scsi_lib.c revision b0790410300abaaf4f25f702803beff701baebf1
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/bitops.h>
12#include <linux/blkdev.h>
13#include <linux/completion.h>
14#include <linux/kernel.h>
15#include <linux/mempool.h>
16#include <linux/slab.h>
17#include <linux/init.h>
18#include <linux/pci.h>
19#include <linux/delay.h>
20#include <linux/hardirq.h>
21#include <linux/scatterlist.h>
22
23#include <scsi/scsi.h>
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_dbg.h>
26#include <scsi/scsi_device.h>
27#include <scsi/scsi_driver.h>
28#include <scsi/scsi_eh.h>
29#include <scsi/scsi_host.h>
30
31#include "scsi_priv.h"
32#include "scsi_logging.h"
33
34
35#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36#define SG_MEMPOOL_SIZE		2
37
38struct scsi_host_sg_pool {
39	size_t		size;
40	char		*name;
41	struct kmem_cache	*slab;
42	mempool_t	*pool;
43};
44
45#define SP(x) { x, "sgpool-" __stringify(x) }
46#if (SCSI_MAX_SG_SEGMENTS < 32)
47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48#endif
49static struct scsi_host_sg_pool scsi_sg_pools[] = {
50	SP(8),
51	SP(16),
52#if (SCSI_MAX_SG_SEGMENTS > 32)
53	SP(32),
54#if (SCSI_MAX_SG_SEGMENTS > 64)
55	SP(64),
56#if (SCSI_MAX_SG_SEGMENTS > 128)
57	SP(128),
58#if (SCSI_MAX_SG_SEGMENTS > 256)
59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60#endif
61#endif
62#endif
63#endif
64	SP(SCSI_MAX_SG_SEGMENTS)
65};
66#undef SP
67
68struct kmem_cache *scsi_sdb_cache;
69
70static void scsi_run_queue(struct request_queue *q);
71
72/*
73 * Function:	scsi_unprep_request()
74 *
75 * Purpose:	Remove all preparation done for a request, including its
76 *		associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments:	req	- request to unprepare
79 *
80 * Lock status:	Assumed that no locks are held upon entry.
81 *
82 * Returns:	Nothing.
83 */
84static void scsi_unprep_request(struct request *req)
85{
86	struct scsi_cmnd *cmd = req->special;
87
88	req->cmd_flags &= ~REQ_DONTPREP;
89	req->special = NULL;
90
91	scsi_put_command(cmd);
92}
93
94/**
95 * __scsi_queue_insert - private queue insertion
96 * @cmd: The SCSI command being requeued
97 * @reason:  The reason for the requeue
98 * @unbusy: Whether the queue should be unbusied
99 *
100 * This is a private queue insertion.  The public interface
101 * scsi_queue_insert() always assumes the queue should be unbusied
102 * because it's always called before the completion.  This function is
103 * for a requeue after completion, which should only occur in this
104 * file.
105 */
106static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107{
108	struct Scsi_Host *host = cmd->device->host;
109	struct scsi_device *device = cmd->device;
110	struct scsi_target *starget = scsi_target(device);
111	struct request_queue *q = device->request_queue;
112	unsigned long flags;
113
114	SCSI_LOG_MLQUEUE(1,
115		 printk("Inserting command %p into mlqueue\n", cmd));
116
117	/*
118	 * Set the appropriate busy bit for the device/host.
119	 *
120	 * If the host/device isn't busy, assume that something actually
121	 * completed, and that we should be able to queue a command now.
122	 *
123	 * Note that the prior mid-layer assumption that any host could
124	 * always queue at least one command is now broken.  The mid-layer
125	 * will implement a user specifiable stall (see
126	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127	 * if a command is requeued with no other commands outstanding
128	 * either for the device or for the host.
129	 */
130	switch (reason) {
131	case SCSI_MLQUEUE_HOST_BUSY:
132		host->host_blocked = host->max_host_blocked;
133		break;
134	case SCSI_MLQUEUE_DEVICE_BUSY:
135		device->device_blocked = device->max_device_blocked;
136		break;
137	case SCSI_MLQUEUE_TARGET_BUSY:
138		starget->target_blocked = starget->max_target_blocked;
139		break;
140	}
141
142	/*
143	 * Decrement the counters, since these commands are no longer
144	 * active on the host/device.
145	 */
146	if (unbusy)
147		scsi_device_unbusy(device);
148
149	/*
150	 * Requeue this command.  It will go before all other commands
151	 * that are already in the queue.
152	 *
153	 * NOTE: there is magic here about the way the queue is plugged if
154	 * we have no outstanding commands.
155	 *
156	 * Although we *don't* plug the queue, we call the request
157	 * function.  The SCSI request function detects the blocked condition
158	 * and plugs the queue appropriately.
159         */
160	spin_lock_irqsave(q->queue_lock, flags);
161	blk_requeue_request(q, cmd->request);
162	spin_unlock_irqrestore(q->queue_lock, flags);
163
164	scsi_run_queue(q);
165
166	return 0;
167}
168
169/*
170 * Function:    scsi_queue_insert()
171 *
172 * Purpose:     Insert a command in the midlevel queue.
173 *
174 * Arguments:   cmd    - command that we are adding to queue.
175 *              reason - why we are inserting command to queue.
176 *
177 * Lock status: Assumed that lock is not held upon entry.
178 *
179 * Returns:     Nothing.
180 *
181 * Notes:       We do this for one of two cases.  Either the host is busy
182 *              and it cannot accept any more commands for the time being,
183 *              or the device returned QUEUE_FULL and can accept no more
184 *              commands.
185 * Notes:       This could be called either from an interrupt context or a
186 *              normal process context.
187 */
188int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189{
190	return __scsi_queue_insert(cmd, reason, 1);
191}
192/**
193 * scsi_execute - insert request and wait for the result
194 * @sdev:	scsi device
195 * @cmd:	scsi command
196 * @data_direction: data direction
197 * @buffer:	data buffer
198 * @bufflen:	len of buffer
199 * @sense:	optional sense buffer
200 * @timeout:	request timeout in seconds
201 * @retries:	number of times to retry request
202 * @flags:	or into request flags;
203 * @resid:	optional residual length
204 *
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
207 */
208int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209		 int data_direction, void *buffer, unsigned bufflen,
210		 unsigned char *sense, int timeout, int retries, int flags,
211		 int *resid)
212{
213	struct request *req;
214	int write = (data_direction == DMA_TO_DEVICE);
215	int ret = DRIVER_ERROR << 24;
216
217	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218
219	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
220					buffer, bufflen, __GFP_WAIT))
221		goto out;
222
223	req->cmd_len = COMMAND_SIZE(cmd[0]);
224	memcpy(req->cmd, cmd, req->cmd_len);
225	req->sense = sense;
226	req->sense_len = 0;
227	req->retries = retries;
228	req->timeout = timeout;
229	req->cmd_type = REQ_TYPE_BLOCK_PC;
230	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231
232	/*
233	 * head injection *required* here otherwise quiesce won't work
234	 */
235	blk_execute_rq(req->q, NULL, req, 1);
236
237	/*
238	 * Some devices (USB mass-storage in particular) may transfer
239	 * garbage data together with a residue indicating that the data
240	 * is invalid.  Prevent the garbage from being misinterpreted
241	 * and prevent security leaks by zeroing out the excess data.
242	 */
243	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245
246	if (resid)
247		*resid = req->resid_len;
248	ret = req->errors;
249 out:
250	blk_put_request(req);
251
252	return ret;
253}
254EXPORT_SYMBOL(scsi_execute);
255
256
257int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258		     int data_direction, void *buffer, unsigned bufflen,
259		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260		     int *resid)
261{
262	char *sense = NULL;
263	int result;
264
265	if (sshdr) {
266		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267		if (!sense)
268			return DRIVER_ERROR << 24;
269	}
270	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271			      sense, timeout, retries, 0, resid);
272	if (sshdr)
273		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274
275	kfree(sense);
276	return result;
277}
278EXPORT_SYMBOL(scsi_execute_req);
279
280/*
281 * Function:    scsi_init_cmd_errh()
282 *
283 * Purpose:     Initialize cmd fields related to error handling.
284 *
285 * Arguments:   cmd	- command that is ready to be queued.
286 *
287 * Notes:       This function has the job of initializing a number of
288 *              fields related to error handling.   Typically this will
289 *              be called once for each command, as required.
290 */
291static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292{
293	cmd->serial_number = 0;
294	scsi_set_resid(cmd, 0);
295	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296	if (cmd->cmd_len == 0)
297		cmd->cmd_len = scsi_command_size(cmd->cmnd);
298}
299
300void scsi_device_unbusy(struct scsi_device *sdev)
301{
302	struct Scsi_Host *shost = sdev->host;
303	struct scsi_target *starget = scsi_target(sdev);
304	unsigned long flags;
305
306	spin_lock_irqsave(shost->host_lock, flags);
307	shost->host_busy--;
308	starget->target_busy--;
309	if (unlikely(scsi_host_in_recovery(shost) &&
310		     (shost->host_failed || shost->host_eh_scheduled)))
311		scsi_eh_wakeup(shost);
312	spin_unlock(shost->host_lock);
313	spin_lock(sdev->request_queue->queue_lock);
314	sdev->device_busy--;
315	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316}
317
318/*
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
322 *
323 * Called with *no* scsi locks held.
