scsi_lib.c revision b8de16318410f6f8611a879678a531237e4aadc9
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19#include <linux/hardirq.h>
20#include <linux/scatterlist.h>
21
22#include <scsi/scsi.h>
23#include <scsi/scsi_cmnd.h>
24#include <scsi/scsi_dbg.h>
25#include <scsi/scsi_device.h>
26#include <scsi/scsi_driver.h>
27#include <scsi/scsi_eh.h>
28#include <scsi/scsi_host.h>
29
30#include "scsi_priv.h"
31#include "scsi_logging.h"
32
33
34#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
35#define SG_MEMPOOL_SIZE		2
36
37/*
38 * The maximum number of SG segments that we will put inside a scatterlist
39 * (unless chaining is used). Should ideally fit inside a single page, to
40 * avoid a higher order allocation.
41 */
42#define SCSI_MAX_SG_SEGMENTS	128
43
44struct scsi_host_sg_pool {
45	size_t		size;
46	char		*name;
47	struct kmem_cache	*slab;
48	mempool_t	*pool;
49};
50
51#define SP(x) { x, "sgpool-" #x }
52static struct scsi_host_sg_pool scsi_sg_pools[] = {
53	SP(8),
54	SP(16),
55#if (SCSI_MAX_SG_SEGMENTS > 16)
56	SP(32),
57#if (SCSI_MAX_SG_SEGMENTS > 32)
58	SP(64),
59#if (SCSI_MAX_SG_SEGMENTS > 64)
60	SP(128),
61#endif
62#endif
63#endif
64};
65#undef SP
66
67static struct kmem_cache *scsi_bidi_sdb_cache;
68
69static void scsi_run_queue(struct request_queue *q);
70
71/*
72 * Function:	scsi_unprep_request()
73 *
74 * Purpose:	Remove all preparation done for a request, including its
75 *		associated scsi_cmnd, so that it can be requeued.
76 *
77 * Arguments:	req	- request to unprepare
78 *
79 * Lock status:	Assumed that no locks are held upon entry.
80 *
81 * Returns:	Nothing.
82 */
83static void scsi_unprep_request(struct request *req)
84{
85	struct scsi_cmnd *cmd = req->special;
86
87	req->cmd_flags &= ~REQ_DONTPREP;
88	req->special = NULL;
89
90	scsi_put_command(cmd);
91}
92
93/*
94 * Function:    scsi_queue_insert()
95 *
96 * Purpose:     Insert a command in the midlevel queue.
97 *
98 * Arguments:   cmd    - command that we are adding to queue.
99 *              reason - why we are inserting command to queue.
100 *
101 * Lock status: Assumed that lock is not held upon entry.
102 *
103 * Returns:     Nothing.
104 *
105 * Notes:       We do this for one of two cases.  Either the host is busy
106 *              and it cannot accept any more commands for the time being,
107 *              or the device returned QUEUE_FULL and can accept no more
108 *              commands.
109 * Notes:       This could be called either from an interrupt context or a
110 *              normal process context.
111 */
112int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
113{
114	struct Scsi_Host *host = cmd->device->host;
115	struct scsi_device *device = cmd->device;
116	struct request_queue *q = device->request_queue;
117	unsigned long flags;
118
119	SCSI_LOG_MLQUEUE(1,
120		 printk("Inserting command %p into mlqueue\n", cmd));
121
122	/*
123	 * Set the appropriate busy bit for the device/host.
124	 *
125	 * If the host/device isn't busy, assume that something actually
126	 * completed, and that we should be able to queue a command now.
127	 *
128	 * Note that the prior mid-layer assumption that any host could
129	 * always queue at least one command is now broken.  The mid-layer
130	 * will implement a user specifiable stall (see
131	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
132	 * if a command is requeued with no other commands outstanding
133	 * either for the device or for the host.
134	 */
135	if (reason == SCSI_MLQUEUE_HOST_BUSY)
136		host->host_blocked = host->max_host_blocked;
137	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
138		device->device_blocked = device->max_device_blocked;
139
140	/*
141	 * Decrement the counters, since these commands are no longer
142	 * active on the host/device.
143	 */
144	scsi_device_unbusy(device);
145
146	/*
147	 * Requeue this command.  It will go before all other commands
148	 * that are already in the queue.
149	 *
150	 * NOTE: there is magic here about the way the queue is plugged if
151	 * we have no outstanding commands.
152	 *
153	 * Although we *don't* plug the queue, we call the request
154	 * function.  The SCSI request function detects the blocked condition
155	 * and plugs the queue appropriately.
156         */
157	spin_lock_irqsave(q->queue_lock, flags);
158	blk_requeue_request(q, cmd->request);
159	spin_unlock_irqrestore(q->queue_lock, flags);
160
161	scsi_run_queue(q);
162
163	return 0;
164}
165
166/**
167 * scsi_execute - insert request and wait for the result
168 * @sdev:	scsi device
169 * @cmd:	scsi command
170 * @data_direction: data direction
171 * @buffer:	data buffer
172 * @bufflen:	len of buffer
173 * @sense:	optional sense buffer
174 * @timeout:	request timeout in seconds
175 * @retries:	number of times to retry request
176 * @flags:	or into request flags;
177 *
178 * returns the req->errors value which is the scsi_cmnd result
179 * field.
180 */
181int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
182		 int data_direction, void *buffer, unsigned bufflen,
183		 unsigned char *sense, int timeout, int retries, int flags)
184{
185	struct request *req;
186	int write = (data_direction == DMA_TO_DEVICE);
187	int ret = DRIVER_ERROR << 24;
188
189	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
190
191	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
192					buffer, bufflen, __GFP_WAIT))
193		goto out;
194
195	req->cmd_len = COMMAND_SIZE(cmd[0]);
196	memcpy(req->cmd, cmd, req->cmd_len);
197	req->sense = sense;
198	req->sense_len = 0;
199	req->retries = retries;
200	req->timeout = timeout;
201	req->cmd_type = REQ_TYPE_BLOCK_PC;
202	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
203
204	/*
205	 * head injection *required* here otherwise quiesce won't work
206	 */
207	blk_execute_rq(req->q, NULL, req, 1);
208
209	ret = req->errors;
210 out:
211	blk_put_request(req);
212
213	return ret;
214}
215EXPORT_SYMBOL(scsi_execute);
216
217
218int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
219		     int data_direction, void *buffer, unsigned bufflen,
220		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
221{
222	char *sense = NULL;
223	int result;
224
225	if (sshdr) {
226		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
227		if (!sense)
228			return DRIVER_ERROR << 24;
229	}
230	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
231			      sense, timeout, retries, 0);
232	if (sshdr)
233		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
234
235	kfree(sense);
236	return result;
237}
238EXPORT_SYMBOL(scsi_execute_req);
239
240struct scsi_io_context {
241	void *data;
242	void (*done)(void *data, char *sense, int result, int resid);
243	char sense[SCSI_SENSE_BUFFERSIZE];
244};
245
246static struct kmem_cache *scsi_io_context_cache;
247
248static void scsi_end_async(struct request *req, int uptodate)
249{
250	struct scsi_io_context *sioc = req->end_io_data;
251
252	if (sioc->done)
253		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
254
255	kmem_cache_free(scsi_io_context_cache, sioc);
256	__blk_put_request(req->q, req);
257}
258
259static int scsi_merge_bio(struct request *rq, struct bio *bio)
260{
261	struct request_queue *q = rq->q;
262
263	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
264	if (rq_data_dir(rq) == WRITE)
265		bio->bi_rw |= (1 << BIO_RW);
266	blk_queue_bounce(q, &bio);
267
268	return blk_rq_append_bio(q, rq, bio);
269}
270
271static void scsi_bi_endio(struct bio *bio, int error)
272{
273	bio_put(bio);
274}
275
276/**
277 * scsi_req_map_sg - map a scatterlist into a request
278 * @rq:		request to fill
279 * @sgl:	scatterlist
280 * @nsegs:	number of elements
281 * @bufflen:	len of buffer
282 * @gfp:	memory allocation flags
283 *
284 * scsi_req_map_sg maps a scatterlist into a request so that the
285 * request can be sent to the block layer. We do not trust the scatterlist
286 * sent to use, as some ULDs use that struct to only organize the pages.
