept no more
106 *              commands.
107 * Notes:       This could be called either from an interrupt context or a
108 *              normal process context.
109 */
110int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111{
112	struct Scsi_Host *host = cmd->device->host;
113	struct scsi_device *device = cmd->device;
114	struct request_queue *q = device->request_queue;
115	unsigned long flags;
116
117	SCSI_LOG_MLQUEUE(1,
118		 printk("Inserting command %p into mlqueue\n", cmd));
119
120	/*
121	 * Set the appropriate busy bit for the device/host.
122	 *
123	 * If the host/device isn't busy, assume that something actually
124	 * completed, and that we should be able to queue a command now.
125	 *
126	 * Note that the prior mid-layer assumption that any host could
127	 * always queue at least one command is now broken.  The mid-layer
128	 * will implement a user specifiable stall (see
129	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130	 * if a command is requeued with no other commands outstanding
131	 * either for the device or for the host.
132	 */
133	if (reason == SCSI_MLQUEUE_HOST_BUSY)
134		host->host_blocked = host->max_host_blocked;
135	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136		device->device_blocked = device->max_device_blocked;
137
138	/*
139	 * Decrement the counters, since these commands are no longer
140	 * active on the host/device.
141	 */
142	scsi_device_unbusy(device);
143
144	/*
145	 * Requeue this command.  It will go before all other commands
146	 * that are already in the queue.
147	 *
148	 * NOTE: there is magic here about the way the queue is plugged if
149	 * we have no outstanding commands.
150	 *
151	 * Although we *don't* plug the queue, we call the request
152	 * function.  The SCSI request function detects the blocked condition
153	 * and plugs the queue appropriately.
154         */
155	spin_lock_irqsave(q->queue_lock, flags);
156	blk_requeue_request(q, cmd->request);
157	spin_unlock_irqrestore(q->queue_lock, flags);
158
159	scsi_run_queue(q);
160
161	return 0;
162}
163
164/**
165 * scsi_execute - insert request and wait for the result
166 * @sdev:	scsi device
167 * @cmd:	scsi command
168 * @data_direction: data direction
169 * @buffer:	data buffer
170 * @bufflen:	len of buffer
171 * @sense:	optional sense buffer
172 * @timeout:	request timeout in seconds
173 * @retries:	number of times to retry request
174 * @flags:	or into request flags;
175 *
176 * returns the req->errors value which is the scsi_cmnd result
177 * field.
178 **/
179int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180		 int data_direction, void *buffer, unsigned bufflen,
181		 unsigned char *sense, int timeout, int retries, int flags)
182{
183	struct request *req;
184	int write = (data_direction == DMA_TO_DEVICE);
185	int ret = DRIVER_ERROR << 24;
186
187	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
190					buffer, bufflen, __GFP_WAIT))
191		goto out;
192
193	req->cmd_len = COMMAND_SIZE(cmd[0]);
194	memcpy(req->cmd, cmd, req->cmd_len);
195	req->sense = sense;
196	req->sense_len = 0;
197	req->retries = retries;
198	req->timeout = timeout;
199	req->cmd_type = REQ_TYPE_BLOCK_PC;
200	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202	/*
203	 * head injection *required* here otherwise quiesce won't work
204	 */
205	blk_execute_rq(req->q, NULL, req, 1);
206
207	ret = req->errors;
208 out:
209	blk_put_request(req);
210
211	return ret;
212}
213EXPORT_SYMBOL(scsi_execute);
214
215
216int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217		     int data_direction, void *buffer, unsigned bufflen,
218		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
219{
220	char *sense = NULL;
221	int result;
222
223	if (sshdr) {
224		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225		if (!sense)
226			return DRIVER_ERROR << 24;
227	}
228	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229			      sense, timeout, retries, 0);
230	if (sshdr)
231		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233	kfree(sense);
234	return result;
235}
236EXPORT_SYMBOL(scsi_execute_req);
237
238struct scsi_io_context {
239	void *data;
240	void (*done)(void *data, char *sense, int result, int resid);
241	char sense[SCSI_SENSE_BUFFERSIZE];
242};
243
244static struct kmem_cache *scsi_io_context_cache;
245
246static void scsi_end_async(struct request *req, int uptodate)
247{
248	struct scsi_io_context *sioc = req->end_io_data;
249
250	if (sioc->done)
251		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253	kmem_cache_free(scsi_io_context_cache, sioc);
254	__blk_put_request(req->q, req);
255}
256
257static int scsi_merge_bio(struct request *rq, struct bio *bio)
258{
259	struct request_queue *q = rq->q;
260
261	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262	if (rq_data_dir(rq) == WRITE)
263		bio->bi_rw |= (1 << BIO_RW);
264	blk_queue_bounce(q, &bio);
265
266	return blk_rq_append_bio(q, rq, bio);
267}
268
269static void scsi_bi_endio(struct bio *bio, int error)
270{
271	bio_put(bio);
272}
273
274/**
275 * scsi_req_map_sg - map a scatterlist into a request
276 * @rq:		request to fill
277 * @sg:		scatterlist
278 * @nsegs:	number of elements
279 * @bufflen:	len of buffer
280 * @gfp:	memory allocation flags
281 *
282 * scsi_req_map_sg maps a scatterlist into a request so that the
283 * request can be sent to the block layer. We do not trust the scatterlist
284 * sent to use, as some ULDs use that struct to only organize the pages.
285 */
286static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287			   int nsegs, unsigned bufflen, gfp_t gfp)
288{
289	struct request_queue *q = rq->q;
290	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
291	unsigned int data_len = bufflen, len, bytes, off;
292	struct scatterlist *sg;
293	struct page *page;
294	struct bio *bio = NULL;
295	int i, err, nr_vecs = 0;
296
297	for_each_sg(sgl, sg, nsegs, i) {
298		page = sg->page;
299		off = sg->offset;
300		len = sg->length;
301 		data_len += len;
302
303		while (len > 0 && data_len > 0) {
304			/*
305			 * sg sends a scatterlist that is larger than
306			 * the data_len it wants transferred for certain
307			 * IO sizes
308			 */
309			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
310			bytes = min(bytes, data_len);
311
312			if (!bio) {
313				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
314				nr_pages -= nr_vecs;
315
316				bio = bio_alloc(gfp, nr_vecs);
317				if (!bio) {
318					err = -ENOMEM;
319					goto free_bios;
320				}
321				bio->bi_end_io = scsi_bi_endio;
322			}
323
324			if (bio_add_pc_page(q, bio, page, bytes, off) !=
325			    bytes) {
326				bio_put(bio);
327				err = -EINVAL;
328				goto free_bios;
329			}
330
331			if (bio->bi_vcnt >= nr_vecs) {
332				err = scsi_merge_bio(rq, bio);
333				if (err) {
334					bio_endio(bio, 0);
335					goto free_bios;
336				}
337				bio = NULL;
338			}
339
340			page++;
341			len -= bytes;
342			data_len -=bytes;
343			off = 0;
344		}
345	}
346
347	rq->buffer = rq->data = NULL;
348	rq->data_len = bufflen;
349	return 0;
350
351free_bios:
352	while ((bio = rq->bio) != NULL) {
353		rq->bio = bio->bi_next;
354		/*
355		 * call endio instead of bio_put incase it was bounced
356		 */
357		bio_endio(bio, 0);
358	}
359
360	return err;
361}
362
363/**
364 * scsi_execute_async - insert request
365 * @sdev:	scsi device
366 * @cmd:	scsi command
367 * @cmd_len:	length of scsi cdb
368 * @data_direction: data direction
369 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
370 * @bufflen:	len of buffer
371 * @use_sg:	if buffer is a scatterlist this is the number of elements
372 * @timeout:	request timeout in seconds
373 * @retries:	number of times to retry request
374 * @flags:	or into request flags
375 **/
376int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
377		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
378		       int use_sg, int timeout, int retries, void *privdata,
379		       void (*done)(void *, char *, int, int), gfp_t gfp)
380{
381	struct request *req;
382	struct scsi_io_context *sioc;
383	int err = 0;
384	int write = (data_direction == DMA_TO_DEVICE);
385
386	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
387	if (!sioc)
388		return DRIVER_ERROR << 24;
389
390	req = blk_get_request(sdev->request_queue, write, gfp);
391	if (!req)
392		goto free_sense;
393	req->cmd_type = REQ_TYPE_BLOCK_PC;
394	req->cmd_flags |= REQ_QUIET;
395
396	if (use_sg)
397		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
398	else if (bufflen)
399		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
400
401	if (err)
402		goto free_req;
403
404	req->cmd_len = cmd_len;
405	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
406	memcpy(req->cmd, cmd, req->cmd_len);
407	req->sense = sioc->sense;
408	req->sense_len = 0;
409	req->timeout = timeout;
410	req->retries = retries;
411	req->end_io_data = sioc;
412
413	sioc->data = privdata;
414	sioc->done = done;
415
416	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
417	return 0;
418
419free_req:
420	blk_put_request(req);
421free_sense:
422	kmem_cache_free(scsi_io_context_cache, sioc);
423	return DRIVER_ERROR << 24;
424}
425EXPORT_SYMBOL_GPL(scsi_execute_async);
426
427/*
428 * Function:    scsi_init_cmd_errh()
429 *
430 * Purpose:     Initialize cmd fields related to error handling.