324 */
325static void scsi_single_lun_run(struct scsi_device *current_sdev)
326{
327	struct Scsi_Host *shost = current_sdev->host;
328	struct scsi_device *sdev, *tmp;
329	struct scsi_target *starget = scsi_target(current_sdev);
330	unsigned long flags;
331
332	spin_lock_irqsave(shost->host_lock, flags);
333	starget->starget_sdev_user = NULL;
334	spin_unlock_irqrestore(shost->host_lock, flags);
335
336	/*
337	 * Call blk_run_queue for all LUNs on the target, starting with
338	 * current_sdev. We race with others (to set starget_sdev_user),
339	 * but in most cases, we will be first. Ideally, each LU on the
340	 * target would get some limited time or requests on the target.
341	 */
342	blk_run_queue(current_sdev->request_queue);
343
344	spin_lock_irqsave(shost->host_lock, flags);
345	if (starget->starget_sdev_user)
346		goto out;
347	list_for_each_entry_safe(sdev, tmp, &starget->devices,
348			same_target_siblings) {
349		if (sdev == current_sdev)
350			continue;
351		if (scsi_device_get(sdev))
352			continue;
353
354		spin_unlock_irqrestore(shost->host_lock, flags);
355		blk_run_queue(sdev->request_queue);
356		spin_lock_irqsave(shost->host_lock, flags);
357
358		scsi_device_put(sdev);
359	}
360 out:
361	spin_unlock_irqrestore(shost->host_lock, flags);
362}
363
364static inline int scsi_device_is_busy(struct scsi_device *sdev)
365{
366	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367		return 1;
368
369	return 0;
370}
371
372static inline int scsi_target_is_busy(struct scsi_target *starget)
373{
374	return ((starget->can_queue > 0 &&
375		 starget->target_busy >= starget->can_queue) ||
376		 starget->target_blocked);
377}
378
379static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380{
381	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382	    shost->host_blocked || shost->host_self_blocked)
383		return 1;
384
385	return 0;
386}
387
388/*
389 * Function:	scsi_run_queue()
390 *
391 * Purpose:	Select a proper request queue to serve next
392 *
393 * Arguments:	q	- last request's queue
394 *
395 * Returns:     Nothing
396 *
397 * Notes:	The previous command was completely finished, start
398 *		a new one if possible.
399 */
400static void scsi_run_queue(struct request_queue *q)
401{
402	struct scsi_device *sdev = q->queuedata;
403	struct Scsi_Host *shost = sdev->host;
404	LIST_HEAD(starved_list);
405	unsigned long flags;
406
407	if (scsi_target(sdev)->single_lun)
408		scsi_single_lun_run(sdev);
409
410	spin_lock_irqsave(shost->host_lock, flags);
411	list_splice_init(&shost->starved_list, &starved_list);
412
413	while (!list_empty(&starved_list)) {
414		int flagset;
415
416		/*
417		 * As long as shost is accepting commands and we have
418		 * starved queues, call blk_run_queue. scsi_request_fn
419		 * drops the queue_lock and can add us back to the
420		 * starved_list.
421		 *
422		 * host_lock protects the starved_list and starved_entry.
423		 * scsi_request_fn must get the host_lock before checking
424		 * or modifying starved_list or starved_entry.
425		 */
426		if (scsi_host_is_busy(shost))
427			break;
428
429		sdev = list_entry(starved_list.next,
430				  struct scsi_device, starved_entry);
431		list_del_init(&sdev->starved_entry);
432		if (scsi_target_is_busy(scsi_target(sdev))) {
433			list_move_tail(&sdev->starved_entry,
434				       &shost->starved_list);
435			continue;
436		}
437
438		spin_unlock(shost->host_lock);
439
440		spin_lock(sdev->request_queue->queue_lock);
441		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442				!test_bit(QUEUE_FLAG_REENTER,
443					&sdev->request_queue->queue_flags);
444		if (flagset)
445			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446		__blk_run_queue(sdev->request_queue);
447		if (flagset)
448			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449		spin_unlock(sdev->request_queue->queue_lock);
450
451		spin_lock(shost->host_lock);
452	}
453	/* put any unprocessed entries back */
454	list_splice(&starved_list, &shost->starved_list);
455	spin_unlock_irqrestore(shost->host_lock, flags);
456
457	blk_run_queue(q);
458}
459
460/*
461 * Function:	scsi_requeue_command()
462 *
463 * Purpose:	Handle post-processing of completed commands.
464 *
465 * Arguments:	q	- queue to operate on
466 *		cmd	- command that may need to be requeued.
467 *
468 * Returns:	Nothing
469 *
470 * Notes:	After command completion, there may be blocks left
471 *		over which weren't finished by the previous command
472 *		this can be for a number of reasons - the main one is
473 *		I/O errors in the middle of the request, in which case
474 *		we need to request the blocks that come after the bad
475 *		sector.
476 * Notes:	Upon return, cmd is a stale pointer.
477 */
478static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479{
480	struct request *req = cmd->request;
481	unsigned long flags;
482
483	spin_lock_irqsave(q->queue_lock, flags);
484	scsi_unprep_request(req);
485	blk_requeue_request(q, req);
486	spin_unlock_irqrestore(q->queue_lock, flags);
487
488	scsi_run_queue(q);
489}
490
491void scsi_next_command(struct scsi_cmnd *cmd)
492{
493	struct scsi_device *sdev = cmd->device;
494	struct request_queue *q = sdev->request_queue;
495
496	/* need to hold a reference on the device before we let go of the cmd */
497	get_device(&sdev->sdev_gendev);
498
499	scsi_put_command(cmd);
500	scsi_run_queue(q);
501
502	/* ok to remove device now */
503	put_device(&sdev->sdev_gendev);
504}
505
506void scsi_run_host_queues(struct Scsi_Host *shost)
507{
508	struct scsi_device *sdev;
509
510	shost_for_each_device(sdev, shost)
511		scsi_run_queue(sdev->request_queue);
512}
513
514static void __scsi_release_buffers(struct scsi_cmnd *, int);
515
516/*
517 * Function:    scsi_end_request()
518 *
519 * Purpose:     Post-processing of completed commands (usually invoked at end
520 *		of upper level post-processing and scsi_io_completion).
521 *
522 * Arguments:   cmd	 - command that is complete.
523 *              error    - 0 if I/O indicates success, < 0 for I/O error.
524 *              bytes    - number of bytes of completed I/O
525 *		requeue  - indicates whether we should requeue leftovers.
526 *
527 * Lock status: Assumed that lock is not held upon entry.
528 *
529 * Returns:     cmd if requeue required, NULL otherwise.
530 *
531 * Notes:       This is called for block device requests in order to
532 *              mark some number of sectors as complete.
533 *
534 *		We are guaranteeing that the request queue will be goosed
535 *		at some point during this call.
536 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
537 */
538static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539					  int bytes, int requeue)
540{
541	struct request_queue *q = cmd->device->request_queue;
542	struct request *req = cmd->request;
543
544	/*
545	 * If there are blocks left over at the end, set up the command
546	 * to queue the remainder of them.
547	 */
548	if (blk_end_request(req, error, bytes)) {
549		int leftover = blk_rq_sectors(req) << 9;
550
551		if (blk_pc_request(req))
552			leftover = req->resid_len;
553
554		/* kill remainder if no retrys */
555		if (error && scsi_noretry_cmd(cmd))
556			blk_end_request(req, error, leftover);
557		else {
558			if (requeue) {
559				/*
560				 * Bleah.  Leftovers again.  Stick the
561				 * leftovers in the front of the
562				 * queue, and goose the queue again.
563				 */
564				scsi_release_buffers(cmd);
565				scsi_requeue_command(q, cmd);
566				cmd = NULL;
567			}
568			return cmd;
569		}
570	}
571
572	/*
573	 * This will goose the queue request function at the end, so we don't
574	 * need to worry about launching another command.
575	 */
576	__scsi_release_buffers(cmd, 0);
577	scsi_next_command(cmd);
578	return NULL;
579}
580
581static inline unsigned int scsi_sgtable_index(unsigned short nents)
582{
583	unsigned int index;
584
585	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
586
587	if (nents <= 8)
588		index = 0;
589	else
590		index = get_count_order(nents) - 3;
591
592	return index;
593}
594
595static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
596{
597	struct scsi_host_sg_pool *sgp;
598
599	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
600	mempool_free(sgl, sgp->pool);
601}
602
603static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
604{
605	struct scsi_host_sg_pool *sgp;
606
607	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
608	return mempool_alloc(sgp->pool, gfp_mask);
609}
610
611static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
612			      gfp_t gfp_mask)
613{
614	int ret;
615
616	BUG_ON(!nents);
617
618	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619			       gfp_mask, scsi_sg_alloc);
620	if (unlikely(ret))
621		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
622				scsi_sg_free);
623
624	return ret;
625}
626
627static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
628{
629	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
630}
631
632static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
633{
634
635	if (cmd->sdb.table.nents)
636		scsi_free_sgtable(&cmd->sdb);
637
638	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
639
640	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
641		struct scsi_data_buffer *bidi_sdb =
642			cmd->request->next_rq->special;
643		scsi_free_sgtable(bidi_sdb);
644		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
645		cmd->request->next_rq->special = NULL;
646	}
647
648	if (scsi_prot_sg_count(cmd))
649		scsi_free_sgtable(cmd->prot_sdb);
650}
651
652/*
653 * Function:    scsi_release_buffers()
654 *
655 * Purpose:     Completion processing for block device I/O requests.
656 *
657 * Arguments:   cmd	- command that we are bailing.
658 *
659 * Lock status: Assumed that no lock is held upon entry.
660 *
661 * Returns:     Nothing
662 *
663 * Notes:       In the event that an upper level driver rejects a
664 *		command, we must release resources allocated during
665 *		the __init_io() function.  Primarily this would involve
666 *		the scatter-gather table, and potentially any bounce
667 *		buffers.