287 */
288static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
289			   int nsegs, unsigned bufflen, gfp_t gfp)
290{
291	struct request_queue *q = rq->q;
292	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
293	unsigned int data_len = bufflen, len, bytes, off;
294	struct scatterlist *sg;
295	struct page *page;
296	struct bio *bio = NULL;
297	int i, err, nr_vecs = 0;
298
299	for_each_sg(sgl, sg, nsegs, i) {
300		page = sg_page(sg);
301		off = sg->offset;
302		len = sg->length;
303 		data_len += len;
304
305		while (len > 0 && data_len > 0) {
306			/*
307			 * sg sends a scatterlist that is larger than
308			 * the data_len it wants transferred for certain
309			 * IO sizes
310			 */
311			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
312			bytes = min(bytes, data_len);
313
314			if (!bio) {
315				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
316				nr_pages -= nr_vecs;
317
318				bio = bio_alloc(gfp, nr_vecs);
319				if (!bio) {
320					err = -ENOMEM;
321					goto free_bios;
322				}
323				bio->bi_end_io = scsi_bi_endio;
324			}
325
326			if (bio_add_pc_page(q, bio, page, bytes, off) !=
327			    bytes) {
328				bio_put(bio);
329				err = -EINVAL;
330				goto free_bios;
331			}
332
333			if (bio->bi_vcnt >= nr_vecs) {
334				err = scsi_merge_bio(rq, bio);
335				if (err) {
336					bio_endio(bio, 0);
337					goto free_bios;
338				}
339				bio = NULL;
340			}
341
342			page++;
343			len -= bytes;
344			data_len -=bytes;
345			off = 0;
346		}
347	}
348
349	rq->buffer = rq->data = NULL;
350	rq->data_len = bufflen;
351	return 0;
352
353free_bios:
354	while ((bio = rq->bio) != NULL) {
355		rq->bio = bio->bi_next;
356		/*
357		 * call endio instead of bio_put incase it was bounced
358		 */
359		bio_endio(bio, 0);
360	}
361
362	return err;
363}
364
365/**
366 * scsi_execute_async - insert request
367 * @sdev:	scsi device
368 * @cmd:	scsi command
369 * @cmd_len:	length of scsi cdb
370 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
371 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
372 * @bufflen:	len of buffer
373 * @use_sg:	if buffer is a scatterlist this is the number of elements
374 * @timeout:	request timeout in seconds
375 * @retries:	number of times to retry request
376 * @privdata:	data passed to done()
377 * @done:	callback function when done
378 * @gfp:	memory allocation flags
379 */
380int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
381		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
382		       int use_sg, int timeout, int retries, void *privdata,
383		       void (*done)(void *, char *, int, int), gfp_t gfp)
384{
385	struct request *req;
386	struct scsi_io_context *sioc;
387	int err = 0;
388	int write = (data_direction == DMA_TO_DEVICE);
389
390	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
391	if (!sioc)
392		return DRIVER_ERROR << 24;
393
394	req = blk_get_request(sdev->request_queue, write, gfp);
395	if (!req)
396		goto free_sense;
397	req->cmd_type = REQ_TYPE_BLOCK_PC;
398	req->cmd_flags |= REQ_QUIET;
399
400	if (use_sg)
401		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
402	else if (bufflen)
403		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
404
405	if (err)
406		goto free_req;
407
408	req->cmd_len = cmd_len;
409	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
410	memcpy(req->cmd, cmd, req->cmd_len);
411	req->sense = sioc->sense;
412	req->sense_len = 0;
413	req->timeout = timeout;
414	req->retries = retries;
415	req->end_io_data = sioc;
416
417	sioc->data = privdata;
418	sioc->done = done;
419
420	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
421	return 0;
422
423free_req:
424	blk_put_request(req);
425free_sense:
426	kmem_cache_free(scsi_io_context_cache, sioc);
427	return DRIVER_ERROR << 24;
428}
429EXPORT_SYMBOL_GPL(scsi_execute_async);
430
431/*
432 * Function:    scsi_init_cmd_errh()
433 *
434 * Purpose:     Initialize cmd fields related to error handling.
435 *
436 * Arguments:   cmd	- command that is ready to be queued.
437 *
438 * Notes:       This function has the job of initializing a number of
439 *              fields related to error handling.   Typically this will
440 *              be called once for each command, as required.
441 */
442static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
443{
444	cmd->serial_number = 0;
445	scsi_set_resid(cmd, 0);
446	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
447	if (cmd->cmd_len == 0)
448		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
449}
450
451void scsi_device_unbusy(struct scsi_device *sdev)
452{
453	struct Scsi_Host *shost = sdev->host;
454	unsigned long flags;
455
456	spin_lock_irqsave(shost->host_lock, flags);
457	shost->host_busy--;
458	if (unlikely(scsi_host_in_recovery(shost) &&
459		     (shost->host_failed || shost->host_eh_scheduled)))
460		scsi_eh_wakeup(shost);
461	spin_unlock(shost->host_lock);
462	spin_lock(sdev->request_queue->queue_lock);
463	sdev->device_busy--;
464	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
465}
466
467/*
468 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
469 * and call blk_run_queue for all the scsi_devices on the target -
470 * including current_sdev first.
471 *
472 * Called with *no* scsi locks held.
473 */
474static void scsi_single_lun_run(struct scsi_device *current_sdev)
475{
476	struct Scsi_Host *shost = current_sdev->host;
477	struct scsi_device *sdev, *tmp;
478	struct scsi_target *starget = scsi_target(current_sdev);
479	unsigned long flags;
480
481	spin_lock_irqsave(shost->host_lock, flags);
482	starget->starget_sdev_user = NULL;
483	spin_unlock_irqrestore(shost->host_lock, flags);
484
485	/*
486	 * Call blk_run_queue for all LUNs on the target, starting with
487	 * current_sdev. We race with others (to set starget_sdev_user),
488	 * but in most cases, we will be first. Ideally, each LU on the
489	 * target would get some limited time or requests on the target.
490	 */
491	blk_run_queue(current_sdev->request_queue);
492
493	spin_lock_irqsave(shost->host_lock, flags);
494	if (starget->starget_sdev_user)
495		goto out;
496	list_for_each_entry_safe(sdev, tmp, &starget->devices,
497			same_target_siblings) {
498		if (sdev == current_sdev)
499			continue;
500		if (scsi_device_get(sdev))
501			continue;
502
503		spin_unlock_irqrestore(shost->host_lock, flags);
504		blk_run_queue(sdev->request_queue);
505		spin_lock_irqsave(shost->host_lock, flags);
506
507		scsi_device_put(sdev);
508	}
509 out:
510	spin_unlock_irqrestore(shost->host_lock, flags);
511}
512
513/*
514 * Function:	scsi_run_queue()
515 *
516 * Purpose:	Select a proper request queue to serve next
517 *
518 * Arguments:	q	- last request's queue
519 *
520 * Returns:     Nothing
521 *
522 * Notes:	The previous command was completely finished, start
523 *		a new one if possible.
524 */
525static void scsi_run_queue(struct request_queue *q)
526{
527	struct scsi_device *sdev = q->queuedata;
528	struct Scsi_Host *shost = sdev->host;
529	unsigned long flags;
530
531	if (scsi_target(sdev)->single_lun)
532		scsi_single_lun_run(sdev);
533
534	spin_lock_irqsave(shost->host_lock, flags);
535	while (!list_empty(&shost->starved_list) &&
536	       !shost->host_blocked && !shost->host_self_blocked &&
537		!((shost->can_queue > 0) &&
538		  (shost->host_busy >= shost->can_queue))) {
539		/*
540		 * As long as shost is accepting commands and we have
541		 * starved queues, call blk_run_queue. scsi_request_fn
542		 * drops the queue_lock and can add us back to the
543		 * starved_list.
544		 *
545		 * host_lock protects the starved_list and starved_entry.
546		 * scsi_request_fn must get the host_lock before checking
547		 * or modifying starved_list or starved_entry.
548		 */
549		sdev = list_entry(shost->starved_list.next,
550					  struct scsi_device, starved_entry);
551		list_del_init(&sdev->starved_entry);
552		spin_unlock_irqrestore(shost->host_lock, flags);
553
554
555		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
556		    !test_and_set_bit(QUEUE_FLAG_REENTER,
557				      &sdev->request_queue->queue_flags)) {
558			blk_run_queue(sdev->request_queue);
559			clear_bit(QUEUE_FLAG_REENTER,
560				  &sdev->request_queue->queue_flags);
561		} else
562			blk_run_queue(sdev->request_queue);
563
564		spin_lock_irqsave(shost->host_lock, flags);
565		if (unlikely(!list_empty(&sdev->starved_entry)))
566			/*
567			 * sdev lost a race, and was put back on the
568			 * starved list. This is unlikely but without this
569			 * in theory we could loop forever.
570			 */
571			break;
572	}
573	spin_unlock_irqrestore(shost->host_lock, flags);
574
575	blk_run_queue(q);
576}
577
578/*
579 * Function:	scsi_requeue_command()
580 *
581 * Purpose:	Handle post-processing of completed commands.
582 *
583 * Arguments:	q	- queue to operate on
584 *		cmd	- command that may need to be requeued.
585 *
586 * Returns:	Nothing
587 *
588 * Notes:	After command completion, there may be blocks left
589 *		over which weren't finished by the previous command
590 *		this can be for a number of reasons - the main one is
591 *		I/O errors in the middle of the request, in which case
592 *		we need to request the blocks that come after the bad
593 *		sector.
594 * Notes:	Upon return, cmd is a stale pointer.
595 */
596static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
597{
598	struct request *req = cmd->request;
599	unsigned long flags;
600
601	scsi_unprep_request(req);
602	spin_lock_irqsave(q->queue_lock, flags);
603	blk_requeue_request(q, req);
604	spin_unlock_irqrestore(q->queue_lock, flags);
605
606	scsi_run_queue(q);
607}
608
609void scsi_next_command(struct scsi_cmnd *cmd)
610{
611	struct scsi_device *sdev = cmd->device;
612	struct request_queue *q = sdev->request_queue;
613
614	/* need to hold a reference on the device before we let go of the cmd */
615	get_device(&sdev->sdev_gendev);
616
617	scsi_put_command(cmd);
618	scsi_run_queue(q);
619
620	/* ok to remove device now */
621	put_device(&sdev->sdev_gendev);
622}
623
624void scsi_run_host_queues(struct Scsi_Host *shost)
625{
626	struct scsi_device *sdev;
627
628	shost_for_each_device(sdev, shost)
629		scsi_run_queue(sdev->request_queue);
630}
631
632/*
633 * Function:    scsi_end_request()
634 *
635 * Purpose:     Post-processing of completed commands (usually invoked at end
636 *		of upper level post-processing and scsi_io_completion).