431 *
432 * Arguments:   cmd	- command that is ready to be queued.
433 *
434 * Notes:       This function has the job of initializing a number of
435 *              fields related to error handling.   Typically this will
436 *              be called once for each command, as required.
437 */
438static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
439{
440	cmd->serial_number = 0;
441	cmd->resid = 0;
442	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
443	if (cmd->cmd_len == 0)
444		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
445}
446
447void scsi_device_unbusy(struct scsi_device *sdev)
448{
449	struct Scsi_Host *shost = sdev->host;
450	unsigned long flags;
451
452	spin_lock_irqsave(shost->host_lock, flags);
453	shost->host_busy--;
454	if (unlikely(scsi_host_in_recovery(shost) &&
455		     (shost->host_failed || shost->host_eh_scheduled)))
456		scsi_eh_wakeup(shost);
457	spin_unlock(shost->host_lock);
458	spin_lock(sdev->request_queue->queue_lock);
459	sdev->device_busy--;
460	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
461}
462
463/*
464 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
465 * and call blk_run_queue for all the scsi_devices on the target -
466 * including current_sdev first.
467 *
468 * Called with *no* scsi locks held.
469 */
470static void scsi_single_lun_run(struct scsi_device *current_sdev)
471{
472	struct Scsi_Host *shost = current_sdev->host;
473	struct scsi_device *sdev, *tmp;
474	struct scsi_target *starget = scsi_target(current_sdev);
475	unsigned long flags;
476
477	spin_lock_irqsave(shost->host_lock, flags);
478	starget->starget_sdev_user = NULL;
479	spin_unlock_irqrestore(shost->host_lock, flags);
480
481	/*
482	 * Call blk_run_queue for all LUNs on the target, starting with
483	 * current_sdev. We race with others (to set starget_sdev_user),
484	 * but in most cases, we will be first. Ideally, each LU on the
485	 * target would get some limited time or requests on the target.
486	 */
487	blk_run_queue(current_sdev->request_queue);
488
489	spin_lock_irqsave(shost->host_lock, flags);
490	if (starget->starget_sdev_user)
491		goto out;
492	list_for_each_entry_safe(sdev, tmp, &starget->devices,
493			same_target_siblings) {
494		if (sdev == current_sdev)
495			continue;
496		if (scsi_device_get(sdev))
497			continue;
498
499		spin_unlock_irqrestore(shost->host_lock, flags);
500		blk_run_queue(sdev->request_queue);
501		spin_lock_irqsave(shost->host_lock, flags);
502
503		scsi_device_put(sdev);
504	}
505 out:
506	spin_unlock_irqrestore(shost->host_lock, flags);
507}
508
509/*
510 * Function:	scsi_run_queue()
511 *
512 * Purpose:	Select a proper request queue to serve next
513 *
514 * Arguments:	q	- last request's queue
515 *
516 * Returns:     Nothing
517 *
518 * Notes:	The previous command was completely finished, start
519 *		a new one if possible.
520 */
521static void scsi_run_queue(struct request_queue *q)
522{
523	struct scsi_device *sdev = q->queuedata;
524	struct Scsi_Host *shost = sdev->host;
525	unsigned long flags;
526
527	if (sdev->single_lun)
528		scsi_single_lun_run(sdev);
529
530	spin_lock_irqsave(shost->host_lock, flags);
531	while (!list_empty(&shost->starved_list) &&
532	       !shost->host_blocked && !shost->host_self_blocked &&
533		!((shost->can_queue > 0) &&
534		  (shost->host_busy >= shost->can_queue))) {
535		/*
536		 * As long as shost is accepting commands and we have
537		 * starved queues, call blk_run_queue. scsi_request_fn
538		 * drops the queue_lock and can add us back to the
539		 * starved_list.
540		 *
541		 * host_lock protects the starved_list and starved_entry.
542		 * scsi_request_fn must get the host_lock before checking
543		 * or modifying starved_list or starved_entry.
544		 */
545		sdev = list_entry(shost->starved_list.next,
546					  struct scsi_device, starved_entry);
547		list_del_init(&sdev->starved_entry);
548		spin_unlock_irqrestore(shost->host_lock, flags);
549
550
551		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
552		    !test_and_set_bit(QUEUE_FLAG_REENTER,
553				      &sdev->request_queue->queue_flags)) {
554			blk_run_queue(sdev->request_queue);
555			clear_bit(QUEUE_FLAG_REENTER,
556				  &sdev->request_queue->queue_flags);
557		} else
558			blk_run_queue(sdev->request_queue);
559
560		spin_lock_irqsave(shost->host_lock, flags);
561		if (unlikely(!list_empty(&sdev->starved_entry)))
562			/*
563			 * sdev lost a race, and was put back on the
564			 * starved list. This is unlikely but without this
565			 * in theory we could loop forever.
566			 */
567			break;
568	}
569	spin_unlock_irqrestore(shost->host_lock, flags);
570
571	blk_run_queue(q);
572}
573
574/*
575 * Function:	scsi_requeue_command()
576 *
577 * Purpose:	Handle post-processing of completed commands.
578 *
579 * Arguments:	q	- queue to operate on
580 *		cmd	- command that may need to be requeued.
581 *
582 * Returns:	Nothing
583 *
584 * Notes:	After command completion, there may be blocks left
585 *		over which weren't finished by the previous command
586 *		this can be for a number of reasons - the main one is
587 *		I/O errors in the middle of the request, in which case
588 *		we need to request the blocks that come after the bad
589 *		sector.
590 * Notes:	Upon return, cmd is a stale pointer.
591 */
592static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
593{
594	struct request *req = cmd->request;
595	unsigned long flags;
596
597	scsi_unprep_request(req);
598	spin_lock_irqsave(q->queue_lock, flags);
599	blk_requeue_request(q, req);
600	spin_unlock_irqrestore(q->queue_lock, flags);
601
602	scsi_run_queue(q);
603}
604
605void scsi_next_command(struct scsi_cmnd *cmd)
606{
607	struct scsi_device *sdev = cmd->device;
608	struct request_queue *q = sdev->request_queue;
609
610	/* need to hold a reference on the device before we let go of the cmd */
611	get_device(&sdev->sdev_gendev);
612
613	scsi_put_command(cmd);
614	scsi_run_queue(q);
615
616	/* ok to remove device now */
617	put_device(&sdev->sdev_gendev);
618}
619
620void scsi_run_host_queues(struct Scsi_Host *shost)
621{
622	struct scsi_device *sdev;
623
624	shost_for_each_device(sdev, shost)
625		scsi_run_queue(sdev->request_queue);
626}
627
628/*
629 * Function:    scsi_end_request()
630 *
631 * Purpose:     Post-processing of completed commands (usually invoked at end
632 *		of upper level post-processing and scsi_io_completion).
633 *
634 * Arguments:   cmd	 - command that is complete.
635 *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
636 *              bytes    - number of bytes of completed I/O
637 *		requeue  - indicates whether we should requeue leftovers.
638 *
639 * Lock status: Assumed that lock is not held upon entry.
640 *
641 * Returns:     cmd if requeue required, NULL otherwise.
642 *
643 * Notes:       This is called for block device requests in order to
644 *              mark some number of sectors as complete.
645 *
646 *		We are guaranteeing that the request queue will be goosed
647 *		at some point during this call.
648 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
649 */
650static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
651					  int bytes, int requeue)
652{
653	struct request_queue *q = cmd->device->request_queue;
654	struct request *req = cmd->request;
655	unsigned long flags;
656
657	/*
658	 * If there are blocks left over at the end, set up the command
659	 * to queue the remainder of them.
660	 */
661	if (end_that_request_chunk(req, uptodate, bytes)) {
662		int leftover = (req->hard_nr_sectors << 9);
663
664		if (blk_pc_request(req))
665			leftover = req->data_len;
666
667		/* kill remainder if no retrys */
668		if (!uptodate && blk_noretry_request(req))
669			end_that_request_chunk(req, 0, leftover);
670		else {
671			if (requeue) {
672				/*
673				 * Bleah.  Leftovers again.  Stick the
674				 * leftovers in the front of the
675				 * queue, and goose the queue again.