668 */
669void scsi_release_buffers(struct scsi_cmnd *cmd)
670{
671	__scsi_release_buffers(cmd, 1);
672}
673EXPORT_SYMBOL(scsi_release_buffers);
674
675/*
676 * Bidi commands Must be complete as a whole, both sides at once.  If
677 * part of the bytes were written and lld returned scsi_in()->resid
678 * and/or scsi_out()->resid this information will be left in
679 * req->resid_len and req->next_rq->resid_len. The upper-layer driver
680 * can decide what to do with this information.
681 */
682static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
683{
684	struct request *req = cmd->request;
685
686	req->resid_len = scsi_out(cmd)->resid;
687	req->next_rq->resid_len = scsi_in(cmd)->resid;
688
689	/* The req and req->next_rq have not been completed */
690	BUG_ON(blk_end_bidi_request(req, 0, blk_rq_bytes(req),
691				    blk_rq_bytes(req->next_rq)));
692
693	scsi_release_buffers(cmd);
694
695	/*
696	 * This will goose the queue request function at the end, so we don't
697	 * need to worry about launching another command.
698	 */
699	scsi_next_command(cmd);
700}
701
702/*
703 * Function:    scsi_io_completion()
704 *
705 * Purpose:     Completion processing for block device I/O requests.
706 *
707 * Arguments:   cmd   - command that is finished.
708 *
709 * Lock status: Assumed that no lock is held upon entry.
710 *
711 * Returns:     Nothing
712 *
713 * Notes:       This function is matched in terms of capabilities to
714 *              the function that created the scatter-gather list.
715 *              In other words, if there are no bounce buffers
716 *              (the normal case for most drivers), we don't need
717 *              the logic to deal with cleaning up afterwards.
718 *
719 *		We must call scsi_end_request().  This will finish off
720 *		the specified number of sectors.  If we are done, the
721 *		command block will be released and the queue function
722 *		will be goosed.  If we are not done then we have to
723 *		figure out what to do next:
724 *
725 *		a) We can call scsi_requeue_command().  The request
726 *		   will be unprepared and put back on the queue.  Then
727 *		   a new command will be created for it.  This should
728 *		   be used if we made forward progress, or if we want
729 *		   to switch from READ(10) to READ(6) for example.
730 *
731 *		b) We can call scsi_queue_insert().  The request will
732 *		   be put back on the queue and retried using the same
733 *		   command as before, possibly after a delay.
734 *
735 *		c) We can call blk_end_request() with -EIO to fail
736 *		   the remainder of the request.
737 */
738void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
739{
740	int result = cmd->result;
741	int this_count;
742	struct request_queue *q = cmd->device->request_queue;
743	struct request *req = cmd->request;
744	int error = 0;
745	struct scsi_sense_hdr sshdr;
746	int sense_valid = 0;
747	int sense_deferred = 0;
748	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
749	      ACTION_DELAYED_RETRY} action;
750	char *description = NULL;
751
752	if (result) {
753		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
754		if (sense_valid)
755			sense_deferred = scsi_sense_is_deferred(&sshdr);
756	}
757
758	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
759		req->errors = result;
760		if (result) {
761			if (sense_valid && req->sense) {
762				/*
763				 * SG_IO wants current and deferred errors
764				 */
765				int len = 8 + cmd->sense_buffer[7];
766
767				if (len > SCSI_SENSE_BUFFERSIZE)
768					len = SCSI_SENSE_BUFFERSIZE;
769				memcpy(req->sense, cmd->sense_buffer,  len);
770				req->sense_len = len;
771			}
772			if (!sense_deferred)
773				error = -EIO;
774		}
775		if (scsi_bidi_cmnd(cmd)) {
776			/* will also release_buffers */
777			scsi_end_bidi_request(cmd);
778			return;
779		}
780		req->resid_len = scsi_get_resid(cmd);
781	}
782
783	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
784
785	/*
786	 * Next deal with any sectors which we were able to correctly
787	 * handle.
788	 */
789	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
790				      "%d bytes done.\n",
791				      blk_rq_sectors(req), good_bytes));
792
793	/*
794	 * Recovered errors need reporting, but they're always treated
795	 * as success, so fiddle the result code here.  For BLOCK_PC
796	 * we already took a copy of the original into rq->errors which
797	 * is what gets returned to the user
798	 */
799	if (sense_valid && sshdr.sense_key == RECOVERED_ERROR) {
800		if (!(req->cmd_flags & REQ_QUIET))
801			scsi_print_sense("", cmd);
802		result = 0;
803		/* BLOCK_PC may have set error */
804		error = 0;
805	}
806
807	/*
808	 * A number of bytes were successfully read.  If there
809	 * are leftovers and there is some kind of error
810	 * (result != 0), retry the rest.
811	 */
812	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
813		return;
814	this_count = blk_rq_bytes(req);
815
816	error = -EIO;
817
818	if (host_byte(result) == DID_RESET) {
819		/* Third party bus reset or reset for error recovery
820		 * reasons.  Just retry the command and see what
821		 * happens.
822		 */
823		action = ACTION_RETRY;
824	} else if (sense_valid && !sense_deferred) {
825		switch (sshdr.sense_key) {
826		case UNIT_ATTENTION:
827			if (cmd->device->removable) {
828				/* Detected disc change.  Set a bit
829				 * and quietly refuse further access.
830				 */
831				cmd->device->changed = 1;
832				description = "Media Changed";
833				action = ACTION_FAIL;
834			} else {
835				/* Must have been a power glitch, or a
836				 * bus reset.  Could not have been a
837				 * media change, so we just retry the
838				 * command and see what happens.
839				 */
840				action = ACTION_RETRY;
841			}
842			break;
843		case ILLEGAL_REQUEST:
844			/* If we had an ILLEGAL REQUEST returned, then
845			 * we may have performed an unsupported
846			 * command.  The only thing this should be
847			 * would be a ten byte read where only a six
848			 * byte read was supported.  Also, on a system
849			 * where READ CAPACITY failed, we may have
850			 * read past the end of the disk.
851			 */
852			if ((cmd->device->use_10_for_rw &&
853			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
854			    (cmd->cmnd[0] == READ_10 ||
855			     cmd->cmnd[0] == WRITE_10)) {
856				/* This will issue a new 6-byte command. */
857				cmd->device->use_10_for_rw = 0;
858				action = ACTION_REPREP;
859			} else if (sshdr.asc == 0x10) /* DIX */ {
860				description = "Host Data Integrity Failure";
861				action = ACTION_FAIL;
862				error = -EILSEQ;
863			} else
864				action = ACTION_FAIL;
865			break;
866		case ABORTED_COMMAND:
867			action = ACTION_FAIL;
868			if (sshdr.asc == 0x10) { /* DIF */
869				description = "Target Data Integrity Failure";
870				error = -EILSEQ;
871			}
872			break;
873		case NOT_READY:
874			/* If the device is in the process of becoming
875			 * ready, or has a temporary blockage, retry.
876			 */
877			if (sshdr.asc == 0x04) {
878				switch (sshdr.ascq) {
879				case 0x01: /* becoming ready */
880				case 0x04: /* format in progress */
881				case 0x05: /* rebuild in progress */
882				case 0x06: /* recalculation in progress */
883				case 0x07: /* operation in progress */
884				case 0x08: /* Long write in progress */
885				case 0x09: /* self test in progress */
886					action = ACTION_DELAYED_RETRY;
887					break;
888				default:
889					description = "Device not ready";
890					action = ACTION_FAIL;
891					break;
892				}
893			} else {
894				description = "Device not ready";
895				action = ACTION_FAIL;
896			}
897			break;
898		case VOLUME_OVERFLOW:
899			/* See SSC3rXX or current. */
900			action = ACTION_FAIL;
901			break;
902		default:
903			description = "Unhandled sense code";
904			action = ACTION_FAIL;
905			break;
906		}
907	} else {
908		description = "Unhandled error code";
909		action = ACTION_FAIL;
910	}
911
912	switch (action) {
913	case ACTION_FAIL:
914		/* Give up and fail the remainder of the request */
915		scsi_release_buffers(cmd);
916		if (!(req->cmd_flags & REQ_QUIET)) {
917			if (description)
918				scmd_printk(KERN_INFO, cmd, "%s\n",
919					    description);
920			scsi_print_result(cmd);
921			if (driver_byte(result) & DRIVER_SENSE)
922				scsi_print_sense("", cmd);
923		}
924		blk_end_request_all(req, -EIO);
925		scsi_next_command(cmd);
926		break;
927	case ACTION_REPREP:
928		/* Unprep the request and put it back at the head of the queue.
929		 * A new command will be prepared and issued.
930		 */
931		scsi_release_buffers(cmd);
932		scsi_requeue_command(q, cmd);
933		break;
934	case ACTION_RETRY:
935		/* Retry the same command immediately */
936		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
937		break;
938	case ACTION_DELAYED_RETRY:
939		/* Retry the same command after a delay */
940		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
941		break;
942	}
943}
944
945static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
946			     gfp_t gfp_mask)
947{
948	int count;
949
950	/*
951	 * If sg table allocation fails, requeue request later.
952	 */
953	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
954					gfp_mask))) {
955		return BLKPREP_DEFER;
956	}
957
958	req->buffer = NULL;
959
960	/*
961	 * Next, walk the list, and fill in the addresses and sizes of
962	 * each segment.
963	 */
964	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
965	BUG_ON(count > sdb->table.nents);
966	sdb->table.nents = count;
967	if (blk_pc_request(req))
968		sdb->length = blk_rq_bytes(req);
969	else
970		sdb->length = blk_rq_sectors(req) << 9;
971	return BLKPREP_OK;
972}
973
974/*
975 * Function:    scsi_init_io()
976 *
977 * Purpose:     SCSI I/O initialize function.
