scsi_lib.c revision a8474ce23a73185dd2bae4c884b1716474032d31
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19#include <linux/hardirq.h>
20#include <linux/scatterlist.h>
21
22#include <scsi/scsi.h>
23#include <scsi/scsi_cmnd.h>
24#include <scsi/scsi_dbg.h>
25#include <scsi/scsi_device.h>
26#include <scsi/scsi_driver.h>
27#include <scsi/scsi_eh.h>
28#include <scsi/scsi_host.h>
29
30#include "scsi_priv.h"
31#include "scsi_logging.h"
32
33
34#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
35#define SG_MEMPOOL_SIZE		2
36
37struct scsi_host_sg_pool {
38	size_t		size;
39	char		*name;
40	struct kmem_cache	*slab;
41	mempool_t	*pool;
42};
43
44#define SP(x) { x, "sgpool-" #x }
45static struct scsi_host_sg_pool scsi_sg_pools[] = {
46	SP(8),
47	SP(16),
48	SP(32),
49	SP(64),
50	SP(128),
51};
52#undef SP
53
54static void scsi_run_queue(struct request_queue *q);
55
56/*
57 * Function:	scsi_unprep_request()
58 *
59 * Purpose:	Remove all preparation done for a request, including its
60 *		associated scsi_cmnd, so that it can be requeued.
61 *
62 * Arguments:	req	- request to unprepare
63 *
64 * Lock status:	Assumed that no locks are held upon entry.
65 *
66 * Returns:	Nothing.
67 */
68static void scsi_unprep_request(struct request *req)
69{
70	struct scsi_cmnd *cmd = req->special;
71
72	req->cmd_flags &= ~REQ_DONTPREP;
73	req->special = NULL;
74
75	scsi_put_command(cmd);
76}
77
78/*
79 * Function:    scsi_queue_insert()
80 *
81 * Purpose:     Insert a command in the midlevel queue.
82 *
83 * Arguments:   cmd    - command that we are adding to queue.
84 *              reason - why we are inserting command to queue.
85 *
86 * Lock status: Assumed that lock is not held upon entry.
87 *
88 * Returns:     Nothing.
89 *
90 * Notes:       We do this for one of two cases.  Either the host is busy
91 *              and it cannot accept any more commands for the time being,
92 *              or the device returned QUEUE_FULL and can accept no more
93 *              commands.
94 * Notes:       This could be called either from an interrupt context or a
95 *              normal process context.
96 */
97int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
98{
99	struct Scsi_Host *host = cmd->device->host;
100	struct scsi_device *device = cmd->device;
101	struct request_queue *q = device->request_queue;
102	unsigned long flags;
103
104	SCSI_LOG_MLQUEUE(1,
105		 printk("Inserting command %p into mlqueue\n", cmd));
106
107	/*
108	 * Set the appropriate busy bit for the device/host.
109	 *
110	 * If the host/device isn't busy, assume that something actually
111	 * completed, and that we should be able to queue a command now.
112	 *
113	 * Note that the prior mid-layer assumption that any host could
114	 * always queue at least one command is now broken.  The mid-layer
115	 * will implement a user specifiable stall (see
116	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
117	 * if a command is requeued with no other commands outstanding
118	 * either for the device or for the host.
119	 */
120	if (reason == SCSI_MLQUEUE_HOST_BUSY)
121		host->host_blocked = host->max_host_blocked;
122	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
123		device->device_blocked = device->max_device_blocked;
124
125	/*
126	 * Decrement the counters, since these commands are no longer
127	 * active on the host/device.
128	 */
129	scsi_device_unbusy(device);
130
131	/*
132	 * Requeue this command.  It will go before all other commands
133	 * that are already in the queue.
134	 *
135	 * NOTE: there is magic here about the way the queue is plugged if
136	 * we have no outstanding commands.
137	 *
138	 * Although we *don't* plug the queue, we call the request
139	 * function.  The SCSI request function detects the blocked condition
140	 * and plugs the queue appropriately.
141         */
142	spin_lock_irqsave(q->queue_lock, flags);
143	blk_requeue_request(q, cmd->request);
144	spin_unlock_irqrestore(q->queue_lock, flags);
145
146	scsi_run_queue(q);
147
148	return 0;
149}
150
151/**
152 * scsi_execute - insert request and wait for the result
153 * @sdev:	scsi device
154 * @cmd:	scsi command
155 * @data_direction: data direction
156 * @buffer:	data buffer
157 * @bufflen:	len of buffer
158 * @sense:	optional sense buffer
159 * @timeout:	request timeout in seconds
160 * @retries:	number of times to retry request
161 * @flags:	or into request flags;
162 *
163 * returns the req->errors value which is the scsi_cmnd result
164 * field.
165 **/
166int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
167		 int data_direction, void *buffer, unsigned bufflen,
168		 unsigned char *sense, int timeout, int retries, int flags)
169{
170	struct request *req;
171	int write = (data_direction == DMA_TO_DEVICE);
172	int ret = DRIVER_ERROR << 24;
173
174	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
175
176	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
177					buffer, bufflen, __GFP_WAIT))
178		goto out;
179
180	req->cmd_len = COMMAND_SIZE(cmd[0]);
181	memcpy(req->cmd, cmd, req->cmd_len);
182	req->sense = sense;
183	req->sense_len = 0;
184	req->retries = retries;
185	req->timeout = timeout;
186	req->cmd_type = REQ_TYPE_BLOCK_PC;
187	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
188
189	/*
190	 * head injection *required* here otherwise quiesce won't work
191	 */
192	blk_execute_rq(req->q, NULL, req, 1);
193
194	ret = req->errors;
195 out:
196	blk_put_request(req);
197
198	return ret;
199}
200EXPORT_SYMBOL(scsi_execute);
201
202
203int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
204		     int data_direction, void *buffer, unsigned bufflen,
205		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
206{
207	char *sense = NULL;
208	int result;
209
210	if (sshdr) {
211		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
212		if (!sense)
213			return DRIVER_ERROR << 24;
214	}
215	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
216			      sense, timeout, retries, 0);
217	if (sshdr)
218		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
219
220	kfree(sense);
221	return result;
222}
223EXPORT_SYMBOL(scsi_execute_req);
224
225struct scsi_io_context {
226	void *data;
227	void (*done)(void *data, char *sense, int result, int resid);
228	char sense[SCSI_SENSE_BUFFERSIZE];
229};
230
231static struct kmem_cache *scsi_io_context_cache;
232
233static void scsi_end_async(struct request *req, int uptodate)
234{
235	struct scsi_io_context *sioc = req->end_io_data;
236
237	if (sioc->done)
238		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
239
240	kmem_cache_free(scsi_io_context_cache, sioc);
241	__blk_put_request(req->q, req);
242}
243
244static int scsi_merge_bio(struct request *rq, struct bio *bio)
245{
246	struct request_queue *q = rq->q;
247
248	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
249	if (rq_data_dir(rq) == WRITE)
250		bio->bi_rw |= (1 << BIO_RW);
251	blk_queue_bounce(q, &bio);
252
253	return blk_rq_append_bio(q, rq, bio);
254}
255
256static void scsi_bi_endio(struct bio *bio, int error)
257{
258	bio_put(bio);
259}
260
261/**
262 * scsi_req_map_sg - map a scatterlist into a request
263 * @rq:		request to fill
264 * @sg:		scatterlist
265 * @nsegs:	number of elements
266 * @bufflen:	len of buffer
267 * @gfp:	memory allocation flags
268 *
269 * scsi_req_map_sg maps a scatterlist into a request so that the
270 * request can be sent to the block layer. We do not trust the scatterlist
271 * sent to use, as some ULDs use that struct to only organize the pages.