637 *
638 * Arguments:   cmd	 - command that is complete.
639 *              error    - 0 if I/O indicates success, < 0 for I/O error.
640 *              bytes    - number of bytes of completed I/O
641 *		requeue  - indicates whether we should requeue leftovers.
642 *
643 * Lock status: Assumed that lock is not held upon entry.
644 *
645 * Returns:     cmd if requeue required, NULL otherwise.
646 *
647 * Notes:       This is called for block device requests in order to
648 *              mark some number of sectors as complete.
649 *
650 *		We are guaranteeing that the request queue will be goosed
651 *		at some point during this call.
652 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
653 */
654static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
655					  int bytes, int requeue)
656{
657	struct request_queue *q = cmd->device->request_queue;
658	struct request *req = cmd->request;
659
660	/*
661	 * If there are blocks left over at the end, set up the command
662	 * to queue the remainder of them.
663	 */
664	if (blk_end_request(req, error, bytes)) {
665		int leftover = (req->hard_nr_sectors << 9);
666
667		if (blk_pc_request(req))
668			leftover = req->data_len;
669
670		/* kill remainder if no retrys */
671		if (error && blk_noretry_request(req))
672			blk_end_request(req, error, leftover);
673		else {
674			if (requeue) {
675				/*
676				 * Bleah.  Leftovers again.  Stick the
677				 * leftovers in the front of the
678				 * queue, and goose the queue again.
679				 */
680				scsi_requeue_command(q, cmd);
681				cmd = NULL;
682			}
683			return cmd;
684		}
685	}
686
687	/*
688	 * This will goose the queue request function at the end, so we don't
689	 * need to worry about launching another command.
690	 */
691	scsi_next_command(cmd);
692	return NULL;
693}
694
695/*
696 * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
697 * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
698 */
699#define SCSI_MAX_SG_CHAIN_SEGMENTS	2048
700
701static inline unsigned int scsi_sgtable_index(unsigned short nents)
702{
703	unsigned int index;
704
705	switch (nents) {
706	case 1 ... 8:
707		index = 0;
708		break;
709	case 9 ... 16:
710		index = 1;
711		break;
712#if (SCSI_MAX_SG_SEGMENTS > 16)
713	case 17 ... 32:
714		index = 2;
715		break;
716#if (SCSI_MAX_SG_SEGMENTS > 32)
717	case 33 ... 64:
718		index = 3;
719		break;
720#if (SCSI_MAX_SG_SEGMENTS > 64)
721	case 65 ... 128:
722		index = 4;
723		break;
724#endif
725#endif
726#endif
727	default:
728		printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
729		BUG();
730	}
731
732	return index;
733}
734
735static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
736{
737	struct scsi_host_sg_pool *sgp;
738
739	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
740	mempool_free(sgl, sgp->pool);
741}
742
743static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
744{
745	struct scsi_host_sg_pool *sgp;
746
747	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
748	return mempool_alloc(sgp->pool, gfp_mask);
749}
750
751static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
752			      gfp_t gfp_mask)
753{
754	int ret;
755
756	BUG_ON(!nents);
757
758	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
759			       gfp_mask, scsi_sg_alloc);
760	if (unlikely(ret))
761		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
762				scsi_sg_free);
763
764	return ret;
765}
766
767static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
768{
769	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
770}
771
772/*
773 * Function:    scsi_release_buffers()
774 *
775 * Purpose:     Completion processing for block device I/O requests.
776 *
777 * Arguments:   cmd	- command that we are bailing.
778 *
779 * Lock status: Assumed that no lock is held upon entry.
780 *
781 * Returns:     Nothing
782 *
783 * Notes:       In the event that an upper level driver rejects a
784 *		command, we must release resources allocated during
785 *		the __init_io() function.  Primarily this would involve
786 *		the scatter-gather table, and potentially any bounce
787 *		buffers.
788 */
789void scsi_release_buffers(struct scsi_cmnd *cmd)
790{
791	if (cmd->sdb.table.nents)
792		scsi_free_sgtable(&cmd->sdb);
793
794	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
795
796	if (scsi_bidi_cmnd(cmd)) {
797		struct scsi_data_buffer *bidi_sdb =
798			cmd->request->next_rq->special;
799		scsi_free_sgtable(bidi_sdb);
800		kmem_cache_free(scsi_bidi_sdb_cache, bidi_sdb);
801		cmd->request->next_rq->special = NULL;
802	}
803}
804EXPORT_SYMBOL(scsi_release_buffers);
805
806/*
807 * Bidi commands Must be complete as a whole, both sides at once.
808 * If part of the bytes were written and lld returned
809 * scsi_in()->resid and/or scsi_out()->resid this information will be left
810 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
811 * decide what to do with this information.
812 */
813void scsi_end_bidi_request(struct scsi_cmnd *cmd)
814{
815	struct request *req = cmd->request;
816	unsigned int dlen = req->data_len;
817	unsigned int next_dlen = req->next_rq->data_len;
818
819	req->data_len = scsi_out(cmd)->resid;
820	req->next_rq->data_len = scsi_in(cmd)->resid;
821
822	/* The req and req->next_rq have not been completed */
823	BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
824
825	scsi_release_buffers(cmd);
826
827	/*
828	 * This will goose the queue request function at the end, so we don't
829	 * need to worry about launching another command.
830	 */
831	scsi_next_command(cmd);
832}
833
834/*
835 * Function:    scsi_io_completion()
836 *
837 * Purpose:     Completion processing for block device I/O requests.
838 *
839 * Arguments:   cmd   - command that is finished.
840 *
841 * Lock status: Assumed that no lock is held upon entry.
842 *
843 * Returns:     Nothing
844 *
845 * Notes:       This function is matched in terms of capabilities to
846 *              the function that created the scatter-gather list.
847 *              In other words, if there are no bounce buffers
848 *              (the normal case for most drivers), we don't need
849 *              the logic to deal with cleaning up afterwards.
850 *
851 *		We must do one of several things here:
852 *
853 *		a) Call scsi_end_request.  This will finish off the
854 *		   specified number of sectors.  If we are done, the
855 *		   command block will be released, and the queue
856 *		   function will be goosed.  If we are not done, then
857 *		   scsi_end_request will directly goose the queue.
858 *
859 *		b) We can just use scsi_requeue_command() here.  This would
860 *		   be used if we just wanted to retry, for example.
861 */
862void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
863{
864	int result = cmd->result;
865	int this_count = scsi_bufflen(cmd);
866	struct request_queue *q = cmd->device->request_queue;
867	struct request *req = cmd->request;
868	int clear_errors = 1;
869	struct scsi_sense_hdr sshdr;
870	int sense_valid = 0;
871	int sense_deferred = 0;
872
873	if (result) {
874		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
875		if (sense_valid)
876			sense_deferred = scsi_sense_is_deferred(&sshdr);
877	}
878
879	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
880		req->errors = result;
881		if (result) {
882			clear_errors = 0;
883			if (sense_valid && req->sense) {
884				/*
885				 * SG_IO wants current and deferred errors
886				 */
887				int len = 8 + cmd->sense_buffer[7];
888
889				if (len > SCSI_SENSE_BUFFERSIZE)
890					len = SCSI_SENSE_BUFFERSIZE;
891				memcpy(req->sense, cmd->sense_buffer,  len);
892				req->sense_len = len;
893			}
894		}
895		if (scsi_bidi_cmnd(cmd)) {
896			/* will also release_buffers */
897			scsi_end_bidi_request(cmd);
898			return;
899		}
900		req->data_len = scsi_get_resid(cmd);
901	}
902
903	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
904	scsi_release_buffers(cmd);
905
906	/*
907	 * Next deal with any sectors which we were able to correctly
908	 * handle.
909	 */
910	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
911				      "%d bytes done.\n",
912				      req->nr_sectors, good_bytes));
913
914	if (clear_errors)
915		req->errors = 0;
916
917	/* A number of bytes were successfully read.  If there
918	 * are leftovers and there is some kind of error
919	 * (result != 0), retry the rest.
920	 */
921	if (scsi_end_request(cmd, 0, good_bytes, result == 0) == NULL)
922		return;
923
924	/* good_bytes = 0, or (inclusive) there were leftovers and
925	 * result = 0, so scsi_end_request couldn't retry.
926	 */
927	if (sense_valid && !sense_deferred) {
928		switch (sshdr.sense_key) {
929		case UNIT_ATTENTION:
930			if (cmd->device->removable) {
931				/* Detected disc change.  Set a bit
932				 * and quietly refuse further access.
933				 */
934				cmd->device->changed = 1;
935				scsi_end_request(cmd, -EIO, this_count, 1);
936				return;
937			} else {
938				/* Must have been a power glitch, or a
939				 * bus reset.  Could not have been a
940				 * media change, so we just retry the
941				 * request and see what happens.
942				 */
943				scsi_requeue_command(q, cmd);
944				return;
945			}
946			break;
947		case ILLEGAL_REQUEST:
948			/* If we had an ILLEGAL REQUEST returned, then
949			 * we may have performed an unsupported
950			 * command.  The only thing this should be
951			 * would be a ten byte read where only a six
952			 * byte read was supported.  Also, on a system
953			 * where READ CAPACITY failed, we may have
954			 * read past the end of the disk.
955			 */
956			if ((cmd->device->use_10_for_rw &&
957			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
958			    (cmd->cmnd[0] == READ_10 ||
959			     cmd->cmnd[0] == WRITE_10)) {
960				cmd->device->use_10_for_rw = 0;
961				/* This will cause a retry with a
962				 * 6-byte command.