978 *
979 * Arguments:   cmd   - Command descriptor we wish to initialize
980 *
981 * Returns:     0 on success
982 *		BLKPREP_DEFER if the failure is retryable
983 *		BLKPREP_KILL if the failure is fatal
984 */
985int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
986{
987	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
988	if (error)
989		goto err_exit;
990
991	if (blk_bidi_rq(cmd->request)) {
992		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
993			scsi_sdb_cache, GFP_ATOMIC);
994		if (!bidi_sdb) {
995			error = BLKPREP_DEFER;
996			goto err_exit;
997		}
998
999		cmd->request->next_rq->special = bidi_sdb;
1000		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1001								    GFP_ATOMIC);
1002		if (error)
1003			goto err_exit;
1004	}
1005
1006	if (blk_integrity_rq(cmd->request)) {
1007		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1008		int ivecs, count;
1009
1010		BUG_ON(prot_sdb == NULL);
1011		ivecs = blk_rq_count_integrity_sg(cmd->request);
1012
1013		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1014			error = BLKPREP_DEFER;
1015			goto err_exit;
1016		}
1017
1018		count = blk_rq_map_integrity_sg(cmd->request,
1019						prot_sdb->table.sgl);
1020		BUG_ON(unlikely(count > ivecs));
1021
1022		cmd->prot_sdb = prot_sdb;
1023		cmd->prot_sdb->table.nents = count;
1024	}
1025
1026	return BLKPREP_OK ;
1027
1028err_exit:
1029	scsi_release_buffers(cmd);
1030	if (error == BLKPREP_KILL)
1031		scsi_put_command(cmd);
1032	else /* BLKPREP_DEFER */
1033		scsi_unprep_request(cmd->request);
1034
1035	return error;
1036}
1037EXPORT_SYMBOL(scsi_init_io);
1038
1039static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1040		struct request *req)
1041{
1042	struct scsi_cmnd *cmd;
1043
1044	if (!req->special) {
1045		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1046		if (unlikely(!cmd))
1047			return NULL;
1048		req->special = cmd;
1049	} else {
1050		cmd = req->special;
1051	}
1052
1053	/* pull a tag out of the request if we have one */
1054	cmd->tag = req->tag;
1055	cmd->request = req;
1056
1057	cmd->cmnd = req->cmd;
1058
1059	return cmd;
1060}
1061
1062int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1063{
1064	struct scsi_cmnd *cmd;
1065	int ret = scsi_prep_state_check(sdev, req);
1066
1067	if (ret != BLKPREP_OK)
1068		return ret;
1069
1070	cmd = scsi_get_cmd_from_req(sdev, req);
1071	if (unlikely(!cmd))
1072		return BLKPREP_DEFER;
1073
1074	/*
1075	 * BLOCK_PC requests may transfer data, in which case they must
1076	 * a bio attached to them.  Or they might contain a SCSI command
1077	 * that does not transfer data, in which case they may optionally
1078	 * submit a request without an attached bio.
1079	 */
1080	if (req->bio) {
1081		int ret;
1082
1083		BUG_ON(!req->nr_phys_segments);
1084
1085		ret = scsi_init_io(cmd, GFP_ATOMIC);
1086		if (unlikely(ret))
1087			return ret;
1088	} else {
1089		BUG_ON(blk_rq_bytes(req));
1090
1091		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1092		req->buffer = NULL;
1093	}
1094
1095	cmd->cmd_len = req->cmd_len;
1096	if (!blk_rq_bytes(req))
1097		cmd->sc_data_direction = DMA_NONE;
1098	else if (rq_data_dir(req) == WRITE)
1099		cmd->sc_data_direction = DMA_TO_DEVICE;
1100	else
1101		cmd->sc_data_direction = DMA_FROM_DEVICE;
1102
1103	cmd->transfersize = blk_rq_bytes(req);
1104	cmd->allowed = req->retries;
1105	return BLKPREP_OK;
1106}
1107EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1108
1109/*
1110 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1111 * from filesystems that still need to be translated to SCSI CDBs from
1112 * the ULD.
1113 */
1114int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1115{
1116	struct scsi_cmnd *cmd;
1117	int ret = scsi_prep_state_check(sdev, req);
1118
1119	if (ret != BLKPREP_OK)
1120		return ret;
1121
1122	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1123			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1124		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1125		if (ret != BLKPREP_OK)
1126			return ret;
1127	}
1128
1129	/*
1130	 * Filesystem requests must transfer data.
1131	 */
1132	BUG_ON(!req->nr_phys_segments);
1133
1134	cmd = scsi_get_cmd_from_req(sdev, req);
1135	if (unlikely(!cmd))
1136		return BLKPREP_DEFER;
1137
1138	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1139	return scsi_init_io(cmd, GFP_ATOMIC);
1140}
1141EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1142
1143int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1144{
1145	int ret = BLKPREP_OK;
1146
1147	/*
1148	 * If the device is not in running state we will reject some
1149	 * or all commands.
1150	 */
1151	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1152		switch (sdev->sdev_state) {
1153		case SDEV_OFFLINE:
1154			/*
1155			 * If the device is offline we refuse to process any
1156			 * commands.  The device must be brought online
1157			 * before trying any recovery commands.
1158			 */
1159			sdev_printk(KERN_ERR, sdev,
1160				    "rejecting I/O to offline device\n");
1161			ret = BLKPREP_KILL;
1162			break;
1163		case SDEV_DEL:
1164			/*
1165			 * If the device is fully deleted, we refuse to
1166			 * process any commands as well.
1167			 */
1168			sdev_printk(KERN_ERR, sdev,
1169				    "rejecting I/O to dead device\n");
1170			ret = BLKPREP_KILL;
1171			break;
1172		case SDEV_QUIESCE:
1173		case SDEV_BLOCK:
1174		case SDEV_CREATED_BLOCK:
1175			/*
1176			 * If the devices is blocked we defer normal commands.
1177			 */
1178			if (!(req->cmd_flags & REQ_PREEMPT))
1179				ret = BLKPREP_DEFER;
1180			break;
1181		default:
1182			/*
1183			 * For any other not fully online state we only allow
1184			 * special commands.  In particular any user initiated
1185			 * command is not allowed.
1186			 */
1187			if (!(req->cmd_flags & REQ_PREEMPT))
1188				ret = BLKPREP_KILL;
1189			break;
1190		}
1191	}
1192	return ret;
1193}
1194EXPORT_SYMBOL(scsi_prep_state_check);
1195
1196int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1197{
1198	struct scsi_device *sdev = q->queuedata;
1199
1200	switch (ret) {
1201	case BLKPREP_KILL:
1202		req->errors = DID_NO_CONNECT << 16;
1203		/* release the command and kill it */
1204		if (req->special) {
1205			struct scsi_cmnd *cmd = req->special;
1206			scsi_release_buffers(cmd);
1207			scsi_put_command(cmd);
1208			req->special = NULL;
1209		}
1210		break;
1211	case BLKPREP_DEFER:
1212		/*
1213		 * If we defer, the elv_next_request() returns NULL, but the
1214		 * queue must be restarted, so we plug here if no returning
1215		 * command will automatically do that.
1216		 */
1217		if (sdev->device_busy == 0)
1218			blk_plug_device(q);
1219		break;
1220	default:
1221		req->cmd_flags |= REQ_DONTPREP;
1222	}
1223
1224	return ret;
1225}
1226EXPORT_SYMBOL(scsi_prep_return);
1227
1228int scsi_prep_fn(struct request_queue *q, struct request *req)
1229{
1230	struct scsi_device *sdev = q->queuedata;
1231	int ret = BLKPREP_KILL;
1232
1233	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1234		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1235	return scsi_prep_return(q, req, ret);
1236}
1237
1238/*
1239 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1240 * return 0.
1241 *
1242 * Called with the queue_lock held.
1243 */
1244static inline int scsi_dev_queue_ready(struct request_queue *q,
1245				  struct scsi_device *sdev)
1246{
1247	if (sdev->device_busy == 0 && sdev->device_blocked) {
1248		/*
1249		 * unblock after device_blocked iterates to zero
1250		 */
1251		if (--sdev->device_blocked == 0) {
1252			SCSI_LOG_MLQUEUE(3,
1253				   sdev_printk(KERN_INFO, sdev,
1254				   "unblocking device at zero depth\n"));
1255		} else {
1256			blk_plug_device(q);
1257			return 0;
1258		}
1259	}
1260	if (scsi_device_is_busy(sdev))
1261		return 0;
1262
1263	return 1;
1264}
1265
1266
1267/*
1268 * scsi_target_queue_ready: checks if there we can send commands to target
1269 * @sdev: scsi device on starget to check.
1270 *
1271 * Called with the host lock held.
1272 */
1273static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1274					   struct scsi_device *sdev)
1275{
1276	struct scsi_target *starget = scsi_target(sdev);
1277
1278	if (starget->single_lun) {
1279		if (starget->starget_sdev_user &&
1280		    starget->starget_sdev_user != sdev)
1281			return 0;
1282		starget->starget_sdev_user = sdev;
1283	}
1284
1285	if (starget->target_busy == 0 && starget->target_blocked) {
1286		/*
1287		 * unblock after target_blocked iterates to zero
1288		 */
1289		if (--starget->target_blocked == 0) {
1290			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1291					 "unblocking target at zero depth\n"));
1292		} else {
1293			blk_plug_device(sdev->request_queue);
1294			return 0;
1295		}
1296	}
1297
1298	if (scsi_target_is_busy(starget)) {
1299		if (list_empty(&sdev->starved_entry)) {
1300			list_add_tail(&sdev->starved_entry,
1301				      &shost->starved_list);
1302			return 0;
1303		}
1304	}
1305
1306	/* We're OK to process the command, so we can't be starved */
1307	if (!list_empty(&sdev->starved_entry))
1308		list_del_init(&sdev->starved_entry);
1309	return 1;
1310}
1311
1312/*
1313 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1314 * return 0. We must end up running the queue again whenever 0 is
1315 * returned, else IO can hang.