272 */
273static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
274			   int nsegs, unsigned bufflen, gfp_t gfp)
275{
276	struct request_queue *q = rq->q;
277	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
278	unsigned int data_len = bufflen, len, bytes, off;
279	struct scatterlist *sg;
280	struct page *page;
281	struct bio *bio = NULL;
282	int i, err, nr_vecs = 0;
283
284	for_each_sg(sgl, sg, nsegs, i) {
285		page = sg->page;
286		off = sg->offset;
287		len = sg->length;
288 		data_len += len;
289
290		while (len > 0 && data_len > 0) {
291			/*
292			 * sg sends a scatterlist that is larger than
293			 * the data_len it wants transferred for certain
294			 * IO sizes
295			 */
296			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
297			bytes = min(bytes, data_len);
298
299			if (!bio) {
300				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
301				nr_pages -= nr_vecs;
302
303				bio = bio_alloc(gfp, nr_vecs);
304				if (!bio) {
305					err = -ENOMEM;
306					goto free_bios;
307				}
308				bio->bi_end_io = scsi_bi_endio;
309			}
310
311			if (bio_add_pc_page(q, bio, page, bytes, off) !=
312			    bytes) {
313				bio_put(bio);
314				err = -EINVAL;
315				goto free_bios;
316			}
317
318			if (bio->bi_vcnt >= nr_vecs) {
319				err = scsi_merge_bio(rq, bio);
320				if (err) {
321					bio_endio(bio, 0);
322					goto free_bios;
323				}
324				bio = NULL;
325			}
326
327			page++;
328			len -= bytes;
329			data_len -=bytes;
330			off = 0;
331		}
332	}
333
334	rq->buffer = rq->data = NULL;
335	rq->data_len = bufflen;
336	return 0;
337
338free_bios:
339	while ((bio = rq->bio) != NULL) {
340		rq->bio = bio->bi_next;
341		/*
342		 * call endio instead of bio_put incase it was bounced
343		 */
344		bio_endio(bio, 0);
345	}
346
347	return err;
348}
349
350/**
351 * scsi_execute_async - insert request
352 * @sdev:	scsi device
353 * @cmd:	scsi command
354 * @cmd_len:	length of scsi cdb
355 * @data_direction: data direction
356 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
357 * @bufflen:	len of buffer
358 * @use_sg:	if buffer is a scatterlist this is the number of elements
359 * @timeout:	request timeout in seconds
360 * @retries:	number of times to retry request
361 * @flags:	or into request flags
362 **/
363int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
364		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
365		       int use_sg, int timeout, int retries, void *privdata,
366		       void (*done)(void *, char *, int, int), gfp_t gfp)
367{
368	struct request *req;
369	struct scsi_io_context *sioc;
370	int err = 0;
371	int write = (data_direction == DMA_TO_DEVICE);
372
373	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
374	if (!sioc)
375		return DRIVER_ERROR << 24;
376
377	req = blk_get_request(sdev->request_queue, write, gfp);
378	if (!req)
379		goto free_sense;
380	req->cmd_type = REQ_TYPE_BLOCK_PC;
381	req->cmd_flags |= REQ_QUIET;
382
383	if (use_sg)
384		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
385	else if (bufflen)
386		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
387
388	if (err)
389		goto free_req;
390
391	req->cmd_len = cmd_len;
392	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
393	memcpy(req->cmd, cmd, req->cmd_len);
394	req->sense = sioc->sense;
395	req->sense_len = 0;
396	req->timeout = timeout;
397	req->retries = retries;
398	req->end_io_data = sioc;
399
400	sioc->data = privdata;
401	sioc->done = done;
402
403	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
404	return 0;
405
406free_req:
407	blk_put_request(req);
408free_sense:
409	kmem_cache_free(scsi_io_context_cache, sioc);
410	return DRIVER_ERROR << 24;
411}
412EXPORT_SYMBOL_GPL(scsi_execute_async);
413
414/*
415 * Function:    scsi_init_cmd_errh()
416 *
417 * Purpose:     Initialize cmd fields related to error handling.
418 *
419 * Arguments:   cmd	- command that is ready to be queued.
420 *
421 * Notes:       This function has the job of initializing a number of
422 *              fields related to error handling.   Typically this will
423 *              be called once for each command, as required.
424 */
425static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
426{
427	cmd->serial_number = 0;
428	cmd->resid = 0;
429	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
430	if (cmd->cmd_len == 0)
431		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
432}
433
434void scsi_device_unbusy(struct scsi_device *sdev)
435{
436	struct Scsi_Host *shost = sdev->host;
437	unsigned long flags;
438
439	spin_lock_irqsave(shost->host_lock, flags);
440	shost->host_busy--;
441	if (unlikely(scsi_host_in_recovery(shost) &&
442		     (shost->host_failed || shost->host_eh_scheduled)))
443		scsi_eh_wakeup(shost);
444	spin_unlock(shost->host_lock);
445	spin_lock(sdev->request_queue->queue_lock);
446	sdev->device_busy--;
447	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
448}
449
450/*
451 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
452 * and call blk_run_queue for all the scsi_devices on the target -
453 * including current_sdev first.
454 *
455 * Called with *no* scsi locks held.
456 */
457static void scsi_single_lun_run(struct scsi_device *current_sdev)
458{
459	struct Scsi_Host *shost = current_sdev->host;
460	struct scsi_device *sdev, *tmp;
461	struct scsi_target *starget = scsi_target(current_sdev);
462	unsigned long flags;
463
464	spin_lock_irqsave(shost->host_lock, flags);
465	starget->starget_sdev_user = NULL;
466	spin_unlock_irqrestore(shost->host_lock, flags);
467
468	/*
469	 * Call blk_run_queue for all LUNs on the target, starting with
470	 * current_sdev. We race with others (to set starget_sdev_user),
471	 * but in most cases, we will be first. Ideally, each LU on the
472	 * target would get some limited time or requests on the target.
473	 */
474	blk_run_queue(current_sdev->request_queue);
475
476	spin_lock_irqsave(shost->host_lock, flags);
477	if (starget->starget_sdev_user)
478		goto out;
479	list_for_each_entry_safe(sdev, tmp, &starget->devices,
480			same_target_siblings) {
481		if (sdev == current_sdev)
482			continue;
483		if (scsi_device_get(sdev))
484			continue;
485
486		spin_unlock_irqrestore(shost->host_lock, flags);
487		blk_run_queue(sdev->request_queue);
488		spin_lock_irqsave(shost->host_lock, flags);
489
490		scsi_device_put(sdev);
491	}
492 out:
493	spin_unlock_irqrestore(shost->host_lock, flags);
494}
495
496/*
497 * Function:	scsi_run_queue()
498 *
499 * Purpose:	Select a proper request queue to serve next
500 *
501 * Arguments:	q	- last request's queue
502 *
503 * Returns:     Nothing
504 *
505 * Notes:	The previous command was completely finished, start
506 *		a new one if possible.
507 */
508static void scsi_run_queue(struct request_queue *q)
509{
510	struct scsi_device *sdev = q->queuedata;
511	struct Scsi_Host *shost = sdev->host;
512	unsigned long flags;
513
514	if (sdev->single_lun)
515		scsi_single_lun_run(sdev);
516
517	spin_lock_irqsave(shost->host_lock, flags);
518	while (!list_empty(&shost->starved_list) &&
519	       !shost->host_blocked && !shost->host_self_blocked &&
520		!((shost->can_queue > 0) &&
521		  (shost->host_busy >= shost->can_queue))) {
522		/*
523		 * As long as shost is accepting commands and we have
524		 * starved queues, call blk_run_queue. scsi_request_fn
525		 * drops the queue_lock and can add us back to the
526		 * starved_list.
527		 *
528		 * host_lock protects the starved_list and starved_entry.
529		 * scsi_request_fn must get the host_lock before checking
530		 * or modifying starved_list or starved_entry.
531		 */
532		sdev = list_entry(shost->starved_list.next,
533					  struct scsi_device, starved_entry);
534		list_del_init(&sdev->starved_entry);
535		spin_unlock_irqrestore(shost->host_lock, flags);
536
537
538		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
539		    !test_and_set_bit(QUEUE_FLAG_REENTER,
540				      &sdev->request_queue->queue_flags)) {
541			blk_run_queue(sdev->request_queue);
542			clear_bit(QUEUE_FLAG_REENTER,
543				  &sdev->request_queue->queue_flags);
544		} else
545			blk_run_queue(sdev->request_queue);
546
547		spin_lock_irqsave(shost->host_lock, flags);
548		if (unlikely(!list_empty(&sdev->starved_entry)))
549			/*
550			 * sdev lost a race, and was put back on the
551			 * starved list. This is unlikely but without this
552			 * in theory we could loop forever.
553			 */
554			break;
555	}
556	spin_unlock_irqrestore(shost->host_lock, flags);
557
558	blk_run_queue(q);
559}
560
561/*
562 * Function:	scsi_requeue_command()
563 *
564 * Purpose:	Handle post-processing of completed commands.
565 *
566 * Arguments:	q	- queue to operate on
567 *		cmd	- command that may need to be requeued.
568 *
569 * Returns:	Nothing
570 *
571 * Notes:	After command completion, there may be blocks left
572 *		over which weren't finished by the previous command
573 *		this can be for a number of reasons - the main one is
574 *		I/O errors in the middle of the request, in which case
575 *		we need to request the blocks that come after the bad
576 *		sector.
577 * Notes:	Upon return, cmd is a stale pointer.
578 */
579static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
580{
581	struct request *req = cmd->request;
582	unsigned long flags;
583
584	scsi_unprep_request(req);
585	spin_lock_irqsave(q->queue_lock, flags);
586	blk_requeue_request(q, req);
587	spin_unlock_irqrestore(q->queue_lock, flags);
588
589	scsi_run_queue(q);
590}
591
592void scsi_next_command(struct scsi_cmnd *cmd)
593{
594	struct scsi_device *sdev = cmd->device;
595	struct request_queue *q = sdev->request_queue;
596
597	/* need to hold a reference on the device before we let go of the cmd */
598	get_device(&sdev->sdev_gendev);
599
600	scsi_put_command(cmd);
601	scsi_run_queue(q);
602
603	/* ok to remove device now */
604	put_device(&sdev->sdev_gendev);
605}
606
607void scsi_run_host_queues(struct Scsi_Host *shost)
608{
609	struct scsi_device *sdev;
610
611	shost_for_each_device(sdev, shost)
612		scsi_run_queue(sdev->request_queue);
613}
614
615/*
616 * Function:    scsi_end_request()
617 *
618 * Purpose:     Post-processing of completed commands (usually invoked at end
619 *		of upper level post-processing and scsi_io_completion).