963				 */
964				scsi_requeue_command(q, cmd);
965				return;
966			} else {
967				scsi_end_request(cmd, -EIO, this_count, 1);
968				return;
969			}
970			break;
971		case NOT_READY:
972			/* If the device is in the process of becoming
973			 * ready, or has a temporary blockage, retry.
974			 */
975			if (sshdr.asc == 0x04) {
976				switch (sshdr.ascq) {
977				case 0x01: /* becoming ready */
978				case 0x04: /* format in progress */
979				case 0x05: /* rebuild in progress */
980				case 0x06: /* recalculation in progress */
981				case 0x07: /* operation in progress */
982				case 0x08: /* Long write in progress */
983				case 0x09: /* self test in progress */
984					scsi_requeue_command(q, cmd);
985					return;
986				default:
987					break;
988				}
989			}
990			if (!(req->cmd_flags & REQ_QUIET))
991				scsi_cmd_print_sense_hdr(cmd,
992							 "Device not ready",
993							 &sshdr);
994
995			scsi_end_request(cmd, -EIO, this_count, 1);
996			return;
997		case VOLUME_OVERFLOW:
998			if (!(req->cmd_flags & REQ_QUIET)) {
999				scmd_printk(KERN_INFO, cmd,
1000					    "Volume overflow, CDB: ");
1001				__scsi_print_command(cmd->cmnd);
1002				scsi_print_sense("", cmd);
1003			}
1004			/* See SSC3rXX or current. */
1005			scsi_end_request(cmd, -EIO, this_count, 1);
1006			return;
1007		default:
1008			break;
1009		}
1010	}
1011	if (host_byte(result) == DID_RESET) {
1012		/* Third party bus reset or reset for error recovery
1013		 * reasons.  Just retry the request and see what
1014		 * happens.
1015		 */
1016		scsi_requeue_command(q, cmd);
1017		return;
1018	}
1019	if (result) {
1020		if (!(req->cmd_flags & REQ_QUIET)) {
1021			scsi_print_result(cmd);
1022			if (driver_byte(result) & DRIVER_SENSE)
1023				scsi_print_sense("", cmd);
1024		}
1025	}
1026	scsi_end_request(cmd, -EIO, this_count, !result);
1027}
1028
1029static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1030			     gfp_t gfp_mask)
1031{
1032	int count;
1033
1034	/*
1035	 * If sg table allocation fails, requeue request later.
1036	 */
1037	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1038					gfp_mask))) {
1039		return BLKPREP_DEFER;
1040	}
1041
1042	req->buffer = NULL;
1043	if (blk_pc_request(req))
1044		sdb->length = req->data_len;
1045	else
1046		sdb->length = req->nr_sectors << 9;
1047
1048	/*
1049	 * Next, walk the list, and fill in the addresses and sizes of
1050	 * each segment.
1051	 */
1052	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1053	BUG_ON(count > sdb->table.nents);
1054	sdb->table.nents = count;
1055	return BLKPREP_OK;
1056}
1057
1058/*
1059 * Function:    scsi_init_io()
1060 *
1061 * Purpose:     SCSI I/O initialize function.
1062 *
1063 * Arguments:   cmd   - Command descriptor we wish to initialize
1064 *
1065 * Returns:     0 on success
1066 *		BLKPREP_DEFER if the failure is retryable
1067 *		BLKPREP_KILL if the failure is fatal
1068 */
1069int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1070{
1071	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1072	if (error)
1073		goto err_exit;
1074
1075	if (blk_bidi_rq(cmd->request)) {
1076		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1077			scsi_bidi_sdb_cache, GFP_ATOMIC);
1078		if (!bidi_sdb) {
1079			error = BLKPREP_DEFER;
1080			goto err_exit;
1081		}
1082
1083		cmd->request->next_rq->special = bidi_sdb;
1084		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1085								    GFP_ATOMIC);
1086		if (error)
1087			goto err_exit;
1088	}
1089
1090	return BLKPREP_OK ;
1091
1092err_exit:
1093	scsi_release_buffers(cmd);
1094	if (error == BLKPREP_KILL)
1095		scsi_put_command(cmd);
1096	else /* BLKPREP_DEFER */
1097		scsi_unprep_request(cmd->request);
1098
1099	return error;
1100}
1101EXPORT_SYMBOL(scsi_init_io);
1102
1103static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1104		struct request *req)
1105{
1106	struct scsi_cmnd *cmd;
1107
1108	if (!req->special) {
1109		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1110		if (unlikely(!cmd))
1111			return NULL;
1112		req->special = cmd;
1113	} else {
1114		cmd = req->special;
1115	}
1116
1117	/* pull a tag out of the request if we have one */
1118	cmd->tag = req->tag;
1119	cmd->request = req;
1120
1121	return cmd;
1122}
1123
1124int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1125{
1126	struct scsi_cmnd *cmd;
1127	int ret = scsi_prep_state_check(sdev, req);
1128
1129	if (ret != BLKPREP_OK)
1130		return ret;
1131
1132	cmd = scsi_get_cmd_from_req(sdev, req);
1133	if (unlikely(!cmd))
1134		return BLKPREP_DEFER;
1135
1136	/*
1137	 * BLOCK_PC requests may transfer data, in which case they must
1138	 * a bio attached to them.  Or they might contain a SCSI command
1139	 * that does not transfer data, in which case they may optionally
1140	 * submit a request without an attached bio.
1141	 */
1142	if (req->bio) {
1143		int ret;
1144
1145		BUG_ON(!req->nr_phys_segments);
1146
1147		ret = scsi_init_io(cmd, GFP_ATOMIC);
1148		if (unlikely(ret))
1149			return ret;
1150	} else {
1151		BUG_ON(req->data_len);
1152		BUG_ON(req->data);
1153
1154		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1155		req->buffer = NULL;
1156	}
1157
1158	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1159	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1160	cmd->cmd_len = req->cmd_len;
1161	if (!req->data_len)
1162		cmd->sc_data_direction = DMA_NONE;
1163	else if (rq_data_dir(req) == WRITE)
1164		cmd->sc_data_direction = DMA_TO_DEVICE;
1165	else
1166		cmd->sc_data_direction = DMA_FROM_DEVICE;
1167
1168	cmd->transfersize = req->data_len;
1169	cmd->allowed = req->retries;
1170	cmd->timeout_per_command = req->timeout;
1171	return BLKPREP_OK;
1172}
1173EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1174
1175/*
1176 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1177 * from filesystems that still need to be translated to SCSI CDBs from
1178 * the ULD.
1179 */
1180int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1181{
1182	struct scsi_cmnd *cmd;
1183	int ret = scsi_prep_state_check(sdev, req);
1184
1185	if (ret != BLKPREP_OK)
1186		return ret;
1187	/*
1188	 * Filesystem requests must transfer data.
1189	 */
1190	BUG_ON(!req->nr_phys_segments);
1191
1192	cmd = scsi_get_cmd_from_req(sdev, req);
1193	if (unlikely(!cmd))
1194		return BLKPREP_DEFER;
1195
1196	return scsi_init_io(cmd, GFP_ATOMIC);
1197}
1198EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1199
1200int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1201{
1202	int ret = BLKPREP_OK;
1203
1204	/*
1205	 * If the device is not in running state we will reject some
1206	 * or all commands.
1207	 */
1208	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1209		switch (sdev->sdev_state) {
1210		case SDEV_OFFLINE:
1211			/*
1212			 * If the device is offline we refuse to process any
1213			 * commands.  The device must be brought online
1214			 * before trying any recovery commands.
1215			 */
1216			sdev_printk(KERN_ERR, sdev,
1217				    "rejecting I/O to offline device\n");
1218			ret = BLKPREP_KILL;
1219			break;
1220		case SDEV_DEL:
1221			/*
1222			 * If the device is fully deleted, we refuse to
1223			 * process any commands as well.
1224			 */
1225			sdev_printk(KERN_ERR, sdev,
1226				    "rejecting I/O to dead device\n");
1227			ret = BLKPREP_KILL;
1228			break;
1229		case SDEV_QUIESCE:
1230		case SDEV_BLOCK:
1231			/*
1232			 * If the devices is blocked we defer normal commands.
1233			 */
1234			if (!(req->cmd_flags & REQ_PREEMPT))
1235				ret = BLKPREP_DEFER;
1236			break;
1237		default:
1238			/*
1239			 * For any other not fully online state we only allow
1240			 * special commands.  In particular any user initiated
1241			 * command is not allowed.
1242			 */
1243			if (!(req->cmd_flags & REQ_PREEMPT))
1244				ret = BLKPREP_KILL;
1245			break;
1246		}
1247	}
1248	return ret;
1249}
1250EXPORT_SYMBOL(scsi_prep_state_check);
1251
1252int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1253{
1254	struct scsi_device *sdev = q->queuedata;
1255
1256	switch (ret) {
1257	case BLKPREP_KILL:
1258		req->errors = DID_NO_CONNECT << 16;
1259		/* release the command and kill it */
1260		if (req->special) {
1261			struct scsi_cmnd *cmd = req->special;
1262			scsi_release_buffers(cmd);
1263			scsi_put_command(cmd);
1264			req->special = NULL;
1265		}
1266		break;
1267	case BLKPREP_DEFER:
1268		/*
1269		 * If we defer, the elv_next_request() returns NULL, but the
1270		 * queue must be restarted, so we plug here if no returning
1271		 * command will automatically do that.