1316 *
1317 * Called with host_lock held.
1318 */
1319static inline int scsi_host_queue_ready(struct request_queue *q,
1320				   struct Scsi_Host *shost,
1321				   struct scsi_device *sdev)
1322{
1323	if (scsi_host_in_recovery(shost))
1324		return 0;
1325	if (shost->host_busy == 0 && shost->host_blocked) {
1326		/*
1327		 * unblock after host_blocked iterates to zero
1328		 */
1329		if (--shost->host_blocked == 0) {
1330			SCSI_LOG_MLQUEUE(3,
1331				printk("scsi%d unblocking host at zero depth\n",
1332					shost->host_no));
1333		} else {
1334			return 0;
1335		}
1336	}
1337	if (scsi_host_is_busy(shost)) {
1338		if (list_empty(&sdev->starved_entry))
1339			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1340		return 0;
1341	}
1342
1343	/* We're OK to process the command, so we can't be starved */
1344	if (!list_empty(&sdev->starved_entry))
1345		list_del_init(&sdev->starved_entry);
1346
1347	return 1;
1348}
1349
1350/*
1351 * Busy state exporting function for request stacking drivers.
1352 *
1353 * For efficiency, no lock is taken to check the busy state of
1354 * shost/starget/sdev, since the returned value is not guaranteed and
1355 * may be changed after request stacking drivers call the function,
1356 * regardless of taking lock or not.
1357 *
1358 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1359 * (e.g. !sdev), scsi needs to return 'not busy'.
1360 * Otherwise, request stacking drivers may hold requests forever.
1361 */
1362static int scsi_lld_busy(struct request_queue *q)
1363{
1364	struct scsi_device *sdev = q->queuedata;
1365	struct Scsi_Host *shost;
1366	struct scsi_target *starget;
1367
1368	if (!sdev)
1369		return 0;
1370
1371	shost = sdev->host;
1372	starget = scsi_target(sdev);
1373
1374	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1375	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1376		return 1;
1377
1378	return 0;
1379}
1380
1381/*
1382 * Kill a request for a dead device
1383 */
1384static void scsi_kill_request(struct request *req, struct request_queue *q)
1385{
1386	struct scsi_cmnd *cmd = req->special;
1387	struct scsi_device *sdev = cmd->device;
1388	struct scsi_target *starget = scsi_target(sdev);
1389	struct Scsi_Host *shost = sdev->host;
1390
1391	blkdev_dequeue_request(req);
1392
1393	if (unlikely(cmd == NULL)) {
1394		printk(KERN_CRIT "impossible request in %s.\n",
1395				 __func__);
1396		BUG();
1397	}
1398
1399	scsi_init_cmd_errh(cmd);
1400	cmd->result = DID_NO_CONNECT << 16;
1401	atomic_inc(&cmd->device->iorequest_cnt);
1402
1403	/*
1404	 * SCSI request completion path will do scsi_device_unbusy(),
1405	 * bump busy counts.  To bump the counters, we need to dance
1406	 * with the locks as normal issue path does.
1407	 */
1408	sdev->device_busy++;
1409	spin_unlock(sdev->request_queue->queue_lock);
1410	spin_lock(shost->host_lock);
1411	shost->host_busy++;
1412	starget->target_busy++;
1413	spin_unlock(shost->host_lock);
1414	spin_lock(sdev->request_queue->queue_lock);
1415
1416	blk_complete_request(req);
1417}
1418
1419static void scsi_softirq_done(struct request *rq)
1420{
1421	struct scsi_cmnd *cmd = rq->special;
1422	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1423	int disposition;
1424
1425	INIT_LIST_HEAD(&cmd->eh_entry);
1426
1427	/*
1428	 * Set the serial numbers back to zero
1429	 */
1430	cmd->serial_number = 0;
1431
1432	atomic_inc(&cmd->device->iodone_cnt);
1433	if (cmd->result)
1434		atomic_inc(&cmd->device->ioerr_cnt);
1435
1436	disposition = scsi_decide_disposition(cmd);
1437	if (disposition != SUCCESS &&
1438	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1439		sdev_printk(KERN_ERR, cmd->device,
1440			    "timing out command, waited %lus\n",
1441			    wait_for/HZ);
1442		disposition = SUCCESS;
1443	}
1444
1445	scsi_log_completion(cmd, disposition);
1446
1447	switch (disposition) {
1448		case SUCCESS:
1449			scsi_finish_command(cmd);
1450			break;
1451		case NEEDS_RETRY:
1452			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1453			break;
1454		case ADD_TO_MLQUEUE:
1455			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1456			break;
1457		default:
1458			if (!scsi_eh_scmd_add(cmd, 0))
1459				scsi_finish_command(cmd);
1460	}
1461}
1462
1463/*
1464 * Function:    scsi_request_fn()
1465 *
1466 * Purpose:     Main strategy routine for SCSI.
1467 *
1468 * Arguments:   q       - Pointer to actual queue.
1469 *
1470 * Returns:     Nothing
1471 *
1472 * Lock status: IO request lock assumed to be held when called.
1473 */
1474static void scsi_request_fn(struct request_queue *q)
1475{
1476	struct scsi_device *sdev = q->queuedata;
1477	struct Scsi_Host *shost;
1478	struct scsi_cmnd *cmd;
1479	struct request *req;
1480
1481	if (!sdev) {
1482		printk("scsi: killing requests for dead queue\n");
1483		while ((req = elv_next_request(q)) != NULL)
1484			scsi_kill_request(req, q);
1485		return;
1486	}
1487
1488	if(!get_device(&sdev->sdev_gendev))
1489		/* We must be tearing the block queue down already */
1490		return;
1491
1492	/*
1493	 * To start with, we keep looping until the queue is empty, or until
1494	 * the host is no longer able to accept any more requests.
1495	 */
1496	shost = sdev->host;
1497	while (!blk_queue_plugged(q)) {
1498		int rtn;
1499		/*
1500		 * get next queueable request.  We do this early to make sure
1501		 * that the request is fully prepared even if we cannot
1502		 * accept it.
1503		 */
1504		req = elv_next_request(q);
1505		if (!req || !scsi_dev_queue_ready(q, sdev))
1506			break;
1507
1508		if (unlikely(!scsi_device_online(sdev))) {
1509			sdev_printk(KERN_ERR, sdev,
1510				    "rejecting I/O to offline device\n");
1511			scsi_kill_request(req, q);
1512			continue;
1513		}
1514
1515
1516		/*
1517		 * Remove the request from the request list.
1518		 */
1519		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1520			blkdev_dequeue_request(req);
1521		sdev->device_busy++;
1522
1523		spin_unlock(q->queue_lock);
1524		cmd = req->special;
1525		if (unlikely(cmd == NULL)) {
1526			printk(KERN_CRIT "impossible request in %s.\n"
1527					 "please mail a stack trace to "
1528					 "linux-scsi@vger.kernel.org\n",
1529					 __func__);
1530			blk_dump_rq_flags(req, "foo");
1531			BUG();
1532		}
1533		spin_lock(shost->host_lock);
1534
1535		/*
1536		 * We hit this when the driver is using a host wide
1537		 * tag map. For device level tag maps the queue_depth check
1538		 * in the device ready fn would prevent us from trying
1539		 * to allocate a tag. Since the map is a shared host resource
1540		 * we add the dev to the starved list so it eventually gets
1541		 * a run when a tag is freed.
1542		 */
1543		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1544			if (list_empty(&sdev->starved_entry))
1545				list_add_tail(&sdev->starved_entry,
1546					      &shost->starved_list);
1547			goto not_ready;
1548		}
1549
1550		if (!scsi_target_queue_ready(shost, sdev))
1551			goto not_ready;
1552
1553		if (!scsi_host_queue_ready(q, shost, sdev))
1554			goto not_ready;
1555
1556		scsi_target(sdev)->target_busy++;
1557		shost->host_busy++;
1558
1559		/*
1560		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1561		 *		take the lock again.
1562		 */
1563		spin_unlock_irq(shost->host_lock);
1564
1565		/*
1566		 * Finally, initialize any error handling parameters, and set up
1567		 * the timers for timeouts.
1568		 */
1569		scsi_init_cmd_errh(cmd);
1570
1571		/*
1572		 * Dispatch the command to the low-level driver.
1573		 */
1574		rtn = scsi_dispatch_cmd(cmd);
1575		spin_lock_irq(q->queue_lock);
1576		if(rtn) {
1577			/* we're refusing the command; because of
1578			 * the way locks get dropped, we need to
1579			 * check here if plugging is required */
1580			if(sdev->device_busy == 0)
1581				blk_plug_device(q);
1582
1583			break;
1584		}
1585	}
1586
1587	goto out;
1588
1589 not_ready:
1590	spin_unlock_irq(shost->host_lock);
1591
1592	/*
1593	 * lock q, handle tag, requeue req, and decrement device_busy. We
1594	 * must return with queue_lock held.
1595	 *
1596	 * Decrementing device_busy without checking it is OK, as all such
1597	 * cases (host limits or settings) should run the queue at some
1598	 * later time.