620 *
621 * Arguments:   cmd	 - command that is complete.
622 *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
623 *              bytes    - number of bytes of completed I/O
624 *		requeue  - indicates whether we should requeue leftovers.
625 *
626 * Lock status: Assumed that lock is not held upon entry.
627 *
628 * Returns:     cmd if requeue required, NULL otherwise.
629 *
630 * Notes:       This is called for block device requests in order to
631 *              mark some number of sectors as complete.
632 *
633 *		We are guaranteeing that the request queue will be goosed
634 *		at some point during this call.
635 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
636 */
637static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
638					  int bytes, int requeue)
639{
640	struct request_queue *q = cmd->device->request_queue;
641	struct request *req = cmd->request;
642	unsigned long flags;
643
644	/*
645	 * If there are blocks left over at the end, set up the command
646	 * to queue the remainder of them.
647	 */
648	if (end_that_request_chunk(req, uptodate, bytes)) {
649		int leftover = (req->hard_nr_sectors << 9);
650
651		if (blk_pc_request(req))
652			leftover = req->data_len;
653
654		/* kill remainder if no retrys */
655		if (!uptodate && blk_noretry_request(req))
656			end_that_request_chunk(req, 0, leftover);
657		else {
658			if (requeue) {
659				/*
660				 * Bleah.  Leftovers again.  Stick the
661				 * leftovers in the front of the
662				 * queue, and goose the queue again.
663				 */
664				scsi_requeue_command(q, cmd);
665				cmd = NULL;
666			}
667			return cmd;
668		}
669	}
670
671	add_disk_randomness(req->rq_disk);
672
673	spin_lock_irqsave(q->queue_lock, flags);
674	if (blk_rq_tagged(req))
675		blk_queue_end_tag(q, req);
676	end_that_request_last(req, uptodate);
677	spin_unlock_irqrestore(q->queue_lock, flags);
678
679	/*
680	 * This will goose the queue request function at the end, so we don't
681	 * need to worry about launching another command.
682	 */
683	scsi_next_command(cmd);
684	return NULL;
685}
686
687/*
688 * The maximum number of SG segments that we will put inside a scatterlist
689 * (unless chaining is used). Should ideally fit inside a single page, to
690 * avoid a higher order allocation.
691 */
692#define SCSI_MAX_SG_SEGMENTS	128
693
694/*
695 * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
696 * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
697 */
698#define SCSI_MAX_SG_CHAIN_SEGMENTS	2048
699
700static inline unsigned int scsi_sgtable_index(unsigned short nents)
701{
702	unsigned int index;
703
704	switch (nents) {
705	case 1 ... 8:
706		index = 0;
707		break;
708	case 9 ... 16:
709		index = 1;
710		break;
711	case 17 ... 32:
712		index = 2;
713		break;
714	case 33 ... 64:
715		index = 3;
716		break;
717	case 65 ... SCSI_MAX_SG_SEGMENTS:
718		index = 4;
719		break;
720	default:
721		printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
722		BUG();
723	}
724
725	return index;
726}
727
728struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
729{
730	struct scsi_host_sg_pool *sgp;
731	struct scatterlist *sgl, *prev, *ret;
732	unsigned int index;
733	int this, left;
734
735	BUG_ON(!cmd->use_sg);
736
737	left = cmd->use_sg;
738	ret = prev = NULL;
739	do {
740		this = left;
741		if (this > SCSI_MAX_SG_SEGMENTS) {
742			this = SCSI_MAX_SG_SEGMENTS - 1;
743			index = SG_MEMPOOL_NR - 1;
744		} else
745			index = scsi_sgtable_index(this);
746
747		left -= this;
748
749		sgp = scsi_sg_pools + index;
750
751		sgl = mempool_alloc(sgp->pool, gfp_mask);
752		if (unlikely(!sgl))
753			goto enomem;
754
755		memset(sgl, 0, sizeof(*sgl) * sgp->size);
756
757		/*
758		 * first loop through, set initial index and return value
759		 */
760		if (!ret) {
761			cmd->sglist_len = index;
762			ret = sgl;
763		}
764
765		/*
766		 * chain previous sglist, if any. we know the previous
767		 * sglist must be the biggest one, or we would not have
768		 * ended up doing another loop.
769		 */
770		if (prev)
771			sg_chain(prev, SCSI_MAX_SG_SEGMENTS, sgl);
772
773		/*
774		 * don't allow subsequent mempool allocs to sleep, it would
775		 * violate the mempool principle.
776		 */
777		gfp_mask &= ~__GFP_WAIT;
778		gfp_mask |= __GFP_HIGH;
779		prev = sgl;
780	} while (left);
781
782	/*
783	 * ->use_sg may get modified after dma mapping has potentially
784	 * shrunk the number of segments, so keep a copy of it for free.
785	 */
786	cmd->__use_sg = cmd->use_sg;
787	return ret;
788enomem:
789	if (ret) {
790		/*
791		 * Free entries chained off ret. Since we were trying to
792		 * allocate another sglist, we know that all entries are of
793		 * the max size.
794		 */
795		sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
796		prev = ret;
797		ret = &ret[SCSI_MAX_SG_SEGMENTS - 1];
798
799		while ((sgl = sg_chain_ptr(ret)) != NULL) {
800			ret = &sgl[SCSI_MAX_SG_SEGMENTS - 1];
801			mempool_free(sgl, sgp->pool);
802		}
803
804		mempool_free(prev, sgp->pool);
805	}
806	return NULL;
807}
808
809EXPORT_SYMBOL(scsi_alloc_sgtable);
810
811void scsi_free_sgtable(struct scsi_cmnd *cmd)
812{
813	struct scatterlist *sgl = cmd->request_buffer;
814	struct scsi_host_sg_pool *sgp;
815
816	BUG_ON(cmd->sglist_len >= SG_MEMPOOL_NR);
817
818	/*
819	 * if this is the biggest size sglist, check if we have
820	 * chained parts we need to free
821	 */
822	if (cmd->__use_sg > SCSI_MAX_SG_SEGMENTS) {
823		unsigned short this, left;
824		struct scatterlist *next;
825		unsigned int index;
826
827		left = cmd->__use_sg - (SCSI_MAX_SG_SEGMENTS - 1);
828		next = sg_chain_ptr(&sgl[SCSI_MAX_SG_SEGMENTS - 1]);
829		while (left && next) {
830			sgl = next;
831			this = left;
832			if (this > SCSI_MAX_SG_SEGMENTS) {
833				this = SCSI_MAX_SG_SEGMENTS - 1;
834				index = SG_MEMPOOL_NR - 1;
835			} else
836				index = scsi_sgtable_index(this);
837
838			left -= this;
839
840			sgp = scsi_sg_pools + index;
841
842			if (left)
843				next = sg_chain_ptr(&sgl[sgp->size - 1]);
844
845			mempool_free(sgl, sgp->pool);
846		}
847
848		/*
849		 * Restore original, will be freed below
850		 */
851		sgl = cmd->request_buffer;
852	}
853
854	sgp = scsi_sg_pools + cmd->sglist_len;
855	mempool_free(sgl, sgp->pool);
856}
857
858EXPORT_SYMBOL(scsi_free_sgtable);
859
860/*
861 * Function:    scsi_release_buffers()
862 *
863 * Purpose:     Completion processing for block device I/O requests.
864 *
865 * Arguments:   cmd	- command that we are bailing.
866 *
867 * Lock status: Assumed that no lock is held upon entry.
868 *
869 * Returns:     Nothing
870 *
871 * Notes:       In the event that an upper level driver rejects a
872 *		command, we must release resources allocated during
873 *		the __init_io() function.  Primarily this would involve
874 *		the scatter-gather table, and potentially any bounce
875 *		buffers.
876 */
877static void scsi_release_buffers(struct scsi_cmnd *cmd)
878{
879	if (cmd->use_sg)
880		scsi_free_sgtable(cmd);
881
882	/*
883	 * Zero these out.  They now point to freed memory, and it is
884	 * dangerous to hang onto the pointers.
885	 */
886	cmd->request_buffer = NULL;
887	cmd->request_bufflen = 0;
888}
889
890/*
891 * Function:    scsi_io_completion()
892 *
893 * Purpose:     Completion processing for block device I/O requests.
894 *
895 * Arguments:   cmd   - command that is finished.
896 *
897 * Lock status: Assumed that no lock is held upon entry.
898 *
899 * Returns:     Nothing
900 *
901 * Notes:       This function is matched in terms of capabilities to
902 *              the function that created the scatter-gather list.
903 *              In other words, if there are no bounce buffers
904 *              (the normal case for most drivers), we don't need
905 *              the logic to deal with cleaning up afterwards.