676				 */
677				scsi_requeue_command(q, cmd);
678				cmd = NULL;
679			}
680			return cmd;
681		}
682	}
683
684	add_disk_randomness(req->rq_disk);
685
686	spin_lock_irqsave(q->queue_lock, flags);
687	if (blk_rq_tagged(req))
688		blk_queue_end_tag(q, req);
689	end_that_request_last(req, uptodate);
690	spin_unlock_irqrestore(q->queue_lock, flags);
691
692	/*
693	 * This will goose the queue request function at the end, so we don't
694	 * need to worry about launching another command.
695	 */
696	scsi_next_command(cmd);
697	return NULL;
698}
699
700/*
701 * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
702 * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
703 */
704#define SCSI_MAX_SG_CHAIN_SEGMENTS	2048
705
706static inline unsigned int scsi_sgtable_index(unsigned short nents)
707{
708	unsigned int index;
709
710	switch (nents) {
711	case 1 ... 8:
712		index = 0;
713		break;
714	case 9 ... 16:
715		index = 1;
716		break;
717#if (SCSI_MAX_SG_SEGMENTS > 16)
718	case 17 ... 32:
719		index = 2;
720		break;
721#if (SCSI_MAX_SG_SEGMENTS > 32)
722	case 33 ... 64:
723		index = 3;
724		break;
725#if (SCSI_MAX_SG_SEGMENTS > 64)
726	case 65 ... 128:
727		index = 4;
728		break;
729#endif
730#endif
731#endif
732	default:
733		printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
734		BUG();
735	}
736
737	return index;
738}
739
740struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
741{
742	struct scsi_host_sg_pool *sgp;
743	struct scatterlist *sgl, *prev, *ret;
744	unsigned int index;
745	int this, left;
746
747	BUG_ON(!cmd->use_sg);
748
749	left = cmd->use_sg;
750	ret = prev = NULL;
751	do {
752		this = left;
753		if (this > SCSI_MAX_SG_SEGMENTS) {
754			this = SCSI_MAX_SG_SEGMENTS - 1;
755			index = SG_MEMPOOL_NR - 1;
756		} else
757			index = scsi_sgtable_index(this);
758
759		left -= this;
760
761		sgp = scsi_sg_pools + index;
762
763		sgl = mempool_alloc(sgp->pool, gfp_mask);
764		if (unlikely(!sgl))
765			goto enomem;
766
767		memset(sgl, 0, sizeof(*sgl) * sgp->size);
768
769		/*
770		 * first loop through, set initial index and return value
771		 */
772		if (!ret)
773			ret = sgl;
774
775		/*
776		 * chain previous sglist, if any. we know the previous
777		 * sglist must be the biggest one, or we would not have
778		 * ended up doing another loop.
779		 */
780		if (prev)
781			sg_chain(prev, SCSI_MAX_SG_SEGMENTS, sgl);
782
783		/*
784		 * don't allow subsequent mempool allocs to sleep, it would
785		 * violate the mempool principle.
786		 */
787		gfp_mask &= ~__GFP_WAIT;
788		gfp_mask |= __GFP_HIGH;
789		prev = sgl;
790	} while (left);
791
792	/*
793	 * ->use_sg may get modified after dma mapping has potentially
794	 * shrunk the number of segments, so keep a copy of it for free.
795	 */
796	cmd->__use_sg = cmd->use_sg;
797	return ret;
798enomem:
799	if (ret) {
800		/*
801		 * Free entries chained off ret. Since we were trying to
802		 * allocate another sglist, we know that all entries are of
803		 * the max size.
804		 */
805		sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
806		prev = ret;
807		ret = &ret[SCSI_MAX_SG_SEGMENTS - 1];
808
809		while ((sgl = sg_chain_ptr(ret)) != NULL) {
810			ret = &sgl[SCSI_MAX_SG_SEGMENTS - 1];
811			mempool_free(sgl, sgp->pool);
812		}
813
814		mempool_free(prev, sgp->pool);
815	}
816	return NULL;
817}
818
819EXPORT_SYMBOL(scsi_alloc_sgtable);
820
821void scsi_free_sgtable(struct scsi_cmnd *cmd)
822{
823	struct scatterlist *sgl = cmd->request_buffer;
824	struct scsi_host_sg_pool *sgp;
825
826	/*
827	 * if this is the biggest size sglist, check if we have
828	 * chained parts we need to free
829	 */
830	if (cmd->__use_sg > SCSI_MAX_SG_SEGMENTS) {
831		unsigned short this, left;
832		struct scatterlist *next;
833		unsigned int index;
834
835		left = cmd->__use_sg - (SCSI_MAX_SG_SEGMENTS - 1);
836		next = sg_chain_ptr(&sgl[SCSI_MAX_SG_SEGMENTS - 1]);
837		while (left && next) {
838			sgl = next;
839			this = left;
840			if (this > SCSI_MAX_SG_SEGMENTS) {
841				this = SCSI_MAX_SG_SEGMENTS - 1;
842				index = SG_MEMPOOL_NR - 1;
843			} else
844				index = scsi_sgtable_index(this);
845
846			left -= this;
847
848			sgp = scsi_sg_pools + index;
849
850			if (left)
851				next = sg_chain_ptr(&sgl[sgp->size - 1]);
852
853			mempool_free(sgl, sgp->pool);
854		}
855
856		/*
857		 * Restore original, will be freed below
858		 */
859		sgl = cmd->request_buffer;
860		sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
861	} else
862		sgp = scsi_sg_pools + scsi_sgtable_index(cmd->__use_sg);
863
864	mempool_free(sgl, sgp->pool);
865}
866
867EXPORT_SYMBOL(scsi_free_sgtable);
868
869/*
870 * Function:    scsi_release_buffers()
871 *
872 * Purpose:     Completion processing for block device I/O requests.
873 *
874 * Arguments:   cmd	- command that we are bailing.
875 *
876 * Lock status: Assumed that no lock is held upon entry.
877 *
878 * Returns:     Nothing
879 *
880 * Notes:       In the event that an upper level driver rejects a
881 *		command, we must release resources allocated during
882 *		the __init_io() function.  Primarily this would involve
883 *		the scatter-gather table, and potentially any bounce
884 *		buffers.
885 */
886static void scsi_release_buffers(struct scsi_cmnd *cmd)
887{
888	if (cmd->use_sg)
889		scsi_free_sgtable(cmd);
890
891	/*
892	 * Zero these out.  They now point to freed memory, and it is
893	 * dangerous to hang onto the pointers.
894	 */
895	cmd->request_buffer = NULL;
896	cmd->request_bufflen = 0;
897}
898
899/*
900 * Function:    scsi_io_completion()
901 *
902 * Purpose:     Completion processing for block device I/O requests.
903 *
904 * Arguments:   cmd   - command that is finished.
905 *
906 * Lock status: Assumed that no lock is held upon entry.
907 *
908 * Returns:     Nothing
909 *
910 * Notes:       This function is matched in terms of capabilities to
911 *              the function that created the scatter-gather list.
912 *              In other words, if there are no bounce buffers
913 *              (the normal case for most drivers), we don't need
914 *              the logic to deal with cleaning up afterwards.
915 *
916 *		We must do one of several things here:
917 *
918 *		a) Call scsi_end_request.  This will finish off the
919 *		   specified number of sectors.  If we are done, the
920 *		   command block will be released, and the queue
921 *		   function will be goosed.  If we are not done, then
922 *		   scsi_end_request will directly goose the queue.
923 *
924 *		b) We can just use scsi_requeue_command() here.  This would
925 *		   be used if we just wanted to retry, for example.
926 */
927void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
928{
929	int result = cmd->result;
930	int this_count = cmd->request_bufflen;
931	struct request_queue *q = cmd->device->request_queue;
932	struct request *req = cmd->request;
933	int clear_errors = 1;
934	struct scsi_sense_hdr sshdr;
935	int sense_valid = 0;
936	int sense_deferred = 0;
937
938	scsi_release_buffers(cmd);
939
940	if (result) {
941		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
942		if (sense_valid)
943			sense_deferred = scsi_sense_is_deferred(&sshdr);
944	}
945
946	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
947		req->errors = result;
948		if (result) {
949			clear_errors = 0;
950			if (sense_valid && req->sense) {
951				/*
952				 * SG_IO wants current and deferred errors
953				 */
954				int len = 8 + cmd->sense_buffer[7];
955
956				if (len > SCSI_SENSE_BUFFERSIZE)
957					len = SCSI_SENSE_BUFFERSIZE;
958				memcpy(req->sense, cmd->sense_buffer,  len);
959				req->sense_len = len;
960			}
961		}
962		req->data_len = cmd->resid;
963	}
964
965	/*
966	 * Next deal with any sectors which we were able to correctly
967	 * handle.