1599	 */
1600	spin_lock_irq(q->queue_lock);
1601	blk_requeue_request(q, req);
1602	sdev->device_busy--;
1603	if(sdev->device_busy == 0)
1604		blk_plug_device(q);
1605 out:
1606	/* must be careful here...if we trigger the ->remove() function
1607	 * we cannot be holding the q lock */
1608	spin_unlock_irq(q->queue_lock);
1609	put_device(&sdev->sdev_gendev);
1610	spin_lock_irq(q->queue_lock);
1611}
1612
1613u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1614{
1615	struct device *host_dev;
1616	u64 bounce_limit = 0xffffffff;
1617
1618	if (shost->unchecked_isa_dma)
1619		return BLK_BOUNCE_ISA;
1620	/*
1621	 * Platforms with virtual-DMA translation
1622	 * hardware have no practical limit.
1623	 */
1624	if (!PCI_DMA_BUS_IS_PHYS)
1625		return BLK_BOUNCE_ANY;
1626
1627	host_dev = scsi_get_device(shost);
1628	if (host_dev && host_dev->dma_mask)
1629		bounce_limit = *host_dev->dma_mask;
1630
1631	return bounce_limit;
1632}
1633EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1634
1635struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1636					 request_fn_proc *request_fn)
1637{
1638	struct request_queue *q;
1639	struct device *dev = shost->shost_gendev.parent;
1640
1641	q = blk_init_queue(request_fn, NULL);
1642	if (!q)
1643		return NULL;
1644
1645	/*
1646	 * this limit is imposed by hardware restrictions
1647	 */
1648	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1649	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1650
1651	blk_queue_max_sectors(q, shost->max_sectors);
1652	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1653	blk_queue_segment_boundary(q, shost->dma_boundary);
1654	dma_set_seg_boundary(dev, shost->dma_boundary);
1655
1656	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1657
1658	/* New queue, no concurrency on queue_flags */
1659	if (!shost->use_clustering)
1660		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1661
1662	/*
1663	 * set a reasonable default alignment on word boundaries: the
1664	 * host and device may alter it using
1665	 * blk_queue_update_dma_alignment() later.
1666	 */
1667	blk_queue_dma_alignment(q, 0x03);
1668
1669	return q;
1670}
1671EXPORT_SYMBOL(__scsi_alloc_queue);
1672
1673struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1674{
1675	struct request_queue *q;
1676
1677	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1678	if (!q)
1679		return NULL;
1680
1681	blk_queue_prep_rq(q, scsi_prep_fn);
1682	blk_queue_softirq_done(q, scsi_softirq_done);
1683	blk_queue_rq_timed_out(q, scsi_times_out);
1684	blk_queue_lld_busy(q, scsi_lld_busy);
1685	return q;
1686}
1687
1688void scsi_free_queue(struct request_queue *q)
1689{
1690	blk_cleanup_queue(q);
1691}
1692
1693/*
1694 * Function:    scsi_block_requests()
1695 *
1696 * Purpose:     Utility function used by low-level drivers to prevent further
1697 *		commands from being queued to the device.
1698 *
1699 * Arguments:   shost       - Host in question
1700 *
1701 * Returns:     Nothing
1702 *
1703 * Lock status: No locks are assumed held.
1704 *
1705 * Notes:       There is no timer nor any other means by which the requests
1706 *		get unblocked other than the low-level driver calling
1707 *		scsi_unblock_requests().
1708 */
1709void scsi_block_requests(struct Scsi_Host *shost)
1710{
1711	shost->host_self_blocked = 1;
1712}
1713EXPORT_SYMBOL(scsi_block_requests);
1714
1715/*
1716 * Function:    scsi_unblock_requests()
1717 *
1718 * Purpose:     Utility function used by low-level drivers to allow further
1719 *		commands from being queued to the device.
1720 *
1721 * Arguments:   shost       - Host in question
1722 *
1723 * Returns:     Nothing
1724 *
1725 * Lock status: No locks are assumed held.
1726 *
1727 * Notes:       There is no timer nor any other means by which the requests
1728 *		get unblocked other than the low-level driver calling
1729 *		scsi_unblock_requests().
1730 *
1731 *		This is done as an API function so that changes to the
1732 *		internals of the scsi mid-layer won't require wholesale
1733 *		changes to drivers that use this feature.
1734 */
1735void scsi_unblock_requests(struct Scsi_Host *shost)
1736{
1737	shost->host_self_blocked = 0;
1738	scsi_run_host_queues(shost);
1739}
1740EXPORT_SYMBOL(scsi_unblock_requests);
1741
1742int __init scsi_init_queue(void)
1743{
1744	int i;
1745
1746	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1747					   sizeof(struct scsi_data_buffer),
1748					   0, 0, NULL);
1749	if (!scsi_sdb_cache) {
1750		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1751		return -ENOMEM;
1752	}
1753
1754	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1755		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1756		int size = sgp->size * sizeof(struct scatterlist);
1757
1758		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1759				SLAB_HWCACHE_ALIGN, NULL);
1760		if (!sgp->slab) {
1761			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1762					sgp->name);
1763			goto cleanup_sdb;
1764		}
1765
1766		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1767						     sgp->slab);
1768		if (!sgp->pool) {
1769			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1770					sgp->name);
1771			goto cleanup_sdb;
1772		}
1773	}
1774
1775	return 0;
1776
1777cleanup_sdb:
1778	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1779		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1780		if (sgp->pool)
1781			mempool_destroy(sgp->pool);
1782		if (sgp->slab)
1783			kmem_cache_destroy(sgp->slab);
1784	}
1785	kmem_cache_destroy(scsi_sdb_cache);
1786
1787	return -ENOMEM;
1788}
1789
1790void scsi_exit_queue(void)
1791{
1792	int i;
1793
1794	kmem_cache_destroy(scsi_sdb_cache);
1795
1796	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1797		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1798		mempool_destroy(sgp->pool);
1799		kmem_cache_destroy(sgp->slab);
1800	}
1801}
1802
1803/**
1804 *	scsi_mode_select - issue a mode select
1805 *	@sdev:	SCSI device to be queried
1806 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1807 *	@sp:	Save page bit (0 == don't save, 1 == save)
1808 *	@modepage: mode page being requested
1809 *	@buffer: request buffer (may not be smaller than eight bytes)
1810 *	@len:	length of request buffer.
1811 *	@timeout: command timeout
1812 *	@retries: number of retries before failing
1813 *	@data: returns a structure abstracting the mode header data
1814 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1815 *		must be SCSI_SENSE_BUFFERSIZE big.
1816 *
1817 *	Returns zero if successful; negative error number or scsi
1818 *	status on error
1819 *
1820 */
1821int
1822scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1823		 unsigned char *buffer, int len, int timeout, int retries,
1824		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1825{
1826	unsigned char cmd[10];
1827	unsigned char *real_buffer;
1828	int ret;
1829
1830	memset(cmd, 0, sizeof(cmd));
1831	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1832
1833	if (sdev->use_10_for_ms) {
1834		if (len > 65535)
1835			return -EINVAL;
1836		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1837		if (!real_buffer)
1838			return -ENOMEM;
1839		memcpy(real_buffer + 8, buffer, len);
1840		len += 8;
1841		real_buffer[0] = 0;
1842		real_buffer[1] = 0;
1843		real_buffer[2] = data->medium_type;
1844		real_buffer[3] = data->device_specific;
1845		real_buffer[4] = data->longlba ? 0x01 : 0;
1846		real_buffer[5] = 0;
1847		real_buffer[6] = data->block_descriptor_length >> 8;
1848		real_buffer[7] = data->block_descriptor_length;
1849
1850		cmd[0] = MODE_SELECT_10;
1851		cmd[7] = len >> 8;
1852		cmd[8] = len;
1853	} else {
1854		if (len > 255 || data->block_descriptor_length > 255 ||
1855		    data->longlba)
1856			return -EINVAL;
1857
1858		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1859		if (!real_buffer)
1860			return -ENOMEM;
1861		memcpy(real_buffer + 4, buffer, len);
1862		len += 4;
1863		real_buffer[0] = 0;
1864		real_buffer[1] = data->medium_type;
1865		real_buffer[2] = data->device_specific;
1866		real_buffer[3] = data->block_descriptor_length;
1867
1868
1869		cmd[0] = MODE_SELECT;
1870		cmd[4] = len;
1871	}
1872
1873	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1874			       sshdr, timeout, retries, NULL);
1875	kfree(real_buffer);
1876	return ret;
1877}
1878EXPORT_SYMBOL_GPL(scsi_mode_select);
1879
1880/**
1881 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1882 *	@sdev:	SCSI device to be queried
1883 *	@dbd:	set if mode sense will allow block descriptors to be returned
1884 *	@modepage: mode page being requested
1885 *	@buffer: request buffer (may not be smaller than eight bytes)
1886 *	@len:	length of request buffer.
1887 *	@timeout: command timeout
1888 *	@retries: number of retries before failing
1889 *	@data: returns a structure abstracting the mode header data
1890 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1891 *		must be SCSI_SENSE_BUFFERSIZE big.
1892 *
1893 *	Returns zero if unsuccessful, or the header offset (either 4
1894 *	or 8 depending on whether a six or ten byte command was
1895 *	issued) if successful.