906 *
907 *		We must do one of several things here:
908 *
909 *		a) Call scsi_end_request.  This will finish off the
910 *		   specified number of sectors.  If we are done, the
911 *		   command block will be released, and the queue
912 *		   function will be goosed.  If we are not done, then
913 *		   scsi_end_request will directly goose the queue.
914 *
915 *		b) We can just use scsi_requeue_command() here.  This would
916 *		   be used if we just wanted to retry, for example.
917 */
918void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
919{
920	int result = cmd->result;
921	int this_count = cmd->request_bufflen;
922	struct request_queue *q = cmd->device->request_queue;
923	struct request *req = cmd->request;
924	int clear_errors = 1;
925	struct scsi_sense_hdr sshdr;
926	int sense_valid = 0;
927	int sense_deferred = 0;
928
929	scsi_release_buffers(cmd);
930
931	if (result) {
932		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
933		if (sense_valid)
934			sense_deferred = scsi_sense_is_deferred(&sshdr);
935	}
936
937	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
938		req->errors = result;
939		if (result) {
940			clear_errors = 0;
941			if (sense_valid && req->sense) {
942				/*
943				 * SG_IO wants current and deferred errors
944				 */
945				int len = 8 + cmd->sense_buffer[7];
946
947				if (len > SCSI_SENSE_BUFFERSIZE)
948					len = SCSI_SENSE_BUFFERSIZE;
949				memcpy(req->sense, cmd->sense_buffer,  len);
950				req->sense_len = len;
951			}
952		}
953		req->data_len = cmd->resid;
954	}
955
956	/*
957	 * Next deal with any sectors which we were able to correctly
958	 * handle.
959	 */
960	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
961				      "%d bytes done.\n",
962				      req->nr_sectors, good_bytes));
963	SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
964
965	if (clear_errors)
966		req->errors = 0;
967
968	/* A number of bytes were successfully read.  If there
969	 * are leftovers and there is some kind of error
970	 * (result != 0), retry the rest.
971	 */
972	if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
973		return;
974
975	/* good_bytes = 0, or (inclusive) there were leftovers and
976	 * result = 0, so scsi_end_request couldn't retry.
977	 */
978	if (sense_valid && !sense_deferred) {
979		switch (sshdr.sense_key) {
980		case UNIT_ATTENTION:
981			if (cmd->device->removable) {
982				/* Detected disc change.  Set a bit
983				 * and quietly refuse further access.
984				 */
985				cmd->device->changed = 1;
986				scsi_end_request(cmd, 0, this_count, 1);
987				return;
988			} else {
989				/* Must have been a power glitch, or a
990				 * bus reset.  Could not have been a
991				 * media change, so we just retry the
992				 * request and see what happens.
993				 */
994				scsi_requeue_command(q, cmd);
995				return;
996			}
997			break;
998		case ILLEGAL_REQUEST:
999			/* If we had an ILLEGAL REQUEST returned, then
1000			 * we may have performed an unsupported
1001			 * command.  The only thing this should be
1002			 * would be a ten byte read where only a six
1003			 * byte read was supported.  Also, on a system
1004			 * where READ CAPACITY failed, we may have
1005			 * read past the end of the disk.
1006			 */
1007			if ((cmd->device->use_10_for_rw &&
1008			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1009			    (cmd->cmnd[0] == READ_10 ||
1010			     cmd->cmnd[0] == WRITE_10)) {
1011				cmd->device->use_10_for_rw = 0;
1012				/* This will cause a retry with a
1013				 * 6-byte command.
1014				 */
1015				scsi_requeue_command(q, cmd);
1016				return;
1017			} else {
1018				scsi_end_request(cmd, 0, this_count, 1);
1019				return;
1020			}
1021			break;
1022		case NOT_READY:
1023			/* If the device is in the process of becoming
1024			 * ready, or has a temporary blockage, retry.
1025			 */
1026			if (sshdr.asc == 0x04) {
1027				switch (sshdr.ascq) {
1028				case 0x01: /* becoming ready */
1029				case 0x04: /* format in progress */
1030				case 0x05: /* rebuild in progress */
1031				case 0x06: /* recalculation in progress */
1032				case 0x07: /* operation in progress */
1033				case 0x08: /* Long write in progress */
1034				case 0x09: /* self test in progress */
1035					scsi_requeue_command(q, cmd);
1036					return;
1037				default:
1038					break;
1039				}
1040			}
1041			if (!(req->cmd_flags & REQ_QUIET))
1042				scsi_cmd_print_sense_hdr(cmd,
1043							 "Device not ready",
1044							 &sshdr);
1045
1046			scsi_end_request(cmd, 0, this_count, 1);
1047			return;
1048		case VOLUME_OVERFLOW:
1049			if (!(req->cmd_flags & REQ_QUIET)) {
1050				scmd_printk(KERN_INFO, cmd,
1051					    "Volume overflow, CDB: ");
1052				__scsi_print_command(cmd->cmnd);
1053				scsi_print_sense("", cmd);
1054			}
1055			/* See SSC3rXX or current. */
1056			scsi_end_request(cmd, 0, this_count, 1);
1057			return;
1058		default:
1059			break;
1060		}
1061	}
1062	if (host_byte(result) == DID_RESET) {
1063		/* Third party bus reset or reset for error recovery
1064		 * reasons.  Just retry the request and see what
1065		 * happens.
1066		 */
1067		scsi_requeue_command(q, cmd);
1068		return;
1069	}
1070	if (result) {
1071		if (!(req->cmd_flags & REQ_QUIET)) {
1072			scsi_print_result(cmd);
1073			if (driver_byte(result) & DRIVER_SENSE)
1074				scsi_print_sense("", cmd);
1075		}
1076	}
1077	scsi_end_request(cmd, 0, this_count, !result);
1078}
1079
1080/*
1081 * Function:    scsi_init_io()
1082 *
1083 * Purpose:     SCSI I/O initialize function.
1084 *
1085 * Arguments:   cmd   - Command descriptor we wish to initialize
1086 *
1087 * Returns:     0 on success
1088 *		BLKPREP_DEFER if the failure is retryable
1089 *		BLKPREP_KILL if the failure is fatal
1090 */
1091static int scsi_init_io(struct scsi_cmnd *cmd)
1092{
1093	struct request     *req = cmd->request;
1094	int		   count;
1095
1096	/*
1097	 * We used to not use scatter-gather for single segment request,
1098	 * but now we do (it makes highmem I/O easier to support without
1099	 * kmapping pages)
1100	 */
1101	cmd->use_sg = req->nr_phys_segments;
1102
1103	/*
1104	 * If sg table allocation fails, requeue request later.
1105	 */
1106	cmd->request_buffer = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1107	if (unlikely(!cmd->request_buffer)) {
1108		scsi_unprep_request(req);
1109		return BLKPREP_DEFER;
1110	}
1111
1112	req->buffer = NULL;
1113	if (blk_pc_request(req))
1114		cmd->request_bufflen = req->data_len;
1115	else
1116		cmd->request_bufflen = req->nr_sectors << 9;
1117
1118	/*
1119	 * Next, walk the list, and fill in the addresses and sizes of
1120	 * each segment.
1121	 */
1122	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1123	if (likely(count <= cmd->use_sg)) {
1124		cmd->use_sg = count;
1125		return BLKPREP_OK;
1126	}
1127
1128	printk(KERN_ERR "Incorrect number of segments after building list\n");
1129	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1130	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1131			req->current_nr_sectors);
1132
1133	return BLKPREP_KILL;
1134}
1135
1136static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1137		struct request *req)
1138{
1139	struct scsi_cmnd *cmd;
1140
1141	if (!req->special) {
1142		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1143		if (unlikely(!cmd))
1144			return NULL;
1145		req->special = cmd;
1146	} else {
1147		cmd = req->special;
1148	}
1149
1150	/* pull a tag out of the request if we have one */
1151	cmd->tag = req->tag;
1152	cmd->request = req;
1153
1154	return cmd;
1155}
1156
1157int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1158{
1159	struct scsi_cmnd *cmd;
1160	int ret = scsi_prep_state_check(sdev, req);
1161
1162	if (ret != BLKPREP_OK)
1163		return ret;
1164
1165	cmd = scsi_get_cmd_from_req(sdev, req);
1166	if (unlikely(!cmd))
1167		return BLKPREP_DEFER;
1168
1169	/*
1170	 * BLOCK_PC requests may transfer data, in which case they must
1171	 * a bio attached to them.  Or they might contain a SCSI command
1172	 * that does not transfer data, in which case they may optionally
1173	 * submit a request without an attached bio.