968	 */
969	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
970				      "%d bytes done.\n",
971				      req->nr_sectors, good_bytes));
972	SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
973
974	if (clear_errors)
975		req->errors = 0;
976
977	/* A number of bytes were successfully read.  If there
978	 * are leftovers and there is some kind of error
979	 * (result != 0), retry the rest.
980	 */
981	if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
982		return;
983
984	/* good_bytes = 0, or (inclusive) there were leftovers and
985	 * result = 0, so scsi_end_request couldn't retry.
986	 */
987	if (sense_valid && !sense_deferred) {
988		switch (sshdr.sense_key) {
989		case UNIT_ATTENTION:
990			if (cmd->device->removable) {
991				/* Detected disc change.  Set a bit
992				 * and quietly refuse further access.
993				 */
994				cmd->device->changed = 1;
995				scsi_end_request(cmd, 0, this_count, 1);
996				return;
997			} else {
998				/* Must have been a power glitch, or a
999				 * bus reset.  Could not have been a
1000				 * media change, so we just retry the
1001				 * request and see what happens.
1002				 */
1003				scsi_requeue_command(q, cmd);
1004				return;
1005			}
1006			break;
1007		case ILLEGAL_REQUEST:
1008			/* If we had an ILLEGAL REQUEST returned, then
1009			 * we may have performed an unsupported
1010			 * command.  The only thing this should be
1011			 * would be a ten byte read where only a six
1012			 * byte read was supported.  Also, on a system
1013			 * where READ CAPACITY failed, we may have
1014			 * read past the end of the disk.
1015			 */
1016			if ((cmd->device->use_10_for_rw &&
1017			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1018			    (cmd->cmnd[0] == READ_10 ||
1019			     cmd->cmnd[0] == WRITE_10)) {
1020				cmd->device->use_10_for_rw = 0;
1021				/* This will cause a retry with a
1022				 * 6-byte command.
1023				 */
1024				scsi_requeue_command(q, cmd);
1025				return;
1026			} else {
1027				scsi_end_request(cmd, 0, this_count, 1);
1028				return;
1029			}
1030			break;
1031		case NOT_READY:
1032			/* If the device is in the process of becoming
1033			 * ready, or has a temporary blockage, retry.
1034			 */
1035			if (sshdr.asc == 0x04) {
1036				switch (sshdr.ascq) {
1037				case 0x01: /* becoming ready */
1038				case 0x04: /* format in progress */
1039				case 0x05: /* rebuild in progress */
1040				case 0x06: /* recalculation in progress */
1041				case 0x07: /* operation in progress */
1042				case 0x08: /* Long write in progress */
1043				case 0x09: /* self test in progress */
1044					scsi_requeue_command(q, cmd);
1045					return;
1046				default:
1047					break;
1048				}
1049			}
1050			if (!(req->cmd_flags & REQ_QUIET))
1051				scsi_cmd_print_sense_hdr(cmd,
1052							 "Device not ready",
1053							 &sshdr);
1054
1055			scsi_end_request(cmd, 0, this_count, 1);
1056			return;
1057		case VOLUME_OVERFLOW:
1058			if (!(req->cmd_flags & REQ_QUIET)) {
1059				scmd_printk(KERN_INFO, cmd,
1060					    "Volume overflow, CDB: ");
1061				__scsi_print_command(cmd->cmnd);
1062				scsi_print_sense("", cmd);
1063			}
1064			/* See SSC3rXX or current. */
1065			scsi_end_request(cmd, 0, this_count, 1);
1066			return;
1067		default:
1068			break;
1069		}
1070	}
1071	if (host_byte(result) == DID_RESET) {
1072		/* Third party bus reset or reset for error recovery
1073		 * reasons.  Just retry the request and see what
1074		 * happens.
1075		 */
1076		scsi_requeue_command(q, cmd);
1077		return;
1078	}
1079	if (result) {
1080		if (!(req->cmd_flags & REQ_QUIET)) {
1081			scsi_print_result(cmd);
1082			if (driver_byte(result) & DRIVER_SENSE)
1083				scsi_print_sense("", cmd);
1084		}
1085	}
1086	scsi_end_request(cmd, 0, this_count, !result);
1087}
1088
1089/*
1090 * Function:    scsi_init_io()
1091 *
1092 * Purpose:     SCSI I/O initialize function.
1093 *
1094 * Arguments:   cmd   - Command descriptor we wish to initialize
1095 *
1096 * Returns:     0 on success
1097 *		BLKPREP_DEFER if the failure is retryable
1098 *		BLKPREP_KILL if the failure is fatal
1099 */
1100static int scsi_init_io(struct scsi_cmnd *cmd)
1101{
1102	struct request     *req = cmd->request;
1103	int		   count;
1104
1105	/*
1106	 * We used to not use scatter-gather for single segment request,
1107	 * but now we do (it makes highmem I/O easier to support without
1108	 * kmapping pages)
1109	 */
1110	cmd->use_sg = req->nr_phys_segments;
1111
1112	/*
1113	 * If sg table allocation fails, requeue request later.
1114	 */
1115	cmd->request_buffer = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1116	if (unlikely(!cmd->request_buffer)) {
1117		scsi_unprep_request(req);
1118		return BLKPREP_DEFER;
1119	}
1120
1121	req->buffer = NULL;
1122	if (blk_pc_request(req))
1123		cmd->request_bufflen = req->data_len;
1124	else
1125		cmd->request_bufflen = req->nr_sectors << 9;
1126
1127	/*
1128	 * Next, walk the list, and fill in the addresses and sizes of
1129	 * each segment.
1130	 */
1131	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1132	if (likely(count <= cmd->use_sg)) {
1133		cmd->use_sg = count;
1134		return BLKPREP_OK;
1135	}
1136
1137	printk(KERN_ERR "Incorrect number of segments after building list\n");
1138	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1139	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1140			req->current_nr_sectors);
1141
1142	return BLKPREP_KILL;
1143}
1144
1145static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1146		struct request *req)
1147{
1148	struct scsi_cmnd *cmd;
1149
1150	if (!req->special) {
1151		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1152		if (unlikely(!cmd))
1153			return NULL;
1154		req->special = cmd;
1155	} else {
1156		cmd = req->special;
1157	}
1158
1159	/* pull a tag out of the request if we have one */
1160	cmd->tag = req->tag;
1161	cmd->request = req;
1162
1163	return cmd;
1164}
1165
1166int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1167{
1168	struct scsi_cmnd *cmd;
1169	int ret = scsi_prep_state_check(sdev, req);
1170
1171	if (ret != BLKPREP_OK)
1172		return ret;
1173
1174	cmd = scsi_get_cmd_from_req(sdev, req);
1175	if (unlikely(!cmd))
1176		return BLKPREP_DEFER;
1177
1178	/*
1179	 * BLOCK_PC requests may transfer data, in which case they must
1180	 * a bio attached to them.  Or they might contain a SCSI command
1181	 * that does not transfer data, in which case they may optionally
1182	 * submit a request without an attached bio.
1183	 */
1184	if (req->bio) {
1185		int ret;
1186
1187		BUG_ON(!req->nr_phys_segments);
1188
1189		ret = scsi_init_io(cmd);
1190		if (unlikely(ret))
1191			return ret;
1192	} else {
1193		BUG_ON(req->data_len);
1194		BUG_ON(req->data);
1195
1196		cmd->request_bufflen = 0;
1197		cmd->request_buffer = NULL;
1198		cmd->use_sg = 0;
1199		req->buffer = NULL;
1200	}
1201
1202	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1203	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1204	cmd->cmd_len = req->cmd_len;
1205	if (!req->data_len)
1206		cmd->sc_data_direction = DMA_NONE;
1207	else if (rq_data_dir(req) == WRITE)
1208		cmd->sc_data_direction = DMA_TO_DEVICE;
1209	else
1210		cmd->sc_data_direction = DMA_FROM_DEVICE;
1211
1212	cmd->transfersize = req->data_len;
1213	cmd->allowed = req->retries;
1214	cmd->timeout_per_command = req->timeout;
1215	return BLKPREP_OK;
1216}
1217EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1218
1219/*
1220 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1221 * from filesystems that still need to be translated to SCSI CDBs from
1222 * the ULD.
1223 */
1224int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1225{
1226	struct scsi_cmnd *cmd;
1227	int ret = scsi_prep_state_check(sdev, req);
1228
1229	if (ret != BLKPREP_OK)
1230		return ret;
1231	/*
1232	 * Filesystem requests must transfer data.
1233	 */
1234	BUG_ON(!req->nr_phys_segments);
1235
1236	cmd = scsi_get_cmd_from_req(sdev, req);
1237	if (unlikely(!cmd))
1238		return BLKPREP_DEFER;
1239
1240	return scsi_init_io(cmd);
1241}
1242EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1243
1244int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1245{
1246	int ret = BLKPREP_OK;
1247
1248	/*
1249	 * If the device is not in running state we will reject some
1250	 * or all commands.