1272		 */
1273		if (sdev->device_busy == 0)
1274			blk_plug_device(q);
1275		break;
1276	default:
1277		req->cmd_flags |= REQ_DONTPREP;
1278	}
1279
1280	return ret;
1281}
1282EXPORT_SYMBOL(scsi_prep_return);
1283
1284int scsi_prep_fn(struct request_queue *q, struct request *req)
1285{
1286	struct scsi_device *sdev = q->queuedata;
1287	int ret = BLKPREP_KILL;
1288
1289	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1290		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1291	return scsi_prep_return(q, req, ret);
1292}
1293
1294/*
1295 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1296 * return 0.
1297 *
1298 * Called with the queue_lock held.
1299 */
1300static inline int scsi_dev_queue_ready(struct request_queue *q,
1301				  struct scsi_device *sdev)
1302{
1303	if (sdev->device_busy >= sdev->queue_depth)
1304		return 0;
1305	if (sdev->device_busy == 0 && sdev->device_blocked) {
1306		/*
1307		 * unblock after device_blocked iterates to zero
1308		 */
1309		if (--sdev->device_blocked == 0) {
1310			SCSI_LOG_MLQUEUE(3,
1311				   sdev_printk(KERN_INFO, sdev,
1312				   "unblocking device at zero depth\n"));
1313		} else {
1314			blk_plug_device(q);
1315			return 0;
1316		}
1317	}
1318	if (sdev->device_blocked)
1319		return 0;
1320
1321	return 1;
1322}
1323
1324/*
1325 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1326 * return 0. We must end up running the queue again whenever 0 is
1327 * returned, else IO can hang.
1328 *
1329 * Called with host_lock held.
1330 */
1331static inline int scsi_host_queue_ready(struct request_queue *q,
1332				   struct Scsi_Host *shost,
1333				   struct scsi_device *sdev)
1334{
1335	if (scsi_host_in_recovery(shost))
1336		return 0;
1337	if (shost->host_busy == 0 && shost->host_blocked) {
1338		/*
1339		 * unblock after host_blocked iterates to zero
1340		 */
1341		if (--shost->host_blocked == 0) {
1342			SCSI_LOG_MLQUEUE(3,
1343				printk("scsi%d unblocking host at zero depth\n",
1344					shost->host_no));
1345		} else {
1346			blk_plug_device(q);
1347			return 0;
1348		}
1349	}
1350	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1351	    shost->host_blocked || shost->host_self_blocked) {
1352		if (list_empty(&sdev->starved_entry))
1353			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1354		return 0;
1355	}
1356
1357	/* We're OK to process the command, so we can't be starved */
1358	if (!list_empty(&sdev->starved_entry))
1359		list_del_init(&sdev->starved_entry);
1360
1361	return 1;
1362}
1363
1364/*
1365 * Kill a request for a dead device
1366 */
1367static void scsi_kill_request(struct request *req, struct request_queue *q)
1368{
1369	struct scsi_cmnd *cmd = req->special;
1370	struct scsi_device *sdev = cmd->device;
1371	struct Scsi_Host *shost = sdev->host;
1372
1373	blkdev_dequeue_request(req);
1374
1375	if (unlikely(cmd == NULL)) {
1376		printk(KERN_CRIT "impossible request in %s.\n",
1377				 __FUNCTION__);
1378		BUG();
1379	}
1380
1381	scsi_init_cmd_errh(cmd);
1382	cmd->result = DID_NO_CONNECT << 16;
1383	atomic_inc(&cmd->device->iorequest_cnt);
1384
1385	/*
1386	 * SCSI request completion path will do scsi_device_unbusy(),
1387	 * bump busy counts.  To bump the counters, we need to dance
1388	 * with the locks as normal issue path does.
1389	 */
1390	sdev->device_busy++;
1391	spin_unlock(sdev->request_queue->queue_lock);
1392	spin_lock(shost->host_lock);
1393	shost->host_busy++;
1394	spin_unlock(shost->host_lock);
1395	spin_lock(sdev->request_queue->queue_lock);
1396
1397	__scsi_done(cmd);
1398}
1399
1400static void scsi_softirq_done(struct request *rq)
1401{
1402	struct scsi_cmnd *cmd = rq->completion_data;
1403	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1404	int disposition;
1405
1406	INIT_LIST_HEAD(&cmd->eh_entry);
1407
1408	disposition = scsi_decide_disposition(cmd);
1409	if (disposition != SUCCESS &&
1410	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1411		sdev_printk(KERN_ERR, cmd->device,
1412			    "timing out command, waited %lus\n",
1413			    wait_for/HZ);
1414		disposition = SUCCESS;
1415	}
1416
1417	scsi_log_completion(cmd, disposition);
1418
1419	switch (disposition) {
1420		case SUCCESS:
1421			scsi_finish_command(cmd);
1422			break;
1423		case NEEDS_RETRY:
1424			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1425			break;
1426		case ADD_TO_MLQUEUE:
1427			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1428			break;
1429		default:
1430			if (!scsi_eh_scmd_add(cmd, 0))
1431				scsi_finish_command(cmd);
1432	}
1433}
1434
1435/*
1436 * Function:    scsi_request_fn()
1437 *
1438 * Purpose:     Main strategy routine for SCSI.
1439 *
1440 * Arguments:   q       - Pointer to actual queue.
1441 *
1442 * Returns:     Nothing
1443 *
1444 * Lock status: IO request lock assumed to be held when called.
1445 */
1446static void scsi_request_fn(struct request_queue *q)
1447{
1448	struct scsi_device *sdev = q->queuedata;
1449	struct Scsi_Host *shost;
1450	struct scsi_cmnd *cmd;
1451	struct request *req;
1452
1453	if (!sdev) {
1454		printk("scsi: killing requests for dead queue\n");
1455		while ((req = elv_next_request(q)) != NULL)
1456			scsi_kill_request(req, q);
1457		return;
1458	}
1459
1460	if(!get_device(&sdev->sdev_gendev))
1461		/* We must be tearing the block queue down already */
1462		return;
1463
1464	/*
1465	 * To start with, we keep looping until the queue is empty, or until
1466	 * the host is no longer able to accept any more requests.
1467	 */
1468	shost = sdev->host;
1469	while (!blk_queue_plugged(q)) {
1470		int rtn;
1471		/*
1472		 * get next queueable request.  We do this early to make sure
1473		 * that the request is fully prepared even if we cannot
1474		 * accept it.
1475		 */
1476		req = elv_next_request(q);
1477		if (!req || !scsi_dev_queue_ready(q, sdev))
1478			break;
1479
1480		if (unlikely(!scsi_device_online(sdev))) {
1481			sdev_printk(KERN_ERR, sdev,
1482				    "rejecting I/O to offline device\n");
1483			scsi_kill_request(req, q);
1484			continue;
1485		}
1486
1487
1488		/*
1489		 * Remove the request from the request list.
1490		 */
1491		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1492			blkdev_dequeue_request(req);
1493		sdev->device_busy++;
1494
1495		spin_unlock(q->queue_lock);
1496		cmd = req->special;
1497		if (unlikely(cmd == NULL)) {
1498			printk(KERN_CRIT "impossible request in %s.\n"
1499					 "please mail a stack trace to "
1500					 "linux-scsi@vger.kernel.org\n",
1501					 __FUNCTION__);
1502			blk_dump_rq_flags(req, "foo");
1503			BUG();
1504		}
1505		spin_lock(shost->host_lock);
1506
1507		if (!scsi_host_queue_ready(q, shost, sdev))
1508			goto not_ready;
1509		if (scsi_target(sdev)->single_lun) {
1510			if (scsi_target(sdev)->starget_sdev_user &&
1511			    scsi_target(sdev)->starget_sdev_user != sdev)
1512				goto not_ready;
1513			scsi_target(sdev)->starget_sdev_user = sdev;
1514		}
1515		shost->host_busy++;
1516
1517		/*
1518		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1519		 *		take the lock again.
1520		 */
1521		spin_unlock_irq(shost->host_lock);
1522
1523		/*
1524		 * Finally, initialize any error handling parameters, and set up
1525		 * the timers for timeouts.
1526		 */
1527		scsi_init_cmd_errh(cmd);
1528
1529		/*
1530		 * Dispatch the command to the low-level driver.
1531		 */
1532		rtn = scsi_dispatch_cmd(cmd);
1533		spin_lock_irq(q->queue_lock);
1534		if(rtn) {
1535			/* we're refusing the command; because of
1536			 * the way locks get dropped, we need to
1537			 * check here if plugging is required */
1538			if(sdev->device_busy == 0)
1539				blk_plug_device(q);
1540
1541			break;
1542		}
1543	}
1544
1545	goto out;
1546
1547 not_ready:
1548	spin_unlock_irq(shost->host_lock);
1549
1550	/*
1551	 * lock q, handle tag, requeue req, and decrement device_busy. We
1552	 * must return with queue_lock held.
1553	 *
1554	 * Decrementing device_busy without checking it is OK, as all such
1555	 * cases (host limits or settings) should run the queue at some
1556	 * later time.