1174	 */
1175	if (req->bio) {
1176		int ret;
1177
1178		BUG_ON(!req->nr_phys_segments);
1179
1180		ret = scsi_init_io(cmd);
1181		if (unlikely(ret))
1182			return ret;
1183	} else {
1184		BUG_ON(req->data_len);
1185		BUG_ON(req->data);
1186
1187		cmd->request_bufflen = 0;
1188		cmd->request_buffer = NULL;
1189		cmd->use_sg = 0;
1190		req->buffer = NULL;
1191	}
1192
1193	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1194	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1195	cmd->cmd_len = req->cmd_len;
1196	if (!req->data_len)
1197		cmd->sc_data_direction = DMA_NONE;
1198	else if (rq_data_dir(req) == WRITE)
1199		cmd->sc_data_direction = DMA_TO_DEVICE;
1200	else
1201		cmd->sc_data_direction = DMA_FROM_DEVICE;
1202
1203	cmd->transfersize = req->data_len;
1204	cmd->allowed = req->retries;
1205	cmd->timeout_per_command = req->timeout;
1206	return BLKPREP_OK;
1207}
1208EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1209
1210/*
1211 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1212 * from filesystems that still need to be translated to SCSI CDBs from
1213 * the ULD.
1214 */
1215int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1216{
1217	struct scsi_cmnd *cmd;
1218	int ret = scsi_prep_state_check(sdev, req);
1219
1220	if (ret != BLKPREP_OK)
1221		return ret;
1222	/*
1223	 * Filesystem requests must transfer data.
1224	 */
1225	BUG_ON(!req->nr_phys_segments);
1226
1227	cmd = scsi_get_cmd_from_req(sdev, req);
1228	if (unlikely(!cmd))
1229		return BLKPREP_DEFER;
1230
1231	return scsi_init_io(cmd);
1232}
1233EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1234
1235int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1236{
1237	int ret = BLKPREP_OK;
1238
1239	/*
1240	 * If the device is not in running state we will reject some
1241	 * or all commands.
1242	 */
1243	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1244		switch (sdev->sdev_state) {
1245		case SDEV_OFFLINE:
1246			/*
1247			 * If the device is offline we refuse to process any
1248			 * commands.  The device must be brought online
1249			 * before trying any recovery commands.
1250			 */
1251			sdev_printk(KERN_ERR, sdev,
1252				    "rejecting I/O to offline device\n");
1253			ret = BLKPREP_KILL;
1254			break;
1255		case SDEV_DEL:
1256			/*
1257			 * If the device is fully deleted, we refuse to
1258			 * process any commands as well.
1259			 */
1260			sdev_printk(KERN_ERR, sdev,
1261				    "rejecting I/O to dead device\n");
1262			ret = BLKPREP_KILL;
1263			break;
1264		case SDEV_QUIESCE:
1265		case SDEV_BLOCK:
1266			/*
1267			 * If the devices is blocked we defer normal commands.
1268			 */
1269			if (!(req->cmd_flags & REQ_PREEMPT))
1270				ret = BLKPREP_DEFER;
1271			break;
1272		default:
1273			/*
1274			 * For any other not fully online state we only allow
1275			 * special commands.  In particular any user initiated
1276			 * command is not allowed.
1277			 */
1278			if (!(req->cmd_flags & REQ_PREEMPT))
1279				ret = BLKPREP_KILL;
1280			break;
1281		}
1282	}
1283	return ret;
1284}
1285EXPORT_SYMBOL(scsi_prep_state_check);
1286
1287int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1288{
1289	struct scsi_device *sdev = q->queuedata;
1290
1291	switch (ret) {
1292	case BLKPREP_KILL:
1293		req->errors = DID_NO_CONNECT << 16;
1294		/* release the command and kill it */
1295		if (req->special) {
1296			struct scsi_cmnd *cmd = req->special;
1297			scsi_release_buffers(cmd);
1298			scsi_put_command(cmd);
1299			req->special = NULL;
1300		}
1301		break;
1302	case BLKPREP_DEFER:
1303		/*
1304		 * If we defer, the elv_next_request() returns NULL, but the
1305		 * queue must be restarted, so we plug here if no returning
1306		 * command will automatically do that.
1307		 */
1308		if (sdev->device_busy == 0)
1309			blk_plug_device(q);
1310		break;
1311	default:
1312		req->cmd_flags |= REQ_DONTPREP;
1313	}
1314
1315	return ret;
1316}
1317EXPORT_SYMBOL(scsi_prep_return);
1318
1319static int scsi_prep_fn(struct request_queue *q, struct request *req)
1320{
1321	struct scsi_device *sdev = q->queuedata;
1322	int ret = BLKPREP_KILL;
1323
1324	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1325		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1326	return scsi_prep_return(q, req, ret);
1327}
1328
1329/*
1330 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1331 * return 0.
1332 *
1333 * Called with the queue_lock held.
1334 */
1335static inline int scsi_dev_queue_ready(struct request_queue *q,
1336				  struct scsi_device *sdev)
1337{
1338	if (sdev->device_busy >= sdev->queue_depth)
1339		return 0;
1340	if (sdev->device_busy == 0 && sdev->device_blocked) {
1341		/*
1342		 * unblock after device_blocked iterates to zero
1343		 */
1344		if (--sdev->device_blocked == 0) {
1345			SCSI_LOG_MLQUEUE(3,
1346				   sdev_printk(KERN_INFO, sdev,
1347				   "unblocking device at zero depth\n"));
1348		} else {
1349			blk_plug_device(q);
1350			return 0;
1351		}
1352	}
1353	if (sdev->device_blocked)
1354		return 0;
1355
1356	return 1;
1357}
1358
1359/*
1360 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1361 * return 0. We must end up running the queue again whenever 0 is
1362 * returned, else IO can hang.
1363 *
1364 * Called with host_lock held.
1365 */
1366static inline int scsi_host_queue_ready(struct request_queue *q,
1367				   struct Scsi_Host *shost,
1368				   struct scsi_device *sdev)
1369{
1370	if (scsi_host_in_recovery(shost))
1371		return 0;
1372	if (shost->host_busy == 0 && shost->host_blocked) {
1373		/*
1374		 * unblock after host_blocked iterates to zero
1375		 */
1376		if (--shost->host_blocked == 0) {
1377			SCSI_LOG_MLQUEUE(3,
1378				printk("scsi%d unblocking host at zero depth\n",
1379					shost->host_no));
1380		} else {
1381			blk_plug_device(q);
1382			return 0;
1383		}
1384	}
1385	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1386	    shost->host_blocked || shost->host_self_blocked) {
1387		if (list_empty(&sdev->starved_entry))
1388			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1389		return 0;
1390	}
1391
1392	/* We're OK to process the command, so we can't be starved */
1393	if (!list_empty(&sdev->starved_entry))
1394		list_del_init(&sdev->starved_entry);
1395
1396	return 1;
1397}
1398
1399/*
1400 * Kill a request for a dead device
1401 */
1402static void scsi_kill_request(struct request *req, struct request_queue *q)
1403{
1404	struct scsi_cmnd *cmd = req->special;
1405	struct scsi_device *sdev = cmd->device;
1406	struct Scsi_Host *shost = sdev->host;
1407
1408	blkdev_dequeue_request(req);
1409
1410	if (unlikely(cmd == NULL)) {
1411		printk(KERN_CRIT "impossible request in %s.\n",
1412				 __FUNCTION__);
1413		BUG();
1414	}
1415
1416	scsi_init_cmd_errh(cmd);
1417	cmd->result = DID_NO_CONNECT << 16;
1418	atomic_inc(&cmd->device->iorequest_cnt);
1419
1420	/*
1421	 * SCSI request completion path will do scsi_device_unbusy(),
1422	 * bump busy counts.  To bump the counters, we need to dance
1423	 * with the locks as normal issue path does.
1424	 */
1425	sdev->device_busy++;
1426	spin_unlock(sdev->request_queue->queue_lock);
1427	spin_lock(shost->host_lock);
1428	shost->host_busy++;
1429	spin_unlock(shost->host_lock);
1430	spin_lock(sdev->request_queue->queue_lock);
1431
1432	__scsi_done(cmd);
1433}
1434
1435static void scsi_softirq_done(struct request *rq)
1436{
1437	struct scsi_cmnd *cmd = rq->completion_data;
1438	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1439	int disposition;
1440
1441	INIT_LIST_HEAD(&cmd->eh_entry);
1442
1443	disposition = scsi_decide_disposition(cmd);
1444	if (disposition != SUCCESS &&
1445	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1446		sdev_printk(KERN_ERR, cmd->device,
1447			    "timing out command, waited %lus\n",
1448			    wait_for/HZ);
1449		disposition = SUCCESS;
1450	}
1451
1452	scsi_log_completion(cmd, disposition);
1453
1454	switch (disposition) {
1455		case SUCCESS:
1456			scsi_finish_command(cmd);
1457			break;
1458		case NEEDS_RETRY:
1459			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1460			break;
1461		case ADD_TO_MLQUEUE:
1462			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1463			break;
1464		default:
1465			if (!scsi_eh_scmd_add(cmd, 0))
1466				scsi_finish_command(cmd);
1467	}
1468}
1469
1470/*
1471 * Function:    scsi_request_fn()
1472 *
1473 * Purpose:     Main strategy routine for SCSI.
1474 *
1475 * Arguments:   q       - Pointer to actual queue.
1476 *
1477 * Returns:     Nothing
1478 *
1479 * Lock status: IO request lock assumed to be held when called.