1251	 */
1252	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1253		switch (sdev->sdev_state) {
1254		case SDEV_OFFLINE:
1255			/*
1256			 * If the device is offline we refuse to process any
1257			 * commands.  The device must be brought online
1258			 * before trying any recovery commands.
1259			 */
1260			sdev_printk(KERN_ERR, sdev,
1261				    "rejecting I/O to offline device\n");
1262			ret = BLKPREP_KILL;
1263			break;
1264		case SDEV_DEL:
1265			/*
1266			 * If the device is fully deleted, we refuse to
1267			 * process any commands as well.
1268			 */
1269			sdev_printk(KERN_ERR, sdev,
1270				    "rejecting I/O to dead device\n");
1271			ret = BLKPREP_KILL;
1272			break;
1273		case SDEV_QUIESCE:
1274		case SDEV_BLOCK:
1275			/*
1276			 * If the devices is blocked we defer normal commands.
1277			 */
1278			if (!(req->cmd_flags & REQ_PREEMPT))
1279				ret = BLKPREP_DEFER;
1280			break;
1281		default:
1282			/*
1283			 * For any other not fully online state we only allow
1284			 * special commands.  In particular any user initiated
1285			 * command is not allowed.
1286			 */
1287			if (!(req->cmd_flags & REQ_PREEMPT))
1288				ret = BLKPREP_KILL;
1289			break;
1290		}
1291	}
1292	return ret;
1293}
1294EXPORT_SYMBOL(scsi_prep_state_check);
1295
1296int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1297{
1298	struct scsi_device *sdev = q->queuedata;
1299
1300	switch (ret) {
1301	case BLKPREP_KILL:
1302		req->errors = DID_NO_CONNECT << 16;
1303		/* release the command and kill it */
1304		if (req->special) {
1305			struct scsi_cmnd *cmd = req->special;
1306			scsi_release_buffers(cmd);
1307			scsi_put_command(cmd);
1308			req->special = NULL;
1309		}
1310		break;
1311	case BLKPREP_DEFER:
1312		/*
1313		 * If we defer, the elv_next_request() returns NULL, but the
1314		 * queue must be restarted, so we plug here if no returning
1315		 * command will automatically do that.
1316		 */
1317		if (sdev->device_busy == 0)
1318			blk_plug_device(q);
1319		break;
1320	default:
1321		req->cmd_flags |= REQ_DONTPREP;
1322	}
1323
1324	return ret;
1325}
1326EXPORT_SYMBOL(scsi_prep_return);
1327
1328static int scsi_prep_fn(struct request_queue *q, struct request *req)
1329{
1330	struct scsi_device *sdev = q->queuedata;
1331	int ret = BLKPREP_KILL;
1332
1333	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1334		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1335	return scsi_prep_return(q, req, ret);
1336}
1337
1338/*
1339 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1340 * return 0.
1341 *
1342 * Called with the queue_lock held.
1343 */
1344static inline int scsi_dev_queue_ready(struct request_queue *q,
1345				  struct scsi_device *sdev)
1346{
1347	if (sdev->device_busy >= sdev->queue_depth)
1348		return 0;
1349	if (sdev->device_busy == 0 && sdev->device_blocked) {
1350		/*
1351		 * unblock after device_blocked iterates to zero
1352		 */
1353		if (--sdev->device_blocked == 0) {
1354			SCSI_LOG_MLQUEUE(3,
1355				   sdev_printk(KERN_INFO, sdev,
1356				   "unblocking device at zero depth\n"));
1357		} else {
1358			blk_plug_device(q);
1359			return 0;
1360		}
1361	}
1362	if (sdev->device_blocked)
1363		return 0;
1364
1365	return 1;
1366}
1367
1368/*
1369 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1370 * return 0. We must end up running the queue again whenever 0 is
1371 * returned, else IO can hang.
1372 *
1373 * Called with host_lock held.
1374 */
1375static inline int scsi_host_queue_ready(struct request_queue *q,
1376				   struct Scsi_Host *shost,
1377				   struct scsi_device *sdev)
1378{
1379	if (scsi_host_in_recovery(shost))
1380		return 0;
1381	if (shost->host_busy == 0 && shost->host_blocked) {
1382		/*
1383		 * unblock after host_blocked iterates to zero
1384		 */
1385		if (--shost->host_blocked == 0) {
1386			SCSI_LOG_MLQUEUE(3,
1387				printk("scsi%d unblocking host at zero depth\n",
1388					shost->host_no));
1389		} else {
1390			blk_plug_device(q);
1391			return 0;
1392		}
1393	}
1394	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1395	    shost->host_blocked || shost->host_self_blocked) {
1396		if (list_empty(&sdev->starved_entry))
1397			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1398		return 0;
1399	}
1400
1401	/* We're OK to process the command, so we can't be starved */
1402	if (!list_empty(&sdev->starved_entry))
1403		list_del_init(&sdev->starved_entry);
1404
1405	return 1;
1406}
1407
1408/*
1409 * Kill a request for a dead device
1410 */
1411static void scsi_kill_request(struct request *req, struct request_queue *q)
1412{
1413	struct scsi_cmnd *cmd = req->special;
1414	struct scsi_device *sdev = cmd->device;
1415	struct Scsi_Host *shost = sdev->host;
1416
1417	blkdev_dequeue_request(req);
1418
1419	if (unlikely(cmd == NULL)) {
1420		printk(KERN_CRIT "impossible request in %s.\n",
1421				 __FUNCTION__);
1422		BUG();
1423	}
1424
1425	scsi_init_cmd_errh(cmd);
1426	cmd->result = DID_NO_CONNECT << 16;
1427	atomic_inc(&cmd->device->iorequest_cnt);
1428
1429	/*
1430	 * SCSI request completion path will do scsi_device_unbusy(),
1431	 * bump busy counts.  To bump the counters, we need to dance
1432	 * with the locks as normal issue path does.
1433	 */
1434	sdev->device_busy++;
1435	spin_unlock(sdev->request_queue->queue_lock);
1436	spin_lock(shost->host_lock);
1437	shost->host_busy++;
1438	spin_unlock(shost->host_lock);
1439	spin_lock(sdev->request_queue->queue_lock);
1440
1441	__scsi_done(cmd);
1442}
1443
1444static void scsi_softirq_done(struct request *rq)
1445{
1446	struct scsi_cmnd *cmd = rq->completion_data;
1447	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1448	int disposition;
1449
1450	INIT_LIST_HEAD(&cmd->eh_entry);
1451
1452	disposition = scsi_decide_disposition(cmd);
1453	if (disposition != SUCCESS &&
1454	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1455		sdev_printk(KERN_ERR, cmd->device,
1456			    "timing out command, waited %lus\n",
1457			    wait_for/HZ);
1458		disposition = SUCCESS;
1459	}
1460
1461	scsi_log_completion(cmd, disposition);
1462
1463	switch (disposition) {
1464		case SUCCESS:
1465			scsi_finish_command(cmd);
1466			break;
1467		case NEEDS_RETRY:
1468			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1469			break;
1470		case ADD_TO_MLQUEUE:
1471			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1472			break;
1473		default:
1474			if (!scsi_eh_scmd_add(cmd, 0))
1475				scsi_finish_command(cmd);
1476	}
1477}
1478
1479/*
1480 * Function:    scsi_request_fn()
1481 *
1482 * Purpose:     Main strategy routine for SCSI.
1483 *
1484 * Arguments:   q       - Pointer to actual queue.
1485 *
1486 * Returns:     Nothing
1487 *
1488 * Lock status: IO request lock assumed to be held when called.
1489 */
1490static void scsi_request_fn(struct request_queue *q)
1491{
1492	struct scsi_device *sdev = q->queuedata;
1493	struct Scsi_Host *shost;
1494	struct scsi_cmnd *cmd;
1495	struct request *req;
1496
1497	if (!sdev) {
1498		printk("scsi: killing requests for dead queue\n");
1499		while ((req = elv_next_request(q)) != NULL)
1500			scsi_kill_request(req, q);
1501		return;
1502	}
1503
1504	if(!get_device(&sdev->sdev_gendev))
1505		/* We must be tearing the block queue down already */
1506		return;
1507
1508	/*
1509	 * To start with, we keep looping until the queue is empty, or until
1510	 * the host is no longer able to accept any more requests.
1511	 */
1512	shost = sdev->host;
1513	while (!blk_queue_plugged(q)) {
1514		int rtn;
1515		/*
1516		 * get next queueable request.  We do this early to make sure
1517		 * that the request is fully prepared even if we cannot
1518		 * accept it.