1557	 */
1558	spin_lock_irq(q->queue_lock);
1559	blk_requeue_request(q, req);
1560	sdev->device_busy--;
1561	if(sdev->device_busy == 0)
1562		blk_plug_device(q);
1563 out:
1564	/* must be careful here...if we trigger the ->remove() function
1565	 * we cannot be holding the q lock */
1566	spin_unlock_irq(q->queue_lock);
1567	put_device(&sdev->sdev_gendev);
1568	spin_lock_irq(q->queue_lock);
1569}
1570
1571u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1572{
1573	struct device *host_dev;
1574	u64 bounce_limit = 0xffffffff;
1575
1576	if (shost->unchecked_isa_dma)
1577		return BLK_BOUNCE_ISA;
1578	/*
1579	 * Platforms with virtual-DMA translation
1580	 * hardware have no practical limit.
1581	 */
1582	if (!PCI_DMA_BUS_IS_PHYS)
1583		return BLK_BOUNCE_ANY;
1584
1585	host_dev = scsi_get_device(shost);
1586	if (host_dev && host_dev->dma_mask)
1587		bounce_limit = *host_dev->dma_mask;
1588
1589	return bounce_limit;
1590}
1591EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1592
1593struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1594					 request_fn_proc *request_fn)
1595{
1596	struct request_queue *q;
1597
1598	q = blk_init_queue(request_fn, NULL);
1599	if (!q)
1600		return NULL;
1601
1602	/*
1603	 * this limit is imposed by hardware restrictions
1604	 */
1605	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1606
1607	/*
1608	 * In the future, sg chaining support will be mandatory and this
1609	 * ifdef can then go away. Right now we don't have all archs
1610	 * converted, so better keep it safe.
1611	 */
1612#ifdef ARCH_HAS_SG_CHAIN
1613	if (shost->use_sg_chaining)
1614		blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1615	else
1616		blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1617#else
1618	blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1619#endif
1620
1621	blk_queue_max_sectors(q, shost->max_sectors);
1622	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1623	blk_queue_segment_boundary(q, shost->dma_boundary);
1624
1625	if (!shost->use_clustering)
1626		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1627
1628	/*
1629	 * set a reasonable default alignment on word boundaries: the
1630	 * host and device may alter it using
1631	 * blk_queue_update_dma_alignment() later.
1632	 */
1633	blk_queue_dma_alignment(q, 0x03);
1634
1635	return q;
1636}
1637EXPORT_SYMBOL(__scsi_alloc_queue);
1638
1639struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1640{
1641	struct request_queue *q;
1642
1643	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1644	if (!q)
1645		return NULL;
1646
1647	blk_queue_prep_rq(q, scsi_prep_fn);
1648	blk_queue_softirq_done(q, scsi_softirq_done);
1649	return q;
1650}
1651
1652void scsi_free_queue(struct request_queue *q)
1653{
1654	blk_cleanup_queue(q);
1655}
1656
1657/*
1658 * Function:    scsi_block_requests()
1659 *
1660 * Purpose:     Utility function used by low-level drivers to prevent further
1661 *		commands from being queued to the device.
1662 *
1663 * Arguments:   shost       - Host in question
1664 *
1665 * Returns:     Nothing
1666 *
1667 * Lock status: No locks are assumed held.
1668 *
1669 * Notes:       There is no timer nor any other means by which the requests
1670 *		get unblocked other than the low-level driver calling
1671 *		scsi_unblock_requests().
1672 */
1673void scsi_block_requests(struct Scsi_Host *shost)
1674{
1675	shost->host_self_blocked = 1;
1676}
1677EXPORT_SYMBOL(scsi_block_requests);
1678
1679/*
1680 * Function:    scsi_unblock_requests()
1681 *
1682 * Purpose:     Utility function used by low-level drivers to allow further
1683 *		commands from being queued to the device.
1684 *
1685 * Arguments:   shost       - Host in question
1686 *
1687 * Returns:     Nothing
1688 *
1689 * Lock status: No locks are assumed held.
1690 *
1691 * Notes:       There is no timer nor any other means by which the requests
1692 *		get unblocked other than the low-level driver calling
1693 *		scsi_unblock_requests().
1694 *
1695 *		This is done as an API function so that changes to the
1696 *		internals of the scsi mid-layer won't require wholesale
1697 *		changes to drivers that use this feature.
1698 */
1699void scsi_unblock_requests(struct Scsi_Host *shost)
1700{
1701	shost->host_self_blocked = 0;
1702	scsi_run_host_queues(shost);
1703}
1704EXPORT_SYMBOL(scsi_unblock_requests);
1705
1706int __init scsi_init_queue(void)
1707{
1708	int i;
1709
1710	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1711					sizeof(struct scsi_io_context),
1712					0, 0, NULL);
1713	if (!scsi_io_context_cache) {
1714		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1715		return -ENOMEM;
1716	}
1717
1718	scsi_bidi_sdb_cache = kmem_cache_create("scsi_bidi_sdb",
1719					sizeof(struct scsi_data_buffer),
1720					0, 0, NULL);
1721	if (!scsi_bidi_sdb_cache) {
1722		printk(KERN_ERR "SCSI: can't init scsi bidi sdb cache\n");
1723		return -ENOMEM;
1724	}
1725
1726	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1727		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1728		int size = sgp->size * sizeof(struct scatterlist);
1729
1730		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1731				SLAB_HWCACHE_ALIGN, NULL);
1732		if (!sgp->slab) {
1733			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1734					sgp->name);
1735		}
1736
1737		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1738						     sgp->slab);
1739		if (!sgp->pool) {
1740			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1741					sgp->name);
1742		}
1743	}
1744
1745	return 0;
1746}
1747
1748void scsi_exit_queue(void)
1749{
1750	int i;
1751
1752	kmem_cache_destroy(scsi_io_context_cache);
1753
1754	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1755		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1756		mempool_destroy(sgp->pool);
1757		kmem_cache_destroy(sgp->slab);
1758	}
1759}
1760
1761/**
1762 *	scsi_mode_select - issue a mode select
1763 *	@sdev:	SCSI device to be queried
1764 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1765 *	@sp:	Save page bit (0 == don't save, 1 == save)
1766 *	@modepage: mode page being requested
1767 *	@buffer: request buffer (may not be smaller than eight bytes)
1768 *	@len:	length of request buffer.
1769 *	@timeout: command timeout
1770 *	@retries: number of retries before failing
1771 *	@data: returns a structure abstracting the mode header data
1772 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1773 *		must be SCSI_SENSE_BUFFERSIZE big.
1774 *
1775 *	Returns zero if successful; negative error number or scsi
1776 *	status on error
1777 *
1778 */
1779int
1780scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1781		 unsigned char *buffer, int len, int timeout, int retries,
1782		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1783{
1784	unsigned char cmd[10];
1785	unsigned char *real_buffer;
1786	int ret;
1787
1788	memset(cmd, 0, sizeof(cmd));
1789	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1790
1791	if (sdev->use_10_for_ms) {
1792		if (len > 65535)
1793			return -EINVAL;
1794		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1795		if (!real_buffer)
1796			return -ENOMEM;
1797		memcpy(real_buffer + 8, buffer, len);
1798		len += 8;
1799		real_buffer[0] = 0;
1800		real_buffer[1] = 0;
1801		real_buffer[2] = data->medium_type;
1802		real_buffer[3] = data->device_specific;
1803		real_buffer[4] = data->longlba ? 0x01 : 0;
1804		real_buffer[5] = 0;
1805		real_buffer[6] = data->block_descriptor_length >> 8;
1806		real_buffer[7] = data->block_descriptor_length;
1807
1808		cmd[0] = MODE_SELECT_10;
1809		cmd[7] = len >> 8;
1810		cmd[8] = len;
1811	} else {
1812		if (len > 255 || data->block_descriptor_length > 255 ||
1813		    data->longlba)
1814			return -EINVAL;
1815
1816		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1817		if (!real_buffer)
1818			return -ENOMEM;
1819		memcpy(real_buffer + 4, buffer, len);
1820		len += 4;
1821		real_buffer[0] = 0;
1822		real_buffer[1] = data->medium_type;
1823		real_buffer[2] = data->device_specific;
1824		real_buffer[3] = data->block_descriptor_length;
1825
1826
1827		cmd[0] = MODE_SELECT;
1828		cmd[4] = len;
1829	}
1830
1831	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1832			       sshdr, timeout, retries);
1833	kfree(real_buffer);
1834	return ret;
1835}
1836EXPORT_SYMBOL_GPL(scsi_mode_select);
1837
1838/**
1839 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1840 *	@sdev:	SCSI device to be queried
1841 *	@dbd:	set if mode sense will allow block descriptors to be returned
1842 *	@modepage: mode page being requested
1843 *	@buffer: request buffer (may not be smaller than eight bytes)
1844 *	@len:	length of request buffer.
1845 *	@timeout: command timeout
1846 *	@retries: number of retries before failing
1847 *	@data: returns a structure abstracting the mode header data
1848 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1849 *		must be SCSI_SENSE_BUFFERSIZE big.
1850 *
1851 *	Returns zero if unsuccessful, or the header offset (either 4
1852 *	or 8 depending on whether a six or ten byte command was
1853 *	issued) if successful.