1480 */
1481static void scsi_request_fn(struct request_queue *q)
1482{
1483	struct scsi_device *sdev = q->queuedata;
1484	struct Scsi_Host *shost;
1485	struct scsi_cmnd *cmd;
1486	struct request *req;
1487
1488	if (!sdev) {
1489		printk("scsi: killing requests for dead queue\n");
1490		while ((req = elv_next_request(q)) != NULL)
1491			scsi_kill_request(req, q);
1492		return;
1493	}
1494
1495	if(!get_device(&sdev->sdev_gendev))
1496		/* We must be tearing the block queue down already */
1497		return;
1498
1499	/*
1500	 * To start with, we keep looping until the queue is empty, or until
1501	 * the host is no longer able to accept any more requests.
1502	 */
1503	shost = sdev->host;
1504	while (!blk_queue_plugged(q)) {
1505		int rtn;
1506		/*
1507		 * get next queueable request.  We do this early to make sure
1508		 * that the request is fully prepared even if we cannot
1509		 * accept it.
1510		 */
1511		req = elv_next_request(q);
1512		if (!req || !scsi_dev_queue_ready(q, sdev))
1513			break;
1514
1515		if (unlikely(!scsi_device_online(sdev))) {
1516			sdev_printk(KERN_ERR, sdev,
1517				    "rejecting I/O to offline device\n");
1518			scsi_kill_request(req, q);
1519			continue;
1520		}
1521
1522
1523		/*
1524		 * Remove the request from the request list.
1525		 */
1526		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1527			blkdev_dequeue_request(req);
1528		sdev->device_busy++;
1529
1530		spin_unlock(q->queue_lock);
1531		cmd = req->special;
1532		if (unlikely(cmd == NULL)) {
1533			printk(KERN_CRIT "impossible request in %s.\n"
1534					 "please mail a stack trace to "
1535					 "linux-scsi@vger.kernel.org\n",
1536					 __FUNCTION__);
1537			blk_dump_rq_flags(req, "foo");
1538			BUG();
1539		}
1540		spin_lock(shost->host_lock);
1541
1542		if (!scsi_host_queue_ready(q, shost, sdev))
1543			goto not_ready;
1544		if (sdev->single_lun) {
1545			if (scsi_target(sdev)->starget_sdev_user &&
1546			    scsi_target(sdev)->starget_sdev_user != sdev)
1547				goto not_ready;
1548			scsi_target(sdev)->starget_sdev_user = sdev;
1549		}
1550		shost->host_busy++;
1551
1552		/*
1553		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1554		 *		take the lock again.
1555		 */
1556		spin_unlock_irq(shost->host_lock);
1557
1558		/*
1559		 * Finally, initialize any error handling parameters, and set up
1560		 * the timers for timeouts.
1561		 */
1562		scsi_init_cmd_errh(cmd);
1563
1564		/*
1565		 * Dispatch the command to the low-level driver.
1566		 */
1567		rtn = scsi_dispatch_cmd(cmd);
1568		spin_lock_irq(q->queue_lock);
1569		if(rtn) {
1570			/* we're refusing the command; because of
1571			 * the way locks get dropped, we need to
1572			 * check here if plugging is required */
1573			if(sdev->device_busy == 0)
1574				blk_plug_device(q);
1575
1576			break;
1577		}
1578	}
1579
1580	goto out;
1581
1582 not_ready:
1583	spin_unlock_irq(shost->host_lock);
1584
1585	/*
1586	 * lock q, handle tag, requeue req, and decrement device_busy. We
1587	 * must return with queue_lock held.
1588	 *
1589	 * Decrementing device_busy without checking it is OK, as all such
1590	 * cases (host limits or settings) should run the queue at some
1591	 * later time.
1592	 */
1593	spin_lock_irq(q->queue_lock);
1594	blk_requeue_request(q, req);
1595	sdev->device_busy--;
1596	if(sdev->device_busy == 0)
1597		blk_plug_device(q);
1598 out:
1599	/* must be careful here...if we trigger the ->remove() function
1600	 * we cannot be holding the q lock */
1601	spin_unlock_irq(q->queue_lock);
1602	put_device(&sdev->sdev_gendev);
1603	spin_lock_irq(q->queue_lock);
1604}
1605
1606u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1607{
1608	struct device *host_dev;
1609	u64 bounce_limit = 0xffffffff;
1610
1611	if (shost->unchecked_isa_dma)
1612		return BLK_BOUNCE_ISA;
1613	/*
1614	 * Platforms with virtual-DMA translation
1615	 * hardware have no practical limit.
1616	 */
1617	if (!PCI_DMA_BUS_IS_PHYS)
1618		return BLK_BOUNCE_ANY;
1619
1620	host_dev = scsi_get_device(shost);
1621	if (host_dev && host_dev->dma_mask)
1622		bounce_limit = *host_dev->dma_mask;
1623
1624	return bounce_limit;
1625}
1626EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1627
1628struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1629					 request_fn_proc *request_fn)
1630{
1631	struct request_queue *q;
1632
1633	q = blk_init_queue(request_fn, NULL);
1634	if (!q)
1635		return NULL;
1636
1637	/*
1638	 * this limit is imposed by hardware restrictions
1639	 */
1640	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1641
1642	/*
1643	 * In the future, sg chaining support will be mandatory and this
1644	 * ifdef can then go away. Right now we don't have all archs
1645	 * converted, so better keep it safe.
1646	 */
1647#ifdef ARCH_HAS_SG_CHAIN
1648	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1649#else
1650	blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1651#endif
1652
1653	blk_queue_max_sectors(q, shost->max_sectors);
1654	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1655	blk_queue_segment_boundary(q, shost->dma_boundary);
1656
1657	if (!shost->use_clustering)
1658		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1659	return q;
1660}
1661EXPORT_SYMBOL(__scsi_alloc_queue);
1662
1663struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1664{
1665	struct request_queue *q;
1666
1667	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1668	if (!q)
1669		return NULL;
1670
1671	blk_queue_prep_rq(q, scsi_prep_fn);
1672	blk_queue_softirq_done(q, scsi_softirq_done);
1673	return q;
1674}
1675
1676void scsi_free_queue(struct request_queue *q)
1677{
1678	blk_cleanup_queue(q);
1679}
1680
1681/*
1682 * Function:    scsi_block_requests()
1683 *
1684 * Purpose:     Utility function used by low-level drivers to prevent further
1685 *		commands from being queued to the device.
1686 *
1687 * Arguments:   shost       - Host in question
1688 *
1689 * Returns:     Nothing
1690 *
1691 * Lock status: No locks are assumed held.
1692 *
1693 * Notes:       There is no timer nor any other means by which the requests
1694 *		get unblocked other than the low-level driver calling
1695 *		scsi_unblock_requests().
1696 */
1697void scsi_block_requests(struct Scsi_Host *shost)
1698{
1699	shost->host_self_blocked = 1;
1700}
1701EXPORT_SYMBOL(scsi_block_requests);
1702
1703/*
1704 * Function:    scsi_unblock_requests()
1705 *
1706 * Purpose:     Utility function used by low-level drivers to allow further
1707 *		commands from being queued to the device.
1708 *
1709 * Arguments:   shost       - Host in question
1710 *
1711 * Returns:     Nothing
1712 *
1713 * Lock status: No locks are assumed held.
1714 *
1715 * Notes:       There is no timer nor any other means by which the requests
1716 *		get unblocked other than the low-level driver calling
1717 *		scsi_unblock_requests().
1718 *
1719 *		This is done as an API function so that changes to the
1720 *		internals of the scsi mid-layer won't require wholesale
1721 *		changes to drivers that use this feature.
1722 */
1723void scsi_unblock_requests(struct Scsi_Host *shost)
1724{
1725	shost->host_self_blocked = 0;
1726	scsi_run_host_queues(shost);
1727}
1728EXPORT_SYMBOL(scsi_unblock_requests);
1729
1730int __init scsi_init_queue(void)
1731{
1732	int i;
1733
1734	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1735					sizeof(struct scsi_io_context),
1736					0, 0, NULL);
1737	if (!scsi_io_context_cache) {
1738		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1739		return -ENOMEM;
1740	}
1741
1742	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1743		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1744		int size = sgp->size * sizeof(struct scatterlist);
1745
1746		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1747				SLAB_HWCACHE_ALIGN, NULL);
1748		if (!sgp->slab) {
1749			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1750					sgp->name);
1751		}
1752
1753		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1754						     sgp->slab);
1755		if (!sgp->pool) {
1756			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1757					sgp->name);
1758		}
1759	}
1760
1761	return 0;
1762}
1763
1764void scsi_exit_queue(void)
1765{
1766	int i;
1767
1768	kmem_cache_destroy(scsi_io_context_cache);
1769
1770	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1771		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1772		mempool_destroy(sgp->pool);
1773		kmem_cache_destroy(sgp->slab);
1774	}
1775}
1776
1777/**
1778 *	scsi_mode_select - issue a mode select
1779 *	@sdev:	SCSI device to be queried
1780 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1781 *	@sp:	Save page bit (0 == don't save, 1 == save)
1782 *	@modepage: mode page being requested
1783 *	@buffer: request buffer (may not be smaller than eight bytes)
1784 *	@len:	length of request buffer.