1519		 */
1520		req = elv_next_request(q);
1521		if (!req || !scsi_dev_queue_ready(q, sdev))
1522			break;
1523
1524		if (unlikely(!scsi_device_online(sdev))) {
1525			sdev_printk(KERN_ERR, sdev,
1526				    "rejecting I/O to offline device\n");
1527			scsi_kill_request(req, q);
1528			continue;
1529		}
1530
1531
1532		/*
1533		 * Remove the request from the request list.
1534		 */
1535		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1536			blkdev_dequeue_request(req);
1537		sdev->device_busy++;
1538
1539		spin_unlock(q->queue_lock);
1540		cmd = req->special;
1541		if (unlikely(cmd == NULL)) {
1542			printk(KERN_CRIT "impossible request in %s.\n"
1543					 "please mail a stack trace to "
1544					 "linux-scsi@vger.kernel.org\n",
1545					 __FUNCTION__);
1546			blk_dump_rq_flags(req, "foo");
1547			BUG();
1548		}
1549		spin_lock(shost->host_lock);
1550
1551		if (!scsi_host_queue_ready(q, shost, sdev))
1552			goto not_ready;
1553		if (sdev->single_lun) {
1554			if (scsi_target(sdev)->starget_sdev_user &&
1555			    scsi_target(sdev)->starget_sdev_user != sdev)
1556				goto not_ready;
1557			scsi_target(sdev)->starget_sdev_user = sdev;
1558		}
1559		shost->host_busy++;
1560
1561		/*
1562		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1563		 *		take the lock again.
1564		 */
1565		spin_unlock_irq(shost->host_lock);
1566
1567		/*
1568		 * Finally, initialize any error handling parameters, and set up
1569		 * the timers for timeouts.
1570		 */
1571		scsi_init_cmd_errh(cmd);
1572
1573		/*
1574		 * Dispatch the command to the low-level driver.
1575		 */
1576		rtn = scsi_dispatch_cmd(cmd);
1577		spin_lock_irq(q->queue_lock);
1578		if(rtn) {
1579			/* we're refusing the command; because of
1580			 * the way locks get dropped, we need to
1581			 * check here if plugging is required */
1582			if(sdev->device_busy == 0)
1583				blk_plug_device(q);
1584
1585			break;
1586		}
1587	}
1588
1589	goto out;
1590
1591 not_ready:
1592	spin_unlock_irq(shost->host_lock);
1593
1594	/*
1595	 * lock q, handle tag, requeue req, and decrement device_busy. We
1596	 * must return with queue_lock held.
1597	 *
1598	 * Decrementing device_busy without checking it is OK, as all such
1599	 * cases (host limits or settings) should run the queue at some
1600	 * later time.
1601	 */
1602	spin_lock_irq(q->queue_lock);
1603	blk_requeue_request(q, req);
1604	sdev->device_busy--;
1605	if(sdev->device_busy == 0)
1606		blk_plug_device(q);
1607 out:
1608	/* must be careful here...if we trigger the ->remove() function
1609	 * we cannot be holding the q lock */
1610	spin_unlock_irq(q->queue_lock);
1611	put_device(&sdev->sdev_gendev);
1612	spin_lock_irq(q->queue_lock);
1613}
1614
1615u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1616{
1617	struct device *host_dev;
1618	u64 bounce_limit = 0xffffffff;
1619
1620	if (shost->unchecked_isa_dma)
1621		return BLK_BOUNCE_ISA;
1622	/*
1623	 * Platforms with virtual-DMA translation
1624	 * hardware have no practical limit.
1625	 */
1626	if (!PCI_DMA_BUS_IS_PHYS)
1627		return BLK_BOUNCE_ANY;
1628
1629	host_dev = scsi_get_device(shost);
1630	if (host_dev && host_dev->dma_mask)
1631		bounce_limit = *host_dev->dma_mask;
1632
1633	return bounce_limit;
1634}
1635EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1636
1637struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1638					 request_fn_proc *request_fn)
1639{
1640	struct request_queue *q;
1641
1642	q = blk_init_queue(request_fn, NULL);
1643	if (!q)
1644		return NULL;
1645
1646	/*
1647	 * this limit is imposed by hardware restrictions
1648	 */
1649	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1650
1651	/*
1652	 * In the future, sg chaining support will be mandatory and this
1653	 * ifdef can then go away. Right now we don't have all archs
1654	 * converted, so better keep it safe.
1655	 */
1656#ifdef ARCH_HAS_SG_CHAIN
1657	if (shost->use_sg_chaining)
1658		blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1659	else
1660		blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1661#else
1662	blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1663#endif
1664
1665	blk_queue_max_sectors(q, shost->max_sectors);
1666	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1667	blk_queue_segment_boundary(q, shost->dma_boundary);
1668
1669	if (!shost->use_clustering)
1670		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1671	return q;
1672}
1673EXPORT_SYMBOL(__scsi_alloc_queue);
1674
1675struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1676{
1677	struct request_queue *q;
1678
1679	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1680	if (!q)
1681		return NULL;
1682
1683	blk_queue_prep_rq(q, scsi_prep_fn);
1684	blk_queue_softirq_done(q, scsi_softirq_done);
1685	return q;
1686}
1687
1688void scsi_free_queue(struct request_queue *q)
1689{
1690	blk_cleanup_queue(q);
1691}
1692
1693/*
1694 * Function:    scsi_block_requests()
1695 *
1696 * Purpose:     Utility function used by low-level drivers to prevent further
1697 *		commands from being queued to the device.
1698 *
1699 * Arguments:   shost       - Host in question
1700 *
1701 * Returns:     Nothing
1702 *
1703 * Lock status: No locks are assumed held.
1704 *
1705 * Notes:       There is no timer nor any other means by which the requests
1706 *		get unblocked other than the low-level driver calling
1707 *		scsi_unblock_requests().
1708 */
1709void scsi_block_requests(struct Scsi_Host *shost)
1710{
1711	shost->host_self_blocked = 1;
1712}
1713EXPORT_SYMBOL(scsi_block_requests);
1714
1715/*
1716 * Function:    scsi_unblock_requests()
1717 *
1718 * Purpose:     Utility function used by low-level drivers to allow further
1719 *		commands from being queued to the device.
1720 *
1721 * Arguments:   shost       - Host in question
1722 *
1723 * Returns:     Nothing
1724 *
1725 * Lock status: No locks are assumed held.
1726 *
1727 * Notes:       There is no timer nor any other means by which the requests
1728 *		get unblocked other than the low-level driver calling
1729 *		scsi_unblock_requests().
1730 *
1731 *		This is done as an API function so that changes to the
1732 *		internals of the scsi mid-layer won't require wholesale
1733 *		changes to drivers that use this feature.
1734 */
1735void scsi_unblock_requests(struct Scsi_Host *shost)
1736{
1737	shost->host_self_blocked = 0;
1738	scsi_run_host_queues(shost);
1739}
1740EXPORT_SYMBOL(scsi_unblock_requests);
1741
1742int __init scsi_init_queue(void)
1743{
1744	int i;
1745
1746	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1747					sizeof(struct scsi_io_context),
1748					0, 0, NULL);
1749	if (!scsi_io_context_cache) {
1750		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1751		return -ENOMEM;
1752	}
1753
1754	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1755		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1756		int size = sgp->size * sizeof(struct scatterlist);
1757
1758		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1759				SLAB_HWCACHE_ALIGN, NULL);
1760		if (!sgp->slab) {
1761			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1762					sgp->name);
1763		}
1764
1765		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1766						     sgp->slab);
1767		if (!sgp->pool) {
1768			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1769					sgp->name);
1770		}
1771	}
1772
1773	return 0;
1774}
1775
1776void scsi_exit_queue(void)
1777{
1778	int i;
1779
1780	kmem_cache_destroy(scsi_io_context_cache);
1781
1782	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1783		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1784		mempool_destroy(sgp->pool);
1785		kmem_cache_destroy(sgp->slab);
1786	}
1787}
1788
1789/**
1790 *	scsi_mode_select - issue a mode select
1791 *	@sdev:	SCSI device to be queried
1792 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1793 *	@sp:	Save page bit (0 == don't save, 1 == save)
1794 *	@modepage: mode page being requested
1795 *	@buffer: request buffer (may not be smaller than eight bytes)
1796 *	@len:	length of request buffer.
1797 *	@timeout: command timeout
1798 *	@retries: number of retries before failing
1799 *	@data: returns a structure abstracting the mode header data
1800 *	@sense: place to put sense data (or NULL if no sense to be collected).
1801 *		must be SCSI_SENSE_BUFFERSIZE big.