1896 */
1897int
1898scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1899		  unsigned char *buffer, int len, int timeout, int retries,
1900		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1901{
1902	unsigned char cmd[12];
1903	int use_10_for_ms;
1904	int header_length;
1905	int result;
1906	struct scsi_sense_hdr my_sshdr;
1907
1908	memset(data, 0, sizeof(*data));
1909	memset(&cmd[0], 0, 12);
1910	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1911	cmd[2] = modepage;
1912
1913	/* caller might not be interested in sense, but we need it */
1914	if (!sshdr)
1915		sshdr = &my_sshdr;
1916
1917 retry:
1918	use_10_for_ms = sdev->use_10_for_ms;
1919
1920	if (use_10_for_ms) {
1921		if (len < 8)
1922			len = 8;
1923
1924		cmd[0] = MODE_SENSE_10;
1925		cmd[8] = len;
1926		header_length = 8;
1927	} else {
1928		if (len < 4)
1929			len = 4;
1930
1931		cmd[0] = MODE_SENSE;
1932		cmd[4] = len;
1933		header_length = 4;
1934	}
1935
1936	memset(buffer, 0, len);
1937
1938	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1939				  sshdr, timeout, retries, NULL);
1940
1941	/* This code looks awful: what it's doing is making sure an
1942	 * ILLEGAL REQUEST sense return identifies the actual command
1943	 * byte as the problem.  MODE_SENSE commands can return
1944	 * ILLEGAL REQUEST if the code page isn't supported */
1945
1946	if (use_10_for_ms && !scsi_status_is_good(result) &&
1947	    (driver_byte(result) & DRIVER_SENSE)) {
1948		if (scsi_sense_valid(sshdr)) {
1949			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1950			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1951				/*
1952				 * Invalid command operation code
1953				 */
1954				sdev->use_10_for_ms = 0;
1955				goto retry;
1956			}
1957		}
1958	}
1959
1960	if(scsi_status_is_good(result)) {
1961		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1962			     (modepage == 6 || modepage == 8))) {
1963			/* Initio breakage? */
1964			header_length = 0;
1965			data->length = 13;
1966			data->medium_type = 0;
1967			data->device_specific = 0;
1968			data->longlba = 0;
1969			data->block_descriptor_length = 0;
1970		} else if(use_10_for_ms) {
1971			data->length = buffer[0]*256 + buffer[1] + 2;
1972			data->medium_type = buffer[2];
1973			data->device_specific = buffer[3];
1974			data->longlba = buffer[4] & 0x01;
1975			data->block_descriptor_length = buffer[6]*256
1976				+ buffer[7];
1977		} else {
1978			data->length = buffer[0] + 1;
1979			data->medium_type = buffer[1];
1980			data->device_specific = buffer[2];
1981			data->block_descriptor_length = buffer[3];
1982		}
1983		data->header_length = header_length;
1984	}
1985
1986	return result;
1987}
1988EXPORT_SYMBOL(scsi_mode_sense);
1989
1990/**
1991 *	scsi_test_unit_ready - test if unit is ready
1992 *	@sdev:	scsi device to change the state of.
1993 *	@timeout: command timeout
1994 *	@retries: number of retries before failing
1995 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1996 *		returning sense. Make sure that this is cleared before passing
1997 *		in.
1998 *
1999 *	Returns zero if unsuccessful or an error if TUR failed.  For
2000 *	removable media, a return of NOT_READY or UNIT_ATTENTION is
2001 *	translated to success, with the ->changed flag updated.
2002 **/
2003int
2004scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2005		     struct scsi_sense_hdr *sshdr_external)
2006{
2007	char cmd[] = {
2008		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2009	};
2010	struct scsi_sense_hdr *sshdr;
2011	int result;
2012
2013	if (!sshdr_external)
2014		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2015	else
2016		sshdr = sshdr_external;
2017
2018	/* try to eat the UNIT_ATTENTION if there are enough retries */
2019	do {
2020		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2021					  timeout, retries, NULL);
2022		if (sdev->removable && scsi_sense_valid(sshdr) &&
2023		    sshdr->sense_key == UNIT_ATTENTION)
2024			sdev->changed = 1;
2025	} while (scsi_sense_valid(sshdr) &&
2026		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2027
2028	if (!sshdr)
2029		/* could not allocate sense buffer, so can't process it */
2030		return result;
2031
2032	if (sdev->removable && scsi_sense_valid(sshdr) &&
2033	    (sshdr->sense_key == UNIT_ATTENTION ||
2034	     sshdr->sense_key == NOT_READY)) {
2035		sdev->changed = 1;
2036		result = 0;
2037	}
2038	if (!sshdr_external)
2039		kfree(sshdr);
2040	return result;
2041}
2042EXPORT_SYMBOL(scsi_test_unit_ready);
2043
2044/**
2045 *	scsi_device_set_state - Take the given device through the device state model.
2046 *	@sdev:	scsi device to change the state of.
2047 *	@state:	state to change to.
2048 *
2049 *	Returns zero if unsuccessful or an error if the requested
2050 *	transition is illegal.
2051 */
2052int
2053scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2054{
2055	enum scsi_device_state oldstate = sdev->sdev_state;
2056
2057	if (state == oldstate)
2058		return 0;
2059
2060	switch (state) {
2061	case SDEV_CREATED:
2062		switch (oldstate) {
2063		case SDEV_CREATED_BLOCK:
2064			break;
2065		default:
2066			goto illegal;
2067		}
2068		break;
2069
2070	case SDEV_RUNNING:
2071		switch (oldstate) {
2072		case SDEV_CREATED:
2073		case SDEV_OFFLINE:
2074		case SDEV_QUIESCE:
2075		case SDEV_BLOCK:
2076			break;
2077		default:
2078			goto illegal;
2079		}
2080		break;
2081
2082	case SDEV_QUIESCE:
2083		switch (oldstate) {
2084		case SDEV_RUNNING:
2085		case SDEV_OFFLINE:
2086			break;
2087		default:
2088			goto illegal;
2089		}
2090		break;
2091
2092	case SDEV_OFFLINE:
2093		switch (oldstate) {
2094		case SDEV_CREATED:
2095		case SDEV_RUNNING:
2096		case SDEV_QUIESCE:
2097		case SDEV_BLOCK:
2098			break;
2099		default:
2100			goto illegal;
2101		}
2102		break;
2103
2104	case SDEV_BLOCK:
2105		switch (oldstate) {
2106		case SDEV_RUNNING:
2107		case SDEV_CREATED_BLOCK:
2108			break;
2109		default:
2110			goto illegal;
2111		}
2112		break;
2113
2114	case SDEV_CREATED_BLOCK:
2115		switch (oldstate) {
2116		case SDEV_CREATED:
2117			break;
2118		default:
2119			goto illegal;
2120		}
2121		break;
2122
2123	case SDEV_CANCEL:
2124		switch (oldstate) {
2125		case SDEV_CREATED:
2126		case SDEV_RUNNING:
2127		case SDEV_QUIESCE:
2128		case SDEV_OFFLINE:
2129		case SDEV_BLOCK:
2130			break;
2131		default:
2132			goto illegal;
2133		}
2134		break;
2135
2136	case SDEV_DEL:
2137		switch (oldstate) {
2138		case SDEV_CREATED:
2139		case SDEV_RUNNING:
2140		case SDEV_OFFLINE:
2141		case SDEV_CANCEL:
2142			break;
2143		default:
2144			goto illegal;
2145		}
2146		break;
2147
2148	}
2149	sdev->sdev_state = state;
2150	return 0;
2151
2152 illegal:
2153	SCSI_LOG_ERROR_RECOVERY(1,
2154				sdev_printk(KERN_ERR, sdev,
2155					    "Illegal state transition %s->%s\n",
2156					    scsi_device_state_name(oldstate),
2157					    scsi_device_state_name(state))
2158				);
2159	return -EINVAL;
2160}
2161EXPORT_SYMBOL(scsi_device_set_state);
2162
2163/**
2164 * 	sdev_evt_emit - emit a single SCSI device uevent
2165 *	@sdev: associated SCSI device
2166 *	@evt: event to emit
2167 *
2168 *	Send a single uevent (scsi_event) to the associated scsi_device.
2169 */
2170static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2171{
2172	int idx = 0;
2173	char *envp[3];
2174
2175	switch (evt->evt_type) {
2176	case SDEV_EVT_MEDIA_CHANGE:
2177		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2178		break;
2179
2180	default:
2181		/* do nothing */
2182		break;
2183	}
2184
2185	envp[idx++] = NULL;
2186
2187	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2188}
2189
2190/**
2191 * 	sdev_evt_thread - send a uevent for each scsi event
2192 *	@work: work struct for scsi_device
2193 *
2194 *	Dispatch queued events to their associated scsi_device kobjects
2195 *	as uevents.
2196 */
2197void scsi_evt_thread(struct work_struct *work)
2198{
2199	struct scsi_device *sdev;
2200	LIST_HEAD(event_list);
2201
2202	sdev = container_of(work, struct scsi_device, event_work);
2203
2204	while (1) {
2205		struct scsi_event *evt;
2206		struct list_head *this, *tmp;
2207		unsigned long flags;
2208
2209		spin_lock_irqsave(&sdev->list_lock, flags);
2210		list_splice_init(&sdev->event_list, &event_list);
2211		spin_unlock_irqrestore(&sdev->list_lock, flags);
2212
2213		if (list_empty(&event_list))
2214			break;
2215
2216		list_for_each_safe(this, tmp, &event_list) {
2217			evt = list_entry(this, struct scsi_event, node);
2218			list_del(&evt->node);
2219			scsi_evt_emit(sdev, evt);
2220			kfree(evt);
2221		}
2222	}
2223}
2224
2225/**
2226 * 	sdev_evt_send - send asserted event to uevent thread
2227 *	@sdev: scsi_device event occurred on
2228 *	@evt: event to send
2229 *
2230 *	Assert scsi device event asynchronously.
2231 */
2232void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2233{
2234	unsigned long flags;
2235
2236#if 0
2237	/* FIXME: currently this check eliminates all media change events
2238	 * for polled devices.  Need to update to discriminate between AN
2239	 * and polled events */
2240	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2241		kfree(evt);
2242		return;
2243	}
2244#endif
2245
2246	spin_lock_irqsave(&sdev->list_lock, flags);
2247	list_add_tail(&evt->node, &sdev->event_list);
2248	schedule_work(&sdev->event_work);
2249	spin_unlock_irqrestore(&sdev->list_lock, flags);
2250}
2251EXPORT_SYMBOL_GPL(sdev_evt_send);
2252
2253/**
2254 * 	sdev_evt_alloc - allocate a new scsi event
2255 *	@evt_type: type of event to allocate
2256 *	@gfpflags: GFP flags for allocation
2257 *
2258 *	Allocates and returns a new scsi_event.