1785 *	@timeout: command timeout
1786 *	@retries: number of retries before failing
1787 *	@data: returns a structure abstracting the mode header data
1788 *	@sense: place to put sense data (or NULL if no sense to be collected).
1789 *		must be SCSI_SENSE_BUFFERSIZE big.
1790 *
1791 *	Returns zero if successful; negative error number or scsi
1792 *	status on error
1793 *
1794 */
1795int
1796scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1797		 unsigned char *buffer, int len, int timeout, int retries,
1798		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1799{
1800	unsigned char cmd[10];
1801	unsigned char *real_buffer;
1802	int ret;
1803
1804	memset(cmd, 0, sizeof(cmd));
1805	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1806
1807	if (sdev->use_10_for_ms) {
1808		if (len > 65535)
1809			return -EINVAL;
1810		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1811		if (!real_buffer)
1812			return -ENOMEM;
1813		memcpy(real_buffer + 8, buffer, len);
1814		len += 8;
1815		real_buffer[0] = 0;
1816		real_buffer[1] = 0;
1817		real_buffer[2] = data->medium_type;
1818		real_buffer[3] = data->device_specific;
1819		real_buffer[4] = data->longlba ? 0x01 : 0;
1820		real_buffer[5] = 0;
1821		real_buffer[6] = data->block_descriptor_length >> 8;
1822		real_buffer[7] = data->block_descriptor_length;
1823
1824		cmd[0] = MODE_SELECT_10;
1825		cmd[7] = len >> 8;
1826		cmd[8] = len;
1827	} else {
1828		if (len > 255 || data->block_descriptor_length > 255 ||
1829		    data->longlba)
1830			return -EINVAL;
1831
1832		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1833		if (!real_buffer)
1834			return -ENOMEM;
1835		memcpy(real_buffer + 4, buffer, len);
1836		len += 4;
1837		real_buffer[0] = 0;
1838		real_buffer[1] = data->medium_type;
1839		real_buffer[2] = data->device_specific;
1840		real_buffer[3] = data->block_descriptor_length;
1841
1842
1843		cmd[0] = MODE_SELECT;
1844		cmd[4] = len;
1845	}
1846
1847	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1848			       sshdr, timeout, retries);
1849	kfree(real_buffer);
1850	return ret;
1851}
1852EXPORT_SYMBOL_GPL(scsi_mode_select);
1853
1854/**
1855 *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1856 *		six bytes if necessary.
1857 *	@sdev:	SCSI device to be queried
1858 *	@dbd:	set if mode sense will allow block descriptors to be returned
1859 *	@modepage: mode page being requested
1860 *	@buffer: request buffer (may not be smaller than eight bytes)
1861 *	@len:	length of request buffer.
1862 *	@timeout: command timeout
1863 *	@retries: number of retries before failing
1864 *	@data: returns a structure abstracting the mode header data
1865 *	@sense: place to put sense data (or NULL if no sense to be collected).
1866 *		must be SCSI_SENSE_BUFFERSIZE big.
1867 *
1868 *	Returns zero if unsuccessful, or the header offset (either 4
1869 *	or 8 depending on whether a six or ten byte command was
1870 *	issued) if successful.
1871 **/
1872int
1873scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1874		  unsigned char *buffer, int len, int timeout, int retries,
1875		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1876{
1877	unsigned char cmd[12];
1878	int use_10_for_ms;
1879	int header_length;
1880	int result;
1881	struct scsi_sense_hdr my_sshdr;
1882
1883	memset(data, 0, sizeof(*data));
1884	memset(&cmd[0], 0, 12);
1885	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1886	cmd[2] = modepage;
1887
1888	/* caller might not be interested in sense, but we need it */
1889	if (!sshdr)
1890		sshdr = &my_sshdr;
1891
1892 retry:
1893	use_10_for_ms = sdev->use_10_for_ms;
1894
1895	if (use_10_for_ms) {
1896		if (len < 8)
1897			len = 8;
1898
1899		cmd[0] = MODE_SENSE_10;
1900		cmd[8] = len;
1901		header_length = 8;
1902	} else {
1903		if (len < 4)
1904			len = 4;
1905
1906		cmd[0] = MODE_SENSE;
1907		cmd[4] = len;
1908		header_length = 4;
1909	}
1910
1911	memset(buffer, 0, len);
1912
1913	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1914				  sshdr, timeout, retries);
1915
1916	/* This code looks awful: what it's doing is making sure an
1917	 * ILLEGAL REQUEST sense return identifies the actual command
1918	 * byte as the problem.  MODE_SENSE commands can return
1919	 * ILLEGAL REQUEST if the code page isn't supported */
1920
1921	if (use_10_for_ms && !scsi_status_is_good(result) &&
1922	    (driver_byte(result) & DRIVER_SENSE)) {
1923		if (scsi_sense_valid(sshdr)) {
1924			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1925			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1926				/*
1927				 * Invalid command operation code
1928				 */
1929				sdev->use_10_for_ms = 0;
1930				goto retry;
1931			}
1932		}
1933	}
1934
1935	if(scsi_status_is_good(result)) {
1936		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1937			     (modepage == 6 || modepage == 8))) {
1938			/* Initio breakage? */
1939			header_length = 0;
1940			data->length = 13;
1941			data->medium_type = 0;
1942			data->device_specific = 0;
1943			data->longlba = 0;
1944			data->block_descriptor_length = 0;
1945		} else if(use_10_for_ms) {
1946			data->length = buffer[0]*256 + buffer[1] + 2;
1947			data->medium_type = buffer[2];
1948			data->device_specific = buffer[3];
1949			data->longlba = buffer[4] & 0x01;
1950			data->block_descriptor_length = buffer[6]*256
1951				+ buffer[7];
1952		} else {
1953			data->length = buffer[0] + 1;
1954			data->medium_type = buffer[1];
1955			data->device_specific = buffer[2];
1956			data->block_descriptor_length = buffer[3];
1957		}
1958		data->header_length = header_length;
1959	}
1960
1961	return result;
1962}
1963EXPORT_SYMBOL(scsi_mode_sense);
1964
1965int
1966scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1967{
1968	char cmd[] = {
1969		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1970	};
1971	struct scsi_sense_hdr sshdr;
1972	int result;
1973
1974	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1975				  timeout, retries);
1976
1977	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1978
1979		if ((scsi_sense_valid(&sshdr)) &&
1980		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1981		     (sshdr.sense_key == NOT_READY))) {
1982			sdev->changed = 1;
1983			result = 0;
1984		}
1985	}
1986	return result;
1987}
1988EXPORT_SYMBOL(scsi_test_unit_ready);
1989
1990/**
1991 *	scsi_device_set_state - Take the given device through the device
1992 *		state model.
1993 *	@sdev:	scsi device to change the state of.
1994 *	@state:	state to change to.
1995 *
1996 *	Returns zero if unsuccessful or an error if the requested
1997 *	transition is illegal.
1998 **/
1999int
2000scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2001{
2002	enum scsi_device_state oldstate = sdev->sdev_state;
2003
2004	if (state == oldstate)
2005		return 0;
2006
2007	switch (state) {
2008	case SDEV_CREATED:
2009		/* There are no legal states that come back to
2010		 * created.  This is the manually initialised start
2011		 * state */
2012		goto illegal;
2013
2014	case SDEV_RUNNING:
2015		switch (oldstate) {
2016		case SDEV_CREATED:
2017		case SDEV_OFFLINE:
2018		case SDEV_QUIESCE:
2019		case SDEV_BLOCK:
2020			break;
2021		default:
2022			goto illegal;
2023		}
2024		break;
2025
2026	case SDEV_QUIESCE:
2027		switch (oldstate) {
2028		case SDEV_RUNNING:
2029		case SDEV_OFFLINE:
2030			break;
2031		default:
2032			goto illegal;
2033		}
2034		break;
2035
2036	case SDEV_OFFLINE:
2037		switch (oldstate) {
2038		case SDEV_CREATED:
2039		case SDEV_RUNNING:
2040		case SDEV_QUIESCE:
2041		case SDEV_BLOCK:
2042			break;
2043		default:
2044			goto illegal;
2045		}
2046		break;
2047
2048	case SDEV_BLOCK:
2049		switch (oldstate) {
2050		case SDEV_CREATED:
2051		case SDEV_RUNNING:
2052			break;
2053		default:
2054			goto illegal;
2055		}
2056		break;
2057
2058	case SDEV_CANCEL:
2059		switch (oldstate) {
2060		case SDEV_CREATED:
2061		case SDEV_RUNNING:
2062		case SDEV_QUIESCE:
2063		case SDEV_OFFLINE:
2064		case SDEV_BLOCK:
2065			break;
2066		default:
2067			goto illegal;
2068		}
2069		break;
2070
2071	case SDEV_DEL:
2072		switch (oldstate) {
2073		case SDEV_CREATED:
2074		case SDEV_RUNNING:
2075		case SDEV_OFFLINE:
2076		case SDEV_CANCEL:
2077			break;
2078		default:
2079			goto illegal;
2080		}
2081		break;
2082
2083	}
2084	sdev->sdev_state = state;
2085	return 0;
2086
2087 illegal:
2088	SCSI_LOG_ERROR_RECOVERY(1,
2089				sdev_printk(KERN_ERR, sdev,
2090					    "Illegal state transition %s->%s\n",
2091					    scsi_device_state_name(oldstate),
2092					    scsi_device_state_name(state))
2093				);
2094	return -EINVAL;
2095}
2096EXPORT_SYMBOL(scsi_device_set_state);
2097
2098/**
2099 *	scsi_device_quiesce - Block user issued commands.