1802 *
1803 *	Returns zero if successful; negative error number or scsi
1804 *	status on error
1805 *
1806 */
1807int
1808scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1809		 unsigned char *buffer, int len, int timeout, int retries,
1810		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1811{
1812	unsigned char cmd[10];
1813	unsigned char *real_buffer;
1814	int ret;
1815
1816	memset(cmd, 0, sizeof(cmd));
1817	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1818
1819	if (sdev->use_10_for_ms) {
1820		if (len > 65535)
1821			return -EINVAL;
1822		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1823		if (!real_buffer)
1824			return -ENOMEM;
1825		memcpy(real_buffer + 8, buffer, len);
1826		len += 8;
1827		real_buffer[0] = 0;
1828		real_buffer[1] = 0;
1829		real_buffer[2] = data->medium_type;
1830		real_buffer[3] = data->device_specific;
1831		real_buffer[4] = data->longlba ? 0x01 : 0;
1832		real_buffer[5] = 0;
1833		real_buffer[6] = data->block_descriptor_length >> 8;
1834		real_buffer[7] = data->block_descriptor_length;
1835
1836		cmd[0] = MODE_SELECT_10;
1837		cmd[7] = len >> 8;
1838		cmd[8] = len;
1839	} else {
1840		if (len > 255 || data->block_descriptor_length > 255 ||
1841		    data->longlba)
1842			return -EINVAL;
1843
1844		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1845		if (!real_buffer)
1846			return -ENOMEM;
1847		memcpy(real_buffer + 4, buffer, len);
1848		len += 4;
1849		real_buffer[0] = 0;
1850		real_buffer[1] = data->medium_type;
1851		real_buffer[2] = data->device_specific;
1852		real_buffer[3] = data->block_descriptor_length;
1853
1854
1855		cmd[0] = MODE_SELECT;
1856		cmd[4] = len;
1857	}
1858
1859	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1860			       sshdr, timeout, retries);
1861	kfree(real_buffer);
1862	return ret;
1863}
1864EXPORT_SYMBOL_GPL(scsi_mode_select);
1865
1866/**
1867 *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1868 *		six bytes if necessary.
1869 *	@sdev:	SCSI device to be queried
1870 *	@dbd:	set if mode sense will allow block descriptors to be returned
1871 *	@modepage: mode page being requested
1872 *	@buffer: request buffer (may not be smaller than eight bytes)
1873 *	@len:	length of request buffer.
1874 *	@timeout: command timeout
1875 *	@retries: number of retries before failing
1876 *	@data: returns a structure abstracting the mode header data
1877 *	@sense: place to put sense data (or NULL if no sense to be collected).
1878 *		must be SCSI_SENSE_BUFFERSIZE big.
1879 *
1880 *	Returns zero if unsuccessful, or the header offset (either 4
1881 *	or 8 depending on whether a six or ten byte command was
1882 *	issued) if successful.
1883 **/
1884int
1885scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1886		  unsigned char *buffer, int len, int timeout, int retries,
1887		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1888{
1889	unsigned char cmd[12];
1890	int use_10_for_ms;
1891	int header_length;
1892	int result;
1893	struct scsi_sense_hdr my_sshdr;
1894
1895	memset(data, 0, sizeof(*data));
1896	memset(&cmd[0], 0, 12);
1897	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1898	cmd[2] = modepage;
1899
1900	/* caller might not be interested in sense, but we need it */
1901	if (!sshdr)
1902		sshdr = &my_sshdr;
1903
1904 retry:
1905	use_10_for_ms = sdev->use_10_for_ms;
1906
1907	if (use_10_for_ms) {
1908		if (len < 8)
1909			len = 8;
1910
1911		cmd[0] = MODE_SENSE_10;
1912		cmd[8] = len;
1913		header_length = 8;
1914	} else {
1915		if (len < 4)
1916			len = 4;
1917
1918		cmd[0] = MODE_SENSE;
1919		cmd[4] = len;
1920		header_length = 4;
1921	}
1922
1923	memset(buffer, 0, len);
1924
1925	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1926				  sshdr, timeout, retries);
1927
1928	/* This code looks awful: what it's doing is making sure an
1929	 * ILLEGAL REQUEST sense return identifies the actual command
1930	 * byte as the problem.  MODE_SENSE commands can return
1931	 * ILLEGAL REQUEST if the code page isn't supported */
1932
1933	if (use_10_for_ms && !scsi_status_is_good(result) &&
1934	    (driver_byte(result) & DRIVER_SENSE)) {
1935		if (scsi_sense_valid(sshdr)) {
1936			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1937			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1938				/*
1939				 * Invalid command operation code
1940				 */
1941				sdev->use_10_for_ms = 0;
1942				goto retry;
1943			}
1944		}
1945	}
1946
1947	if(scsi_status_is_good(result)) {
1948		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1949			     (modepage == 6 || modepage == 8))) {
1950			/* Initio breakage? */
1951			header_length = 0;
1952			data->length = 13;
1953			data->medium_type = 0;
1954			data->device_specific = 0;
1955			data->longlba = 0;
1956			data->block_descriptor_length = 0;
1957		} else if(use_10_for_ms) {
1958			data->length = buffer[0]*256 + buffer[1] + 2;
1959			data->medium_type = buffer[2];
1960			data->device_specific = buffer[3];
1961			data->longlba = buffer[4] & 0x01;
1962			data->block_descriptor_length = buffer[6]*256
1963				+ buffer[7];
1964		} else {
1965			data->length = buffer[0] + 1;
1966			data->medium_type = buffer[1];
1967			data->device_specific = buffer[2];
1968			data->block_descriptor_length = buffer[3];
1969		}
1970		data->header_length = header_length;
1971	}
1972
1973	return result;
1974}
1975EXPORT_SYMBOL(scsi_mode_sense);
1976
1977int
1978scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1979{
1980	char cmd[] = {
1981		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1982	};
1983	struct scsi_sense_hdr sshdr;
1984	int result;
1985
1986	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1987				  timeout, retries);
1988
1989	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1990
1991		if ((scsi_sense_valid(&sshdr)) &&
1992		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1993		     (sshdr.sense_key == NOT_READY))) {
1994			sdev->changed = 1;
1995			result = 0;
1996		}
1997	}
1998	return result;
1999}
2000EXPORT_SYMBOL(scsi_test_unit_ready);
2001
2002/**
2003 *	scsi_device_set_state - Take the given device through the device
2004 *		state model.
2005 *	@sdev:	scsi device to change the state of.
2006 *	@state:	state to change to.
2007 *
2008 *	Returns zero if unsuccessful or an error if the requested
2009 *	transition is illegal.
2010 **/
2011int
2012scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2013{
2014	enum scsi_device_state oldstate = sdev->sdev_state;
2015
2016	if (state == oldstate)
2017		return 0;
2018
2019	switch (state) {
2020	case SDEV_CREATED:
2021		/* There are no legal states that come back to
2022		 * created.  This is the manually initialised start
2023		 * state */
2024		goto illegal;
2025
2026	case SDEV_RUNNING:
2027		switch (oldstate) {
2028		case SDEV_CREATED:
2029		case SDEV_OFFLINE:
2030		case SDEV_QUIESCE:
2031		case SDEV_BLOCK:
2032			break;
2033		default:
2034			goto illegal;
2035		}
2036		break;
2037
2038	case SDEV_QUIESCE:
2039		switch (oldstate) {
2040		case SDEV_RUNNING:
2041		case SDEV_OFFLINE:
2042			break;
2043		default:
2044			goto illegal;
2045		}
2046		break;
2047
2048	case SDEV_OFFLINE:
2049		switch (oldstate) {
2050		case SDEV_CREATED:
2051		case SDEV_RUNNING:
2052		case SDEV_QUIESCE:
2053		case SDEV_BLOCK:
2054			break;
2055		default:
2056			goto illegal;
2057		}
2058		break;
2059
2060	case SDEV_BLOCK:
2061		switch (oldstate) {
2062		case SDEV_CREATED:
2063		case SDEV_RUNNING:
2064			break;
2065		default:
2066			goto illegal;
2067		}
2068		break;
2069
2070	case SDEV_CANCEL:
2071		switch (oldstate) {
2072		case SDEV_CREATED:
2073		case SDEV_RUNNING:
2074		case SDEV_QUIESCE:
2075		case SDEV_OFFLINE:
2076		case SDEV_BLOCK:
2077			break;
2078		default:
2079			goto illegal;
2080		}
2081		break;
2082
2083	case SDEV_DEL:
2084		switch (oldstate) {
2085		case SDEV_CREATED:
2086		case SDEV_RUNNING:
2087		case SDEV_OFFLINE:
2088		case SDEV_CANCEL:
2089			break;
2090		default:
2091			goto illegal;
2092		}
2093		break;
2094
2095	}
2096	sdev->sdev_state = state;
2097	return 0;
2098
2099 illegal:
2100	SCSI_LOG_ERROR_RECOVERY(1,
2101				sdev_printk(KERN_ERR, sdev,
2102					    "Illegal state transition %s->%s\n",
2103					    scsi_device_state_name(oldstate),
2104					    scsi_device_state_name(state))
2105				);
2106	return -EINVAL;
2107}
2108EXPORT_SYMBOL(scsi_device_set_state);
2109
2110/**
2111 *	scsi_device_quiesce - Block user issued commands.