1854 */
1855int
1856scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1857		  unsigned char *buffer, int len, int timeout, int retries,
1858		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1859{
1860	unsigned char cmd[12];
1861	int use_10_for_ms;
1862	int header_length;
1863	int result;
1864	struct scsi_sense_hdr my_sshdr;
1865
1866	memset(data, 0, sizeof(*data));
1867	memset(&cmd[0], 0, 12);
1868	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1869	cmd[2] = modepage;
1870
1871	/* caller might not be interested in sense, but we need it */
1872	if (!sshdr)
1873		sshdr = &my_sshdr;
1874
1875 retry:
1876	use_10_for_ms = sdev->use_10_for_ms;
1877
1878	if (use_10_for_ms) {
1879		if (len < 8)
1880			len = 8;
1881
1882		cmd[0] = MODE_SENSE_10;
1883		cmd[8] = len;
1884		header_length = 8;
1885	} else {
1886		if (len < 4)
1887			len = 4;
1888
1889		cmd[0] = MODE_SENSE;
1890		cmd[4] = len;
1891		header_length = 4;
1892	}
1893
1894	memset(buffer, 0, len);
1895
1896	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1897				  sshdr, timeout, retries);
1898
1899	/* This code looks awful: what it's doing is making sure an
1900	 * ILLEGAL REQUEST sense return identifies the actual command
1901	 * byte as the problem.  MODE_SENSE commands can return
1902	 * ILLEGAL REQUEST if the code page isn't supported */
1903
1904	if (use_10_for_ms && !scsi_status_is_good(result) &&
1905	    (driver_byte(result) & DRIVER_SENSE)) {
1906		if (scsi_sense_valid(sshdr)) {
1907			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1908			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1909				/*
1910				 * Invalid command operation code
1911				 */
1912				sdev->use_10_for_ms = 0;
1913				goto retry;
1914			}
1915		}
1916	}
1917
1918	if(scsi_status_is_good(result)) {
1919		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1920			     (modepage == 6 || modepage == 8))) {
1921			/* Initio breakage? */
1922			header_length = 0;
1923			data->length = 13;
1924			data->medium_type = 0;
1925			data->device_specific = 0;
1926			data->longlba = 0;
1927			data->block_descriptor_length = 0;
1928		} else if(use_10_for_ms) {
1929			data->length = buffer[0]*256 + buffer[1] + 2;
1930			data->medium_type = buffer[2];
1931			data->device_specific = buffer[3];
1932			data->longlba = buffer[4] & 0x01;
1933			data->block_descriptor_length = buffer[6]*256
1934				+ buffer[7];
1935		} else {
1936			data->length = buffer[0] + 1;
1937			data->medium_type = buffer[1];
1938			data->device_specific = buffer[2];
1939			data->block_descriptor_length = buffer[3];
1940		}
1941		data->header_length = header_length;
1942	}
1943
1944	return result;
1945}
1946EXPORT_SYMBOL(scsi_mode_sense);
1947
1948/**
1949 *	scsi_test_unit_ready - test if unit is ready
1950 *	@sdev:	scsi device to change the state of.
1951 *	@timeout: command timeout
1952 *	@retries: number of retries before failing
1953 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1954 *		returning sense. Make sure that this is cleared before passing
1955 *		in.
1956 *
1957 *	Returns zero if unsuccessful or an error if TUR failed.  For
1958 *	removable media, a return of NOT_READY or UNIT_ATTENTION is
1959 *	translated to success, with the ->changed flag updated.
1960 **/
1961int
1962scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1963		     struct scsi_sense_hdr *sshdr_external)
1964{
1965	char cmd[] = {
1966		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1967	};
1968	struct scsi_sense_hdr *sshdr;
1969	int result;
1970
1971	if (!sshdr_external)
1972		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1973	else
1974		sshdr = sshdr_external;
1975
1976	/* try to eat the UNIT_ATTENTION if there are enough retries */
1977	do {
1978		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1979					  timeout, retries);
1980	} while ((driver_byte(result) & DRIVER_SENSE) &&
1981		 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
1982		 --retries);
1983
1984	if (!sshdr)
1985		/* could not allocate sense buffer, so can't process it */
1986		return result;
1987
1988	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1989
1990		if ((scsi_sense_valid(sshdr)) &&
1991		    ((sshdr->sense_key == UNIT_ATTENTION) ||
1992		     (sshdr->sense_key == NOT_READY))) {
1993			sdev->changed = 1;
1994			result = 0;
1995		}
1996	}
1997	if (!sshdr_external)
1998		kfree(sshdr);
1999	return result;
2000}
2001EXPORT_SYMBOL(scsi_test_unit_ready);
2002
2003/**
2004 *	scsi_device_set_state - Take the given device through the device state model.
2005 *	@sdev:	scsi device to change the state of.
2006 *	@state:	state to change to.
2007 *
2008 *	Returns zero if unsuccessful or an error if the requested
2009 *	transition is illegal.
2010 */
2011int
2012scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2013{
2014	enum scsi_device_state oldstate = sdev->sdev_state;
2015
2016	if (state == oldstate)
2017		return 0;
2018
2019	switch (state) {
2020	case SDEV_CREATED:
2021		/* There are no legal states that come back to
2022		 * created.  This is the manually initialised start
2023		 * state */
2024		goto illegal;
2025
2026	case SDEV_RUNNING:
2027		switch (oldstate) {
2028		case SDEV_CREATED:
2029		case SDEV_OFFLINE:
2030		case SDEV_QUIESCE:
2031		case SDEV_BLOCK:
2032			break;
2033		default:
2034			goto illegal;
2035		}
2036		break;
2037
2038	case SDEV_QUIESCE:
2039		switch (oldstate) {
2040		case SDEV_RUNNING:
2041		case SDEV_OFFLINE:
2042			break;
2043		default:
2044			goto illegal;
2045		}
2046		break;
2047
2048	case SDEV_OFFLINE:
2049		switch (oldstate) {
2050		case SDEV_CREATED:
2051		case SDEV_RUNNING:
2052		case SDEV_QUIESCE:
2053		case SDEV_BLOCK:
2054			break;
2055		default:
2056			goto illegal;
2057		}
2058		break;
2059
2060	case SDEV_BLOCK:
2061		switch (oldstate) {
2062		case SDEV_CREATED:
2063		case SDEV_RUNNING:
2064			break;
2065		default:
2066			goto illegal;
2067		}
2068		break;
2069
2070	case SDEV_CANCEL:
2071		switch (oldstate) {
2072		case SDEV_CREATED:
2073		case SDEV_RUNNING:
2074		case SDEV_QUIESCE:
2075		case SDEV_OFFLINE:
2076		case SDEV_BLOCK:
2077			break;
2078		default:
2079			goto illegal;
2080		}
2081		break;
2082
2083	case SDEV_DEL:
2084		switch (oldstate) {
2085		case SDEV_CREATED:
2086		case SDEV_RUNNING:
2087		case SDEV_OFFLINE:
2088		case SDEV_CANCEL:
2089			break;
2090		default:
2091			goto illegal;
2092		}
2093		break;
2094
2095	}
2096	sdev->sdev_state = state;
2097	return 0;
2098
2099 illegal:
2100	SCSI_LOG_ERROR_RECOVERY(1,
2101				sdev_printk(KERN_ERR, sdev,
2102					    "Illegal state transition %s->%s\n",
2103					    scsi_device_state_name(oldstate),
2104					    scsi_device_state_name(state))
2105				);
2106	return -EINVAL;
2107}
2108EXPORT_SYMBOL(scsi_device_set_state);
2109
2110/**
2111 * 	sdev_evt_emit - emit a single SCSI device uevent
2112 *	@sdev: associated SCSI device
2113 *	@evt: event to emit
2114 *
2115 *	Send a single uevent (scsi_event) to the associated scsi_device.
2116 */
2117static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2118{
2119	int idx = 0;
2120	char *envp[3];
2121
2122	switch (evt->evt_type) {
2123	case SDEV_EVT_MEDIA_CHANGE:
2124		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2125		break;
2126
2127	default:
2128		/* do nothing */
2129		break;
2130	}
2131
2132	envp[idx++] = NULL;
2133
2134	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2135}
2136
2137/**
2138 * 	sdev_evt_thread - send a uevent for each scsi event
2139 *	@work: work struct for scsi_device
2140 *
2141 *	Dispatch queued events to their associated scsi_device kobjects
2142 *	as uevents.
2143 */
2144void scsi_evt_thread(struct work_struct *work)
2145{
2146	struct scsi_device *sdev;
2147	LIST_HEAD(event_list);
2148
2149	sdev = container_of(work, struct scsi_device, event_work);
2150
2151	while (1) {
2152		struct scsi_event *evt;
2153		struct list_head *this, *tmp;
2154		unsigned long flags;
2155
2156		spin_lock_irqsave(&sdev->list_lock, flags);
2157		list_splice_init(&sdev->event_list, &event_list);
2158		spin_unlock_irqrestore(&sdev->list_lock, flags);
2159
2160		if (list_empty(&event_list))
2161			break;
2162
2163		list_for_each_safe(this, tmp, &event_list) {
2164			evt = list_entry(this, struct scsi_event, node);
2165			list_del(&evt->node);
2166			scsi_evt_emit(sdev, evt);
2167			kfree(evt);
2168		}
2169	}
2170}
2171
2172/**
2173 * 	sdev_evt_send - send asserted event to uevent thread
2174 *	@sdev: scsi_device event occurred on
2175 *	@evt: event to send
2176 *
2177 *	Assert scsi device event asynchronously.
2178 */
2179void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2180{
2181	unsigned long flags;
2182
2183	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2184		kfree(evt);
2185		return;
2186	}
2187
2188	spin_lock_irqsave(&sdev->list_lock, flags);
2189	list_add_tail(&evt->node, &sdev->event_list);
2190	schedule_work(&sdev->event_work);
2191	spin_unlock_irqrestore(&sdev->list_lock, flags);
2192}
2193EXPORT_SYMBOL_GPL(sdev_evt_send);
2194
2195/**
2196 * 	sdev_evt_alloc - allocate a new scsi event
2197 *	@evt_type: type of event to allocate
2198 *	@gfpflags: GFP flags for allocation
2199 *
2200 *	Allocates and returns a new scsi_event.