2259 */
2260struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2261				  gfp_t gfpflags)
2262{
2263	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2264	if (!evt)
2265		return NULL;
2266
2267	evt->evt_type = evt_type;
2268	INIT_LIST_HEAD(&evt->node);
2269
2270	/* evt_type-specific initialization, if any */
2271	switch (evt_type) {
2272	case SDEV_EVT_MEDIA_CHANGE:
2273	default:
2274		/* do nothing */
2275		break;
2276	}
2277
2278	return evt;
2279}
2280EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2281
2282/**
2283 * 	sdev_evt_send_simple - send asserted event to uevent thread
2284 *	@sdev: scsi_device event occurred on
2285 *	@evt_type: type of event to send
2286 *	@gfpflags: GFP flags for allocation
2287 *
2288 *	Assert scsi device event asynchronously, given an event type.
2289 */
2290void sdev_evt_send_simple(struct scsi_device *sdev,
2291			  enum scsi_device_event evt_type, gfp_t gfpflags)
2292{
2293	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2294	if (!evt) {
2295		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2296			    evt_type);
2297		return;
2298	}
2299
2300	sdev_evt_send(sdev, evt);
2301}
2302EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2303
2304/**
2305 *	scsi_device_quiesce - Block user issued commands.
2306 *	@sdev:	scsi device to quiesce.
2307 *
2308 *	This works by trying to transition to the SDEV_QUIESCE state
2309 *	(which must be a legal transition).  When the device is in this
2310 *	state, only special requests will be accepted, all others will
2311 *	be deferred.  Since special requests may also be requeued requests,
2312 *	a successful return doesn't guarantee the device will be
2313 *	totally quiescent.
2314 *
2315 *	Must be called with user context, may sleep.
2316 *
2317 *	Returns zero if unsuccessful or an error if not.
2318 */
2319int
2320scsi_device_quiesce(struct scsi_device *sdev)
2321{
2322	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2323	if (err)
2324		return err;
2325
2326	scsi_run_queue(sdev->request_queue);
2327	while (sdev->device_busy) {
2328		msleep_interruptible(200);
2329		scsi_run_queue(sdev->request_queue);
2330	}
2331	return 0;
2332}
2333EXPORT_SYMBOL(scsi_device_quiesce);
2334
2335/**
2336 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2337 *	@sdev:	scsi device to resume.
2338 *
2339 *	Moves the device from quiesced back to running and restarts the
2340 *	queues.
2341 *
2342 *	Must be called with user context, may sleep.
2343 */
2344void
2345scsi_device_resume(struct scsi_device *sdev)
2346{
2347	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2348		return;
2349	scsi_run_queue(sdev->request_queue);
2350}
2351EXPORT_SYMBOL(scsi_device_resume);
2352
2353static void
2354device_quiesce_fn(struct scsi_device *sdev, void *data)
2355{
2356	scsi_device_quiesce(sdev);
2357}
2358
2359void
2360scsi_target_quiesce(struct scsi_target *starget)
2361{
2362	starget_for_each_device(starget, NULL, device_quiesce_fn);
2363}
2364EXPORT_SYMBOL(scsi_target_quiesce);
2365
2366static void
2367device_resume_fn(struct scsi_device *sdev, void *data)
2368{
2369	scsi_device_resume(sdev);
2370}
2371
2372void
2373scsi_target_resume(struct scsi_target *starget)
2374{
2375	starget_for_each_device(starget, NULL, device_resume_fn);
2376}
2377EXPORT_SYMBOL(scsi_target_resume);
2378
2379/**
2380 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2381 * @sdev:	device to block
2382 *
2383 * Block request made by scsi lld's to temporarily stop all
2384 * scsi commands on the specified device.  Called from interrupt
2385 * or normal process context.
2386 *
2387 * Returns zero if successful or error if not
2388 *
2389 * Notes:
2390 *	This routine transitions the device to the SDEV_BLOCK state
2391 *	(which must be a legal transition).  When the device is in this
2392 *	state, all commands are deferred until the scsi lld reenables
2393 *	the device with scsi_device_unblock or device_block_tmo fires.
2394 *	This routine assumes the host_lock is held on entry.
2395 */
2396int
2397scsi_internal_device_block(struct scsi_device *sdev)
2398{
2399	struct request_queue *q = sdev->request_queue;
2400	unsigned long flags;
2401	int err = 0;
2402
2403	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2404	if (err) {
2405		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2406
2407		if (err)
2408			return err;
2409	}
2410
2411	/*
2412	 * The device has transitioned to SDEV_BLOCK.  Stop the
2413	 * block layer from calling the midlayer with this device's
2414	 * request queue.
2415	 */
2416	spin_lock_irqsave(q->queue_lock, flags);
2417	blk_stop_queue(q);
2418	spin_unlock_irqrestore(q->queue_lock, flags);
2419
2420	return 0;
2421}
2422EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2423
2424/**
2425 * scsi_internal_device_unblock - resume a device after a block request
2426 * @sdev:	device to resume
2427 *
2428 * Called by scsi lld's or the midlayer to restart the device queue
2429 * for the previously suspended scsi device.  Called from interrupt or
2430 * normal process context.
2431 *
2432 * Returns zero if successful or error if not.
2433 *
2434 * Notes:
2435 *	This routine transitions the device to the SDEV_RUNNING state
2436 *	(which must be a legal transition) allowing the midlayer to
2437 *	goose the queue for this device.  This routine assumes the
2438 *	host_lock is held upon entry.
2439 */
2440int
2441scsi_internal_device_unblock(struct scsi_device *sdev)
2442{
2443	struct request_queue *q = sdev->request_queue;
2444	int err;
2445	unsigned long flags;
2446
2447	/*
2448	 * Try to transition the scsi device to SDEV_RUNNING
2449	 * and goose the device queue if successful.
2450	 */
2451	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2452	if (err) {
2453		err = scsi_device_set_state(sdev, SDEV_CREATED);
2454
2455		if (err)
2456			return err;
2457	}
2458
2459	spin_lock_irqsave(q->queue_lock, flags);
2460	blk_start_queue(q);
2461	spin_unlock_irqrestore(q->queue_lock, flags);
2462
2463	return 0;
2464}
2465EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2466
2467static void
2468device_block(struct scsi_device *sdev, void *data)
2469{
2470	scsi_internal_device_block(sdev);
2471}
2472
2473static int
2474target_block(struct device *dev, void *data)
2475{
2476	if (scsi_is_target_device(dev))
2477		starget_for_each_device(to_scsi_target(dev), NULL,
2478					device_block);
2479	return 0;
2480}
2481
2482void
2483scsi_target_block(struct device *dev)
2484{
2485	if (scsi_is_target_device(dev))
2486		starget_for_each_device(to_scsi_target(dev), NULL,
2487					device_block);
2488	else
2489		device_for_each_child(dev, NULL, target_block);
2490}
2491EXPORT_SYMBOL_GPL(scsi_target_block);
2492
2493static void
2494device_unblock(struct scsi_device *sdev, void *data)
2495{
2496	scsi_internal_device_unblock(sdev);
2497}
2498
2499static int
2500target_unblock(struct device *dev, void *data)
2501{
2502	if (scsi_is_target_device(dev))
2503		starget_for_each_device(to_scsi_target(dev), NULL,
2504					device_unblock);
2505	return 0;
2506}
2507
2508void
2509scsi_target_unblock(struct device *dev)
2510{
2511	if (scsi_is_target_device(dev))
2512		starget_for_each_device(to_scsi_target(dev), NULL,
2513					device_unblock);
2514	else
2515		device_for_each_child(dev, NULL, target_unblock);
2516}
2517EXPORT_SYMBOL_GPL(scsi_target_unblock);
2518
2519/**
2520 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2521 * @sgl:	scatter-gather list
2522 * @sg_count:	number of segments in sg
2523 * @offset:	offset in bytes into sg, on return offset into the mapped area
2524 * @len:	bytes to map, on return number of bytes mapped
2525 *
2526 * Returns virtual address of the start of the mapped page
2527 */
2528void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2529			  size_t *offset, size_t *len)
2530{
2531	int i;
2532	size_t sg_len = 0, len_complete = 0;
2533	struct scatterlist *sg;
2534	struct page *page;
2535
2536	WARN_ON(!irqs_disabled());
2537
2538	for_each_sg(sgl, sg, sg_count, i) {
2539		len_complete = sg_len; /* Complete sg-entries */
2540		sg_len += sg->length;
2541		if (sg_len > *offset)
2542			break;
2543	}
2544
2545	if (unlikely(i == sg_count)) {
2546		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2547			"elements %d\n",
2548		       __func__, sg_len, *offset, sg_count);
2549		WARN_ON(1);
2550		return NULL;
2551	}
2552
2553	/* Offset starting from the beginning of first page in this sg-entry */
2554	*offset = *offset - len_complete + sg->offset;
2555
2556	/* Assumption: contiguous pages can be accessed as "page + i" */
2557	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2558	*offset &= ~PAGE_MASK;
2559
2560	/* Bytes in this sg-entry from *offset to the end of the page */
2561	sg_len = PAGE_SIZE - *offset;
2562	if (*len > sg_len)
2563		*len = sg_len;
2564
2565	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2566}
2567EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2568
2569/**
2570 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2571 * @virt:	virtual address to be unmapped
2572 */
2573void scsi_kunmap_atomic_sg(void *virt)
2574{
2575	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2576}
2577EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2578