2112 *	@sdev:	scsi device to quiesce.
2113 *
2114 *	This works by trying to transition to the SDEV_QUIESCE state
2115 *	(which must be a legal transition).  When the device is in this
2116 *	state, only special requests will be accepted, all others will
2117 *	be deferred.  Since special requests may also be requeued requests,
2118 *	a successful return doesn't guarantee the device will be
2119 *	totally quiescent.
2120 *
2121 *	Must be called with user context, may sleep.
2122 *
2123 *	Returns zero if unsuccessful or an error if not.
2124 **/
2125int
2126scsi_device_quiesce(struct scsi_device *sdev)
2127{
2128	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2129	if (err)
2130		return err;
2131
2132	scsi_run_queue(sdev->request_queue);
2133	while (sdev->device_busy) {
2134		msleep_interruptible(200);
2135		scsi_run_queue(sdev->request_queue);
2136	}
2137	return 0;
2138}
2139EXPORT_SYMBOL(scsi_device_quiesce);
2140
2141/**
2142 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2143 *	@sdev:	scsi device to resume.
2144 *
2145 *	Moves the device from quiesced back to running and restarts the
2146 *	queues.
2147 *
2148 *	Must be called with user context, may sleep.
2149 **/
2150void
2151scsi_device_resume(struct scsi_device *sdev)
2152{
2153	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2154		return;
2155	scsi_run_queue(sdev->request_queue);
2156}
2157EXPORT_SYMBOL(scsi_device_resume);
2158
2159static void
2160device_quiesce_fn(struct scsi_device *sdev, void *data)
2161{
2162	scsi_device_quiesce(sdev);
2163}
2164
2165void
2166scsi_target_quiesce(struct scsi_target *starget)
2167{
2168	starget_for_each_device(starget, NULL, device_quiesce_fn);
2169}
2170EXPORT_SYMBOL(scsi_target_quiesce);
2171
2172static void
2173device_resume_fn(struct scsi_device *sdev, void *data)
2174{
2175	scsi_device_resume(sdev);
2176}
2177
2178void
2179scsi_target_resume(struct scsi_target *starget)
2180{
2181	starget_for_each_device(starget, NULL, device_resume_fn);
2182}
2183EXPORT_SYMBOL(scsi_target_resume);
2184
2185/**
2186 * scsi_internal_device_block - internal function to put a device
2187 *				temporarily into the SDEV_BLOCK state
2188 * @sdev:	device to block
2189 *
2190 * Block request made by scsi lld's to temporarily stop all
2191 * scsi commands on the specified device.  Called from interrupt
2192 * or normal process context.
2193 *
2194 * Returns zero if successful or error if not
2195 *
2196 * Notes:
2197 *	This routine transitions the device to the SDEV_BLOCK state
2198 *	(which must be a legal transition).  When the device is in this
2199 *	state, all commands are deferred until the scsi lld reenables
2200 *	the device with scsi_device_unblock or device_block_tmo fires.
2201 *	This routine assumes the host_lock is held on entry.
2202 **/
2203int
2204scsi_internal_device_block(struct scsi_device *sdev)
2205{
2206	struct request_queue *q = sdev->request_queue;
2207	unsigned long flags;
2208	int err = 0;
2209
2210	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2211	if (err)
2212		return err;
2213
2214	/*
2215	 * The device has transitioned to SDEV_BLOCK.  Stop the
2216	 * block layer from calling the midlayer with this device's
2217	 * request queue.
2218	 */
2219	spin_lock_irqsave(q->queue_lock, flags);
2220	blk_stop_queue(q);
2221	spin_unlock_irqrestore(q->queue_lock, flags);
2222
2223	return 0;
2224}
2225EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2226
2227/**
2228 * scsi_internal_device_unblock - resume a device after a block request
2229 * @sdev:	device to resume
2230 *
2231 * Called by scsi lld's or the midlayer to restart the device queue
2232 * for the previously suspended scsi device.  Called from interrupt or
2233 * normal process context.
2234 *
2235 * Returns zero if successful or error if not.
2236 *
2237 * Notes:
2238 *	This routine transitions the device to the SDEV_RUNNING state
2239 *	(which must be a legal transition) allowing the midlayer to
2240 *	goose the queue for this device.  This routine assumes the
2241 *	host_lock is held upon entry.
2242 **/
2243int
2244scsi_internal_device_unblock(struct scsi_device *sdev)
2245{
2246	struct request_queue *q = sdev->request_queue;
2247	int err;
2248	unsigned long flags;
2249
2250	/*
2251	 * Try to transition the scsi device to SDEV_RUNNING
2252	 * and goose the device queue if successful.
2253	 */
2254	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2255	if (err)
2256		return err;
2257
2258	spin_lock_irqsave(q->queue_lock, flags);
2259	blk_start_queue(q);
2260	spin_unlock_irqrestore(q->queue_lock, flags);
2261
2262	return 0;
2263}
2264EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2265
2266static void
2267device_block(struct scsi_device *sdev, void *data)
2268{
2269	scsi_internal_device_block(sdev);
2270}
2271
2272static int
2273target_block(struct device *dev, void *data)
2274{
2275	if (scsi_is_target_device(dev))
2276		starget_for_each_device(to_scsi_target(dev), NULL,
2277					device_block);
2278	return 0;
2279}
2280
2281void
2282scsi_target_block(struct device *dev)
2283{
2284	if (scsi_is_target_device(dev))
2285		starget_for_each_device(to_scsi_target(dev), NULL,
2286					device_block);
2287	else
2288		device_for_each_child(dev, NULL, target_block);
2289}
2290EXPORT_SYMBOL_GPL(scsi_target_block);
2291
2292static void
2293device_unblock(struct scsi_device *sdev, void *data)
2294{
2295	scsi_internal_device_unblock(sdev);
2296}
2297
2298static int
2299target_unblock(struct device *dev, void *data)
2300{
2301	if (scsi_is_target_device(dev))
2302		starget_for_each_device(to_scsi_target(dev), NULL,
2303					device_unblock);
2304	return 0;
2305}
2306
2307void
2308scsi_target_unblock(struct device *dev)
2309{
2310	if (scsi_is_target_device(dev))
2311		starget_for_each_device(to_scsi_target(dev), NULL,
2312					device_unblock);
2313	else
2314		device_for_each_child(dev, NULL, target_unblock);
2315}
2316EXPORT_SYMBOL_GPL(scsi_target_unblock);
2317
2318/**
2319 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2320 * @sg:		scatter-gather list
2321 * @sg_count:	number of segments in sg
2322 * @offset:	offset in bytes into sg, on return offset into the mapped area
2323 * @len:	bytes to map, on return number of bytes mapped
2324 *
2325 * Returns virtual address of the start of the mapped page
2326 */
2327void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2328			  size_t *offset, size_t *len)
2329{
2330	int i;
2331	size_t sg_len = 0, len_complete = 0;
2332	struct scatterlist *sg;
2333	struct page *page;
2334
2335	WARN_ON(!irqs_disabled());
2336
2337	for_each_sg(sgl, sg, sg_count, i) {
2338		len_complete = sg_len; /* Complete sg-entries */
2339		sg_len += sg->length;
2340		if (sg_len > *offset)
2341			break;
2342	}
2343
2344	if (unlikely(i == sg_count)) {
2345		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2346			"elements %d\n",
2347		       __FUNCTION__, sg_len, *offset, sg_count);
2348		WARN_ON(1);
2349		return NULL;
2350	}
2351
2352	/* Offset starting from the beginning of first page in this sg-entry */
2353	*offset = *offset - len_complete + sg->offset;
2354
2355	/* Assumption: contiguous pages can be accessed as "page + i" */
2356	page = nth_page(sg->page, (*offset >> PAGE_SHIFT));
2357	*offset &= ~PAGE_MASK;
2358
2359	/* Bytes in this sg-entry from *offset to the end of the page */
2360	sg_len = PAGE_SIZE - *offset;
2361	if (*len > sg_len)
2362		*len = sg_len;
2363
2364	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2365}
2366EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2367
2368/**
2369 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2370 *			   mapped with scsi_kmap_atomic_sg
2371 * @virt:	virtual address to be unmapped
2372 */
2373void scsi_kunmap_atomic_sg(void *virt)
2374{
2375	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2376}
2377EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2378