2201 */
2202struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2203				  gfp_t gfpflags)
2204{
2205	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2206	if (!evt)
2207		return NULL;
2208
2209	evt->evt_type = evt_type;
2210	INIT_LIST_HEAD(&evt->node);
2211
2212	/* evt_type-specific initialization, if any */
2213	switch (evt_type) {
2214	case SDEV_EVT_MEDIA_CHANGE:
2215	default:
2216		/* do nothing */
2217		break;
2218	}
2219
2220	return evt;
2221}
2222EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2223
2224/**
2225 * 	sdev_evt_send_simple - send asserted event to uevent thread
2226 *	@sdev: scsi_device event occurred on
2227 *	@evt_type: type of event to send
2228 *	@gfpflags: GFP flags for allocation
2229 *
2230 *	Assert scsi device event asynchronously, given an event type.
2231 */
2232void sdev_evt_send_simple(struct scsi_device *sdev,
2233			  enum scsi_device_event evt_type, gfp_t gfpflags)
2234{
2235	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2236	if (!evt) {
2237		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2238			    evt_type);
2239		return;
2240	}
2241
2242	sdev_evt_send(sdev, evt);
2243}
2244EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2245
2246/**
2247 *	scsi_device_quiesce - Block user issued commands.
2248 *	@sdev:	scsi device to quiesce.
2249 *
2250 *	This works by trying to transition to the SDEV_QUIESCE state
2251 *	(which must be a legal transition).  When the device is in this
2252 *	state, only special requests will be accepted, all others will
2253 *	be deferred.  Since special requests may also be requeued requests,
2254 *	a successful return doesn't guarantee the device will be
2255 *	totally quiescent.
2256 *
2257 *	Must be called with user context, may sleep.
2258 *
2259 *	Returns zero if unsuccessful or an error if not.
2260 */
2261int
2262scsi_device_quiesce(struct scsi_device *sdev)
2263{
2264	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2265	if (err)
2266		return err;
2267
2268	scsi_run_queue(sdev->request_queue);
2269	while (sdev->device_busy) {
2270		msleep_interruptible(200);
2271		scsi_run_queue(sdev->request_queue);
2272	}
2273	return 0;
2274}
2275EXPORT_SYMBOL(scsi_device_quiesce);
2276
2277/**
2278 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2279 *	@sdev:	scsi device to resume.
2280 *
2281 *	Moves the device from quiesced back to running and restarts the
2282 *	queues.
2283 *
2284 *	Must be called with user context, may sleep.
2285 */
2286void
2287scsi_device_resume(struct scsi_device *sdev)
2288{
2289	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2290		return;
2291	scsi_run_queue(sdev->request_queue);
2292}
2293EXPORT_SYMBOL(scsi_device_resume);
2294
2295static void
2296device_quiesce_fn(struct scsi_device *sdev, void *data)
2297{
2298	scsi_device_quiesce(sdev);
2299}
2300
2301void
2302scsi_target_quiesce(struct scsi_target *starget)
2303{
2304	starget_for_each_device(starget, NULL, device_quiesce_fn);
2305}
2306EXPORT_SYMBOL(scsi_target_quiesce);
2307
2308static void
2309device_resume_fn(struct scsi_device *sdev, void *data)
2310{
2311	scsi_device_resume(sdev);
2312}
2313
2314void
2315scsi_target_resume(struct scsi_target *starget)
2316{
2317	starget_for_each_device(starget, NULL, device_resume_fn);
2318}
2319EXPORT_SYMBOL(scsi_target_resume);
2320
2321/**
2322 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2323 * @sdev:	device to block
2324 *
2325 * Block request made by scsi lld's to temporarily stop all
2326 * scsi commands on the specified device.  Called from interrupt
2327 * or normal process context.
2328 *
2329 * Returns zero if successful or error if not
2330 *
2331 * Notes:
2332 *	This routine transitions the device to the SDEV_BLOCK state
2333 *	(which must be a legal transition).  When the device is in this
2334 *	state, all commands are deferred until the scsi lld reenables
2335 *	the device with scsi_device_unblock or device_block_tmo fires.
2336 *	This routine assumes the host_lock is held on entry.
2337 */
2338int
2339scsi_internal_device_block(struct scsi_device *sdev)
2340{
2341	struct request_queue *q = sdev->request_queue;
2342	unsigned long flags;
2343	int err = 0;
2344
2345	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2346	if (err)
2347		return err;
2348
2349	/*
2350	 * The device has transitioned to SDEV_BLOCK.  Stop the
2351	 * block layer from calling the midlayer with this device's
2352	 * request queue.
2353	 */
2354	spin_lock_irqsave(q->queue_lock, flags);
2355	blk_stop_queue(q);
2356	spin_unlock_irqrestore(q->queue_lock, flags);
2357
2358	return 0;
2359}
2360EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2361
2362/**
2363 * scsi_internal_device_unblock - resume a device after a block request
2364 * @sdev:	device to resume
2365 *
2366 * Called by scsi lld's or the midlayer to restart the device queue
2367 * for the previously suspended scsi device.  Called from interrupt or
2368 * normal process context.
2369 *
2370 * Returns zero if successful or error if not.
2371 *
2372 * Notes:
2373 *	This routine transitions the device to the SDEV_RUNNING state
2374 *	(which must be a legal transition) allowing the midlayer to
2375 *	goose the queue for this device.  This routine assumes the
2376 *	host_lock is held upon entry.
2377 */
2378int
2379scsi_internal_device_unblock(struct scsi_device *sdev)
2380{
2381	struct request_queue *q = sdev->request_queue;
2382	int err;
2383	unsigned long flags;
2384
2385	/*
2386	 * Try to transition the scsi device to SDEV_RUNNING
2387	 * and goose the device queue if successful.
2388	 */
2389	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2390	if (err)
2391		return err;
2392
2393	spin_lock_irqsave(q->queue_lock, flags);
2394	blk_start_queue(q);
2395	spin_unlock_irqrestore(q->queue_lock, flags);
2396
2397	return 0;
2398}
2399EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2400
2401static void
2402device_block(struct scsi_device *sdev, void *data)
2403{
2404	scsi_internal_device_block(sdev);
2405}
2406
2407static int
2408target_block(struct device *dev, void *data)
2409{
2410	if (scsi_is_target_device(dev))
2411		starget_for_each_device(to_scsi_target(dev), NULL,
2412					device_block);
2413	return 0;
2414}
2415
2416void
2417scsi_target_block(struct device *dev)
2418{
2419	if (scsi_is_target_device(dev))
2420		starget_for_each_device(to_scsi_target(dev), NULL,
2421					device_block);
2422	else
2423		device_for_each_child(dev, NULL, target_block);
2424}
2425EXPORT_SYMBOL_GPL(scsi_target_block);
2426
2427static void
2428device_unblock(struct scsi_device *sdev, void *data)
2429{
2430	scsi_internal_device_unblock(sdev);
2431}
2432
2433static int
2434target_unblock(struct device *dev, void *data)
2435{
2436	if (scsi_is_target_device(dev))
2437		starget_for_each_device(to_scsi_target(dev), NULL,
2438					device_unblock);
2439	return 0;
2440}
2441
2442void
2443scsi_target_unblock(struct device *dev)
2444{
2445	if (scsi_is_target_device(dev))
2446		starget_for_each_device(to_scsi_target(dev), NULL,
2447					device_unblock);
2448	else
2449		device_for_each_child(dev, NULL, target_unblock);
2450}
2451EXPORT_SYMBOL_GPL(scsi_target_unblock);
2452
2453/**
2454 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2455 * @sgl:	scatter-gather list
2456 * @sg_count:	number of segments in sg
2457 * @offset:	offset in bytes into sg, on return offset into the mapped area
2458 * @len:	bytes to map, on return number of bytes mapped
2459 *
2460 * Returns virtual address of the start of the mapped page
2461 */
2462void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2463			  size_t *offset, size_t *len)
2464{
2465	int i;
2466	size_t sg_len = 0, len_complete = 0;
2467	struct scatterlist *sg;
2468	struct page *page;
2469
2470	WARN_ON(!irqs_disabled());
2471
2472	for_each_sg(sgl, sg, sg_count, i) {
2473		len_complete = sg_len; /* Complete sg-entries */
2474		sg_len += sg->length;
2475		if (sg_len > *offset)
2476			break;
2477	}
2478
2479	if (unlikely(i == sg_count)) {
2480		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2481			"elements %d\n",
2482		       __FUNCTION__, sg_len, *offset, sg_count);
2483		WARN_ON(1);
2484		return NULL;
2485	}
2486
2487	/* Offset starting from the beginning of first page in this sg-entry */
2488	*offset = *offset - len_complete + sg->offset;
2489
2490	/* Assumption: contiguous pages can be accessed as "page + i" */
2491	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2492	*offset &= ~PAGE_MASK;
2493
2494	/* Bytes in this sg-entry from *offset to the end of the page */
2495	sg_len = PAGE_SIZE - *offset;
2496	if (*len > sg_len)
2497		*len = sg_len;
2498
2499	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2500}
2501EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2502
2503/**
2504 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2505 * @virt:	virtual address to be unmapped
2506 */
2507void scsi_kunmap_atomic_sg(void *virt)
2508{
2509	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2510}
2511EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2512