2100 *	@sdev:	scsi device to quiesce.
2101 *
2102 *	This works by trying to transition to the SDEV_QUIESCE state
2103 *	(which must be a legal transition).  When the device is in this
2104 *	state, only special requests will be accepted, all others will
2105 *	be deferred.  Since special requests may also be requeued requests,
2106 *	a successful return doesn't guarantee the device will be
2107 *	totally quiescent.
2108 *
2109 *	Must be called with user context, may sleep.
2110 *
2111 *	Returns zero if unsuccessful or an error if not.
2112 **/
2113int
2114scsi_device_quiesce(struct scsi_device *sdev)
2115{
2116	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2117	if (err)
2118		return err;
2119
2120	scsi_run_queue(sdev->request_queue);
2121	while (sdev->device_busy) {
2122		msleep_interruptible(200);
2123		scsi_run_queue(sdev->request_queue);
2124	}
2125	return 0;
2126}
2127EXPORT_SYMBOL(scsi_device_quiesce);
2128
2129/**
2130 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2131 *	@sdev:	scsi device to resume.
2132 *
2133 *	Moves the device from quiesced back to running and restarts the
2134 *	queues.
2135 *
2136 *	Must be called with user context, may sleep.
2137 **/
2138void
2139scsi_device_resume(struct scsi_device *sdev)
2140{
2141	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2142		return;
2143	scsi_run_queue(sdev->request_queue);
2144}
2145EXPORT_SYMBOL(scsi_device_resume);
2146
2147static void
2148device_quiesce_fn(struct scsi_device *sdev, void *data)
2149{
2150	scsi_device_quiesce(sdev);
2151}
2152
2153void
2154scsi_target_quiesce(struct scsi_target *starget)
2155{
2156	starget_for_each_device(starget, NULL, device_quiesce_fn);
2157}
2158EXPORT_SYMBOL(scsi_target_quiesce);
2159
2160static void
2161device_resume_fn(struct scsi_device *sdev, void *data)
2162{
2163	scsi_device_resume(sdev);
2164}
2165
2166void
2167scsi_target_resume(struct scsi_target *starget)
2168{
2169	starget_for_each_device(starget, NULL, device_resume_fn);
2170}
2171EXPORT_SYMBOL(scsi_target_resume);
2172
2173/**
2174 * scsi_internal_device_block - internal function to put a device
2175 *				temporarily into the SDEV_BLOCK state
2176 * @sdev:	device to block
2177 *
2178 * Block request made by scsi lld's to temporarily stop all
2179 * scsi commands on the specified device.  Called from interrupt
2180 * or normal process context.
2181 *
2182 * Returns zero if successful or error if not
2183 *
2184 * Notes:
2185 *	This routine transitions the device to the SDEV_BLOCK state
2186 *	(which must be a legal transition).  When the device is in this
2187 *	state, all commands are deferred until the scsi lld reenables
2188 *	the device with scsi_device_unblock or device_block_tmo fires.
2189 *	This routine assumes the host_lock is held on entry.
2190 **/
2191int
2192scsi_internal_device_block(struct scsi_device *sdev)
2193{
2194	struct request_queue *q = sdev->request_queue;
2195	unsigned long flags;
2196	int err = 0;
2197
2198	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2199	if (err)
2200		return err;
2201
2202	/*
2203	 * The device has transitioned to SDEV_BLOCK.  Stop the
2204	 * block layer from calling the midlayer with this device's
2205	 * request queue.
2206	 */
2207	spin_lock_irqsave(q->queue_lock, flags);
2208	blk_stop_queue(q);
2209	spin_unlock_irqrestore(q->queue_lock, flags);
2210
2211	return 0;
2212}
2213EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2214
2215/**
2216 * scsi_internal_device_unblock - resume a device after a block request
2217 * @sdev:	device to resume
2218 *
2219 * Called by scsi lld's or the midlayer to restart the device queue
2220 * for the previously suspended scsi device.  Called from interrupt or
2221 * normal process context.
2222 *
2223 * Returns zero if successful or error if not.
2224 *
2225 * Notes:
2226 *	This routine transitions the device to the SDEV_RUNNING state
2227 *	(which must be a legal transition) allowing the midlayer to
2228 *	goose the queue for this device.  This routine assumes the
2229 *	host_lock is held upon entry.
2230 **/
2231int
2232scsi_internal_device_unblock(struct scsi_device *sdev)
2233{
2234	struct request_queue *q = sdev->request_queue;
2235	int err;
2236	unsigned long flags;
2237
2238	/*
2239	 * Try to transition the scsi device to SDEV_RUNNING
2240	 * and goose the device queue if successful.
2241	 */
2242	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2243	if (err)
2244		return err;
2245
2246	spin_lock_irqsave(q->queue_lock, flags);
2247	blk_start_queue(q);
2248	spin_unlock_irqrestore(q->queue_lock, flags);
2249
2250	return 0;
2251}
2252EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2253
2254static void
2255device_block(struct scsi_device *sdev, void *data)
2256{
2257	scsi_internal_device_block(sdev);
2258}
2259
2260static int
2261target_block(struct device *dev, void *data)
2262{
2263	if (scsi_is_target_device(dev))
2264		starget_for_each_device(to_scsi_target(dev), NULL,
2265					device_block);
2266	return 0;
2267}
2268
2269void
2270scsi_target_block(struct device *dev)
2271{
2272	if (scsi_is_target_device(dev))
2273		starget_for_each_device(to_scsi_target(dev), NULL,
2274					device_block);
2275	else
2276		device_for_each_child(dev, NULL, target_block);
2277}
2278EXPORT_SYMBOL_GPL(scsi_target_block);
2279
2280static void
2281device_unblock(struct scsi_device *sdev, void *data)
2282{
2283	scsi_internal_device_unblock(sdev);
2284}
2285
2286static int
2287target_unblock(struct device *dev, void *data)
2288{
2289	if (scsi_is_target_device(dev))
2290		starget_for_each_device(to_scsi_target(dev), NULL,
2291					device_unblock);
2292	return 0;
2293}
2294
2295void
2296scsi_target_unblock(struct device *dev)
2297{
2298	if (scsi_is_target_device(dev))
2299		starget_for_each_device(to_scsi_target(dev), NULL,
2300					device_unblock);
2301	else
2302		device_for_each_child(dev, NULL, target_unblock);
2303}
2304EXPORT_SYMBOL_GPL(scsi_target_unblock);
2305
2306/**
2307 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2308 * @sg:		scatter-gather list
2309 * @sg_count:	number of segments in sg
2310 * @offset:	offset in bytes into sg, on return offset into the mapped area
2311 * @len:	bytes to map, on return number of bytes mapped
2312 *
2313 * Returns virtual address of the start of the mapped page
2314 */
2315void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2316			  size_t *offset, size_t *len)
2317{
2318	int i;
2319	size_t sg_len = 0, len_complete = 0;
2320	struct scatterlist *sg;
2321	struct page *page;
2322
2323	WARN_ON(!irqs_disabled());
2324
2325	for_each_sg(sgl, sg, sg_count, i) {
2326		len_complete = sg_len; /* Complete sg-entries */
2327		sg_len += sg->length;
2328		if (sg_len > *offset)
2329			break;
2330	}
2331
2332	if (unlikely(i == sg_count)) {
2333		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2334			"elements %d\n",
2335		       __FUNCTION__, sg_len, *offset, sg_count);
2336		WARN_ON(1);
2337		return NULL;
2338	}
2339
2340	/* Offset starting from the beginning of first page in this sg-entry */
2341	*offset = *offset - len_complete + sg->offset;
2342
2343	/* Assumption: contiguous pages can be accessed as "page + i" */
2344	page = nth_page(sg->page, (*offset >> PAGE_SHIFT));
2345	*offset &= ~PAGE_MASK;
2346
2347	/* Bytes in this sg-entry from *offset to the end of the page */
2348	sg_len = PAGE_SIZE - *offset;
2349	if (*len > sg_len)
2350		*len = sg_len;
2351
2352	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2353}
2354EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2355
2356/**
2357 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2358 *			   mapped with scsi_kmap_atomic_sg
2359 * @virt:	virtual address to be unmapped
2360 */
2361void scsi_kunmap_atomic_sg(void *virt)
2362{
2363	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2364}
2365EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2366